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MICHELE BERARDI

University of Manchester

JAQUESON K. GALIMBERTI†

ETH Zurich

Abstract

Under adaptive learning, recursive algorithms are proposed to represent how agents up-

date their beliefs over time. For applied purposes these algorithms require initial estimates

of agents perceived law of motion. Obtaining appropriate initial estimates can become pro-

hibitive within the usual data availability restrictions of macroeconomics. To circumvent

this issue we propose a new smoothing-based initialization routine that optimizes the use

of a training sample of data to obtain initials consistent with the statistical properties of the

learning algorithm. Our method is generically formulated to cover different specifications

of the learning mechanism, such as the Least Squares and the Stochastic Gradient algo-

rithms. Using simulations we show that our method is able to speed up the convergence of

initial estimates in exchange for a higher computational cost.

Keywords: learning algorithms, initialization, smoothing, expectations.

JEL codes: C63, D84, E37.

1 Introduction

Under adaptive learning agents are assumed to act like econometricians, forming their expec-
tations with forecast functions that are adjusted as new data becomes available. As the beliefs
inherent in such forecasting models are updated according to explicit recursive mechanisms, or
learning algorithms, an initial estimate of agents beliefs is required to commence this learning-
to-forecast process. In this paper we propose a smoothing-based initialization method, designed
to optimize the use of information available in feasible training samples of initial data. Our
main contribution is to show that the smoothing method is capable of accelerating the conver-
gence of the estimates of a forecasting model within a restricted training sample of data, and
∗Paper accepted for publication in Macroeconomic Dynamics. An earlier version of this paper was presented

at the 2013 Computing in Economics and Finance conference in Vancouver. We thank to our discussants for
helpful comments. We also gratefully acknowledge the comments provided by one Associate Editor and two
anonymous referees. Any remaining errors are ours.
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that this method is also robust to changes in the specification of the learning algorithm and its
calibration.

The need of learning initials is particularly relevant for applied purposes, where adaptive
learning provides a new channel through which the effects of expectation shocks can dissipate
dynamically over the economy (e.g., Sargent, 1999; Orphanides and Williams, 2005; Eusepi
and Preston, 2011; Milani, 2011). Frequently, these applications involve the computational
implementation of the learning algorithms, for which the initial estimates are indispensable.
Nevertheless, few attempts have been done in the previous literature to rationalize an initializa-
tion method1.

Here we take up this issue focusing on learning-to-forecast exercises, where observations
are generated exogenously to the learning process, thence representing the limiting case of
atomistic agents whose individual forecasts and decisions cannot affect aggregate outcomes.
This allows us to obtain a clearer evaluation of the accuracy of initialization methods than one
would obtain with the joint estimation of other macroeconomic model structural parameters,
which is known to be plagued by weak identification issues (see Chevillon et al., 2010)2.

Our point of departure is a unified framework, presented in Section 2, under which the
main learning algorithms considered in the literature, namely the Least Squares (LS) and the
Stochastic Gradient (SG), are obtained as special cases of the Kalman filter associated to a time-
varying parameters model of the economy. More specifically, Berardi and Galimberti (2013)
have recently shown how to extend the asymptotic correspondences between these algorithms
to hold exactly in transient phases too, hence allowing for a unified approach to initializations.
From these correspondences, long standing Kalman smoothing results can be readily translated
into smoothing routines for the estimates obtained from each of the above learning algorithms,
and we develop our routine using these premises in Section 3.

We then conduct a simulation exercise, presented in Section 4, generating artificial data
that mimic the statistical properties of inflation3, and evaluate our procedure in comparison
with two other training sample-based methods found in the previous literature, . Our guiding
principle in this evaluation is the idea that an initial estimate should reflect the beliefs implied
by a learning process that was already in motion prior to the sample beginning. We show that
our approach is able to speed up the learning algorithms convergence to their long run operation
without impairing the feasibility of the learning analysis by requiring too many observations
for the initials training. This solution, however, comes at the cost of an increased, but feasible,

1The most notorious exception is provided by Carceles-Poveda and Giannitsarou (2007), where three alter-
native initialization methods were proposed and shown to affect the behavior of macroeconomic variables in
simulation analysis. An empirical analysis of initializations is also provided by Slobodyan and Wouters (2012),
though focusing on their joint estimation with other model parameters.

2We also discuss issues with the joint estimation of initials in a companion paper: see Berardi and Galimberti
(2016) and references therein.

3We have also carried out a sensitivity analysis with artificial series mimicking output growth. Overall, our
main conclusions were not affected by these differences, and these results are available in Berardi and Galimberti
(2012).
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computational burden. The alternative methods, in contrast, are found to lack the robustness
provided by our unifying framework: the accuracy of the initial estimates provided by the
traditional methods is dependent on the specification of the learning algorithm and on the gain
calibration.

We conclude this paper with some remarks in Section 5.

2 Learning-to-forecast Framework

Consider an estimation context faced by a real-time agent wishing to obtain inferences about the
law of motion of a variable of interest, say yt. From an economic perspective, these inferences
can be thought of as the middle step agents undertake in a process of learning-to-forecast in
order to form their expectations.

To narrow down our focus, we assume this agent attempts to construct such inferences as-
suming that yt is statistically related to other observed variables, say a vector of (pre-determined)
variables xt = (x1,t, . . . , xK,t)

′, through a linear regression of the form

yt = x′tθt + εt, (1)

where θt = (θ1,t, . . . , θK,t)
′ stands for a vector of (possibly time-varying) coefficients, and εt

denotes a (Gaussian4) white noise disturbance with variance given by σ2
t . Both coefficients and

disturbances are assumed not to be directly observable by the agent.
Under this context, a technique for estimation of θt is required to allow the agent to con-

struct inferences for yt on the basis of (1). In the literature of learning and expectations in
macroeconomics (see Evans and Honkapohja, 2001) recursive algorithms have been proposed
for this task. Two of the main forms adopted are the LS and the SG specifications.

2.1 Learning algorithms

Algorithm 1 (LS). Under the estimation context of (1), the LS algorithm assumes the form of

θ̂
LS

t = θ̂
LS

t−1 + γtR
−1
t xt

(
yt − x′tθ̂

LS

t−1

)
, (2)

Rt = Rt−1 + γt (xtx
′
t −Rt−1) , (3)

where γt is a learning gain parameter, and Rt stands for an estimate of regressors matrix of

second moments.
4Gaussianity is only required to guarantee the optimality of the Kalman filter estimator associated to this non-

stationary context. This latter is the basis under which a unifying smoother is derived later for the initialization of
different learning algorithms.
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Algorithm 2 (SG). Under the estimation context of (1), the SG algorithm is given by

θ̂
SG

t = θ̂
SG

t−1 + µtxt

(
yt − x′tθ̂

SG

t−1

)
, (4)

with µt standing for the learning gain parameter.

Since the seminal works of Bray (1982); Marcet and Sargent (1989) the LS algorithm has
been taken as the natural choice to represent agents mechanism of adaptive learning. This was
due to its widespread popularity between econometricians. The SG algorithm, on the other
hand, provides a computationally simpler alternative, a feature clearly apparent in (4) for the
absence of the LS “normalization” step given by the inverse of the matrix of second moments.
For this reason some authors have advocated for its use as a more plausible learning device
from a bounded rationality standpoint (Barucci and Landi, 1997; Evans and Honkapohja, 1998;
Christev and Slobodyan, 2014).

Both the LS and the SG algorithms require the specification of a sequence of learning
gains. The learning gain stands for a parameter determining how quickly a given information
is incorporated into the algorithm’s coefficients estimates. Three of the main alternatives for
the specification of this learning gain are those of a time-decreasing, a time-constant, and a
time-varying (not restricted to be decreasing) sequence of values. Our focus in this study will
be on the constant gain specification, which has been in the spotlight of most applied research
since Sargent (1999). Such a choice naturally sprouts from the tracking capabilities associated
to the constant gain specification and its suitability for time-varying environments.

2.2 Statistical rationale of learning initials

Recursive estimation algorithms are statistically characterized by undergoing through two main
distinct phases: a transient and a steady state one. Since initial beliefs should reflect the con-
tinuation of an estimation process that was already running prior to the sample beginning, we
argue that an initialization method should be purposefully designed to provide estimates as
close as possible to the algorithm’s steady state operation. The separating frontier between
these phases, nevertheless, is not clear-cut. To obtain an assessment, it is common practice (see
Haykin, 2001, p. 266) to focus on a statistical measure of interest and construct the algorithm’s
learning curves, which represent how that measure evolves through time. Roughly, one can
then visually lay up bare these phases by identifying the steady state when the statistic settles
down. One measure of interest is the Mean-Square Deviation (MSD).

Definition 1 (MSD). The MSD between the actual vector of coefficients in (1), θt, and the

algorithms estimates, θ̂t, is given by

Dt = E
[
∆2
t

]
, (5)
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where ∆t =
∥∥∥θt − θ̂t∥∥∥ stands for the Euclidean norm of the vector of coefficients deviations.

The MSD is intended to capture the (average) accuracy of the algorithm’s estimates. Its
evolution through time is also associated with the speed at which the algorithm is able to adjust
its estimates to the time-varying system. Optimization of tracking performance is mainly done
through control of the gain parameter, giving rise to a well known trade-off between the tracking
speed and the accuracy of estimates (see Benveniste et al., 1990, Part I, Chapters 1 and 4). In
our context, the MSD measure serves to the purpose of defining a metric that will be the basis
of our main evaluation criterion of initializations.

Definition 2 (MISALIGNMENT). The MISALIGNMENT of an algorithm estimates at period t,

with respect to its MSD, can be measured by

Mt =

∣∣Dt −D∣∣
D̃t

, (6)

where D = limt→∞Dt stands for the steady state level of the algorithm’s MSD, and D̃t =√
E
[
(∆2

t −Dt)
2
]

stands for its standard deviation.

Our measure of MISALIGNMENT has the appealing interpretation of representing the dis-
tance between the algorithm’s current MSD and its steady state level in terms of standard devi-
ations. For simulation purposes, (5) and (6) can be readily evaluated by computing their sample
counterparts.

3 Learning Initialization

Our analysis will focus on initializations obtained on the basis of a training sample of obser-
vations5. This is especially recommended for the cases where there is not enough previous
knowledge about the system under estimation, such as in empirical applications, so as to allow
an educated guess. The main difficulty that initialization methods based on training samples
face for their use in empirical applications relates to the trade-off between the degree of con-
vergence of the algorithm estimates to its long run operation and the number of observations
required to achieve such convergence. Namely, while devoting additional data to the initial-
ization procedure tends to favor its adherence to the ongoing estimation process, by expanding
the room for the algorithm’s convergence to play, the number of observations left for the post-
initialization analysis is reduced. We now propose a new method aimed at mitigating this
trade-off through an increase in the computational burden required for the initialization. The
main idea draws upon the use of a smoothing procedure within a training sample of data.

5To keep up with the generality of our analysis here we focus solely on the initialization of the coefficients
estimates, θ̂0, common to both algorithms. Moustakides (1997) provides a study on how to optimally initialize
R0 in the LS algorithm, proposing a simple rule based on the data signal-to-noise ratio.
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3.1 Smoothing-based initialization

Let θ̂t|k stand for an estimate of period t vector of coefficients, θt, where k indicates the in-
formation period on which the estimates are based. Under this notation, the estimates obtained
with the (forward) recursions of the learning algorithms in (2)-(3) and (4) stand for filtered
estimates and are given by θ̂t|t ≡ θ̂t. The smoothed estimates, on the other hand, stand for
(backward-looking) updated inferences on the filtered estimates , i.e., θ̂t|k with k ≥ t. Clearly,
while the filtered estimates stand for the inferences made on the basis of information available
at the period the estimates stand for, the smoothed estimates are inferences obtained as new
information about the system becomes available. Due to the use of more information, one can
expect the smoothed estimates to be more accurate than the filtered ones. To take advantage of
this gain in accuracy to the estimation of learning initials we propose the following procedure.

Using a training sample of N observations, one can start the computation of the learning
algorithms from an initial guess, say θ̂0 = 0, and obtain not only the algorithm’s filtered
estimates up to θ̂N , but also its smoothed estimates of θ̂0|N (we explain how to obtain these
further below). This process is also known as the fixed-point smoother, since the updates are
applied only to the estimates of a particular period in the past6. With these latter at hand, then,
one re-starts the estimation process, within the same sample of data, but now assigning the
initial in accordance to the smoothed estimate, i.e., θ̂0 = θ̂0|N . A new sequence of filtered and
smoothed estimates is in this way obtained, and this process can be repeated a few more times
until a given convergence criterion is met. For this latter, here we adopted an ε-convergence
criterion based on the Euclidean distance between filtered and smoothed estimates, under which
the above process is repeated until

∥∥∥θ̂0 − θ̂0|N

∥∥∥ < ε, with ε determined experimentally.

3.2 Smoothing recursions

To obtain the smoothed initials associated to the learning algorithms, we make use of a par-
allel drawn in Berardi and Galimberti (2013) between these algorithms and the Kalman filter
applied to the estimation of a time-varying parameters model (see also McGough, 2003). More
specifically, we start by establishing a state-space framework where the coefficients vector of
the linear model in (1) evolves according to

θt = θt−1 + ωt, (7)

6There are two alternative forms of smoothing: (i) as fixed-lag, set k = t + l, with l fixed, and obtain θ̂t|t+l
as t increases; and, (ii) as fixed-interval, fix the information set k, and obtain θ̂t|k̄ for t ≤ k̄ (see Anderson and
Moore, 1979).
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where ωt is assumed to be (Gaussian) white noise with variances (and covariances) given by
Ωt = E [ωtω

′
t]. The Kalman filter recursion for estimation of θ̂t ≡ θ̂t+1|t then is given by

θ̂t = θ̂t−1 + Kt

(
yt − x′tθ̂t−1

)
, (8)

Kt =
Pt−1xt

x′tPt−1xt + σ2
t

, (9)

Pt =

(
I− Pt−1xtx

′
t

x′tPt−1xt + σ2
t

)
Pt−1 + Ωt, (10)

where Pt stands for the conditional covariance matrix of the coefficients estimates errors, i.e.,

Pt = E

[(
θt − θ̂t

)(
θt − θ̂t

)′]
. Following Berardi and Galimberti (2013), the LS and the SG

learning algorithms, as given by (2)-(3) and (4), respectively, can be obtained as special cases
of the Kalman filter when

σ2
t =

γt−1

γt
(1− γt) , (11)

Ωt =

(
1− σ2

t

σ2
t

)(
I− Pt−1xtx

′
t

x′tPt−1xt + σ2
t

)
Pt−1, (12)

and

σ2
t = µ−1

t − x′txt, (13)

Ωt = I−
(

I− Pt−1xtx
′
t

x′tPt−1xt + σ2
t

)
Pt−1, (14)

respectively.
Finally, smoothed estimates of the initials can be obtained using the Kalman fixed-point

smoother of Anderson and Moore (1979, pp. 170-6). Essentially, these authors have shown
how the fixed-point smoothing problem can be solved through the application of the standard
Kalman filtering expressions to the original state space model augmented with a state appropri-
ately initialized to represent the fixed-point smoothed estimates. To that end, consider replacing
the state-space framework of (1) and (7) by

yt =
[
x′t 0

] [θt
θat

]
+ εt, (15)[

θt

θat

]
=

[
I 0

0 I

][
θt−1

θat−1

]
+

[
I

0

]
ωt, (16)

with the state vector at a fixed t = j satisfying
[
θ′j θa

′

j

]
=
[
θ′j θ′j

]
. Thus, we are essentially

augmenting the former system with an additional state vector which, due to the assumed “ini-
tialization” at period j, will satisfy θat = θj, ∀t ≥ j. It follows from this latter observation
and the definition of conditional estimates that θ̂

a

t|t−1 = θ̂j|t−1, θ̂
a

t+1|t = θ̂j|t, and so on. The
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coefficients on the right hand side of these equalities are clearly in accordance to what we have
defined as fixed-point smoothed estimates, i.e., keeping j fixed we evaluate how the coefficients
estimates get updated as time goes on and new observations become available. Furthermore,
the state-space system in (15)-(16) is conformable to the application of the Kalman filter, where
the updating recursions for θ̂t ≡ θ̂t+1|t will still be given by (8)-(10), and those for θ̂

a

t ≡ θ̂
a

t+1|t

will represent the fixed-point smoothing recursions of θ̂j|t. These latter are given by

θ̂j|t = θ̂j|t−1 + Ka
t

(
yt − x′tθ̂t−1

)
, (17)

Ka
t =

Σt−1xt
x′tPt−1xt + σ2

t

, (18)

Σt = Σt−1 (I−Ktx
′
t)
′
, (19)

Pj|t = Pj|t−1 −Σt−1xtK
a′

t , (20)

where Σj = Pj , and the conditional covariance matrix of the coefficients smoothed estimates

errors is here given by (20), i.e., Pj|t = E

[(
θj − θ̂j|t

)(
θj − θ̂j|t

)′]
. The smoother associ-

ated to each learning algorithm, thence, follows automatically from what the different assump-
tions on (11)-(12) and (13)-(14) imply for these recursions.

3.3 Benchmark initializations

In order to benchmark our evaluation of the smoothing-based initialization method, we consider
two alternatives commonly found in the applied literature (see Carceles-Poveda and Giannit-
sarou, 2007; Berardi and Galimberti, 2016, for comprehensive reviews), both based on training
samples. The first is inspired by the engineering literature (e.g., see Ljung and Soderstrom,
1983, pp. 299-303), where it is often suggested that the coefficients should be initialized with
the value of zero and the algorithm should be allowed to adjust its estimates over the training
sample according to the underlying gain calibration. Given our focus on constant gain specifi-
cations of the learning algorithms, we denote this initialization as Tracking method.

A second method of initialization involves the use of the decreasing gain block estimation
counterpart of the learning algorithms. For the case of the LS algorithm this method is equiv-
alent to the well known Ordinary Least Squares, and has been often adopted in the literature
for robustness purposes (see, e.g., Williams, 2003; Orphanides and Williams, 2005; Carceles-
Poveda and Giannitsarou, 2007; Slobodyan and Wouters, 2012); hence, we denote this method
as Ordinary initialization. In the recursive setup, this method corresponds to an initialization of
the coefficients from zero, and then updating the estimates within the initial sample using the
learning algorithm with decreasing gains. To prevent instabilities into the first estimates we set
the decreasing gains as γt = γ̄/t, for the LS, and µt = µ̄/t for the SG, where the upper bounds
are derived from stability considerations. In spite of the obvious inconsistency between the
gains used in the training and the post-initialization samples, the use of a higher gain in the first
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training observations tends to accelerate the convergence of the algorithm estimates towards its
steady state operation.

4 Comparative Simulation Analysis

4.1 Setup

Our purpose here is to construct the (averaged) learning curves of the algorithms during their
initial transient phase and evaluate how their statistical properties are affected by the initial-
izations adopted. Given the stochastic environment under which these algorithms operate, in
simulation studies these curves are computed as an average over repeated samples of generated
data.

The artificial data is generated according to a linear auto-regression of the form

yt = θtyt−1 + εt, (21)

where the auto-regressive parameter evolves according to

(
θt+1 − θ̄

)
= β

(
θt − θ̄

)
+ ωt+1, (22)

and the random disturbances εt and ωt+1 are zero mean mutually independent distributed as
Gaussian with variances given by σ2

ε and σ2
ω, respectively7. Notice that if |β| < 1, then θ̄

may be viewed as the steady-state value of the auto-regressive coefficient in (21). Yet, in order
to avoid too quick variations in the statistical properties of the data, the value of β is usually
assumed to be very close to unity. In spite of resembling a random walk, this assumption
prevents the dynamics of the auto-regressive coefficient to be dominated by the noise variations
in its stochastic disturbances.

For the calibration of σ2
ε , σ2

ω, θ̄, and β, we take the recommendations of Hamilton (1994, pp.
401-3) as a reference, though adjusting them to our context. One of these adjustments refers to
the use of a higher σ2

ω in order to accentuate the variations in the estimation environment, and
further justify the use of constant-gain algorithms. For the parameters determining the variance
and the dynamic persistence of the artificial series, σ2

ε and θ̄, respectively, we attempt to obtain
a calibration that mimics the statistical properties of inflation data (see Berardi and Galimberti,
2012, for results under output growth-like data). These calibrations are summarized in Table 1.
We drew 1,000 different samples of the random disturbances and used them with the DGP given
by (21)-(22) for the generation of artificial series with a time dimension of 1,250 observations.

7This data generating process (DGP) is taken only as an approximation to time series data typically found in
macroeconomic applications. It does not correspond to the specifications of the Kalman filter that would render
the learning algorithms optimal, which is consistent with the bounded rationality view of adaptive learning in
macroeconomics.
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Table 1: Calibration of parameters for simulation with inflation-like artificial data.
Parameters Description Calibrations values

(a) For artificial series:

σ2
ε Variance of εt in (21). 2.25

σ2
ω Variance of ωt+1 in (22). 7× 10−5

θ̄ Steady-state value of θt. 0.80

β Persistence of deviations from θ̄. 0.999

(b) For algorithms:

γ̄1 LS “low” constant learning gains. 0.02

γ̄2 LS “high” constant learning gains. 0.10

µ̄1 SG “low” constant learning gain. 0.001

µ̄2 SG “high” constant learning gain. 0.0205

The learning gain calibrations are first set for the LS, and then adjusted for the SG according to µ̄i =

2γ̄i/
(
σ2
ε/1−θ̄2

)2
in order to account for the scale dependency of this latter to the data variance, but for illustrative

purposes µ̄2 is set based on γ̄2′ = 0.40 instead of γ̄2.

We discarded the first 250 of these observations for each sample to avoid sensitivity to the series
initializations, for which we used y0 = 0 and θ1 = θ̄.

Apart from these calibrations for the artificial series, we also need to specify how we cali-
brated the algorithms constant learning gains. Here we first define a set of different values for
the LS, which is not sensitive to the scale of the data, and then adjust these gains for the SG
case. In order to do this conversion, we need to compute estimates for the upper bounds on
the gain calibrations that still ensure stability for each algorithm. The main issue here lies on
the determination of this upper bound for the SG algorithm, which is known to be sensitive
to the scale of the data (see Evans et al., 2010). We follow the recommendations of Haykin
(2001, pp. 258-74) and compute the SG upper bound as µmax = 2/λmax, where λmax stand
for the maximum eigenvalue of the regressors covariance matrix, which for the case of (21) is
simply given by the variance of yt. The LS gain calibrations, specified in Table 1 by γ̄1 and γ̄2,
are then converted to the SG as µ̄i = µmax

(
γ̄i/σ

2
y

)
, where the variance of yt is approximated

taking the auto-regressive coefficient as fixed to its long run value, θt = θ̄. This same variance
is used to initialize the matrix of second moments associated to (3) in the LS case. Finally,
for the smoothing-based initialization we set the convergence criterion to ε = 0.01, a value
that according to our experimentation provides initials close to the steady state level of the al-
gorithms’ MSDs without requiring too many smoothing repetitions (we discuss the associated
computational cost in subsection 4.3 below).
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Figure 1: Least Squares MSD learning curves for inflation-like artificial data.

D̂t stands for the sample correspondent to the mean-square deviation (MSD) as defined in (5). The shaded
areas indicate the portion of observation left aside for use by the initialization methods, and we restrict the
presentation to only the first quarter of our sample in order to obtain a clear picture on the after-initials periods
(the MSDs remain relatively constant around their corresponding steady states in the remaining periods). The
vertical axis is on logarithmic scale.

4.2 Simulation Results

The MSD learning curves obtained from the application of the LS and the SG algorithms to
inflation-like data are presented in Figures 1 and 2, respectively. We have fixed the number
of observations taken for training to the first 75, and evaluated the MISALIGNMENT of the
initial estimates from their corresponding algorithm/gain long run behavior, as defined in (6);
visually, the initials MISALIGNMENT can be assessed by looking at the distance between their
associated MSD at the end of the training sample and the MSD level the learning algorithm
eventually settles down.

The initial MISALIGNMENT incurred by each initialization method depends on the gain
calibration, and the same dependency is observed with respect to the algorithm’s MSD steady
state level, as expected. Different gain values engender different steady state behaviors of the
algorithm’s estimates. So, if the initialization for a given gain calibration is obtained by using a
different gain value, as in the case of the ordinary initializations, this initial estimate will tend
to be biased in relation to the algorithm’s steady state estimates. This is evident in Figures 1 and
2 by the jumps undertaken by the ordinary MSD estimates from their after-initialization level to
their stable long run level. The tracking method also performs poorly in its application to the
SG algorithm. The lack of a normalization step in the operation of this algorithm seems to be
reflected into its slow rate of convergence to steady state. The number of observations left aside
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Figure 2: Stochastic Gradient MSD learning curves for inflation-like artificial data.

See the notes to Figure 2.

for the tracking initialization of the SG algorithm is clearly too small to permit convergence
under the smaller gain calibration.

The only method that seems to be performing consistently throughout the different algo-
rithms and gain calibrations is our own smoothing procedure. The smoothing procedure has,
in special, presented a better performance for the cases where the other methods have failed,
namely: (i) for higher gain calibrations in the LS, where resulting estimates were less accurate;
and (ii) for lower gain calibrations in the SG, where the rate of convergence tended to be slower.
Besides, the smoothing method achieves a faster convergence within the training sample than
the other methods, increasing its relevance for applications with tight data availability.

We complement the visual analysis with a look over the associated statistics in Tables 2 and
3, where averaged MSDs and MISALIGNMENTS are segmented in several subsamples of the
algorithms’ transient phases after the initializations. In short, we corroborate our conclusions
from the visual inspection, observing that: (i) the ordinary method is overall outperformed
by the others, with initial MISALIGNMENTS persisting to affect the first short run measures
accross every combination of algorithm and gain calibration; (ii) the SG rate of convergence is
slower than the one attained by the LS, and the smoothing method is the only one providing
initializations closer to the algorithm/calibrations steady states.

4.3 Smoothing computational cost

Apart from the extra computation of smoothed estimates, the additional computational cost
of the smoothing-based initialization clearly depends on the number of repetitions necessary
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Table 2: Average statistics after initializations - Least Squares on inflation-like data.

Gains Initials
Samples after initializations Steady state

76-100 101-150 151-200 201-250 251-300 750-1000

γ̄1 = 0.02 Tracking 0.0054 0.0047 0.0045 0.0044 0.0047 0.0046

[4.3] [0.4] [-0.8] [-1.0] [0.5] (0.0002)

Ordinary 0.0060 0.0047 0.0042 0.0043 0.0046 0.0046

[7.9] [0.6] [-2.4] [-1.8] [0.1] (0.0002)

Smoothing 0.0051 0.0043 0.0042 0.0043 0.0046 0.0046

[2.6] [-1.7] [-2.6] [-1.7] [0.2] (0.0002)

γ̄2 = 0.10 Tracking 0.0175 0.0175 0.0183 0.0184 0.0188 0.0190

[-1.3] [-1.4] [-0.6] [-0.6] [-0.2] (0.0011)

Ordinary 0.0064 0.0139 0.0182 0.0183 0.0188 0.0190

[-11.5] [-4.7] [-0.7] [-0.6] [-0.2] (0.0011)

Smoothing 0.0174 0.0174 0.0183 0.0183 0.0187 0.0189

[-1.3] [-1.4] [-0.6] [-0.6] [-0.2] (0.0011)

The average statistics refer to the mean-square deviation (MSD) of coefficient estimates from their true counter-
parts, as defined in (5), and the MISALIGNMENT (in square brackets, [...]) of these average MSDs in relation to
their steady state average, calculated according to (6). The second line of headers indicate the samples of obser-
vations used to compute the average statistics. The steady state averages are calculated over the last subsample,
750-1000, and the values in round brackets, (...), are standard deviations of the statistic from the corresponding
steady state average. Emphasis is given in bold to those short run averages that deviate by more than two standard
deviations from the corresponding steady state average.
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Table 3: Average statistics after initializations - Stochastic Gradient on inflation-like data.

Gains Initials
Samples after initializations Steady state

76-100 101-150 151-200 201-250 251-300 750-1000

µ̄1 = 0.001 Tracking 0.1407 0.0944 0.0552 0.0344 0.0222 0.0048

[680.5] [448.5] [252.5] [148.1] [87.2] (0.0002)

Ordinary 0.0790 0.0544 0.0327 0.0211 0.0143 0.0047

[358.4] [240.0] [135.1] [79.1] [46.5] (0.0002)

Smoothing 0.0061 0.0057 0.0051 0.0050 0.0049 0.0045

[7.6] [5.7] [2.8] [2.3] [2.1] (0.0002)

µ̄2 = 0.0205 Tracking 0.0224 0.0223 0.0279 0.0210 0.0238 0.0226

[-0.1] [-0.1] [1.5] [-0.5] [0.3] (0.0034)

Ordinary 0.0481 0.0240 0.0303 0.0213 0.0242 0.0228

[7.4] [0.3] [2.2] [-0.5] [0.4] (0.0034)

Smoothing 0.0180 0.0193 0.0247 0.0179 0.0208 0.0197

[-0.5] [-0.1] [1.5] [-0.5] [0.3] (0.0034)

See notes to Table 2.

to satisfy the ε-convergence criterion. The smaller ε the tighter the convergence requirement,
and the greater the number of repetitions, thence increasing the computational burden. Nev-
ertheless, a loose convergence criterion may hinder the gains in accuracy obtained from extra
smoothing passes.

In our simulations above we find that most of the improvements in accuracy are exhausted
after about half a dozen repetitions of the smoothing routine for the LS algorithm and about
three times that number for the SG. The time-varying properties of the system under estima-
tion also matter in that respect: under the higher constant gain calibration, which imply noisier
estimates of the model parameters than those obtained under the low constant gain, a higher
number of repetitions of the smoothing routine is required to achieve convergence. Of course,
the computational time associated to these numbers are practically negligible beside the com-
putational power of technologies currently available to researchers.

5 Concluding Remarks

In this paper we proposed the use of a smoothing routine to obtain the initial estimates of
the learning algorithms adopted for applied purposes in the literature of adaptive learning and
expectations in macroeconomics. This routine is designed to speed up the convergence of
the learning algorithms over a sample of initial training data, so as to minimize the amount
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of data required to obtain proper learning initials. Particularly, we assumed the target is to
mimic the beliefs associated to a learning process that was already in motion before the sample
beginning. In order to evaluate its success, we undertook a simulation exercise comparing our
new smoothing-based initialization to two of the main methods found in the previous applied
literature.

Our smoothing-based routine was the only method performing consistently under the differ-
ent algorithms and calibrations we have considered. We interpret this finding as a natural result
from the unified state space framework we adopted for the derivation of our smoothing initial-
ization method. The robustness attained by the smoothing-based method comes at the cost of
a higher computational burden, though arguably small for the computational power currently
available to researchers. We have quantified the effects of initials misspecification in a rather
stylized learning-to-forecast framework; hence, their actual relevance should be assessed indi-
vidually for particular applications. We hope to have provided some methodological guidance
on that matter.

References

Anderson, B.D.O., Moore, J.B., 1979. Optimal Filtering. Prentice-Hall, Englewood Cliffs, NJ.

Barucci, E., Landi, L., 1997. Least mean squares learning in self-referential linear stochastic
models. Economics Letters 57, 313–317.

Benveniste, A., Metivier, M., Priouret, P., 1990. Adaptive Algorithms and Stochastic Approxi-
mations. Springer-Verlag.

Berardi, M., Galimberti, J.K., 2012. On the initialization of adaptive learning algorithms: A
review of methods and a new smoothing-based routine. Centre for Growth and Business
Cycle Research Discussion Paper Series 175. Economics, The Univeristy of Manchester.

Berardi, M., Galimberti, J.K., 2013. A note on exact correspondences between adaptive learn-
ing algorithms and the kalman filter. Economics Letters 118, 139–142.

Berardi, M., Galimberti, J.K., 2016. On the Initialization of Adaptive Learning in Macroeco-
nomic Models. Technical Report. KOF Working Papers. Zürich.
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