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Abstract

The availability of technology plays a major role in the feasibility
and costs of climate policy. Nonetheless, technological change is highly
uncertain and capital intensive, requiring risky efforts in research and
development of clean energy technologies.

In this paper, we introduce a two-track method that makes it possi-
ble to maintain the rich set of information produced by climate-economy
models while introducing the dimension of uncertainty in innovation ef-
forts, without succumbing to computation complexity. In particular, we
solve the problem of an optimal R&D portfolio by employing Approx-
imate Dynamic Programming, through multiple runs of an integrated
assessment model (IAM) for the purpose of computing the value func-
tion, and expert elicitation data to quantify the relevant uncertainties.
We exemplify the methodology with the problem of evaluating opti-
mal near-term innovation investment portfolios in four key clean energy
technologies (solar, biofuels, bioelectricity and personal electric vehicle
batteries), taking into account the uncertainty surrounding the effec-
tiveness of innovation to improve the performance of these technologies.
We employ an IAM (WITCH) which has a fairly rich description of the
energy technologies and experts’ beliefs on future costs for the above-
mentioned technologies.

Focusing on Europe and its short-term climate policy commitments,
we find that batteries in personal transportation dominate the opti-
mal public R&D portfolio. The resulting ranking across technologies is
robust to changes in risk-aversion, R&D budget limitation and assump-
tions on crowding out of other investments. These results suggest an
important upscaling of R&D efforts compared to the recent past.
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1 Introduction
A successful climate change mitigation strategy will require significant im-
provements of existing technologies, and the introduction in the market of
alternatives currently available only in the lab, to reduce energy consump-
tion and energy carbon intensity at acceptable costs. Applying deterministic
approaches, researchers have been developing complex Integrated Assessment
Models (IAMs) to inform these types of decisions, and to identify ideal de-
carbonization pathways (Clarke et al., 2014; Marangoni and Tavoni, 2014).
Experience with these models has shown that the availability of technology
plays a major role in the feasibility and costs of facing the challenge of strin-
gent climatic targets (Kriegler et al., 2014). Nonetheless, technological change
is highly uncertain and capital intensive, requiring risky efforts in research and
development (R&D). Thus a more appropriate approach should account for
this source of uncertainty. The fact that these efforts may or may not lead
to technological breakthroughs has important implications when considering
energy R&D investment strategies for a low-carbon future.

Previous literature has already highlighted how the joint modelling of en-
dogenous technical change and uncertainty has important quantitative and
qualitative impacts on optimal technological policies for climate change (Baker
and Shittu, 2008). When accounting for the uncertain effectiveness of R&D in-
vestments, results can drastically differ from their deterministic counterparts,
in terms of both magnitude and composition. In addition to this, an exten-
sive literature on expert elicitation of energy technologies (Baker et al., 2015a;
Chan et al., 2011; Anadón et al., 2012; Nemet et al., 2016) emphasizes the
significant uncertainty that experts attach to R&D investments, as well as the
huge disagreement across experts. This uncertainty cannot be neglected, es-
pecially if we consider the significant impact of future technological costs on
the implementation of stringent climate policies (Bosetti et al., 2015).

So far, the most common approach has been to include uncertainty within
a simple analytical framework, with inputs derived from the output of IAMs.
Blanford (2009) captures the essential elements underlying the relationship be-
tween R&D investment and research outcomes, where the latter are assessed
by running an IAM (MERGE, Manne et al. (1995)) in a variety of technol-
ogy scenarios representing outcomes of alternative R&D programs. Optimal
portfolios are then calculated by linking R&D investments to a probability
distribution over alternative outcomes. Likewise, Bosetti and Tavoni (2009)
develop a simple analytical model, with two time periods and two technolo-
gies, which mimics a social planner who minimizes costs by choosing optimal
abatement and innovation efforts consistent with a given environmental target.
Uncertainty is introduced by modeling the R&D outcome on the abatement
cost of a carbon-free breakthrough technology (backstop) as uncertain. A
stochastic version of WITCH is devised to account for such uncertainty, but
only two states of nature for the effectiveness of R&D in a single technology
can be introduced while maintaining the model computationally tractable.

The need to consider problems with multiple technologies, coupled with
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more complex IAMs, has spurred researchers to find new ways to overcome
the resulting "curse of dimensionality." In a recent study, Baker et al. (2015b)
consider four sets of probabilistic distributions, related to different elicitation
teams of experts, conditional to three funding levels per set, and five technolo-
gies. Furthermore, the economic interactions of technologies are estimated
through a large IAM. To alleviate the computational burden, the authors use
importance sampling. A single sampling distribution is derived from all those
available, and the resulting set of samples is run through the IAM. The sampled
output is then used to evaluate alternative portfolios.

In the different context of assessing the social cost of carbon, Cai et al.
(2013) show the application of an alternative approach, Approximate Dynamic
Programming, to account for uncertainty in a IAM. The authors jointly model
the uncertain elements of catastrophic climate change damages and annual eco-
nomic productivity within a dynamic stochastic general equilibrium version of
DICE, a widely accepted IAM. The problem is solved within the framework
of dynamic programming, where the value function given by the solution of
the original model is approximated with a finitely parameterized collection of
functions. A similar approach allows Lemoine and Traeger (2014) to calcu-
late optimal climate policies in DICE, including the endogenous possibility of
climatic tipping points, their welfare implications, and learning about their
trigger temperatures. Different variants of the Approximate Dynamic Pro-
gramming (ADP) framework have been successfully applied to studying the
policy impact of other decision-dependent cost uncertainties in DICE, as in
Webster et al. (2012), providing a rough approximation of the technology R&D
case we tackle here.

In this paper, we employ the ADP algorithm proposed by Cai et al. (2013),
which allows us to keep the complexity of the IAM results intact and, at the
same time, to account for the uncertain effectiveness of R&D efforts in four
innovative low-carbon technologies. To compute the value function we use a
fairly complex IAM (WITCH). In order to quantify the intrinsic uncertainty
concerning learning rates, costs and efficiency parameters, we resort to recent
expert elicitations (Bosetti et al., 2011). To provide novel and robust insights
on the optimal portfolio of clean energy R&D investments, we perform a set
of experiments.

First, we define the optimal level and composition of a public R&D portfolio
of investments in four key clean energy technologies, given experts’ judgments
on their future probabilistic costs, the potential economic and technological
implications of such costs (as modelled by a complex IAM), and the uncertain
effect of R&D investments on costs.

Second, we study how the portfolio composition changes when considering
different limits on the RD&D budget, different risk-aversion preferences, and
different assumptions about the characteristics of the R&D program.

While providing policy relevant results, the main goal of the paper is to
introduce a fairly general method that can be easily adapted to using alterna-
tive IAMs, or a collection of them, to approximate the value function, as well
as different expert elicitations or historically based data to inform the prob-
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abilistic relationship between R&D and the future evolution of technological
costs.

2 Optimal R&D Portfolio Problem
The problem of finding the optimal near-term investments in R&D during a
first period T1 that have an uncertain effectiveness for a period T2 can be formu-
lated as a two-stage stochastic program. This can be schematically described
as:

UT1(IT1) + E [UT2(IT1 ,λ)] . (1)
where IT1 = I = [I1, . . . , In] represents the vector of R&D investments in

the different n technologies; UT1(IT1) is the objective function over the first
period T1 and UT2(IT1 ,λ) is the objective function over the second period T2.
In the context of R&D policy making, the objective is to maximize the sum of
these two terms. The first term decreases deterministically with the expendi-
ture in R&D, I, as the resulting benefits are assumed to materialize only after
the first stage. The second term models the welfare associated with the stream
of consumption in the second period, given the realization of future technologi-
cal costs. This term increases with the expenditures in R&D I done in the first
period, as costs are reduced with the cumulated level of knowledge, and more
wealth can be generated. Nonetheless, benefits depend on the realization of
the effectiveness of the R&D investments. This uncertain effectiveness can be
conceptualized by introducing stochastic learning rates λ = [λ1, . . . , λn], which
capture how knowledge turns into cost reductions (Gritsevskyi and Nakićenovi,
2000). Optimal R&D investments should then be chosen by the policy maker
by trading off the benefits of shifting the distributions of future technological
costs towards the lower end, with the burden of sustaining those investments
today.

In order to approach the problem of Eq. (1), two elements are necessary
(Baker et al., 2015b). The first is the quantification of the stochastic rela-
tionship between R&D investments and their effect on future technological
performance (i.e. the distribution of learning rate λ); the second relates to the
calculation of the stream of benefits associated with the various realizations of
technological costs and efficiency parameters.

This paper shows how the framework just described can be implemented
to support today public R&D investment decisions in clean low-carbon en-
ergy technologies. Both empirical analyses of past R&D program effectiveness
(Wiesenthal et al., 2012) and expert elicitations (Morgan et al., 1992) can be
used to quantify the probabilistic relationship between R&D investments and
their effectiveness. Here, we use data from an expert elicitation regarding the
future cost and efficiency of key energy technologies and how these parameters
might be affected by changes in R&D efforts (Bosetti et al., 2011). We focus
on the impact of R&D investments on future costs of four technologies related
to low-carbon energy supply:
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• the cost of electricity produced with solar technologies;

• the production cost of liquid biofuels;

• the module cost of batteries for light-duty vehicles;

• the cost of electricity produced with biomass.

To quantify future welfare implications of different techno-economic-climatic
scenarios, the scientific community typically resorts to integrated assessment
models (IAMs). Here, we employ WITCH (World Induced Technical Change
Hybrid Model), a general equilibrium IAM that can project forward the soci-
etal implications of energy technology costs (Emmerling et al., 2016; Bosetti
et al., 2009, 2006). The space of possible future cost realizations is sampled to
provide a discrete set of input configurations for WITCH. The simulations yield
a set of economic outcomes which are then used to approximate a continuous
value function.

The choice of WITCH among the many existing IAMs was mainly driven by
its fairly rich technological and economic description, and by its numerous pre-
vious applications to the study of endogenous innovation in the energy system
(Marangoni and Tavoni, 2014; Bosetti and Tavoni, 2009). The model divides
the worldwide economy into 13 regions, whose main macroeconomic variables
are represented through a top-down inter-temporal optimal growth structure,
while the energy sector is detailed in a bottom-up fashion. The different regions
behave as forward-looking agents optimizing their welfare in a non-cooperative
game-theoretic set-up. Actions of each agent interrelate through several ex-
ternalities, such as dependence on exhaustible natural resources and trade of
oil. While the focus of this paper is on the EU15+EFTA region, economic
scenarios involve assumptions and optimization for all the other regions. For
our application to be policy relevant, we assume that countries represented in
the model optimize welfare while obeying a lenient climate change policy, in
line with recent UNFCCC negotiated targets1.

3 Two-stage stochastic program
The first stage decision concerns which technologies to promote by investing a
dedicated amount in R&D during the 2010-2030 period. This happens before
the realization of the effectiveness of this R&D investment in 2030. In this first

1We assume that countries will pursue similar levels of climate mitigation stringency for
the rest of the century. This target entails an expected increase in global average temperature
of around 2.8°C above pre-industrial levels by the end of the century. The probability that
the temperature increase will exceed 2°C, the threshold commonly considered as safe by the
scientific community to avoid irreversible climate changes, is very high (88%-97%, Kriegler
et al. (2013)). While climate policy makers will hopefully commit to stronger and more
coordinated actions in the future, the stringent pledges we consider here reflect realistic
national near-term efforts, also in line with the commitment shown by the latest Intended
Nationally Determined Contributions (INDCs) circulated in the COP21 in Paris.
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stage, the decision-maker allocates a time-invariant R&D budget Ij yearly be-
tween 2010 and 2030, for each modelled technology j ∈ J = {j1, ..., jJ}.
R&D expenditures reduce available consumption of final good Qt in period
t ∈ T1 = {2010, 2015, 2020, 2025} by subtraction from a counterfactual con-
sumption level Q̄t without R&D:

Qt = Q̄t − r
∑
j

Ij t ∈ T1 (2)

Public investments in energy R&D crowd out investments in other R&D’s,
which have a social rate of return r times higher than that of private invest-
ments. It is assumed that 1 dollar of Ij costs r = 4 dollars otherwise usable for
direct consumption or private investments (Popp, 2004). Reference consump-
tion Q̄t is a baseline counterfactual calculated by the integrated assessment
model WITCH, if we assume that there will be no explicit R&D expenditures
and median cost realizations after 2030 for the technologies in J . Any reper-
cussion of I on the economy other than the one in Eq. (2) is assumed to be
negligible. This is reasonable as R&D investments constitute a tiny fraction
of overall GDP, and benefits from R&D may take some time to materialize,
in this case a couple of decades. t is defined on a discretized time horizon of
periods of T∆ = 5 years. Over this time horizon, knowledge in each technology
j builds up according to the usual capital law of motion. Starting from an
initial value K0,j, the R&D stock in period t is given by a fraction (1− δR)T∆

of the stock in the previous period, plus the flow of new ideas due to T∆ years
of investments:

Kj,t+T∆ = Kj,t(1− δR)T∆ + T∆Ij. (3)
The initial R&D stock K0,j in 2010 is estimated from IEA (2015) by ap-

plying the same accumulation dynamics to historical R&D budgets, separately
for each region. Yearly obsolescence of R&D δR is assumed to be 5% for all
technologies.

The link between knowledge accumulated in the first stageK = [K1, ..., KJ ]
by 2030, and the cost C = [C1, ..., CJ ] in 2030, follows a one-factor learning
curve. In particular, the cost C can be thought of as the sum of a floor cost Cf
with the initial cost C0 scaled according to the upscaling in stock of knowledge
K over time, and to a learning rate λ = [λ1, ..., λJ ]:

C(I,λ(ω)) = Cf +C0

(
K(I)
K0

)−λ(ω)

. (4)

λ is assumed to be revealed in 2030 and depends on the realization ω =
[ω1, ..., ωJ ]. This parameter drives the uncertainty of the problem of choosing
investments today. If we omit the dependency of λ on ω for brevity, optimal
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investments I maximize the following utility function:

U(I,λ) := UT1(I) + E [UT2(I,λ)] (5)
UT1(I) :=

∑
t∈T1

ut(Qt(I))

UT2(I,λ) :=
∑
t∈T2

ut(Qt(C(I,λ))) = V (C(I,λ))

In the first part of the objective function UT1(I), utility at time t is a
concave function ut increasing with consumption Qt, and decreasing with |I|.
A constant relative risk aversion equal to the inverse of the elasticity of in-
tertemporal substitution η is implied. The dependency of ut on time is due to
changing levels of population Lt and discount factor βt2.

The second part of the objective function UT2(I,λ) represents future wel-
fare from 2030 till the end of the time horizon (2150 in WITCH). It depends on
the sum of future consumption levels Qt over period T2, according to the same
temporal utility function ut as before. This time consumption depends explic-
itly on realized technological costs C, which in turn depend on the knowledge
previously accumulated and on the actual sample outcomes ω of the stochastic
learning parameter λ = [λ1, ..., λJ ]. Function V represents the overall func-
tional dependency of utility on technological costs, and is implemented via the
WITCH computational model by observing the economic and energy-related
consequences of changing cost assumptions C.

Multiple technologies and continuous distributions for λ lead to an in-
tractable problem if any change in I or λ (hence in C) needs to be propagated
into the solution of a new instance of a complex integrated assessment model
like WITCH. We adopt an ADP approach (Cai et al., 2013) by substituting
V (·) with an approximating function much easier to calculate. This replace-
ment, along with the assumption that uncertainty about technological change
in the second stage does not impact the first stage objective function UT1(I),
makes the R&D portfolio problem numerically solvable in reasonable times.
Finally, the expectation in Eq. (5) is translated into an average of over 1000
scenarios for λ, obtained via latin hypercube sampling of its distribution.

To show that the problem is well formulated and has a unique solution,
we would need to prove that the utility is strictly concave. In section A.1
in the appendix we study and provide proof of concavity in the case of one
technology. The case for multiple technologies is treated only numerically, as
the intuition behind the well-posedness of the problem would be obscured by
the required cumbersome analytical derivation.

The optimization problem changes slightly to accommodate for different
risk-aversion preferences. As section A.2 in the appendix illustrates, the prob-
lem turns into the following minimization:

2In period t, utility is multiplied by a standard geometric discount factor βt = 1/(1 +
ρ)t−2005, with a pure rate of time preference ρ equal to 1%. The specific expression we
consider for ut is Ltβt/(1− η)((Qt/Lt)1−η − 1)
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min
∑
t∈T1

Gt(Qt(I)) + E
[
(H(C(I,λ)))

1−α
1−η

] 1−η
1−α

(6)

for some appropriate functions Gt and H (related to utility in T1 and T2 re-
spectively). This formulation allows the risk-aversion parameter α to be made
explicit and independent from the inverse of the elasticity of intertemporal
substitution η.

3.1 Learning rate estimation
Since we are considering relatively novel technologies, with scarce historical
data and high potential for improvement, extrapolating historical trends may
be inadequate to represent their future behaviors. We rely instead on expert
elicitation to assess probabilistic distributions of future costs. Distributions
are estimated from the data collected by the ICARUS project (Bosetti et al.,
2011). For this project, leading experts from the academic world, the private
sector and international institutions took part in a survey designed to collect
probabilistic information on the role of R&D investments in lowering costs
and increasing penetration of 8 carbon-free technologies. The survey could
focus only on a limited amount of R&D budgets for each technology. In our
framework we want to be able to search for the optimal budget allocation in
a continuum of possibilities. This is possible by introducing and calibrating a
particular model for technical change, such as the single-factor learning model
considered here (Eq. (4)). Then, uncertainty is assumed to lie exclusively in
the learning rate λ.

The goal is to translate cost distributions, given by the experts, into dis-
tributions of learning rates. Let the random variable Cs be the cost in 2030
of one technology under an R&D scenario s, chosen among 3 future R&D
budget scenarios. The scenarios represent an increase of 0%, 50% and 100%
with respect to baseline levels, in line with the protocol used for the expert
elicitation. The ensemble of experts’ predictions is summarized into N sam-
ples of Cj,s cumulative distribution function (CDF). The resulting empirical
CDFs are illustrated for one technology (battery) in the first panel of Figure
1. By inverting Eq. (4), N samples for λs CDF are obtained. If the one-factor
model with uncertain learning perfectly represented the experts’ aggregated
view, these CDF would overlap, as the learning rate (hence its CDF) would
not depend on the scenario: while investments do affect costs, they should be
independent from the learning rates according to Eq. (4). As shown in the
second panel of Figure 1, this modelling assumption fits well in the case of bat-
teries, and remains reasonable for the other technologies as well. Taking the
mean across s of λs empirical distributions and fitting a Weibull distribution,
we identify a parametric description of the uncertain learning rates. Using Eq.
(4) again, a parametric description of the uncertain costs as a function of in-
vestments can be derived. The third panel of Figure 1 confirms the agreement
between fitted and empirical distributions for the original 3 budget scenarios,
and demonstrates how novel budget scenarios can now be explored thanks to
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the parametric description obtained. The whole estimation process is further
documented in Procedure 1 in the Appendix, while similar plots to those of
Figure 1 are reported for all technologies in Figure 6 in the Appendix.
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Figure 1: First panel: empirical CDFs of 2030 battery costs as elicited from
experts, one R&D budget for each color. Second panel: corresponding learning
rate distributions, according to the one-factor learning curve model, plus a
Weibull fit of the mean empirical CDF. Third panel: empirical CDFs of costs
along with their fitted versions, for the 3 original R&D budgets plus an extra
one.
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3.2 Value function interpolation
In order to apply the Approximate Dynamic Programming paradigm, we need
to construct the value function, i.e. a continuous function approximating the
WITCH regional welfare response to technological cost C in the space of inter-
est. We start by evaluating WITCH on a representative discrete subset of costs
combinations. The extreme of the ranges of this space are reported in Table
3.2 under the min and max cost columns. Current cost C0,j, used until 2030,
is just below the maximum value. Costs are assumed to reveal themselves in
2030, and are obtained by sampling a value in the ranges. Afterwards, they
decay autonomously a further 20% by 2060, and then they remain constant.
Floor cost Cf,j, appearing in the learning equation (4), is slightly above the
minimum value of the range. The margins from extreme values, especially on
the lower end, keep the R&D portfolio program away from extreme boundary
behaviors.

Table 1: Table summarizing minimum, maximum, current and floor costs of
the four technologies considered.
Technology j Unit Min cost Floor cost Current Max cost

(Cm,j) (Cf,j) cost (C0,j) (CM,j)
Solar cUSD/kWh 2 3 27.8 28
Biofuels USD/lge 0.05 0.08 2.98 3
Batteries USD/kWh 50 75 1019 1025
Bioelectricity cUSD/kWh 3 4.5 24.9 25

We follow the methodology presented by Cai et al. (2013) and construct
the value function based on Hermite approximation, including both the La-
grange data and the slope information (available using the dual variables of
the technological cost constraints in the welfare maximization). To do so, ten
samples are picked along each of the cost dimensions according to a Cheby-
sev nodal formula3, which is known to provide greater stability for polynomial
interpolation.

As we study in this paper the impact on four different technologies, a total
of ten thousands runs of WITCH is required to perform the approximation
(which is eventually based on 10,000 welfare and 40,000 directional derivative
values). The exact procedure is described in section A.4 in the appendix.

4 Results
With our model we run two scenarios: "Stochastic", where the optimal port-
folio program is solved assuming that the learning rate λ is sampled from its
fitted Weibull distribution, and "Certainty equivalent", where we compute the

3The i-th sample cost for technology j is chosen as: C
(i)
j = Cm,j+CM,j

2 +
CM,j−Cm,j

2 cos
(
π i−0.5

10
)
.
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portfolio assuming that λ is deterministic and equal to the mean value of its
stochastic distribution. By comparing the utility of using a "Stochastic" strat-
egy with the one resulting from a "Certainty equivalent" approach, averaged
across a sampled set of learning rate outcomes, we can capture the value of
including more information in the solution process, which is also called the Ex-
pected Value of Better Information (EVBI) in the literature (Baker and Peng,
2011). As expected, the "Stochastic" solution yields a greater utility. While
the implications on average utility in our numerical case are relatively small,
the strategies look very different with and without probabilistic information.
To further explore the case of a "Stochastic" approach, different values of the
crowding out factor r, the risk-aversion parameter α, and the total allowable
budget (max∑i I i) are considered.

Figure 2 compares yearly public R&D investments per technology under
the two simulated scenarios with actual historical data on energy R&D (la-
belled "Historical"). The latter come from averaging 2010 to 2014 R&D in-
vestment flows reported by IEA in the relevant technological categories (IEA,
2015). Also for the estimation of the initial R&D capital, values in the pe-
riod 2010-2014 were averaged, as a way to incorporate in the model the most
recent available information. Results from both optimization runs imply a
stark break with past trends, in terms of both total R&D expenditures (left
hand side panel) and composition of the portfolio (right hand side panel). The
"Certainty equivalent" case implies an optimal future budget 27 times higher
than the historical 2010-2014 average of 485 million USD. Uncertainty seems
to duplicate optimal R&D efforts, for a total of 28.5 billion USD. In increasing
order, the three budgets constitute 0.003%, 0.10% and 0.20% of GDP in 2010
for the EU15+EFTA region. While GDP is estimated to grow in the first-
stage, the fixed yearly "Stochastic" budget would remain above 0.10% of the
overall economic output.

A clear break with history happens also in terms of shares. Most recent
European R&D investments were devoted to solar technologies, with biofuels
in the second place, followed by bioelectricity and lastly batteries for personal
transport. Our stochastic solution suggests a quite different scenario, where
batteries dominate the portfolio with a share of 80% in the stochastic case,
and likewise in the deterministic one. This is equivalent to an upscaling of two
to three orders of magnitude in R&D investments in batteries, with respect
to current efforts. A minor role is played by other technologies, with differ-
ent rankings depending on whether or not the full distribution is taken into
account. In particular, shares in the "Certainty equivalent" case are 76.8%,
12.4%, 8.3% and 2.5% for batteries, solar, biofuels and bioelectricity respec-
tively. In the "Stochastic" case, the share of solar and bioelectricity budgets
(9.5% and 1.8% respectively) are slightly diminished, mostly in favor of battery
(80.3%). Biofuels (8.5%) keep their share almost unchanged.

Several reasons may justify these results. First, the expected net present
value of future welfare is much more sensitive to changes in future costs of bat-
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Figure 2: R&D portfolio composition. The left-hand side reports yearly R&D
investments per technology for the two scenarios and the historical 2010-2014
average as reported in the IEA RD&D Database. The right-hand side shows
the percentage of total R&D investments in each of the four technologies.

teries than in all the other costs (see Figure 7). The non-electric sector, and in
particular the personal transport sector, is traditionally considered one of the
most difficult and expensive to decarbonize (Luderer et al., 2011; Bosetti et al.,
2015). Through electrification of vehicles, Europe can expand to transport
emissions the benefits from the already widespread efforts in support of clean
power generation. Europe’s determined contribution can then be achieved at
contained costs. Electrification of this kind is possible only with an adequate
battery technology in place, which requires a considerable increase in the R&D
from the status quo. Second, according to the experts’ judgment, the prob-
abilistic distribution of future battery costs seems to be less sensitive to an
upscaling in investments when compared to other technologies. As reported in
the last column of Figure 6, a ten-fold increase in battery investments yields
the smallest change in the cumulative distribution function of 2030 costs. Fi-
nally, batteries have received marginal attention in terms of European R&D
funds in the recent past, making the initial cost quite high. It is important to
remark that the scope of our analysis is limited to public R&D expenditures
in Europe. By doing so, we are potentially neglecting spillovers of innovation
from the private sectors, and from R&D efforts in other countries. This might
lead to an over-estimation of optimal regional public R&D needs, which could
partially justify the deviation from historical trends.

Comparing the "Stochastic" and "Certainty equivalent" solutions, we can
grasp the effect of accounting for uncertainty in the optimal response. While
uncertainty seems to have a minor effect on the shares of the portfolio, its
role is clear in the upscaling of battery investment levels. A precautionary
mechanism emerges from the optimization, where the risks of low learning in
batteries are strongly hedged against by increased investments. This is done
to the detriment of the power sector, which receive fewer percentage points
of the budget. Biofuels keep their minor role in complementing batteries for
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decarbonizing the transport sector.
Next, we report results for different sensitivity tests aimed at understand-

ing the robustness of the optimal stochastic solution to reasonable changes
in key components of the model. As discussed in Section 3, we employ the
assumption that 1 USD of public investments in energy R&D crowds out r
dollars of investments in other R&D’s, with a nominal value of 4 (Popp, 2004).
Figure 3 shows how results change in response to different assumptions about
the crowding out factor. As r decreases, opportunity costs of energy R&D
investments are lower, hence greater energy R&D budgets can be optimally
allocated, and more so again in the battery sector. Increasing r, on the other
hand, increases the social cost of energy R&D investments, which become less
attractive. Going from r = 2 to r = 6 means cutting more than half of the in-
vestments. A slight convexity makes this behavior marginally decrease towards
greater r values. We remark that the concern about energy R&D crowding out
other forms of R&D might be minimal according to some empirical evidence
(Popp and Newell, 2009), so that r is more likely gravitating towards 2 rather
than 6.
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Figure 3: Sensitivity to different crowding-out assumptions of the optimal
R&D portfolio under uncertainty. Results are presented in terms of both yearly
absolute investments levels (left-hand side) and corresponding shares (right-
hand side).

Another important parameter is the one affecting the propensity of decision-
makers to avoid risk. In the nominal solution we assumed the relative risk aver-
sion parameter α to be equal to the inverse of the elasticity of intertemporal
substitution η = 1.5. Empirical estimates of α from observed trade behavior
can be in the 10-20 range. Figure 4 shows the impact of increasing α on the
optimal solution of the stochastic problem, using the modified utility derived
in Section A.2. Greater risk aversion justifies greater R&D investments, and
the additional budget is directed towards batteries. As discussed previously,
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the model is particularly sensitive to the uncertain learning rate of batteries,
and reducing the uncertainty of the problem involves mostly reducing the un-
certainty in batteries’ future cost realizations. Total and battery investments
increase linearly in α, with an average of 0.4% gained per added unit of α.
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Figure 4: Sensitivity to different risk aversion assumptions of the optimal
R&D portfolio under uncertainty. Results are presented in terms of both yearly
absolute investments levels (left-hand side) and corresponding shares (right-
hand side).

Finally, the actual budget for energy R&D may be limited by other con-
straints, not explicitly modelled in this work. Current budget deficits and other
financial constraints might impose a total energy R&D budget considerably
smaller than the optimal one. Figure 5 illustrates the change in R&D alloca-
tion when the total R&D budget is constrained. The constraint is expressed
as a fraction of the total R&D budget that would be otherwise optimal. Along
with total investments, the levels of the individual technology budgets also
scale proportionally, except for the smallest fractions. As the available total
R&D funds shrink and eventually get to 10% of the unconstrained ones, bat-
tery R&D becomes less predominant in the portfolio. Given a constrained total
budget, the model tends to reallocate efforts more equally across technologies.
Lower investments in other technologies make more likely lower realizations of
the learning rates, and the model starts to hedge against these. This is true
for solar, biofuels and, to a lesser extent, bioelectricity.

5 Conclusions
This paper copes with the problem of including uncertainty endogenously in
the optimization problem of a complex Integrated Assessment Model used
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Figure 5: Sensitivity to different total budget limitations of the optimal R&D
portfolio under uncertainty. Results are presented both in terms of yearly
absolute investments levels (left-hand side) and corresponding shares (right-
hand side).

for climate policy assessment. In our case, the decision variables of interest
are energy R&D public investments to be allocated across 4 key low-carbon
technologies in the short-term. Uncertainty affects the learning rate that will
make these investments more or less effective in decreasing 2030 costs of these
technologies. The problem is framed as a two-stage stochastic program: in the
first stage (before 2030), a stock of knowledge is built through yearly R&D
investments, decided for each technology; in the second stage (after 2030), the
actual effectiveness of these R&D investments is revealed, and so are the actual
costs of the four energy technologies, ultimately depending on the realization
of the learning rates and on the accumulated stock of knowledge. The utility
resulting from these possible technological futures is evaluated through the
WITCH model. To make the problem computationally tractable, we apply the
Approximate Dynamic Programming paradigm by replacing actual runs of the
WITCH model with a surrogate function interpolated from 10,000 instances of
the model, evaluated at different points in the energy technologies cost space.

The scope of this analysis is limited to Europe, as the estimation of learning
rate distributions is based on surveys that gather the information of experts
on future technological costs in Europe, conditionally to different European
R&D scenarios. Nonetheless, WITCH solves the economy and determines
the operation of the energy sector at a global scale, so that the European
value function in the stochastic program accounts for world-wide strategic
interactions and climate policy commitments. We decided to portray a realistic
future scenario, where countries adhere to a stringent interpretation of their
Copenhagen pledges, given the recent progress in climate negotiations obtained
in Paris.

In this framework, we find the optimal R&D portfolio to be dominated by
the battery sector for personal electric vehicles. Batteries seem to have a great
potential in supporting the required decarbonization, and the low learning
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rates that need to be hedged against. Compared to the past, a significant
upscaling of investments is suggested: 10-fold for the total budget and 100-
fold for batteries. The share of batteries is robust to different assumptions of
risk-aversion, R&D budget limitation and crowding-out effects. Had we not
performed a full stochastic analysis, we would have severely underestimated
the required scaling up of batteries investments.

Several further improvements could follow this study. As a first application
of the methodology introduced in this paper, the number of technologies is
limited to four, and only one climate policy is considered. In the future, these
dimensions could be augmented. Investment decisions could be extended to all
WITCH regions in the form of a Nash game. Other models beyond WITCH
could be involved in a similar exercise to provide a further layer of robustness
check to the analysis. Nonetheless, the main merit of this paper lies in having
proved that the suggested methodology can be successfully applied to a fairly
complex IAM for informing robust optimal clean energy innovation policies,
and could similarly be applied in many other contexts.
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A Appendix

A.1 Solution existence and uniqueness for one technol-
ogy

The problem of maximizing Eq. (5) has a unique solution if utility is strictly
concave. For simplicity, we consider analytically only the case with one tech-
nology, i.e. J = 1. Let us consider UT1(I). Its first and second derivatives
are:

∂UT1(I)
∂I

= ∂

∂I

∑
t∈T1

Ltβt/(1− η)((Q0t − rI)/Lt)1−η − 1) (7)

=
∑
t∈T1

−rβt((Q0t − rI)/Lt)−η (8)

∂2UT1(I)
∂I2 = ∂

∂I

∑
t∈T1

−rβt((Q0t − rI)/Lt)−η (9)

=
∑
t∈T1

−r
2ηβt
Lt

((Q0t − rI)/Lt)−η−1 (10)

All parameters have positive values, so that UT1(I) is decreasing (U ′T1 < 0)
with a strictly concave behavior (U ′′T1 < 0).

Let us consider UT2(I), assuming λ fixed.

∂UT2(I)
∂I

= ∂V (C(I))
∂I

= ∂V (C)
∂C

∂C(I)
∂I

(11)

The cost C depends on investments in R&D I via one-factor learning and
accumulation of R&D capital equations:

C(I) = Cf + C0

(
K(I)
K0

)−λ
(12)

K(I) = K0(1− δR)2030−2005 + ∆T I
∑

t=2010,...,2030
(1− δR)t−2010. (13)

Renaming positive constants to yield a form as compact as possible, Eq.
(11) becomes:

∂UT2(I)
∂I

= V ′(C) ∂
∂I

[cf + c0(∆a + ∆bI)−λ] (14)

= V ′(C)[−∆c(∆d + I)−λ−1] (15)
V (C) is decreasing (V ′(C) < 0), so that UT2(I) results increasing in I

(U ′T2 > 0). Regarding the second derivative:

∂2UT2(I)
∂I2 = ∂

∂I
V ′(C)[−∆c(∆d + I)−λ−1] (16)

= V ′′(C)[−∆c(∆d + I)−λ−1] + V ′(C)[∆c(λ+ 1)(∆d + I)−λ−2] (17)
This is the sum of two negative terms, as V (C) is convex (V ′′(C) > 0), and
decreasing with C (V ′(C) < 0). UT2 is thus strictly concave in I. and the
maximization problem is well posed.
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A.2 Risk aversion derivation
So far, we have made implicit assumptions about the risk aversion of the de-
cision maker. We introduce an explicit parameterization of risk preferences
following Epstein and Zin (1989). Let us consider first a recursive utility Vt
at time t, defined as a constant elasticity of substitution (CES) production
function of Qt/lt and of utility at time t+ 1:

Vt =
(

(1− γt)
(
Qt

lt

)1−η
+ γtV

1−η
t+1

) 1
1−η

(18)

If we raise Vt to the power (1 − η) and unfold the recursion starting from
the first period, replacing for brevity years {2005, 2010, 2015, . . . } with their
integer indices {1, 2, 3, . . . }, we obtain:

W̄1 = V 1−η
1 = (1− γ1)

(
Q1

l1

)1−η
+ γ1(1− γ2)

(
Q2

l2

)1−η
(19)

+ γ1γ2(1− γ3)
(
Q3

l3

)1−η
+ ... (20)

= (1− γ1)
(
Q1

l1

)1−η
+ Γ1(1− γ2)

(
Q2

l2

)1−η
+ Γ2(1− γ3)

(
Q3

l3

)1−η
+ ...

(21)

= θ1

(
Q1

l1

)1−η
+ θ2

(
Q2

l2

)1−η
+ θ3

(
Q3

l3

)1−η
+ ... (22)

which is related by an affine transformation to a scaled version W̃1 of WITCH
utility W1, obtained by dividing by the sum of population levels over the finite
time horizon of the model L := ∑

t lt:

W̃1 = 1
L
W1 = W̄1 −

∑
t θt

1− η (23)

The need to introduce a scaled version ofW1 comes from the CES requirements
on γt to be less than one. New coefficients are related to each other and to
WITCH ones by:

θt = βtlt
L

(24)

γt = 1−∑t′≤t θt′

1−∑t′′≤t−1 θt′′
(25)

Γt =
∏
t′≤t

γt′ = 1−
∑
t′≤t

θt′ (26)

with the last equation due to the telescoping nature of the product of γt. In
particular, the following holds. For η = 1.5, maximizing W1 (i.e. solving
WITCH) is equivalent to maximizing W̃1, or minimizing W̄1, or maximizing
V1 = W̄

1/(1−η)
1 . The advantage of thinking in terms of Vt is that a simple
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transform can be applied to future utility in Eq. (18) to make the Epstein-Zin
risk preference parameter α explicit:

Vt =
(

(1− γt)
(
Qt

lt

)1−η
+ γtE

[
V 1−α
t+1

] 1−η
1−α

) 1
1−η

(27)

=
(1− γt)

(
Qt

lt

)1−η
+ γtE

[(
V 1−η
t+1

) 1−α
1−η
] 1−η

1−α

 1
1−η

(28)

=
(1− γt)

(
Qt

lt

)1−η
+ γtE

[(
W̄t+1

) 1−α
1−η
] 1−η

1−α

 1
1−η

(29)

If we unfold the recursion above for our stochastic program, the expectation
operator appears only after the first 5 periods, when utility starts to be affected
by uncertainty:

V 1−η
1 =

∑
t∈{1,...,5}

θt

(
Qt

lt

)1−η
+ Γ5E

[(
W̄6

) 1−α
1−η
] 1−η

1−α
(30)

We want to link W̄6 with WITCH utility after-2030 W6:

W6

L
= 1

1− η

(θ6

(
Q6

l6

)1−η
+ θ7

(
Q7

l7

)1−η
+ ...

)
−
∑
t≥6

θt

 (31)

W̄6 = (1− γ6)
(
Q6

l6

)1−η
+ γ6(1− γ7)

(
Q7

l7

)1−η
+ ... (32)

= 1
Γ5

(
θ6

(
Q6

l6

)1−η
+ θ7

(
Q7

l7

)1−η
+ ...

)
(33)

= 1
Γ5

(1− η)W6

L
+
∑
t≥6

θt

 (34)

Maximizing W1 in the risk aversion formulation is thus equivalent to the prob-
lem of:

min
∑

t∈{1,...,5}
θt

(
Qt

lt

)1−η
+ Γ5E


 1

Γ5

(1− η)W6

L
+
∑
t≥6

θt


1−α
1−η


1−η
1−α

(35)
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A.3 Fitting learning rate distributions

Procedure 1
1: procedure Fit(k0, δ, I, cF ,Ci,s,EMPCDF(Ci,s),FITCDFx)

k0 ← R&D capital in start year

δ ← Yearly depreciation rate of R&D capital

I← Yearly baseline R&D investment

cF ← Floor cost

Ci,s ← Cost sample i under R&D scenario s

EMPCDF(Ci,s)← Empirical CDF of Ci,s according to experts

FITCDFx ← CDF w/ parameters x for LbR rates, to be fit to EMPCDF

2: for s← {1, 1.5, 2} do . 3 R&D baseline investment multiplier

scenarios

3: K2010,s ← k0

4: for t← {2011, ..., 2030} do

5: Kt,s ← K1−δ
t−1,s + sI . Capital accumulation

6: end for

7: Rs ← K2030,s/K2010,s . Ratio over initial capital

8: for i← index sample in empirical CDF from experts do

9: Li,s ← −
log ((Ci,s − cF ) /c0)

logRs

. Invert 1-factor learning curve

to obtain sample LbR rates

10: end for

11: EMPCDF(Li,s)← 1− EMPCDF(Ci,s) . EMPCDF(Li,s) =

Prob(LbR rate ≤ given LbR rate)=

= Prob(Cost ≥ given Cost)=

= 1 - Prob(Cost ≤ given Cost) =

= 1 - EMPCDF(Ci,s)

12: end for

13: x← arg minx
∑
i,s (FITCDFx(Li,s)− EMPCDF(Li,s))2

14: return x

15: end procedure
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Figure 6: Left column: empirical CDFs of 2030 costs as elicited from experts,
one technology for each row and one R&D budget for each color. Middle
column: corresponding learning rate distributions, according to the one-factor
learning curve model, plus a Weibull fit of the mean empirical CDF. Right
column: empirical CDFs of costs along with their fitted versions, for the 3
original R&D budgets plus an extra one.
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Table 2: Table summarizing statistics of fitted learning rate distributions for
the four considered technologies.

Solar Biofuels Battery Bioelectricity
25th Quantile 1.83 1.40 0.41 1.19
Median 2.77 1.92 0.64 1.87
Mean 3.06 1.93 0.69 2.12
75th Quantile 3.98 2.45 0.92 2.78

A.4 Hermite interpolation of the value function
Let i = [i1, ..., iJ ] be the index of a single cost/welfare sample. After running
the model, we collect all welfare samples W (i):

W (i) := V (Ci) =
∑

t∈{2030,2035,...}
Ltβt/(1− η)((Qt(C(i))/Lt)1−η − 1) (36)

along with first derivatives ∂W/∂Cj|C(i) , obtained from the marginals of the
equations that input 2030 costs into the model. Next, we choose a polynomial
of degree m defined in the normalized cost space U = [−1, 1]J to fit the welfare
data points. Let l = [l1, ..., lJ ] be a vector of integers such that ∑j lj = m,
and Ṽ (X) = al

∏
j(Xj)lj ,X = [X1, ..., XJ ] ∈ U our polynomial function. The

interpolation problem is cast in the form:

min
al

∑
i

(
Ṽ (X(i))−W (i)

)2
+
∑
j

γj

(
∂Ṽ (X)
∂Xj

∣∣∣∣
X(i)
− ∂W

∂Cj

∂Cj
∂Xj

∣∣∣∣
X(i),C(i)

)2

(37)

s.t. X
(i)
j = −1 + 2

C
(i)
j − Cm,j

CM,j − Cm,j
j ∈ J (38)

The function to be minimized is a weighted sum of the error both in absolute
and derivative terms, the latter being done with respect to all technologies.
An affine transformation maps X into C, while the γj balances differences in
units.

Both absolute levels and curvatures of the actual WITCH value function
can be well replicated with a polynomial of degree 4 (Figure 7). If we look
at bidimensional slices of the function, it turns out that the greatest impact
is given by changing the cost of batteries, followed by biofuels. Changing the
cost of solar and bioelectricity seems to yield minor effects. These results
are consistent with the expected challenges of decarbonizing the non-electrical
sector, and underline the crucial impact of technical change supporting this
decarbonization.
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Figure 7: Bidimensional slices of WITCH 2030-onwards utility as a func-
tion of the 4 costs considered. A fitted polynomial of degree 4 is evaluated
and plotted in color along each cost dimension, with the other costs either at
maximum, minimum, or middle level. Actual values from WITCH are plotted
in black. The segment around each sample brings information about actual
partial derivatives.
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