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Abstract

The paper investigates the linkages between temperature anomalies, radiative forc-

ing and ENSO. By means of a new flexible trend modeling approach, we uncover a

nonlinear linkage between radiative forcing and global temperature anomalies. The

nonlinear trend closely tracks the low frequency evolution in temperature anom-

alies, also accounting for the mid-end 1990s level switch, the 1998-2013 "warming

hiatus" and the current steepening in trend temperatures. Radiative forcing is

also found to account for trend dynamics in the Southern Oscillation Index (SOI),

therefore providing support for the view that global warming might affect natural

variability oscillations such as ENSO, and therefore enhance their disruptive effects.

We also document the feature of time-varying volatility of temperature anomalies

and SOI, which is well described by an IGARCH process. By means of a new

dynamic conditional correlation model (SP-DCC), we finally document the pres-

ence of time-varying conditional correlations relating temperature anomalies across

various zones and SOI. The correlation pattern is found to be consistent with the

effects of ENSO events in the Tropics and their teleconnections.
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1 Introduction

El Niño events refer to the warm and negative phases of the El Niño Southern Oscillation

(ENSO) and are the warming of the ocean surface or above-average sea surface tem-

peratures in either the central and eastern tropical Pacific Ocean. This warming causes

a shift in the atmospheric circulation with rainfall decreasing over Indonesia and Aus-

tralia, while rainfall and tropical cyclone formation rises over the tropical Pacific Ocean,

i.e. from Mexico to Chile. While El Niño events have been occurring for thousands of

years, and at least 30 of them since 1900, the 1982-1983, 1997-1998 and 2014-2016 events

are among the strongest recorded so far. The 2014-2016 event heavily influenced trop-

ical cyclone activity around the world, contributing to the most active tropical cyclone

season on record for the Central Pacific basin and, also due to the effects of the concur-

rent positive Indian Ocean Dipole (IOD), to the least active tropical cyclone season in

the Australian region. It contributed also to the formation of some systems outside of

the season boundaries within the North Atlantic, Eastern and Southern Pacific basins.

Various countries around the world, including Africa, Central America, South-East Asia

and Pacific Islands, were affected by below or above-average rainfall and flooding; in-

creased food scarcity, malnutrition and devastated livelihoods, increased susceptibility to

illnesses, and forced displacement (UNOCHA, 2016).1

As El Niño events affect the global climate and disrupts normal weather patterns, they

might be a likely candidate to account for changing temperature anomalies in various

geographical areas. In this respect, Jones (1989) and Wigley (2000) find that following

a typical El Niño event the global surface air temperature increases of up 0.1 C with a

lag of 6 months. A larger impact of 0.2 C is documented by Christy and McNider (1994)

and Angell (2000 ) in correspondence of the 1997-1998 very strong El Niño event. ENSO

is essentially an asymmetric phenomenon: as pointed out by Cai et al. (2015a,b; 2014)

and Kim et al. (2014), extreme ENSO events are different from moderate events and in

assessing the impact of global warning the latter events should then be kept separate.

The consensus view on the contribution of ENSO to global warming posits, however,

that ENSO might account for between 10% and 30% of the interseasonal and longer-term

change in surface and/or lower tropospheric temperature, but little of the global mean

warming trend since the 1950s (Foster et al., 2009).2 The latter warming trend is generally

related to radiative forcing, both of natural and anthropogenic origin, whose stochastic

or deterministic nature has been contended in the literature since the early 1990s. On the

one hand, recent contributions such as Kaufmann et al. (2013) and Schmith et al. (2012)

point to a stochastic trend in global and Northern (NH) and Southern (SH) hemisphere

temperature anomalies, as generated by (and therefore cointegrating with) stochastic

trends in radiative forcing components. On the other hand, recent contributions such

as Estrada and Perron (2016) point to a common nonlinear deterministic trend in total

radiative forcing and temperature anomalies, with significant breaks in slope in the 1960s

and 1990s, and stationary fluctuations about trend. The latter structural breaks might be

accounted by the contribution of natural variability oscillations such as the Atlantic Mul-

tidecadal Oscillation (AMO) for the Northern hemisphere and the Antarctic Oscillation

1See Cai et al. (2015b) for details on the disruptive effects of El Niño events occurred in 1982-1983

and 1997-1998.
2Yet, Douglas and Christy (2009) show that about 88% of the temperature anomaly over the period

1979-2007 would be accounted by ENSO (El Niño3.4 lagged 4 months) and volcano climate forcing.

A connection between the North Atlantic Oscillation (NAO), the Arctic Oscillation (AO) and global

warming has also bee investigated. See Cohen and Barlow (2005).
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(AAO or SAM) for the Southern hemisphere. Recent evidence of deterministic trends

and structural break in temperature anomalies are also provided by Gay et al. (2009)

and Mills (2013). According to Gay et al. (2009) structural breaks should however be

related to natural phenomena such as Earth orbit changes or changes in radiative forcing,

as determined by solar irradiance and greenhouse gases concentrations.

More recently, the focus of the debate has shifted from the contribution of ENSO

and other natural variability oscillations to global warming to the implications of global

warming for the frequency and amplitude of the ENSO and IOD phenomena. As pointed

out by Cai et al. (2015a,b; 2014) and Kim et al. (2014), while no consensus view has

emerged to date, it is however expected that ENSO extremes will increase in amplitude

and frequency and ENSO teleconnections will shift eastward, both as consequences of

mean climate state changes. A sizable increase in the frequency of extreme positive

Indian Ocean Dipole (pIOD) events might also be expected (Ng et al., 2015). See also

Coumou and Rahmstorf (2012) on these issues.

In light of the above issues in this paper we further assess the linkages between temper-

ature anomalies, radiative forcing and ENSO. The paper innovates the available literature

in various directions. By testing for structural change and long memory, we find that

temperature anomalies since the 1980s are best described by a short memory process

about a single level shift occurring in the mid-/late 1990s. While the latter could in

principle be related to concurrent very strong El Niño events or other natural variability

oscillations (Estrada and Perron, 2009), we however find stronger evidence for its connec-

tion to radiative forcing, consistent with Gay et al. (2009). By means of a new flexible

trend modeling approach, we uncover a nonlinear linkage between radiative forcing and

global temperature anomalies. The nonlinear trend closely tracks the low frequency evo-

lution in temperature anomalies, also accounting for the mid-end 1990s level switch, the

1998-2013 "warming hiatus" and the current steepening in trend temperatures. There-

fore, consistent with Estrada and Perron (2016), our evidence is against the view of a

recent slowdown in global warming; it is also against explanations that associate the

hiatus to natural variability factors such as AMO, PDO, ENSO. Radiative forcing is also

found to account for trend dynamics in SOI, therefore providing evidence that indeed

global warming might affect natural variability oscillations such as ENSO, and therefore

contribute to their disruptive effects (Cai et al., 2015a,b; 2014; and Kim et al., 2014).

In the paper we also document the feature of time-varying volatility of temperature

anomalies. The feature is well described by a nonstationary generalized autoregressive

conditional heteroskedastic process (IGARCH) and suggests the presence of alternating

regimes in which periods of (relatively) unstable changes in temperature anomalies tend

to be followed by periods in which changes are more dampened, and the other way around.

The same feature is uncovered for SOI. In this respect, a sizable rise in SOI volatility

can be noted since mid-2000s, concurrent with a somewhat earlier decrease in volatility

for temperature anomalies and the steepening in the radiative forcing trend, consistent

with feedback effects of global warming to ENSO fluctuations. The detected GARCH

properties for temperature anomalies and SOI are then further assessed in the framework

of a new dynamic conditional correlation model, i.e. the Semiparametric-DCC model

(SP-DCC; Morana, 2015), which allows for the modeling of time-varying interlinkages

across temperature series and in relation to ENSO. The proposed SP-DCC model is

shown to compare favorably to exact ML and Engle (2002) DCC model in a Monte Carlo

analysis.

We then document the presence of time-varying conditional correlations relating tem-
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perature anomalies across various zones and SOI. In this respect we find a correlation

pattern consistent with ENSO effects in the Tropics and its teleconnections. For instance,

a negative conditional correlation is detected between SOI and the Tropics anomaly;

hence, an El Niño (La Niña) event, yielding a negative (positive) SOI, would then lead

to a warm (cool) phase in the Tropics. Moreover, we find a positive correlation between

the Tropics anomaly and the Northern and Southern Extratropic anomalies, and between

the Northern Extratropic and the Northern Polar anomalies, the Southern Extratropic

and the Southern Polar anomalies. According to the latter correlation pattern, the warm

(cool) phase started by an El Niño (La Niña) event in the Tropics, through the working

of the "atmospheric bridge", would be then propagated to the Extratropics and Poles.

The rest of the paper is organized as follows. In Section 2 we introduce the temper-

ature anomaly data and assess their persistence properties and connection with ENSO

and radiative forcing. In Section 3 we introduce the semiparametric dynamic conditional

correlation model (SP-DCC) and assess its small sample properties by means of Monte

Carlo analysis. In Section 4 we then perform the conditional correlation analysis and

further asses the interlinkages across temperature anomalies in various zones and ENSO.

Finally, Section 5 concludes.

2 Persistence properties of anomalies

Our information set is monthly and spans the period 1978:12 through 2016:12, for a total

of 457 observations. It consists of average land and ocean temperature anomalies for the

entire globe (GL; 90S-90N) and seven zones, namely the Northern Hemisphere (NH; 0-

90N), the Southern Hemisphere (SH; 90S-0), the Tropics (Trpcs; 20S-20N), the Northern

Extratropic (NoExt; 20N-90N), the Southern Extratropic (SoExt; 90S-20S), the Northern

Polar (NoPol; 60N-90N), the Southern Polar (SoPol; 90S-60S). The source is the NASA

Goddard Institute for Space Studies and we refer to Christy et al. (2011) for details

concerning data construction.3 We also include the Southern Oscillation Index (SOI) to

track the temporal evolution of ENSO episodes.4

Persistence properties of temperature anomalies have been subject to careful assess-

ment in the literature. There are two main competing views, differing in terms of the

statistical model employed to account for the warming trend detected in the data, rather

than for its attribution to causing factors. In fact, while it is in general agreed that

the warming trend is determined by radiative forcing, both of natural and anthropogenic

origin, its stochastic or deterministic nature is contended. On the one hand, Kaufmann

et al. (2013) and Schmith et al. (2012) point to a stochastic trend in global and North-

ern (NH) and Southern (SH) hemisphere temperature anomalies, as generated by (and

therefore cointegrating with) stochastic trends in radiative forcing components.5 Feed-

3http://www.nsstc.uah.edu/data/msu/v6.0/tlt/uahncdc_lt_6.0.txt
4The Southern Oscillation describes a bimodal variation in sea level barometric pressure between

observation stations at Darwin, Australia and Tahiti. It is quantified in the Southern Oscillation Index

(SOI), which is a standardized difference between the two barometric pressures. Normally, lower pressure

over Darwin and higher pressure over Tahiti (La Niña conditions) encourages a circulation of air from east

to west, drawing warm surface water westward and bringing precipitation to Australia and the western

Pacific. When the pressure difference weakens (El Niño conditions) parts of the western Pacific, such as

Australia experience severe drought, while across the ocean, heavy precipitation can bring flooding to

the west coast of equatorial South America.
5Earlier evidence on integration and cointegration properties of temperature anomalies can be found

in Stern and Kaufmann (2000), Kaufmann and Stern (2002), Kaufmann et al. (2006), Mills (2009).
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back effects from temperature anomalies to radiative forcing have also been documented

in this literature. For instance, Kaufmann et al. (2006) document a feedback loop in

which temperature increases due to anthropogenic activities that emit greenhouse gases

change flow to and from the atmosphere in a way that the radiative forcing of greenhouse

gases is increased, generating a further increase in temperature. Schmith et al. (2012)

also find that it is surface air temperature to adjust to the average temperature of the

upper ocean, consistent with oceans’ larger heating storage capacity. The latter finding

is also consistent with the evidence of unidirectional Granger causality of temperature

anomalies from SH to NH (Kaufmann and Stern, 2007; Harvey and Mills, 2001), due to

the larger water content of SH relative to NH (and the different heating storage of water

relative to land).

On the other hand, Estrada and Perron (2016) point to a common nonlinear determin-

istic trend in total radiative forcing and temperature anomalies, with significant breaks in

slope in the 1960s and 1990s, and stationary fluctuations about trend. More precisely the

first break is detected in 1962 and 1968 and the second break in 1989 and 1991, for NASA

and HadCRUT4 data, respectively. This finding updates earlier evidence of trend station-

arity and different timing in breaks for global and Northern and Southern hemispheres

temperature anomalies, as reported by Gay et al. (2009) and Mills (2013)6. According to

Estrada and Perron (2016), the latter feature would be accounted by the contribution of

natural variability oscillations such as the Atlantic Multidecadal Oscillation (AMO) for

the Northern hemisphere and the Antarctic Oscillation (AAO or SAM) for the Southern

hemisphere. Moreover, even the recent slowdown in the warming trend, i.e. the hia-

tus, might be related to radiative forcing, i.e. mostly to CFC and methane reductions,

rather than to natural variability factors such as AMO, PDO, ENSO, or lower solar ac-

tivity, as claimed by Kosaka and Xie (2013). See also Pretis et al. (2015) on this issue.

Estrada and Perron (2016) also update earlier evidence concerning persistence properties

of temperature fluctuations about deterministic trends, which would be best described

by a weakly stationary process. This contrasts with previous evidence of Bloomfield

(1992) and Chung and Baillie (2002), pointing to stationary long memory fluctuations

in global, NH and SH temperature anomalies about a linear deterministic trend. While

long memory in temperature fluctuations might be an artifact due to a neglected slowly

varying nonlinear trend function and/or alternating regimes/structural breaks as claimed

by Mills (2007)7, there also are valid reasons for this feature to be genuine, and related

to effects of cross-sectional aggregation (Granger,1980) or the occurrence of shocks of

stochastic magnitude and stochastic duration (Parke, 1999). In the current framework,

the long memory phenomenon could be then easily associated with the cumulative effect

of various radiative forcing mechanisms and/or to the contribution of natural variability

See also Chang et al. ( 2016) for recent evidence from nonstationarity analysis extended to the density

function of temperature anomalies.
6The break points detected by Gay et al. (2009) are 1977, 1985, 1911 for global, NH and SH tem-

perature anomalies, respectively. The break points are also associated wit Earth orbit changes, solar

irradiance and greenhouse gases concentrations. Mills (2013) updates the latter estimates to 1964 for

SH temeperature and 1976 for both global and NH temperatures. See also Bloomfield (1992) and Zheng

and Basher (1999) for earlier evidence of determininistic trends in temperature anomalies. See also Mills

(2006) for evidence of a more pronounced warming trend in NH temperatures since the 1970s, robust to

stochastic of deterministic trend modeling.
7See Diebold and Inoue (2011) and references there in for a more general discussion on the difficuly

of distinguishing deterministic nonstationarity and long memory. See also Rea et al. (2011) and Mann

(2011) for recent views against the long memory feature.
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oscillations, such as ENSO, particularly in their most extreme manifestations.8

In light of the contrasting results available in the literature in the paper we reassess the

persistence properties of temperature anomalies for various zones and of SOI, by testing

for stochastic nonstationarity versus trend stationarity/structural break, long memory

versus short memory and genuine long memory versus spurious persistence generated by

neglected structural change. We also asses the role of radiative forcing to in determining

trend dynamics in temperature anomalies. The results of the persistence analysis are

reported in Table 1, Panels A-D and Table 2, Panels A-B.

2.1 Testing for deterministic versus stochastic non stationarity

As shown in Panel A, the null of stochastic nonstationarity is rejected by the ADF test

for all the temperature anomalies and the SOI index at the usual significance levels. The

finding is robust to the deterministic specification used in the ADF regressions. This

finding is against earlier evidence of a unit root in temperature anomalies generated

by I(1) trends in radiative forcing components, as for instance reported in Stern and

Kaufmann (2000), Kaufmann and Stern (2002), Kaufmann et al. (2006), Mills (2009).

In Panel B we also report the outcome of the Bai-Perron (1998) UD-max structural

break tests. As shown by Laveille and Moulines (2000), despite not accounting for the

feature directly, the Bai-Perron (1998) tests can yield some guidance also in the presence

of long memory and might therefore be useful to distinguish spurious persistence due

to neglected structural change from genuine long memory. Consistent with Estrada and

Perron (2016) and Gay et al. (2009), the overall evidence point to a single break point

since the 1980s, yet located about the mid-/end 1990s (1995 through 1998) for all the

temperature anomalies series, rather than in 1991, similar to McKitrick and Vogelsang

(2014). The detected break point might possibly be related to concurrent El Niño events

(1995-1996 (weak); 1997-1998 (very strong)) and fading away of the cooling effect of the

vulcanian eruption in the Philippines (Mt. Pinatubo in 1991).

The above evidence is clear-cut for the Northern zones, i.e. NH, NoExt and NoPol, and

for SoPol, as the LWZ information criterion select a single break and the Bai-Perron SupF

test does not allow to reject the null hypothesis of a single break against the alternative of

two breaks. While a similar results is shown by the SupF test also for the other anomalies,

LWZ however points to up to 3 breaks for GL, two breaks for Trpcs, SoExt and SOI and

to two/four breaks for SH. The additional break points would be located in 2015 and in

1986 (not reported), and might be therefore related to the very strong 2015-2016 El Niño

event and to the fading away of the cooling effect of the vulcanian eruption in Mexico

(El Chichon in 1982).

2.1.1 Testing for breaks versus long memory

Since structural change and/or long memory could account for temperature anomalies

persistence, but they are not easily distinguishable with the available tests (Diebold and

Inoue, 2001), in Panel C we report selected results for the estimation of four different

long memory models. The models are a "pure" ARFIMA(,,) model (Model 1), an

"augmented" ARFIMA(,,) model with a single level switch selected according to the

8Pellettier and Turcotte (1997) also provides a theoretical explanation for the presence of long memory

in temperature anomalies based on an advection-diffusion model of the vertical transport of heat and

water vapor in the atmosphere.

6



Bai-Perron UD-max test (Model 2), an ARFIMA(,,) model augmented with a linear

time trend (Model 3) and an ARFIMA(,,) model with both switching intercept and

linear time trend (Model 4). Hence, the estimated models are

 () (1− )

 =  +  ()   ∼ 

¡
0 2

¢
(1)

where

 = 0 in Model 1

 = 0 + 1 in Model 2

 = 0 + 2 in Model 3

 = 0 + 1 + 2 in Model 4

where  is a step indicator function, taking unitary value from the estimated break

point onwards and zero value otherwise;  () = 1−
X

=1


 and  () = 1+

X
=1


 are

stationary polynomials in the lag operator of order  and , respectively.

By jointly assessing structural change and long memory, more robust results are then

expected concerning persistence properties. ML estimates of the above models are re-

ported in Panel C. As shown in Panel C, there is evidence of long memory for all the

anomalies series, independently of the deterministic parameterization, also fairly stable

across specifications. A pure long memory model, i.e. with  =  = 0, yields white

noise residuals for all the anomaly series according to standard misspecification tests

(not reported).9

In particular, evidence of nonstationary long memory (  05) is found for GL,

NH, SH, Trpcs and SOI, while for NoExt, SoExt, NoPol and SoPol the evidence point

to stationary long memory (0    05). As an implication, temperature anomaly

shocks would dissipate over time, yet anomalies might not be mean reverting. According

to figures, persistence is strongest at the Tropics ( = 090) and weakest for NoPol

( = 028) and SoPol ( = 026); intermediate values are found for NoExt ( = 048) and

SoExt ( = 038). Non stationary long memory is detected when averaging across zones

to yield NH and SH ( = 060) and GL ( = 065) temperature anomalies.

Concerning the deterministic specification, according to the BIC information criterion

the pure long memory model (Model 1) is selected in five out of eight cases (GL, NH,

SH, Trpcs, SoPol) and for SOI, i.e. for the nonstationary long memory cases (apart from

SoPol); the long memory model augmented with a linear time trend (Model 3) is selected

in two cases (SoExt and NoPol); the long memory model augmented with a one-off switch

(Model 2) in level is selected only in one case (NoExt). Moreover, in none of the cases

the model augmented with both the linear time trend and the step dummy (Model 4) is

selected by either the BIC or the AIC criteria, confirming previous evidence of McKitrick

and Vogelsang (2014) that the two deterministic specifications can be held as substitute

rather than complementary.10

9Details are available upon request from the authors.
10McKitrick and Vogelsang (2014) estimate a level shift in 1997:12 for GL; once allowing for the level

shift, the null of no linear trend cannot be any longer rejected over the period 1958-2012.
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2.1.2 Testing for long memory versus short memory and breaks

Since no short memory ( or ) component is selected in the long memory models

reported in Panel C, we reassess persistence properties of temperature anomalies holding

short and long memory as substitute rather than complementary properties. Hence, a

short memory version ( = 0) of Models 1 through 4 above are estimated by ML. The

estimates are reported in Panel D. As shown in Panel D, according to information crite-

ria, a short memory autoregressive model is preferred to its corresponding long memory

model for all the anomalies, performing similarly well in terms of misspecification tests

(not reported).11 In all cases a parsimonious AR(2) model is selected according to a

general to specific model selection strategy, apart from Trpcs and SoPol (AR(1)) and

SOI (AR(3)). Moreover, according to information criteria, the AR model with switching

intercept (Model 2) is selected as best model for all the temperature series, apart from

SoPol. For the latter series and for SOI also a constant mean AR model (Model 1) is

selected by the BIC. As shown in the Table, the estimated persistence parameter (
P

=1

)

for GL is about 0.8, consistent with similar estimates obtained for NH and SH. Similar

to what found for the long memory models, persistence of temperature shocks is highest

at the Tropics (0.90) and lowest at the Poles (0.30), showing a similar intermediate value

for NoExt and SoExt (0.5-0.6).

2.1.3 Flessible modeling of structural change

In light of the evidence of short memory plus structural change in temperature anomalies

and SOI, following Baillie and Morana (2012) we implement an Adaptive-AR model. The

Adaptive-AR model is

 ()  =  +   ∼ 
¡
0 2

¢
(2)

where the deterministic function follows a Gallant (1981) flexible functional form

 = 0 + 1+

X
=1

 sin (2 ) +

X
=1

 cos (2 )  = 1  5 (3)

The Adaptive-AR model has the advantage of allowing for a more flexible modeling

of structural change, given the ability of the Gallant (1981) flexible functional form to

approximate a very general class of nonlinear functions (see Becker et al., 2006; Enders

and Lee, 2012; Baillie and Morana, 2009, 2012; Perron et al., 2016). This is particularly

relevant for the current application given the non univocal determination of the break

point across temperature anomalies and even the finding of no breaks for SoPol and SOI.

The latter deterministic specification has also been recently employed by Estrada and

Perron (2016) for modeling the trend in temperature anomalies.

In Table 2, Panel A we report results of the Perron et al. (2016) Wald test for

the presence of a nonlinear temporal trend approximated by the Gallant trigonometric

expansion, which is valid under the assumption of both I(0) and I(1) disturbances. The

test has the usual chi-square or standard Normal distribution under the null hypothesis

of no deterministic nonlinearity. As shown in Panel A, consistent with the results of the

persistence analysis, the test rejects the null of no-nonlinearity for all the series, apart

11Details are available upon request from the authors.
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from Trpcs and SOI, when the linear deterministic trend is omitted from the specification

(3); on the other hand, weaker evidence of deterministic nonlinearity is detected once the

linear trend is included in the specification.

In Table 2, Panel B we then report the Adaptive-AR models, estimated by ML, where

the deterministic specification has been selected following a general to specific strategy.

Consistent with the results of the Wald test analysis, only low order components are

found to be statistically significant. In particular a first order sine expansion appears

to be appropriate for all temperature anomalies apart from SoPol. However, according

to the BIC information criteria, the estimated Adaptive-AR models reported in Panel

B (Table 2) never perform better than the standard AR model with switching intercept

reported in Panel D (Table 1). This is somewhat in contrast with Estrada and Perron

(2016), where the nonlinear deterministic trend is found to be successfully approximated

by the Gallant flexible functional form, albeit on a much larger sample of annual data

than the one considered in this study.

2.2 Radiative forcing and breaks in temperature anomalies

Earlier evidence on structural breaks in temperature anomalies relate them to the con-

tribution of natural variability oscillations such as the Atlantic Multidecadal Oscillation

(AMO) for the Northern hemisphere and the Antarctic Oscillation (AAO or SAM) for

the Southern hemisphere (Estrada and Perron, 2016), or to other natural or human made

phenomena, such as Earth orbit changes, solar irradiance and greenhouse gases concen-

trations (Gay et al., 2007). In light of the robust evidence of a structural breaks affecting

temperature anomalies, we have then assessed their possible connection with radiative

forcing ( ). This is consistent with Estrada and Perron (2016) where the deterministic

nonlinear trend in temperature anomalies is found to be determined by the nonlinear

deterministic trend in radiative forcing.

However, our analysis differs from Estrada and Perron (2016) as it is conducted in

the more comprehensive framework of an Adaptive-X-AR-GARCH model

 ()  =  + 
12
   ∼  (0 1) (4)

 = −1 + 2−1 (5)

where  = 1− ,  = 
12
 .

Different models are considered, according to the specification of the deterministic

component . The latter is specified as

 = 0 + 1 (6)

for the pure structural break model (AR-B), where  is a step dummy variables with

unitary values set according to the Bai-Perron structural break tests;

 = 0 + 2 +

X
=1

 sin (2
∗
 ) +

X
=1

 cos (2
∗
 )  = 1  5 (7)

for the Adaptive-X-AR model, where  ∗ is  scaled to range between 0 and 1;

 = 0 + 1 + 2 +

X
=1

 sin (2
∗
 ) +

X
=1

 cos (2
∗
 )  = 1  5 (8)
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for the hybrid Adaptive-X-AR-B model, which nests the former two models.

In all cases we also model the conditional variance function; as it will be shown below,

temperature anomalies and SOI series are characterized by volatility clusters. Possibly

due noisiness, the latter property is not immediately apparent andmight go fully neglected

when standard misspecification tests are employed. Below we show that models that allow

for the IGARCH components are systematically preferred to their constant conditional

variance version by information criteria.

2.2.1 Forecasting and monthly interpolation of radiative forcing data

As radiative forcing data are available at the annual frequency and up to 2011 only, im-

plementation of the Adaptive-X-AR and Adaptive-X-AR-B models requires forecasting

of radiative forcing data through 2016 and monthly interpolation. Concerning sample ex-

tension, naive forecasts over the period 2012 through 2016 have been generated by means

of structural time series models specified for each of the various radiative forcing compo-

nents; forecasts for total radiative forcing are then computed by aggregating the forecasts

for the various components. Following Hansen et al. (2005), radiative forcing has been

decomposed in various categories, i.e., Well-Mixed Greenhouse Gases (WMGG; carbon

dioxide (CO2), methane (NH4), nitrous oxide (N2O) and chlorofluorocarbons (CFCs)),

Ozone (O3), Stratospheric Water Vapor (StrH2O), Reflective Tropospheric Aerosols (Re-

flAer), Tropospheric Aerosol Indirect Effects (AIE), Black Carbon Aerosols (BC), Snow

Albedo (snowAlb), Stratospheric Aerosols (StrAer), Solar Irradiance (Solar), Land Use

(including irrigation; LandUse).12 As we are interested in the modeling of the trend in

radiative forcing, the Stratospheric Aerosols (StrAer) component is omitted. The latter

series, over the sample of interest, is heavily influenced by the major volcanic eruptions

occurred in 1991 in the Philippines (Mt. Pitanubo) and in 1982 in Mexico (El Chichon),

which lead to a sizable, temporary temperature "cooling" around the globe.

Monthly radiative forcing series are obtained by means of nonlinear interpolation of

annual figures. In practice a monthly step function is firstly constructed by holding

constant the annual radiative forcing figures across the corresponding twelve months.

Then, the step function series is regressed on the Gallant specification in (3) by OLS.

The fitted process  yields the interpolated monthly radiative forcing series which is

employed in the rest of the analysis.

Actual and forecast annual figures for radiative forcing components over the period

1978-2016, and the interpolated monthly figures are reported in Figure 1.13 As shown

in the Figures, naive forecasts point to radiative forcing increasing through 2016, yet at

slower pace; hence, the scenario might be considered conservative, potentially avoiding

an upper bias in the estimated contribution of radiative forcing to global warming over

the forecasted period. Moreover, the nonlinearly interpolated series track very closely the

trend evolution of the annual radiative forcing series, supporting its use in the rest of the

analysis.

2.2.2 Estimation results

ML estimates of the various models are reported in Table 3, Panel A (AR-B), Panel

B (Adaptive-X-AR) and C (Adaptive-X-AR-B). As shown in Table 3, all models are

12The data ara available at https://data.giss.nasa.gov/modelforce/Fe_H11_1880-2011.txt
13Details are available upon request from the authors.
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equivalent concerning residual properties and fit, as in none of the cases evidence of mis-

specification is detected by standard diagnostics. Moreover, according to the coefficient

of determination, the explanatory power of the various models is similarly sizable, partic-

ularly for the aggregate series, i.e. about 0.70 for GL, NH and SH and 0.80 for Trpcs; less

sizable for the Poles, i.e. 0.30 and 0.10 for NoPol and SoPol, respectively; intermediate,

i.e. 0.40 to 0.60, for NoExt, SoExt and SOI.

However, models can be ordered on the basis of information criteria. In this respect,

apart from SoPol, for which no deterministic component is detected, the findings point to

a clear-cut linkage between temperature anomaly break processes and radiative forcing.

In fact, according to the AIC and BIC criteria, Adaptive-X-AR models (Panel B) are

superior to AR-Bmodels (Panel A) for NoExt, SoExt, NoPol and SOI. Similar conclusions

can be drawn for the aggregate anomalies GL, NH, SH and Trpcs, yet according to AIC

criterion only. Moreover, according to the BIC criterion Adaptive-X-AR models (Panel

B) are superior also to the hybrid Adaptive-X-AR-B models (Panel C) for NoExt, SoExt,

NoPol and SOI. Moreover, for GL, NH, SH the hybrid models perform best according

to the AIC and BIC criteria, while for Trpcs the hybrid model performs best according

to the AIC criterion only. For the latter models the radiative forcing variable becomes

statistically insignificant once the break process is added to the specifications, albeit some

of its Fourier components are retained in the specification.

Concerning the specification selected for SOI, the statistical significance of the radia-

tive forcing variable might suggest a feedback effect from global warming to ENSO. This

is consistent with current expectations that ENSO and other natural oscillators might

increase in amplitude and frequency and their teleconnections might be shifted, both

as consequences of mean climate state changes (Cai et al.. 2015a,b; 2014; Kim et al.,

2014; Ng et al., 2015; Coumou and Rahmstorf, 2012). Our findings are supportive of the

above arguments, as the negative sign of the estimated coefficient of the radiative forcing

variable points to global warming (cooling) enhancing El Niño (La Niña) events. Inter-

estingly, the linkage between radiative forcing and ENSO appears to be highly nonlinear

and similar to what detected for Trpcs, the geographical zone which is most closely and

directly affected by ENSO.

Finally, while no evidence of misspecification is detected for the homoskedastic version

of the Adaptive-AR models (not reported), allowing for IGARCH effects in conditional

variance always leads to a better performing model according to the BIC criterion and

often also according to the AIC criterion (see Table 3, AIC and BIC Homosk versus

AIC and BIC for the conditionally heteroskedastic models). This is consistent with

the presence of a hidden dynamic structure in second moments which might remain

undetected due to the large and dominating observational noise component.

Temperature anomalies and the nonlinear trend determined by radiative forcing are

shown in Figure 2, while the estimated conditional variance functions are plotted in

Figure 3. As shown in Figure 2, a level switch, occurring near mid-/end 1990s can be

noted across all the anomalies series, apart from SoPol and SOI. Moreover, a different

degree of persistence is shown by the various anomalies, i.e. strongest for GL, NH and

Trpcs and weakest for NoPol and SoPol. The latter anomalies also seem to show a

larger noise components, similar to SH and SoExt relative to NH and NoExt. All these

feature seems to be adequately described by the selected Adaptive-X-AR-IGARCH(1,1)

model. In particular, the radiative forcing nonlinear trend closely tracks the low frequency

evolution in temperature anomalies, also accounting for the mid-end 1990s level switch.

According to the findings, radiative forcing is not only currently contributing to global
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warming, but it also accounts for the 1998-2013 temperature hiatus. This is consistent

with Estrada and Perron (2016), who also relate the hiatus to radiative forcing, i.e. to

CFC and methane reductions, rather than to natural variability factors such as AMO,

PDO, ENSO, or lower solar activity, as claimed by Kosaka and Xie (2013). See also

Pretis et al. (2015) on this issue. Therefore, our evidence is against the thesis of a recent

slowdown in global warming.

As shown in Figure 3, temperature anomaly series show clusters of more and less

volatile periods, which alternate over time. A sizable rise in SOI volatility can be noted

since mid-2000s, concurrent with a somewhat earlier decrease in volatility for global tem-

perature (GL) and, in particular in the Southern Hemisphere, i.e. for Trpcs, SoExt,

SoPol and SH overall, and for NoPol also. This finding is interesting and surely deserves

further study, particularly in connection with the concurrent steepening in the radia-

tive forcing trend shown in Figure 1. The detected GARCH properties for temperature

anomalies and SOI/ENSO also invite a further assessment of their linkage, which we

carry out below in the framework of a new dynamic conditional correlation model, i.e.

the Semiparametric-DCC model (SP-DCC; Morana, 2015).

3 SP-DCC estimation of conditional correlations

The Semiparametric-DCC (SP-DCC) model is defined by the following equations

y = μ(δ) + ε (9)

ε = H
12
 (δ)z (10)

where y is the  × 1 column vector of the variables of interest, μ(δ) is the  × 1
conditional mean vector  (y|−1), δ is a vector of parameters, −1 is the sigma field;
H(δ) is the  × conditional variance-covariance matrix   (y|−1). Moreover, the
random vector z is of dimension  × 1 and assumed to be i.i.d. with first two moments
 (z) = 0 and   (z) = I .

Concerning the specification of the conditional variance-covariance matrix H(δ),

we assume that the elements along its main diagonal, i.e. the conditional variances

  (|−1) ≡  follow a GARCH(1,1) process

 =  + 
2
−1 + −1  = 1   (11)

subject to the usual restrictions to ensure that the conditional variances are positive

almost surely at any point in time.

Concerning the definition of the conditional covariances, a nonparametric specification

is posited, grounded on the "polarization" identity

() ≡ 1
4
[ (+)−  (−)] (12)

given that  (±) =  () +  ()± 2().
Accordingly, the off-diagonal elements of H, ( |−1) ≡ , are

 =
1

4
[ −1( + )−  −1( − )]   = 1    6=  (13)
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By defining the transformed variables + ≡ + and 
−
 ≡ −, and assum-

ing a GARCH(1,1) specification also for their conditional variance processes  −1(
+
|−1) ≡

+ and  −1(
−
|−1) ≡ −, one has

+ = + + +
+2
−1 + +

+
−1   = 1    6=  (14)

− = − + −
−2
−1 + −

−
−1   = 1    6=  (15)

where + = + and 
−
−1 = − if the conditional mean residuals are obtained

by linear filtering.

3.1 QML estimation of the SP-DCC model

Consistent and asymptotically normal estimation is performed in two steps. Firstly, the

conditional variances ,  = 1   , i.e., the elements along the main diagonal of H,

and +, 
−
,   = 1   ,  6= , are estimated equation by equation by means of

, using conditional mean residuals; this yields ̂,  = 1   , and ̂+, ̂
−
,

  = 1   ,  6= . Then, in the second step the off-diagonal elements of H, ,

  = 1   ,  6= , are estimated nonparametrically by computing

̂ =
1

4

h
̂+ − ̂−

i
  = 1    6=  (16)

By further defining

̂ = 
³
̂
12
1   ̂

12



´
the conditional correlation matrix  is then estimated as

̂ = ̂−1
 ̂̂

−1
 

In order to ensure well behaved conditional covariance and correlation matrices, an

ex-post correction can be implemented.

3.2 Ex-post correction for well-behaved conditional covariance

and correlation matrices

The correction for well behaved conditional covariance and correlation matrices is imple-

mented in two steps. Firstly, the estimated conditional correlations in ̂, ̂,  6= , are

bounded to lie within the range −1 ≤ ̂ ≤ 1 by applying the sign-preserving bounding
transformation

̂∗ = ̂(1 + ̂)
−1 (17)

where   0 and even, is selected optimally by minimizing the sum of Frobenious norms

over the temporal sample

min


X
=1

°°°̂ − ̂∗
°°°

= min



X
=1

vuut X
=1

X
=1

¯̄
̂ − ̂∗

¯̄2
 (18)

This yields ̂∗ , the transformed correlation matrix, which satisfies, by construction,
the Cauchy-Schwarz inequality.
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Secondly, positive definiteness is enforced by means of nonlinear shrinkage of the neg-

ative eigenvalues of the ̂∗ matrix toward their corresponding positive average values over
the temporal sequence in which they are positive. In practice, the eigenvalue-eigenvector

decomposition of the transformed conditional correlation matrix ̂∗ is performed, yielding

̂∗ = ̂̂̂
0


where ̂ is the diagonal matrix containing the ordered original (positive and negative)

eigenvalues along the main diagonal and ̂ is the matrix containing the associated orthog-

onal eigenvectors. By denoting ̂ ∗ the diagonal matrix containing the ordered original
and shrank positive eigenvalues, the new estimate of the conditional correlation matrix

can be computed as

̂∗∗ = ̂̂
∗
 ̂

0
 (19)

which, by construction, is well-behaved at each point in time. The implied, well-behaved

conditional covariance process at time period  is then

̂∗∗
 = ̂̂

∗∗
 ̂

which obeys the Cauchy-Schwarz inequality and the positive definiteness condition, at

each point in time, by construction. Other procedure can also be foreseen, such as

treating the negative eigenvalues as missing observations to be interpolated using the

Kalman filter.

3.3 Small sample performance of the semiparametric estimator

This section explores the performance of semiparametric estimation of DCC models (SP)

together with other standard estimation methods. In the simulation we make use of

three different multivariate GARCH frameworks. The first considered framework is the

Diagonal VECH as in Bollerslev et al. (1988). This framework allows to show the

conditions needed for the use of the SP estimator.

Consider the following bivariate GARCH(1,1) model∙
1
2

¸
= 

1
2


∙
1
2

¸ ∙
1
2

¸
∼ (0 2) (20)

where

 =

∙
1 12
12 2

¸
(21)

The conditional covariance matrix follows the following bivariate system

∙
1 12
12 2

¸
=

∙
1 2
2 3

¸
+

∙
1 2
2 3

¸ ∙
1−1 12−1
12−1 2−1

¸
+

∙
1 2
2 3

¸ ∙
21−1 1−12−1

1−12−1 22−1

¸
(22)

That is, in its VECH form

⎡⎣ 1
12
2

⎤⎦ =
⎡⎣ 1

2
3

⎤⎦+
⎡⎣ 1 0 0

0 2 0

0 0 3

⎤⎦⎡⎣ 1−1
12−1
2−1

⎤⎦+
⎡⎣ 1 0 0

0 2 0

0 0 3

⎤⎦⎡⎣ 21
12
22

⎤⎦ (23a)
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As already shown by Bollerslev et al. (1988), it is possible to substitute  = 2− 
into (21) in order to obtain the following VARMA representation for the squared returns⎡⎣ (1− (1 + 1)) 0 0

0 (1− (2 + 2)) 0

0 0 (1− (3 + 3))

⎤⎦⎡⎣ 21
12
22

⎤⎦ =

=

⎡⎣ 1
2
3

⎤⎦+
⎡⎣ (1− 1) 0 0

0 (1− 2) 0

0 0 (1− 3)

⎤⎦⎡⎣ 1
2
3

⎤⎦
(24)

where:

2 = (2 − 1)22 =
( − 1)2 {1− ( + )

2}
(1− 2 − 2 − 2)

The contemporaneous aggregation of model (24) leads to an ARMA(3,3) unless we

observe that, for some  and , ( + ) = ( + ), i.e. unless we have the case of

root cancellation. For example, when (1 + 1) = (2 + 2) then the contemporaneous

aggregation of model (24) leads to an ARMA(2,2). In addition, when (1 + 1) = (2 +

2) = (3+3) then the aggregate process for the squared return is an ARMA(1,1), with

the conditional (co)variance being a GARCH(1,1) process. Similar findings hold for other

combinations of (24) such as the difference process as considered by the SP estimator.

Therefore, although the SP estimator represents an approximation for this framework,

when the case of root cancellation arises this approximation gets more accurate. This

seems to be the message from the following Monte Carlo simulation.

We generated model (20)-(21) using the following three parameters structures

()   = 1 2 3

ω =

∙
1 2
2 3

¸
=

∙
01 0

0 01

¸
α =

∙
1 2
2 3

¸
=

∙
1 1

1 1

¸
+

∙
(0− ) (0− )

(0− ) (0− )

¸
β =

∙
1 2
2 3

¸
=

∙
9 9

9 9

¸
−α+

∙
(0− ) (0− )

(0− ) (0− )

¸
 1 = 001 2 = 003 3 = 006

We generated these models 1000 times. At each repetition, the matrices α and β

are randomly generated summing up a constant matrix and a random matrix whose

elements have a random uniform distribution ranging from 0 until 0.01, 0.03 and 0.06

for MODEL(1), MODEL(2) and MODEL(3), respectively. This has been done in order

to measure the impact of the departure from the possible root cancellation case on the

small sample properties of the SP estimator. It is relevant to note that, when generating

α and β, we allow only positive definite matrices since this condition guarantee that 

is positive definite. We considered one sample size of 1000 observations. The simulation

employed three alternative estimators: The multivariate (i.e. bivariate) GARCH ML

estimator, the ML-DCC (Engle, 2002) estimator and the SP-DCC estimator.

Results for the RMSE of the conditional correlation are reported in the box-plots as in

Figure 4. Not surprisingly, the bivariate maximum likelihood has the best performance.

The DCC routine reports also very good performance comparable with the bivariate

likelihood; the SP estimator performance is also comparable with the other methods,
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depending on the parameterization choice. This is notwithstanding the SP-DCC model

is an approximation for this specific framework. It is interesting to observe the change of

performance across the different models. In particular, the SP estimator tends to suffer

when the gap between the  +  gets wider as in MODEL(3). On the other hand,

for MODEL(1) the performance of SP-DCC and DCC are very close, for MODEL(2)

are similar, while some deterioration of SP performance can be noted for MODEL(3).

As the case of root cancellation is rather frequent in empirical applications, we expect

MODEL(1) and MODEL(2) being indicative of the empirical performance of SP-DCC

with real data. Here, indeed, the sums  +  might even tend to approach one.

The Integrated GARCH process arises when (+) = 1. For this case, the SP-DCC

model is no more an approximation. Indeed, for this case, any combination of model (24)

preserve the ARMA(1,1) parametrization and therefore any combination of 1 and 2
also preserve the IGARCH(1,1) structure. As a consequence the SP estimator use the

correct specification to estimate the conditional correlations. These considerations have

been tested through some Monte Carlo simulations.

We generated model (20)-(21) assuming that the conditional covariance matrix fol-

lows an Integrated GARCH dynamics (IGARCH(1,1)). We considered a single decay

factor driving the dynamics of the conditional covariance such that the following three

parameters structures are considered:

()   = 4 5 6

ω = 00001 ∗
∙
1 1

1 1

¸
+

∙
(0− ) 0

0 (0− )

¸
α =

∙
005 005

005 005

¸
+

∙
(0− ) (0− )

(0− ) (0− )

¸
 β =

∙
1 1

1 1

¸
−α

 4 = 001 5 = 003 6 = 006

The exercise compares the performance of four different competitors: 1) the pseudo-

ML estimator as discussed in Zaffaroni (2008) that estimates a single decay factor (in the

figures we define it as MLC), 2) the ML estimator that does not impose a single decay

factor (in the figures we define it as ML), 3) the SP estimator, 4) the ML-DCC routine.

The reason for the inclusion of the ML estimator is that both SP and DCC do not

impose the single decay factor. Therefore the interest in comparing three estimators

that do not know the data generation process. The empirical results are reported in

Figure 4. Since the performance of the models is unaffected by the selected parameteri-

zation, for reason of space we omit to report the results for the intermediate case (0.03).

Beside the likelihood estimator (MLC) reporting the best results, for this case the SP

estimator always performs better than DCC and even ML. This confirms that when the

IGARCH(1,1) framework arises, SP represents a fully valid candidate in estimating the

conditional correlations.

Now consider model (20)-(21) with the following unrestricted VECH representation:

⎡⎣ 1
12
2

⎤⎦ =
⎡⎣ 1

2
3

⎤⎦+
⎡⎣ 1 2 3

4 5 6
7 8 9

⎤⎦⎡⎣ 1−1
12−1
2−1

⎤⎦+
⎡⎣ 1 2 3

4 5 6
7 8 9

⎤⎦⎡⎣ 21
12
22

⎤⎦ (25)

In this case neither the marginal processes 21, 
2
2, 12, nor a combinations of them

follows a ARMA(1,1) process. In addition, also the GARCH specifications of 1 and 2
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do not follow a GARCH(1,1) model. For comparison purposes we generate the bivariate

process as shown in Hafner (2008) p.476, in order to assess the performance of different

competitors as above. Results comparing the RMSE of the conditional correlations are

shown in Figure 4. Note that the model in (25) has 21 parameters and this represents

a challenge for ML estimation. Indeed, given the problem of convergence faced by the

numerical optimization, due to the high number of parameters, we decide to employ the

true values of α and β as initial values for the likelihood. This yields the MLC estimator

and explains why the boxplot of the latter is far below the others. The ML estimator

is the bivariate maximum likelihood estimator of a Diagonal VECH (as used before).

The ML estimator is clearly an approximate likelihood as it estimate only the diagonal

elements of model (25). Interestingly, the SP estimator seems to slightly outperform both

the ML and the DCC routine in this latter case. This is a very interesting and promising

result, given that this framework represents the most unrestricted case.

To conclude, the above promising results suggest that the SP-DCC model represents

a simple and valid candidate regardless of the fact that it is an approximate model in

general. Relative to competing approaches, such as the Engle (2002) DCC model, SP-

DCC has the advantage that can be implemented regardless of the cross-sectional sample

size, i.e. also for the case of vast set of conditionally heteroskedastic time series.

4 Estimation results

As described in the methodological section, the estimation of the SP-DCC model is

performed using conditional mean residuals. In light of the model selection analysis,

the latter are computed from the selected Adaptive-X-AR-IGARCH(1,1) models for the

actual  series, yielding ε̂ =
£
̂ ̂ ̂ ̂  ̂

¤0
. IGARCH(1,1)

models for the aggregates + and 
−
 are then estimated using the aggregated residuals

̂+ and ̂−.
Estimation of the decay factor for exponential smoothing in conditional variance is

performed by means of cross-validation for computational easiness, yielding a persis-

tence parameter estimate of 0.99 (not reported) for all cases. The results show that

all the models are well specified and yield standardized residuals consistent with white

noise properties. For reasons of space, we do not report details for the 81 IGARCH(1,1)

models estimated for the actual and aggregate variables. A summary of the results is

provided in Figure 5, where Boxplots for the p-value of the Box-Ljung tests for serial cor-

relation and conditional heteroskedasticity, carried out using the standardized residuals,

are plotted. Consistent with the diagnostics reported in Table 3 for the original  series,

the IGARCH(1,1) model properly accounts for conditional heteroskedasticity also in the

aggregate temperature anomaly series + and − , as standardized residuals behaves
according to white noise processes.

Very accurate is also the estimation of the conditional correlation processes as the third

step correction is not required for the current application; given the single decay factor

the IGARCH (1,1) specification of the conditional variance covariance matrix, positive

definiteness at each point in time should indeed be expected, also consistent with the

standard Riskmetrics-Exponential smoothing parameterization. Comparison with the

Constant Conditional Correlation model of Bollerslev (1990), does support the modeling

of time-varying conditional correlations. The SP-DCC model is in fact preferred to the

CCC model, yielding a lower BIC information criterion, i.e. -9.5651 versus -9.2682 (not
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reported). Similarly SP-DCC is preferred to Engle (2002) DCC model, yielding a BIC

equal to -9.3973 (not reported).14 The latter findings provide support to the modeling

of time-varying rather than constant conditional correlations across temeperature series.

Moreover, it is fully consistent with the findings of the Monte Carlo analysis, showing

the SP-DCC model to outperform Engle (2002) DCC model in a similar parametric

framework.

4.1 Contemporaneous conditional correlations

In Figures 6-8 we plot the estimated (contemporaneous) conditional correlations across

temperature anomaly series. For comparison we also include the Oceanic Niño Index

(ONI). The latter is the standard that the National Oceanic and Atmospheric Adminis-

tration - US Deparment of Commerce (NOAA) uses for identifying El Niño (warm) and

La Niña (cool) events in the tropical Pacific.15 Hence, an El Niño event refers to the warm

and negative phase of the El Niño and Southern Oscillation (ENSO), while a La Niña

event refers to its cool and positive phase. The two components of ENSO, i.e. sea surface

temperature and atmospheric pressure, are strongly related. During an El Niño event,

the easterly trade winds converging across the equatorial Pacific weaken. This in turn

slows the ocean current that draws surface water away from the western coast of South

America and reduces the upwelling of cold water from the deeper ocean, allowing warm

surface water to build in the eastern part of the basin. The strengthening and weakening

of the trade winds is determined by changes in the pressure gradient of the atmosphere

over the tropical Pacific. Yet, the warming of the sea surface triggers a decrease in the

atmospheric pressure above it by transferring more heat to the atmosphere and increasing

its intensity. Hence, the pressure gradient affects the sea surface temperatures and the

sea surface temperatures affect the pressure gradient.

ENSO can affect zones thousands of kilometers away from the equatorial Pacific

through the "atmospheric bridge". During El Niño events, heat transfer to the tro-

posphere is magnified over the anomalously warm sea surface temperature; this in turn

generates Rossby waves that propagate poleward and eastward and are subsequently re-

fracted back from the pole to the tropics. The planetary waves form at preferred locations

both in the North and South Pacific Ocean, and the teleconnection pattern is established

within 2-6 weeks. Given that the teleconnection is mostly occurring within-month, we

expect the (contemporaneous ) conditional correlation analysis to be informative about

the response of temperature anomalies to ENSO shocks.

In Figure 6 we then plot the conditional correlation of the SOI index versus tempera-

ture anomalies of various zones, while in Figures 7-8 we plot the conditional correlations

across anomalies for various zones. In order to relate correlation dynamics to the magni-

tude of El Niño and La Niña events, in the plot we also include the ONI.

As shown in Figure 6, interesting patterns are revealed by the correlation analysis,

overall consistent with ENSO effects in the Tropics and its teleconnection. Firstly, the

conditional correlation versus the Tropics is largest, up to -0.2 and mostly negative in sign,

14Details are available upon request from the authors.
15The ONI is computed as the running 3-month mean SST anomaly for the Niño 3.4 region (i.e.,

5N-5S, 120-170W). Events are defined as 5 consecutive overlapping 3-month periods at or above

the +0.5 anomaly for warm (El Niño) events and at or below the -0.5 anomaly for cold (La Niña)

events. The threshold is further broken down into Weak (with a 0.5 to 0.9 SST anomaly), Mod-

erate (1.0 to 1.4), Strong (1.5 to 1.9) and Very Strong (≥ 2.0) events. Data are available at

http://www.cpc.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml.
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consistent with El Niño (La Niña) events, i.e. a sizably negative (positive) SOI, leading

to a warm (cool) phase in the Tropics. Coherent with the working of the "atmospheric

bridge", a negative correlation can also be noted versus the Northern Polar, up to -

0.2, over almost the whole sample. In both cases, the very strong El Niño events of

2014-2016 and 1997-1998 have made the conditional correlation more negative, i.e they

have henanced the heat transfer. This is consistent with the general recognition that

ENSO is an asymmetric phenomenon and that extreme ENSO events are different from

moderate events (Cai et al., 2015a,b; 2014; Kim et al., 2014). Secondly, the conditional

correlation of SOI versus NoExt is positive (0.1) and sizably increases since the mid-

2000s (0.2), while the conditional correlations of SOI versus SoPol becomes persistently

negative since mid/end-2000s. Thirdly, while the correlation of SOI versus SoExt has

been on average positive over the sample investigated, it has steadily decreased over

time, becoming even negative in the mid-2000s. Due to aggregation, not surprisingly the

conditional correlation of SOI versus GL and NH (SH) show similar propertied than for

NoExt (Trpcs and SoExt).

As shown in Figure 7, over the assessed sample conditional correlations of GL versus

various zones are always positive, albeit the magnitude range is sizable (0.2-0.8). Surely

interesting is the upward trend in the correlation between SoPol and GL, and between

NH and SH, pointing to an increasing comovement over time of temperature anomalies

for the latter zones; similarly interesting is the downward trend in the correlation between

NoPol and GL.

Moreover, as shown in Figure 8, a consistent pattern with ENSO teleconnections

is also shown by the coditional correlations relating the various anomalies across zones.

Conditional correlations are in fact positive over the whole sample for Trpcs versus NoExt

and SoExt (0.10), and for NoExt versus NoPol, SoExt versus SoPol (0.3 to 0.5). The

latter pattern is consistent with a warming shock being transmitted from the Tropics

to the other zones, i.e. to the Extratropics and then to the Poles. A direct connection

between the Tropics and the Poles is also detected; the latter correlations are however

rather unstable and weak at the end of sample, apart from the sizable increase observed

during the 2014-2016 very strong El Niño event.

Overall, while the general pattern revealed by the conditional correlation analysis is

consistent with ENSO and ENSO-like long lived episodes, such as the Pacific Decadal

Oscillation (PDO), which generate in the Tropics and then propagate to the Extratropics

and the Poles through various teleconnection mechanisms, the analysis also point to

some changes in the linkages relating anomalies across zones and the global propagation

of ENSO events. Some of these changes appear to have been ongoing since at least the

1980s, i.e. the beginning of sample; others have occurred since the early/mid-2000s.

Whether the observed changes can be related to global warming is surely an issue that

deserves a careful assessment. In this respect, it is worth noting that, while no consensus

view has emerged to date, changes in the amplitude and frequency of ENSO events and

shifts in their teleconnections should indeed be expected, both as consequences of mean

climate state changes (Cai et al., 2015a,b; 2014; and Kim et al., 2014; Ng et al., 2015;

Coumou and Rahmstorf, 2012).

19



5 Conclusions

Much attention has recently been paid to potential changes in temperature anomalies,

particularly with reference to an upward drift detectable for the entire globe and various

zones since the mid-/late 1990s and to its possible connection to very strong concurrent

El Niño/ENSO events. The latter drift would appear to have even further increased as

a consequence of the most recent 2015-2016 very strong El Niño event. Despite El Niño

events affect the global climate and disrupts normal weather patterns, it is however in

general agreed that ENSO might contribute little of the global mean warming trend since

the 1950s (Foster et al., 2009). The latter warming trend is in general related to radiative

forcing, both of natural and anthropogenic origin, whose stochastic or deterministic na-

ture has been contended in the literature since the early 1990s. More recently the debate

has also focused on the implications of global warming for the frequency and amplitude

of natural variability oscillations, such as ENSO and IOD. While no consensus view has

emerged to date, it is however expected that their amplitude, frequency and teleconnec-

tions might change as consequences of global warming (Cai et al., 2015a,b; 2014; and

Kim et al., 2014; Ng et al., 2015; Coumou and Rahmstorf, 2012).

In light of the above issues in this paper we further assess the linkages between temper-

ature anomalies, radiative forcing and ENSO. The paper innovates the available literature

in various directions. We find that temperature anomalies since the 1980s are best de-

scribed by a short memory process about a single level shift occurring in the mid-/late

1990s. While the latter could in principle be related to concurrent very strong El Niño

events, we however find stronger evidence for its connection to radiative forcing. By

means of a new flexible trend modeling approach, we uncover a nonlinear linkage be-

tween radiative forcing and temperature anomalies. The nonlinear trend closely tracks

the low frequency evolution in temperature anomalies, also accounting for the mid-end

1990s level switch, the 1998-2013 "warming hiatus" and the current steepening in trend

temperatures. Moreover, we find that radiative forcing also accounts for trend dynamics

in SOI, therefore providing evidence that global warming might affect natural variability

oscillations such as ENSO, and therefore contribute to their disruptive effects.

In the paper we also document the feature of time-varying volatility of temperature

anomalies. The feature is well described by an IGARCH process, pointing to volatility

clusters in temperature anomalies. The same feature is uncovered for SOI. In this respect,

a sizable increase in SOI volatility can be noted since mid-2000s, concurrent with a

somewhat earlier decrease in volatility for temperature anomalies and the steepening in

the radiative forcing trend, consistent with feedback effects of global warming on natural

variability oscillations.

The detected GARCH properties for temperature anomalies and SOI are then further

assessed in the framework of a new dynamic conditional correlation model, i.e. the

Semiparametric-DCC model (SP-DCC; Morana, 2015), which allows for the modeling of

time-varying linkages across temperature series and in relation to ENSO. The proposed

SP-DCC model is shown to compare favorably to exact ML and Engle (2002) DCC model

in a Monte Carlo analysis.

We then document the presence of time-varying conditional correlations relating tem-

perature anomalies across various zones and SOI. In this respect we find a correlation

pattern consistent with ENSO effects in the Tropics and its teleconnections. Despite the

latter findings, the analysis also reveals some important changes in the conditional cor-

relation patterns involving SOI and temperature anomalies across zones. Some of these
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changes appear to have been ongoing since at least the 1980s, i.e. the beginning of sam-

ple; others have occurred since the early/mid-2000s. Whether the observed changes can

be related to likely effects of global warming on the amplitude and frequency of ENSO

events and on their teleconnections is surely an issue that deserves a careful assessment,

which is however outside the scope of this paper.
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Table 1: Persistence analysis of temperature anomaly series 

Panel A: ADF tests 
 GL NH SH Trpcs NoExt SoExt NoPol SoPol SOI 
Constant+Trend -5.737 -6.684 -7.200 -5.910 -8.141 -7.104 -9.243 -15.01 -5.877 
Constant -4.493 -4.607 -4.738 -5.174 -4.637 -5.876 -6.126 -15.03 -5.780 
No costant -4.418 -4.543 -4.684 -5.104 -4.583 -5.811 -6.024 -14.86 -5.699 
 
Panel B: Structural break analysis 
 GL NH SH Trpcs NoExt SoExt NoPol SoPol SOI 
UD-max 44.120 92.867 33.397 64.821 103.22 34.724 41.711 33.939 42.709 
LWZ – 0 -2.971 -2.354 -3.078 -2.614 -2.106 -2.698 -3.025 -1.925 -3.137 
LWZ – 1 -3.363 -2.759 -3.373 -3.018 -2.463 -2.981 -3.264 -2.057 -3.352 
LWZ – 2 -3.405 -2.741 -3.434 -3.072 -2.446 -3.062 -3.252 -2.018 -3.358 
LWZ – 3 -3.407 -2.722 -3.427 -3.062 -2.417 -3.049 -3.228 -1.988 -3.347 
LWZ – 4 -3.402 -2.726 -3.438 -3.041 -2.397 -3.038 -3.213 -1.956 -3.343 
LWZ – 5 -3.385 -2.705 -3.422 -3.039 -2.382 -3.017 -3.198 -1.916 -3.316 
SupF(2|1) 9.087 7.124 9.793 7.677 8.724 11.431 10.227 3.023 12.855 
Break dates 1997:6 1997:8 1995:3 1997:6 1998:1 1997:6 1995:3 1995:3 1995:3 

 
Panel C: Long memory models: estimated fractional differencing parameter and AIC, BIC 
 GL NH SH Trpcs NoExt SoExt NoPol SoPol SOI 
Mod 1 d 0.665 

(0.039) 
0.580 

(0.039) 
0.566 

(0.044) 
0.877 

(0.048) 
0.478 

(0.035) 
0.373 

(0.038) 
0.277 

(0.033) 
0.259 

(0.053)) 
0.536 

(0.043) 
AIC 
BIC 

-1.4522 
-1.4521 

-0.8548 
-0.8278 

-1.0279 
-1.0008 

-0.9257
-0.8987 

-0.3339 
-0.3068 

-0.5602 
-0.5331 

1.5666 
1.5937 

1.8251
1.8525 

2.1598
2.1869 

Mod 2 d 0.646 
(0.042) 

0.545 
(0.043) 

0.544 
(0.047) 

0.865 
(0.049) 

0.418 
(0.043) 

0.3365 
(0.044) 

0.1958 
(0.044) 

0.260 
(0.053) 

0.533 
(0.044) 

AIC 
BIC 

-1.4527 
-1.4166 

-0.8624 
-0.8263 

-1.0309 
-0.9947 

-0.9257 
-0.8896 

-0.3528
-0.3167 

-0.5660 
-0.5299 

1.5412 
1.5773 

1.8290 
1.8651 

2.1603 
2.1964 

Mod 3 d 0.645 
(0.043) 

0.551 
(0.042) 

0.5419 
(0.046) 

0.875 
(0.049) 

0.432 
(0.042) 

0.334 
(0.043) 

0.201 
(0.044) 

0.260 
(0.053) 

0.536 
(0.044) 

AIC 
BIC 

-1.4540 
-1.4179 

-0.8598 
-0.8237 

-1.0319
-0.9958 

-0.9218 
-0.8857 

-0.3459 
-0.3098 

-0.5722
-0.5361 

1.5401 
1.5762 

1.8292 
1.8653 

2.1642 
2.2002 

Mod 4 d 0.645 
(0.043) 

0.539 
(0.042) 

0.538 
(0.046) 

0.864 
(0.049) 

0.413 
(0.043) 

0.331 
(0.044) 

0.186 
(0.045) 

0.260 
(0.053) 

0.531 
(0.044) 

AIC 
BIC 

-1.4522 
-1.4070 

-0.8615 
-0.8164 

-1.0302 
-0.9851 

-0.9216 
-0.8764 

-0.3516 
-0.3064 

-0.5683 
-0.5232 

1.5392 
1.5844 

1.8334 
1.8785 

2.1639 
2.2090 

 
Panel D: Short memory models: estimated persistence parameter and AIC, BIC 
 GL NH SH Trpcs NoExt SoExt NoPol SoPol SOI 
Mod 1 

i   0.887 
(0.064) 

0.850 
(0.065) 

0.801 
(0.062) 

0.867 
(0.026) 

0.790 
(0.065) 

0.611 
(0.063) 

0.513 
(0.071) 

0.331 
(0.047) 

0.790 
(0.095) 

AIC 
BIC 

-1.4748 
-1.4478 

-0.8569 
-0.8298 

-1.0325 
-1.0054 

-0.9714 
-0.9533 

-0.3068 
-0.2685 

-0.5270 
-0.4999 

1.6295 
1.6566 

1.7901
1.8081 

2.1100
2.1462 

Mod 2 
i  0.818 

(0.064) 
0.748 

(0.065) 
0.718 

(0.063) 
0.867 

(0.025) 
0.624 

(0.066) 
0.491 

(0.065) 
0.309 

(0.071) 
0.331 

(0.047) 
0.777 

(0.093) 
AIC 
BIC 

-1.4970 
-1.4519 

-0.8876 
-0.8425 

-1.0595 
-1.0144 

-0.9743
-0.9382 

-0.3660
-0.3209 

-0.5702
-0.5250 

1.5592 
1.5973 

1.7987 
1.8348 

2.1128 
2.1670 

Mod 3 
i  0.818 

(0.065) 
0.753 

(0.065) 
0.724 

(0.063) 
0.867 

(0.026) 
0.641 

(0.066) 
0.497 

(0.065) 
0.318 

(0.070) 
0.332 

(0.047) 
0.783 

(0.093) 
AIC 
BIC 

-1.4945 
-1.4494 

-0.8871 
-0.8420 

-1.0568 
-1.0117 

-0.9733 
-0.9373 

-0.3586 
-0.3134 

-0.5699 
-0.5248 

1.5502 
1.5953 

1.7987 
1.8348 

2.1164 
2.1705 

Mod 4 
i  0.818 

(0.065) 
0.738 

(0.065) 
0.712 

(0.063) 
0.865 

(0.025) 
0.612 

(0.066) 
0.483 

(0.065) 
0.292 

(0.071) 
0.331 

(0.047) 
0.776 

(0.094) 
AIC 
BIC 

-1.4974 
-1.4433 

-0.8898 
-0.8357 

-1.0587 
-1.0046 

-0.9716 
-0.9264 

-0.3682 
-0.3141 

-0.5709 
-0.5168 

1.5453 
1.5994 

1.8030 
1.8481 

2.1169 
2.1801 

 



Panel A reports the ADF nonstationarity tests for three different specifications of the deterministic component, i.e. constant 

plus trend, only constant and no constant and trend. The 5% and 1% critical values are ‐3.42 and ‐3.98, ‐2.87 and ‐3.45, ‐1.94 

and ‐2.57, respectively. 

Panel B reports the results of the Bai‐Perron (1998) UD‐Max structural break test. The 5% and 1% critical values of the test 

are 9.63 and 13.58, respectively. It also reports the LZW information criterion for the case of n breaks, n = 0, …, 5 (LWZ‐n) and 

the SupF test for the null of 1 break against the alternative of 2 breaks; the 5% and 1% critical values of the test are 11.14 and 

15.03, respectively. The date of the selected break point is finally reported.  

Panel C reports the estimated fractional differencing parameter and the AIC and BIC information criteria for four different 

ARFIMA(0,d,0) models, with constant mean (Model 1), with switching intercept according to the estimated break date by the 

Bai‐Perron UD‐max tests (Model 2), with linear time trend (Model 3), with switching intercept and linear trend  (Model 4).  

Panel D reports the estimated persistence parameter and the AIC and BIC information criteria for four different AR(p) models, 

with constant mean (Model 1), with switching intercept according to the estimated break date by the Bai‐Perron UD‐max 

tests (Model 2), with linear time trend (Model 3), with switching intercept and linear trend  (Model 4).  

The series  investigated are average  land and ocean temperature anomalies  for  the entire globe (GL; 90S‐90N) and seven 

zones, namely the Northern Hemisphere (NH; 0‐90N), the Southern Hemisphere (SH; 90S‐0), the Tropics (Trpcs; 20S‐20N), the 

Northern Extratropic (NoExt; 20N‐90N), the Southern Extratropic (SoExt; 90S‐20S), the Northern Polar (NoPol; 60N‐90N), the 

Southern Polar (SoPol; 90S‐60S). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2: Nonlinearity Perron‐Shintani‐Yabu Wald test 

Panel A: Nonlinearity Wald test 
Linear trend included 
 GL NH SH Trpcs NoExt SoExt NoPol SoPol SOI 
Order 1 0.2115 0.1525 0.3875 0.2444 0.4703 0.3766 0.4538 0.2389 0.7533 
Order 2 1.8328 2.3552 1.6595 0.6015 2.5347 1.6943 3.6086 0.2324 0.4455 
Order 3 0.4455 0.6194 0.5068 0.1177 0.7229 2.2714 0.4095 2.4189 2.2155 
Order 4 1.7901 3.1143 1.0085 0.7004 5.7330 1.9144 0.9017 1.2853 2.2660 
Order 5 1.3772 0.8313 2.1692 0.6824 0.4355 3.2445 3.3590 4.0325 0.4617 

 
Linear trend omitted 
 GL NH SH Trpcs NoExt SoExt NoPol SoPol SOI 
Order 1 5.3457 7.2277 5.0177 1.7042 6.3493 5.2017 24.3710 0.1882 1.6183 
Order 2 0.2764 0.3327 0.3878 0.4902 0.1205 0.2497 0.0068 0.2447 0.2792 
Order 3 0.7138 0.6974 1.2227 0.3187 0.4115 2.5531 0.0196 2.6472 2.6040 
Order 4 0.6002 0.7916 0.4654 1.6084 0.3701 0.2890 0.0253 1.3987 1.7171 
Order 5 0.2821 0.0774 0.4747 0.3125 0.0290 0.5005 0.0871 4.4988 0.3049 

 
Panel B: Adaptive-AR specifications 
 GL NH SH Trpcs NoExt SoExt NoPol SoPol SOI 

i  0.852 
(0.065) 

0.798 
(0.066) 

0.761 
(0.063) 

0.877 
(0.025) 

0.701 
(0.066) 

0.539 
(0.064) 

0.348 
(0.073) 

0.325 
(0.047) 

0.790 
(0.095) 

1   -0.152 
(0.052) 

-0.187 
(0.051) 

-0.120 
(0.039) 

-0.130 
(0.081) 

-0.224 
(0.045) 

-0.109 
(0.026) 

-0.368 
(0.050) 

- - 

3  - - - - - - - 0.089 
(0.060) 

- 

AIC -1.4850 -0.8742 -1.0447 -0.9723 -0.3394 -0.5539 1.5595 1.7893 2.1100 
BIC -1.4489 -0.8381 -1.0086 -0.9453 -0.3033 -0.5178 1.5956 1.8164 2.1462 
          

 

Panel A reports the Perron‐Shintani‐Yabu nonlinearity Wald test for various orders of the Fourier expansion. The critical values 

are 3.2189, 4.6052, 5.9915, 9.2103 for the 20%, 10%, 5% and 1% critical value, respectively. 

Panel B reports the estimated persistence parameter, the selected terms of the Fourier expansion and AIC and BIC information 

criteria for the Adaptive‐AR models. 

The series  investigated are average  land and ocean temperature anomalies  for  the entire globe (GL; 90S‐90N) and seven 

zones, namely the Northern Hemisphere (NH; 0‐90N), the Southern Hemisphere (SH; 90S‐0), the Tropics (Trpcs; 20S‐20N), the 

Northern Extratropic (NoExt; 20N‐90N), the Southern Extratropic (SoExt; 90S‐20S), the Northern Polar (NoPol; 60N‐90N), the 

Southern Polar (SoPol; 90S‐60S). 

 

 

 

 

 

 

 

 



Table 3: Adaptive‐X‐AR‐GARCH models 

Panel A: AR-B - Bai-Perron break process specifications 
 GL NH SH Trpcs NoExt SoExt NoPol SoPol SOI 

0c   -0.095 
(0.044) 

-0.119 
(0.044) 

-0.104 
(0.038) 

- 
 

-0.143 
(0.037) 

-0.075 
(0.026) 

0.247 
(0.056) 

- - 

1c  0.244 
(0.057) 

0.302 
(0.058) 

0.218 
(0.047) 

0.145 
(0.059) 

0.367 
(0.052) 

0.182 
(0.033) 

0.541 
(0.075) 

- - 

1  0.576 
(0.047) 

0.517 
(0.049) 

0.527 
(0.045) 

0.876 
(0.023) 

0.418 
(0.049) 

0.363 
(0.044) 

0.204 
(0.057) 

0.335 
(0.047) 

0.464 
(0.055) 

2  0.244 
(0.045) 

0.234 
(0.045) 

0.193 
(0.043) 

- 
 

0.206 
(0.045) 

0.131 
(0.045) 

0.098 
(0.048) 

- 0.205 
(0.057) 

3  - - - - - - - - 0.114 
(0.053) 

  0.990 
(0.0136) 

0.990 
(0.014) 

0.990 
(0.014) 

0.990 
(0.015) 

0.990 
(0.013) 

0.990 
(0.0189) 

0.990 
(0.018) 

0.990 
(0.022) 

0.990 
(0.023) 

  0.010 
(-) 

0.010 
(-) 

0.010 
(-) 

0.010 
(-) 

0.010 
(-) 

0.010 
(-)

0.010 
(-)

0.010 
(-) 

0.010 
(-) 

 
AIC homosk -1.4970 -0.8876 -1.0595 -0.9757 -0.3660 -0.5702 1.5522 1.7944 2.1100 
BIC homosk -1.4519 -0.8425 -1.0144 -0.9486 -0.3209 -0.5250 1.5973 1.8215 2.1462 
R2 0.749 0.677 0.590 0.793 0.578 0.334 0.251 0.110 0.502 
AIC -1.4932 -0.8798 -1.0565 -0.9728 -0.3599 -0.5704 1.5600 1.7911 2.1153 
BIC -1.4571 -0.8437 -1.0204 -0.9548 -0.3238 -0.5343 1.5961 1.8003 2.1514 
(20)Q  0.9214 0.8257 0.5832 0.0209 0.7132 0.7115 0.1912 0.3565 0.2814 

2(20)Q  0.7577 0.2557 0.5857 0.4536 0.0812 0.7675 0.0761 0.5623 0.0006 

BJ 0.0287 0.0000 0.7893 0.0664 0.0902 0.2865 0.0000 0.1198 0.0040 
Joint Bias 0.9707 0.6057 0.9873 0.1007 0.9402 0.7981 0.1466 0.6440 0.2131 
Joint Stability 0.3395 0.4858 0.4734 0.0972 0.5519 0.6194 0.8709 0.3163 0.6452 

 
Panel B: Adaptive-X-AR models - Radiative forcing specifications 
 GL NH SH Trpcs NoExt SoExt NoPol SoPol SOI 

0c  -0.897 
(0.205) 

-1.059 
(0.201) 

-0.594 
(0.170) 

-0.632 
(0.391) 

-1.431 
(0.142) 

-0.758 
(0.109) 

-1.956 
(0.244) 

- - 

2c  0.632 
(0.135) 

0.747 
(0.133) 

0.416 
(0.109) 

0.437 
(0.255) 

0.996 
(0.094) 

0.526 
(0.070) 

1.356 
(0.163) 

- - 

3  - - - - 0.121 
(0.029) 

0.046 
(0.022) 

0.217 
(0.045) 

- - 

5 or 4 (*) 0.084 
(0.034) 

0.104 
(0.039) 

 0.131 
(0.074) 

0.166 
(0.032) 

0.078 
(0.035) 

0.176 
(0.055) 

- -0.436(*) 
(0.188) 

5  or 3 (*) - - 0.064 
(0.028) 

0.143(*) 
(0.075) 

- - - - - 

        -  

1  0.574 
(0.047) 

0.512 
(0.049) 

0.521 
(0.046) 

0.862 
(0.024) 

0.370 
(0.050) 

0.331 
(0.044) 

0.206 
(0.056) 

0.335 
(0.047) 

0.455 
(0.055) 

2  0.234 
(0.046) 

0.229 
(0.046) 

0.191 
(0.043) 

- 0.157 
(0.049) 

0.104 
(0.046) 

- - 0.204 
(0.057) 

3  - - - - -  - - 0.116 
(0.053) 

  0.990 
(0.022) 

0.990 
(0.010) 

0.990 
(0.012) 

0.990 
(0.013) 

0.990 
(0.016) 

0.990 
(0.011) 

0.990 
(0.014) 

0.990 
(0.017) 

0.990 
(0.022) 

  0.010 
(-) 

0.010 
(-) 

0.010 
(-) 

0.010 
(-) 

0.010 
(-) 

0.010 
(-) 

0.010 
(-) 

0.010 
(-) 

0.010 
(-) 

          
AIC homosk -1.5000 -0.8923 -1.0612 -0.9778 -0.4027 -0.5938 1.5414 1.7944 2.1031 
BIC homosk -1.4460 -0.8382 -1.0070 -0.9236 -0.3395 -0.5309 -1.5956 1.8215 2.1482 
R2 0.751 0.680 0.593 0.796 0.596 0.355 0.263 0.110 0.508 
AIC -1.4967 -0.8843 -1.0596 -0.9742 -0.3958 -0.5935 1.5502 1.7911 2.1068 
BIC -1.4516 -0.8391 -1.0145 -0.9291 -0.3416 -0.5393 1.5953 1.8003 2.1429 
(20)Q  0.9232 0.8964 0.6648 0.0265 0.8914 0.7290 0.2659 0.3565 0.3509 

2(20)Q  0.3807 0.0482 0.7132 0.5139 0.0292 0.8184 0.1987 0.5623 0.0008 

BJ 0.0443 0.0000 0.9143 0.0110 0.0062 0.3246 0.0000 0.1198 0.0000 
Joint Bias 0.8330 0.6376 0.9832 0.1217 0.6360 0.5083 0.0622 0.6440 0.1412 
Joint Stability 0.3826 0.6615 0.8024 0.6670 1.1220 0.9001 1.8245 0.3163 0.6915 



Table 3 (ctd.): Adaptive‐X‐AR‐GARCH models 

Panel C: Hybrid Adaptive-X-AR-B models 
 GL NH SH Trpcs NoExt SoExt NoPol SoPol SOI 

0c  -0.088 
(0.041) 

-0.111 
(0.039) 

-0.092 
(0.020) 

-0.083 
(0.073) 

-0.674 
(0.191) 

-0.495 
(0.152) 

-1.299 
(0.361) 

- - 

1c  0.264 
(0.055) 

0.329 
(0.055) 

0.216 
(0.039) 

0.206 
(0.096) 

0.263 
(0.064) 

0.088 
(0.048) 

0.281 
(0.113) 

- - 

2c  - - - - 0.411 
(0.144) 

0.323 
(0.113) 

0.812 
(0.275) 

- - 

3  - - - - - - 0.156 
(0.050) 

- - 

5  or 4 (*) 0.078 
(0.032) 

0.096 
(0.036) 

- 0.139(*) 
(0.036) 

0.141 
(0.032) 

0.069 
(0.024) 

0.165 
(0.053) 

- -0.436(*) 
(0.188) 

5  or 3 (*) - - 0.094 
(0.025) 

0.132(*) 
(0.076) 

- - - - - 

          

1  0.564 
(0.047) 

0.500 
(0.050) 

0.497 
(0.045) 

0.859 
(0.025) 

0.368 
(0.050) 

0.334 
(0.044) 

0.184 
(0.056) 

0.335 
(0.047) 

0.455 
(0.055) 

2  0.240 
(0.045) 

0.222 
(0.046) 

0.174 
(0.044) 

- 0.160 
(0.047) 

0.106 
(0.047) 

- - 0.204 
(0.057) 

3  - - - - - - - - 0.116 
(0.053) 

  0.990 
(0.010) 

0.990 
(0.012) 

0.990 
(0.012) 

0.990 
(0.014) 

0.990 
(0.012) 

0.990 
(0.011) 

0.990 
(0.014) 

0.990 
(0.021) 

0.990 
(0.022) 

  0.010 
(-) 

0.010 
(-) 

0.010 
(-) 

0.010 
(-) 

0.010 
(-) 

0.010 
(-) 

0.010 
(-) 

0.010 
(-) 

0.010 
(-) 

          
AIC homosk -1.5039 -0.8970 1.0798 -0.9804 -0.4023 -0.5913 1.5321 1.7901 2.1031 
BIC homosk -1.4549 -0.8429 -1.0257 -0.9263 -0.3391 -0.5281 1.5953 1.8081 2.1482 
R2 0.752 0.682 0.600 0.796 0.595 0.359 0.273 0.110 0.498 
AIC -1.5000 -0.8889 -1.0787 -0.9771 -0.3956 -0.5907 1.5408 1.7911 2.1068 
BIC -1.4516 -0.8438 -1.0336 -0.9320 -0.3415 -0.5365 1.5949 1.8003 2.1429 
(20)Q  0.9353 0.9135 0.6127 0.0275 0.8735 0.7869 0.3675 0.3565 0.3509 

2(20)Q  0.6489 0.2659 0.7329 0.5170 0.0707 0.8722 0.1407 0.5623 0.0008 

BJ 0.0312 0.0000 0.9880 0.0321 0.0107 0.3185 0.0000 0.1198 0.0000 
Joint Bias 0.8749 0.5416 0.9806 0.1417 0.3203 0.2965 0.3068 0.6440 0.1412 
Joint Stability 0.5517 0.8002 0.6827 0.6554 0.8213 0.8967 1.8972 0.3163 0.6915 

 

Panel A reports the ML estimated AR‐B models including a step dummy variables with unitary values set according to the Bai‐

Perron UD‐max structural break tests. Panel B reports the ML estimated Adaptive‐X‐AR models with radiative forcing control 

variables.  Panel  C  reports  the ML  estimated  hybrid  Adaptive‐X‐AR‐B models  including  both  the  Bai‐Perron  step  dummy 

variable and radiative forcing control variables. R2 is the coefficient of determination. AIC (homosk) and BIC (homosk) are the 

Akaike and Bayes‐Schwarz information criteria, respectively, computed for the conditionally heteroskedastic (homoscedastic) 

version of the models.  (20)Q  and 
2(20)Q are the Box‐Ljung test for serial correlation up to the 20th order in the standardized 

and squared standardized residuals, respectively. BJ is the Bera‐Jarque normality test, Joint Bias is the Engle‐Ng joint test for 

asymmetry in variance, Stability is the joint Nyblom stability test. 

The series  investigated are average  land and ocean temperature anomalies  for  the entire globe (GL; 90S‐90N) and seven 

zones, namely the Northern Hemisphere (NH; 0‐90N), the Southern Hemisphere (SH; 90S‐0), the Tropics (Trpcs; 20S‐20N), the 

Northern Extratropic (NoExt; 20N‐90N), the Southern Extratropic (SoExt; 90S‐20S), the Northern Polar (NoPol; 60N‐90N), the 

Southern Polar (SoPol; 90S‐60S). 

 

 

 



 

Figure  1:  Radiative  forcing  components  and  total  radiative  forcing:  actual  data,  forecasts  for  2012‐2016  (grey  shadow),  and 

monthly  interpolated series  (Interpolated). Following Hansen et al.  (2005),  radiative  forcing has been decomposed  in various 

categories,  i.e.,  Well‐Mixed  Greenhouse  Gases  (WMGG;  carbon  dioxide  (CO₂),  methane  (NH4),  nitrous  oxide  (N2O)  and 

chlorofluorocarbons  (CFCs)),  Ozone  (O3),  Stratospheric  Water  Vapor  (StrH2O),  Reflective  Tropospheric  Aerosols  (ReflAer), 

Tropospheric Aerosol Indirect Effects (AIE), Black Carbon Aerosols (BC), Snow Albedo (snowAlb), Stratospheric Aerosols (StrAer), 

Solar Irradiance (Solar), Land Use (including irrigation; LandUse). In the plots, Total Radiative corresponds to the sum of the all 

the reported components; Total Radiative ex StrAer corresponds to the sum of all the reported components with Stratospheric 

Aerosols (StrAer) omitted.   
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Figure 2: Temperature anomalies for the entire globe (GL; 90S‐90N) and seven zones, namely the Northern Hemisphere (NH; 0‐

90N),  the  Southern  Hemisphere  (SH;  90S‐0),  the  Tropics  (Trpcs;  20S‐20N),  the  Northern  Extratropic  (NoExt;  20N‐90N),  the 

Southern Extratropic (SoExt; 90S‐20S), the Northern Polar (NoPol; 60N‐90N), the Southern Polar (SoPol; 90S‐60S). The Southern 

Oscillation Index is also plotted (SOI). For all series RF denotes the nonlinear trend associated with radiative forcing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GL RF 

1980 1990 2000 2010

-0.5

0.0

0.5

1.0
GL RF NH RF 

1980 1990 2000 2010

0

1

NH RF SH RF 

1980 1990 2000 2010

-0.5

0.0

0.5

SH RF 

Trpcs RF 

1980 1990 2000 2010

0

1

Trpcs RF NoExt RF 

1980 1990 2000 2010

0

1

NoExt RF SoExt RF 

1980 1990 2000 2010

-0.5

0.0

0.5 SoExt RF 

NoPol RF 

1980 1990 2000 2010

0

2

NoPol RF SoPol RF 

1980 1990 2000 2010

0

2 SoPol RF SOI RF 

1980 1990 2000 2010

-2.5

0.0

2.5

SOI RF 



 

Figure 3: Estimated conditional variances of temperature anomalies for the entire globe (GL; 90S‐90N) and seven zones, namely 

the  Northern  Hemisphere  (NH;  0‐90N),  the  Southern  Hemisphere  (SH;  90S‐0),  the  Tropics  (Trpcs;  20S‐20N),  the  Northern 

Extratropic (NoExt; 20N‐90N), the Southern Extratropic (SoExt; 90S‐20S), the Northern Polar (NoPol; 60N‐90N), the Southern Polar 

(SoPol; 90S‐60S), the Southern Oscillation Index (SOI). 
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Figure 4: Monte Carlo results. SP‐DCC (SP) vs. Exact Maximum Likelihood  (ML, MLT, MLC) and Engle DCC (DCC).  



 

 

Figure 5: Boxplots for the p‐values of the Box‐Ljung tests carried out using standardized and squared standardized residuals.   
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Figure 6: Estimated conditional correlations of the Southern Oscillation Index (SOI) versus various temperature anomalies: the 

entire  globe  (GL/SOI),  the  Northern  Hemisphere  (NH/SOI),  the  Southern  Hemisphere  (SH/SOI),  the  Tropics  (Trpcs/SOI),  the 

Northern  Extratropic  (NoExt/SOI),  the  Southern  Extratropic  (SoExt/SOI),  the  Northern  Polar  (NoPol/SOI),  the  Southern  Polar 

(SoPol/SOI). ONI is the Oceanic Niño Index, scaled to match means and ranges of the various conditional correlations. 
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Figure 7: Estimated conditional correlations of the global temperature anomaly versus temperature anomalies of various zones: 

the  Northern  Hemisphere  (NH/GL),  the  Southern  Hemisphere  (SH/GL),  the  Tropics  (Trpcs/GL),  the  Northern  Extratropic 

(NoExt/GL), the Southern Extratropic (SoExt/GL), the Northern Polar (NoPol/GL) and the Southern Polar (SoPol/GL). In the figure 

also  the  conditional  correlations of  the Northern Hemisphere  anomaly  versus  the  Southern Hemisphere  anomaly  (SH/NH)  is 

plotted. ONI is the Oceanic Niño Index, scaled to match means and ranges of the various conditional correlations. 
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Figure 8: Conditional correlations of various temperature anomalies: Tropics versus the Northern (NoExt/Tropics) and Southern 

(SoExt/Trpcs) Extratropic; Tropics versus the Northern (NoPol/Trpcs) and Southern (SoPol/Trpcs) Polar. The Northern Extratropic 

versus the Southern Extratropic (SoExt/NoExt) and the Northern (NoPol/NoExt) and Southern (SoPol/NoExt) Polar. The Southern 

Extratropic versus the Northern (NoPol/SoExt) and Southern (SoPol/SoExt) Polar. The Northern Polar versus the Southern Polar 

(SoPol/NoPol). ONI is the Oceanic Niño Index scaled to match means and ranges of the various conditional correlations.  
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