Kancs, d'Artis; Siliverstovs, Boriss

Working Paper

Employment effect of innovation

KOF Working Papers, No. 428

Provided in Cooperation with:
KOF Swiss Economic Institute, ETH Zurich

Suggested Citation: Kancs, d'Artis; Siliverstovs, Boriss (2017) : Employment effect of innovation, KOF Working Papers, No. 428, ETH Zurich, KOF Swiss Economic Institute, Zurich, http://dx.doi.org/10.3929/ethz-a-010852605

This Version is available at:
http://hdl.handle.net/10419/162240

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Employment Effect of Innovation

d’Artis Kancs and Boriss Siliverstovs

KOF Working Papers, No. 428, February 2017
Employment Effect of Innovation

D’ARTIS KANCS
European Commission
DG Joint Research Centre
21027 Ispra, Italy
d’artis.kancs@ec.europa.eu

BORISS SILIVERSTOVS
KOF Swiss Economic Institute
ETH Zurich
8092 Zurich, Switzerland
boriss.silverstovs@kof.ethz.ch

February 24, 2017

Abstract

The present paper estimates and decomposes the employment effect of innovation by R&D intensity levels. Our micro-econometric analysis is based on a large international panel data set from the EU Industrial R&D Investment Scoreboard. Employing flexible semi-parametric methods – the generalised propensity score – allows us to recover the full functional relationship between the R&D investment and firm employment, and to address important econometric issues, which is not possible in the standard estimation approach used in the previous literature. Our results suggest that modest innovators do not create and may even destruct jobs by raising their R&D expenditures. Most of the jobs in the economy are created by innovation followers: increasing innovation by 1% may increase employment up to 0.7%. The job creation effect of innovation reaches its peak when the R&D intensity is around 100% of the total capital expenditure, after which the positive employment effect declines and becomes statistically insignificant. Innovation leaders do not create jobs by further increasing their R&D expenditures, which are already very high.

Keywords: Innovation, R&D investment, causal inference, semi-parametric, employment, job creation, GPS.

JEL code: C14, C21, F23, J20, J23, O30, O32, O33.

§The authors acknowledge helpful comments from Francesco Bogliacino and Daria Ciriaci as well as participants of the conferences on Counterfactual Methods for Policy Impact Evaluation in Rome and Milan, the Scottish Economic Society Annual Conference in Perth and the 57th Meeting of the Italian Economic Association in Milan. We are grateful to Alexander T¨ubke for granting access to the EU Industrial R&D Investment Scoreboard data. The authors are solely responsible for the content of the paper. The views expressed are purely those of the authors and may not under any circumstances be regarded as stating an official position of the European Commission. Computations were performed in Ox 6.30 and PcGive 13.0 (Doornik, 2007; Doornik and Hendry, 2009).
1 Introduction

In setting the Europe 2020 Strategy, the European Union (EU) has defined five ambitious objectives – on employment, innovation, education, social inclusion and climate/energy – to be reached by 2020 (European Commission, 2013, 2015). Concerning the first two key targets the Strategy aims at: (i) increasing employment by raising the employment rate of population to at least 75%; and (ii) promoting innovation by increasing research and innovation expenditures to at least 3% of GDP. For example, only from the EU Cohesion Policy 41.0 billions are allocated to research and innovation, and 71.7 billions to labour markets between 2014 and 2020. In light of the high policy priority, the objective of the present study is to assess to what extent and under which circumstances both innovation and employment can grow simultaneously.

At the first glance, simultaneous boosting of both employment and innovation by increasing the public investment in R&D may seem an easy and most natural task to achieve as, at least in the short-run, public investment expenditures tend to create jobs. However, the econometric results reported in the literature on employment effects of innovation are rather contradictory both with respect to its sign and magnitude, suggesting that increasing the innovation intensity can have not only complementary, but also substitutionary effects on the firm employment (Young, 1993; Piva and Vivarelli, 2005; Antonucci and Pianta, 2002; Van Reenen, 1997). More generally, previous results imply that the relationship between innovation and employment may be far more complicated that one can naively assume initially.

The complexity arises due to both conceptual issues and the empirical evidence. Conceptually, the challenges in understanding the relationship between the variables of interest arise, for example, due to the coexistence of many different transmission mechanisms and general equilibrium feedback loops, as the employment effect of innovation depends, among others, on the nature of innovation (product or process innovation); the purpose of innovation (to save labour or capital, neutral, or biased towards skills) and other factors (Pianta, 2004). Empirically, the employment effect of innovation depends on the firm’s sector of activity; formal and informal institutions; the time frame of analysis; specifics of the existing production technology; the dimension of innovation (radical or incremental); consumer preferences; the fierceness of competition in intermediate input and labour markets; and the structure of workforce skills (Bogliacino and Vivarelli, 2012; Bogliacino et al., 2012; Vivarelli, 2007; Lachenmaier and Rottmann, 2007).

The diversity in the channels of adjustment and the reverse causality of interdependencies between innovation and employment suggest that the functional relationship between these two variables may be non-linear. In such case, an accurate estimation of the functional form would depend crucially on the ability to account for non-linearities in the innovation-employment nexus. In
order to allow for differentiated impact of innovation on employment while accounting for differences among firms at different R&D intensity levels, an estimation approach is required which does not average across all firms, but instead allows for a differentiated employment effect at different R&D intensity levels. Due to complexities and challenges in the estimation approach, there are no studies available in the literature, that would attempt to identify the non-linearities in the R&D and firm employment relationship in such a continuous non-linear setting.

In the present study we estimate the full functional relationship between the firm’s innovation and employment growth by relying on flexible semi-parametric methods – the generalised propensity score (GPS) method – suggested by Hirano and Imbens (2004). The following two main features of the GPS methodology make it particularly attractive for our purpose: (i) estimation is based on a flexible semi-parametric regression allowing for a non-linear dependence between the variables of interest without imposing any a priori restrictions; and (ii) the elimination of the selection bias arising from a non-random assignment of treatment (R&D expenditure) intensity across firms by conditioning on the observed firm characteristics. In applying the GPS methodology we attempt to identify the R&D intensity levels under which innovation can be complementary to employment and under which it may have an adverse impact on employment.

The assessment of the employment effect of innovation for different R&D intensity levels is our main contribution to the literature and policy debate – these insights can help to design policies, which contribute to achieving both the innovation and employment targets of the Europe 2020 Strategy simultaneously. To the best of our knowledge, the application of a flexible semi-parametric methodology to the employment – innovation nexus is the first of this sort in the innovation literature.

We base our micro-econometric analysis on a large international firm-level panel dataset, and our proxy for technology is a measurable and continuous variable, while most of previous studies have relied on either indirect proxies of the technological change or dummy variables (such as the occurrence of product and process innovation). In particular, we employ the EU Industrial R&D Investment Scoreboard data set, which comprises data on R&D investment, as well as other financial and economic variables for the top 1173 R&D global performers, 483 of which are active in high-tech sectors, which we analyse in detail, as high-tech companies create the most jobs both in absolute and relative terms. In addition to firm-level innovation expenditures, we make use also of economic and financial variables, which allow us to control for important firm-specific effects. Moreover, the R&D Scoreboard also identifies the industrial sector (of the parent subsidiary) as well as the geographical region of the R&D investment (according to the location of the firm’s headquarter), which allows us

1As shown in Table 1, all top 20 global innovation leaders are active in either in high-tech and/or medium high-tech sectors.
to control for fixed sector-specific and location-specific effects.

Our results confirm previous findings that innovation can both create and destruct jobs (which, as we show, depends strongly on the innovation intensity). Second, the relationship between innovation and the job creation is highly non-linear. At low innovation intensity levels (the share of the R&D investment in the total capital expenditure between zero and 35-40%) an additional investment into R&D may even destruct jobs. At medium to medium-high innovation intensity levels (the R&D intensity around 100%) the innovation impact on employment is positive and statistically significantly different from zero. The employment elasticity with respect to innovation is 0.7%, which implies that increasing innovation by 1% raises employment by 0.7%. The job creation effect of innovation reaches its peak when the R&D intensity is around 100% of the total capital expenditure, after which the positive employment effect declines and becomes statistically indifferent from zero. At high and very high innovation intensity levels (the share of the R&D investment in the total capital expenditure above 150%) the innovation impact on employment becomes negative again, implying that, on average, an additional R&D investment by innovation leaders destructs jobs. These results of decomposing the employment effect by the innovation intensity are new and have not been reported in the literature before.

Our results have important messages for policy makers. First, our findings confirm the important role that innovation followers can play in creating jobs and in ensuring the sustainability of high employment in the medium- to long-run. In light of the results of Crepon et al. (1998), two alternative policy strategies can be identified how policy makers can target this objective: policy instruments aiming at the growth of innovation followers creating jobs, and policy instruments aiming at increasing the number of innovation followers, as they both undertake innovative activities and create employment in the EU. Second, our results point to potential complementarities between the two Europe 2020 policy targets aiming to increase the R&D/GDP ratio and the employment rate, particularly by supporting innovation followers. Indeed, the empirical evidence, which we provide in this study, supports the view that R&D expenditures can be beneficial to the job creation capacity. These findings imply that both the innovation and employment targets of the Europe 2020 Strategy can be reached simultaneously, by designing tailored policies for innovation followers as they create most of the employment in the economy. On the other hand, our results suggest that innovation leaders and modest innovators tend to destruct jobs through additional investment into R&D, implying that these companies should not be targeted by policies to achieve both the innovation and employment targets of the Europe 2020 Strategy. According to Kancs and Siliverstovs (2012), innovation leaders are key for achieving the innovation target of the Europe 2020 Strategy by

2The model of Crepon et al. (1998) distinguishes between four stages of innovation process: the decision to innovate, the decision on how much to spend on innovation activities, the relation between expenditure on innovation and innovation output, and the relation between innovation output and performance.
boosting the firm productivity and competitiveness. In summary, the findings of the present study and Kancs and Siliverstovs (2012) suggest that innovation leaders should be targeted, if policy objective is to boost productivity and competitiveness, whereas innovation followers should be targeted, if policy objective is to achieve both the innovation and employment targets of the Europe 2020 Strategy.

The rest of the paper proceeds as follows. The next section provides a brief review of the relevant literature. The econometric methodology is outlined in Section 3. Data used in our study are described in Section 4. In Section 5 estimation results are reported, our results are compared with those of previous studies, as well as robustness checks’ results with respect to changing the information set are reported. The final section summarises our findings and draws policy conclusions.

2 Previous literature

The question of whether the technological change creates or destroys jobs has been posed since the beginning of the classical economics of Karl Marx:

"Suppose that the making of the new machinery affords employment to a greater number of mechanics, can that be called compensation to the carpet makers, thrown on the streets?" (Marx, 1867: 479).³

Despite the high policy relevance of the issue, the existing evidence available in literature does not allow for connecting all the dots in the innovation-employment relationship and often is even contradictory. Heterogeneous results, reported in the literature reflect, among others, the existence of complex adjustment and interdependency mechanisms at play. On the one hand, a labour-biased technological change and labour-saving innovation can result in a technological unemployment. For example, if there is a potential for creating more efficient workforce by replacing workers through the acquisition of capital goods, innovation may result in a technological unemployment. On the other hand, different market compensation mechanisms, which are triggered by the technological change, can compensate for the initial labour-saving impact (Bogliacino et al., 2012; Lucchesi and Pianta, 2012). As noted by Bogliacino and Vivarelli (2012), innovation may reduce unit costs of production, which in a competitive market would translate into lower output prices. Lower prices, in turn, would stimulate an additional demand for products, an additional production and hence higher employment (price effect). Given that the price effect is not instantaneous, in the period between the decrease in production costs and the subsequent fall in prices, excess profits and excess income may be accumulated by innovative firms and their employees. Whereas excess profits may

³Das Kapital (1867), Volume I, Chapter 15, Section 6.
be directly invested, creating in such a way new jobs, the excess income may result into higher
demand for goods, and hence a higher employment (*income effect*) (Freeman *et al.*, 1982; Freeman
and Soete, 1987; Katsoulacos, 1986).

The compensation and displacement mechanisms (price effect and income effect) outlined above
may create or destruct jobs, depending on the nature of innovation. Indeed, empirical studies
confirm that the nature of innovation is an important determinant of the overall employment effect
of innovation (Pianta, 2004). The product innovation induces two countervailing effects: a direct
and an indirect effect. Whereas the direct effect of the product innovation leads to a higher turnover
and hence may increase employment, the indirect effect may reduce employment, for example, if
the product innovation creates monopoly power or displaces older, more labour intensive products.
Similarly, the process innovation triggers the same two countervailing effects: a direct and an indirect
effect. The process innovation will likely have a negative direct effect on employment, as improved
production processes reduce the need for labour. The indirect effect of the process innovation may
lead to an increase in employment, for example, if lower production costs are passed through to
consumers, which, in turn, increase the demand for the product (Pianta, 2004).4

Empirical studies have found that the sectoral dimension of innovation is a particularly important
determinant of the overall employment effect of innovation. On the one hand, the above discussed
compensation mechanism in form of new products or new services may accelerate the secular shift
from manufacturing to services (Vivarelli, 1995, 2013). On the other hand, new technologies in
manufacturing seem to be characterised mainly by a labour-saving embodied technological change,
which are only partially compensated by the market mechanisms discussed above (Vivarelli, 2014).
Inter-sectoral differences in the employment-innovation relationship have been confirmed also in
other studies, e.g. Bogliacino *et al.* (2012).

The contradicting evidence coming from different studies suggesting that the technological
development can both create jobs as well as destruct them (a fact confirmed also in the present
study) does not allow for understanding the underlying functional relationship between innovation
and employment, which is needed for policy makers to identify the ‘right’ types of firms at the
‘right’ stage of the innovation process to ensure the desirable synergies between innovation and
employment and to achieve both targets of the Europe 2020 Strategy. In order to increase innovation
without reducing employment, policy makers need to target policy interventions at the ‘right’
stage of the innovation process to a well-identified subset of firms. In the context of the Europe
2020 Strategy’s objectives, particularly relevant questions are: (i) at which R&D intensity levels
innovation and employment are complementary, and when innovation may have an adverse impact
on firm employment: low, intermediate or high R&D intensity? (ii) what type of firms create more

4The impact of organisational and management innovation on firm employment is less clear-cut.
jobs (and hence provide the highest potential for policy synergies): innovation leaders, innovation
followers or modest innovators?

The present study attempts to fill this research gap by identifying the R&D intensity levels
under which innovation is likely to be complementary with respect to the firm employment and
under which conditions it may have an adverse impact on the firm employment. Identifying and
estimating the employment effect of innovation for the full range of all possible R&D intensity levels
is our main contribution to the academic and policy debate; and to the best of our knowledge no
comparable studies are available in the literature, which would decompose the gross employment
effect by the innovation intensity in a continuous setup.\(^5\)

3 Econometric strategy

We estimate the functional relationship between innovation and employment by relying on the
generalised propensity score (GPS) approach introduced in Hirano and Imbens (2004).\(^6\) The GPS
approach is a further elaboration on the popular binary treatment propensity score estimator of
Rosenbaum and Rubin (1983) widely used for the impact evaluation of various programs.\(^7\) In the
context of the present study the relevant features of the GPS methodology are as follows. First,
it allows for continuous rather than binary treatment levels. Second, it allows to estimate the
treatment effect also without a ‘zero’ control group. Third, the GPS procedure eliminates the
selection bias arising due to a non-random assignment (choice) of treatment (R&D) intensity across
firms by conditioning on observed firm characteristics. Finally, it captures potential non-linearities
in the functional relationship between the R&D investment and firm employment, as it relies on a
flexible semi-parametric regression. As a result, the estimated dose-response functions reveal the
entire interval of average and marginal treatment effects over all possible treatment levels (R&D
intensity).

Following Hirano and Imbens (2004), we implement the GPS estimator in three steps. However,
before describing these steps we stipulate the temporal framework of our analysis. The values of the
response variable (employment) correspond to the year 2007, i.e. the last year before the collapse of
Lehman Brothers in September 2008 that triggered the outbreak of the Great Recession. In order
to avoid the simultaneity bias, the values of the treatment variable (R&D intensity) correspond to

\(^5\)The closest approach to ours is that of Ciriaci et al. (2013), who use a quantile regression methodology to
decompose the gross employment effect according to quantiles of firm innovation intensity. Our study builds on the
work of Bogliacino (2014), who points that R&D has a non-linear effect on employment. However, our results are
more disaggregated, as they allow for a continuous impact of innovation on employment, which is not the case in
Ciriaci et al. (2013) and Bogliacino (2014).

\(^6\)This approach was already applied to the following pairs of variables: R&D intensity and productivity in Kancs
and Siliverstovs (2012), migration and trade in Egger et al. (2012), and growth effects of the regional policy in the
European Union in Becker et al. (2012), inter alia.

\(^7\)For an accessible presentation of the logic underlying the propensity-score matching see Heinrich et al. (2010).
the year 2006. We derive the values of the generalised propensity score conditional on the observed firms’ characteristics for this year.

The first step is based on the assumption that the conditional distribution of the treatment variable, \(r \), or, as most often in the literature, its logarithmic transformation, \(\ln r \), is normal given covariates, \(X \):

\[
\ln r_{it} | X_{it} \sim N(X_{i2006}^{2006}' \gamma; \sigma^2),
\]

where \(X_{i2006} \) is a \(z \times 1 \) vector of both contemporaneous values of discrete and continuous covariates. The parameters of the conditional distribution \((\gamma, \sigma^2) \) are evaluated using a standard OLS regression.

The estimated GPS is defined as follows:

\[
\hat{s}_{i2006}^2 = \frac{1}{\sqrt{2\pi\hat{s}^2}} \exp \left[-\frac{1}{2\hat{s}^2}(\ln r_{i2006} - X_{i2006}^{2006}' \gamma)^2 \right].
\]

The propensity score in Equation (2) fulfils its purpose of measuring the degree of similarity across heterogeneous firms when the so-called balancing property is satisfied, i.e. for those firms with assigned equal propensity scores (conditional on firm-specific covariates) the associated treatment level is independent from firm characteristics. In this step, we follow the procedure specified in Hirano and Imbens (2004) in order to verify whether the balancing property is not violated in our data sample.

In the second step, the expected value of response variable, \(\ln \omega_{i2007}^2 \), is modelled as a flexible semi-parametric function of the treatment variable and the estimated generalised propensity score, \(\ln r_{i2006}^2 \) and \(s_{i2006}^2 \), respectively:

\[
E[\ln \omega_{it}^2 | \ln r_{i2006}^2, s_{i2006}^2] = Incpt + \alpha_{11} * \ln r_{i2006}^2 + \alpha_{12} * (\ln r_{i2006}^2)^2 + \alpha_{13} * (\ln r_{i2006}^2)^3
\]

\[
+ \alpha_{21} * s_{i2006}^2 + \alpha_{22} * (s_{i2006}^2)^2 + \alpha_{23} * (s_{i2006}^2)^3
\]

\[
+ \alpha_{3} * (\ln r_{i2006}^2 * s_{i2006}^2),
\]

where the latter is substituted with its estimates, \(\hat{s}_{i2006}^2 \), from the first step. The flexibility of the functional form can be controlled for by varying the power of variables \(\ln r_{i2006}^2 \) and \(s_{i2006}^2 \) and their cross-products.

The average expected response of the target variable, \(\omega \), for a given treatment dose, \(\rho \), is
estimated in the third step:

$$E[\ln \hat{\omega}^{2007}(\rho)] = \frac{1}{N} \sum_{i=1}^{N} \left[\text{Incpt} + \hat{\alpha}_{11} \ast \rho + \hat{\alpha}_{12} \ast [\ln \rho]^2 + \hat{\alpha}_{13} \ast [\ln \rho]^3 \right. \\
\left. + \hat{\alpha}_{31} \ast \hat{s}(\rho, X_{i}^{2006}) + \hat{\alpha}_{32} \ast \left[\hat{s}(\rho, X_{i}^{2006}) \right]^2 + \hat{\alpha}_{33} \ast \left[\hat{s}(\rho, X_{i}^{2006}) \right]^3 \right. \\
\left. + \hat{\alpha}_{3} \ast (\ln \rho \ast \hat{s}(\rho, X_{i}^{2006})) \right],$$

(4)

where the coefficient estimates from Equation (3) are used. The whole dose-response function is obtained by computing Equation (4) for each treatment level by using a grid of values in the corresponding range of the treatment variable.

In a final step, we derive the treatment effect and elasticity functions. The former is defined as a first derivative of $E[\ln \hat{\omega}^{2007}(\rho)]$ with respect to argument ρ. The latter function is computed in the usual way $\partial E[\ln \hat{\omega}^{2007}(\rho)]/\partial \rho$. The estimated employment elasticity with respect to R&D is of a particular interest for us, as it allows to directly compare our results with those reported in the existing literature. Following Hirano and Imbens (2004), confidence intervals around the estimated dose-response, treatment effect and elasticity functions are obtained by means of a bootstrap procedure.

4 Data sources and variable construction

4.1 Data sources

The principal data source is the EU Industrial R&D Investment Scoreboard. The R&D Scoreboard is an annual data set compiled and provided by the European Commission. Firstly released in 2004, it comprises data on R&D investment, as well as other financial and economic variables (e.g. net sales, operating profits, employees) for the top 1173 R&D global performers, around half of which are based in the EU and another half are based outside the EU, and 483 of which are active in the high-tech sectors (see Table 2). In the present study we focus on the high-tech firms as, according to our data, innovation creates most jobs in the high-tech sectors. During the 2004-2012 period the overall employment growth was 22.6% in the EU companies. In the high-tech sectors employment increased by 49.2%, whereas only by 24.2% in the medium-high-tech and by 18.5% in the low-tech sectors (see section 4.2). We verify robustness of our results by extending the information set to include both high- and medium-tech firms as well as all firms in the sample.

In addition to economic and financial variables, the R&D Scoreboard also identifies the industrial sector (of the parent company) as well as the geographical region of R&D investment (according to

*In total in the Scoreboard data there are 1372 companies, from which 1173 are without missing observations.
the location of company’s headquarter). The R&D Scoreboard data are reported in two ways. On the one hand, the R&D Scoreboard data are reported as national aggregates broken down by NACE Rev.1.1 in the Eurostat dissemination database. On the other hand, given that the presentation of the aggregated statistics per economic activity and per country has no data for certain economic activities and certain countries, the full set of data is also reported as broken down by individual enterprise group.

The R&D Scoreboard data set is compiled from companies’ annual reports and accounts with reference date of the first of August of each year. For those companies, whose accounts are expected close to the cut-off date, preliminary information is used. In order to maximise the completeness and to avoid double counting, the consolidated group accounts of the ultimate parent company are used. Companies which are subsidiaries of another company are not considered separately. Where consolidated group accounts of the ultimate parent company are not available, subsidiaries are however included. In case of a demerger, the full history of the continuing entity is included, whereas the history of the demerged company goes only back as far as the date of the demerger to avoid double counting. In case of an acquisition or merger, the estimated figures for the year of acquisition are used along with the estimated comparative figures if available.\(^9\)

An important caveat of the R&D Scoreboard data concerns sample selection, putting under question the general validity of our results. Given the underlying sampling and selection rules of the R&D Scoreboard data set – ranking and selecting companies according to the total amount of their R&D expenditures – the R&D Scoreboard is not a random sample. Hence the R&D Scoreboard data set may be criticised that it has a sample bias affecting the results, as it only represents the top R&D investors. However, given our interest in the employment effect of innovation, this issue is of second order magnitude, because we are covering almost the entire population of world-wide R&D expenditure (Moncada-Paterno-Castello et al., 2010). The 1173 companies in our sample altogether represent around 80% of the world-wide business R&D expenditure. While small R&D investors and non-R&D-performers are excluded from the sample, the objective of the present study is to focus on the impact of R&D-driven innovation on employment, but not to examine the determinants of

\(^9\)It is important to note that the R&D Scoreboard data are different from the official R&D statistics provided by statistical offices. The R&D Scoreboard data refers to all R&D financed by a particular company from its own funds, regardless of where the R&D activity is performed. Hence, because companies are identified with country of their registered head office which, in some cases, may be different from the operational or R&D headquarters. In contrast, the R&D statistics usually refers to all R&D activities performed by businesses within a particular sector and country, regardless of the location of the business’s headquarters and regardless of the origin of the sources of finance. Second, the R&D Scoreboard collects data from audited financial accounts and reports, whereas the R&D statistics are compiled on the basis of statistical surveys, in general covering the known R&D performer. Further differences concern sectoral classifications (R&D statistics follows the classification of economic activities in the European Community, NACE Rev.1.1, whereas the R&D Scoreboard allocates companies in accordance to the sectoral classification as defined by the Financial Times Stock Exchange Index (ICB classification) and then converts them into NACE Rev.1.1. These differences need to be kept in mind when comparing the results reported in this paper to studies employing statistical R&D data.
labour demand in the whole economy. Finally, the particular estimation approach we adopt in the present study allows us to estimate the counterfactual treatment effects also without a zero control group.

4.2 Dependent (response) variable

The dependent (response) variable is firm-specific employment measured by the number of employees. In order to calculate firm-specific employment, we use the average number of employees or, if the annual average is not available, the number of employees at the end of the reference period. In total the companies included in the R&D Scoreboard data set employed 48471 million workers in 2012, 1.5% more than the previous year. The distribution of employees by region was 18357 million in the companies based in the EU, 11138 million in the US companies, 8206 million in the Japanese companies and 10770 million in the companies from other countries.\(^\text{10}\)

The development of employment in companies contained in the R&D Scoreboard data over the 2004-2012 period can be summarised as follows. Overall, the worldwide employment increased by 27.9% from 2004 to 2012 led by increases in high-tech sectors (42.0%) and medium-high-tech sectors (29.9%). The overall employment growth was 22.6% in the EU companies, increasing by 49.2% in high-tech sectors, by 24.2% in medium-high-tech and by 18.5% in low-tech sectors. The overall employment growth (25.1%) in the US companies greatly varies by sector group: a strong increase for high-tech sectors (43.7%) and a sharp decrease in low-tech sectors (-23.2%). The overall employment increase of 24.0% in the Japanese companies corresponded to an increase of 31.4% in low-tech sectors and of 28.5% in medium-high-tech sectors. The ratio of employment in high-tech to medium-high-tech sectors for companies based in Japan fell from 38% to 32%, rose slightly for EU companies, from 29% to 35%, and went up a lot for US companies from 80% to 98%.

4.3 Explanatory (treatment) variable

We define the explanatory (treatment) variable, \(r_{it}\), as the share of R&D investment in the total capital expenditure. The constructed measure of R&D intensity includes all cash investment in R&D funded by the companies themselves, but excludes any R&D undertaken under contract for customers, such as governments or other companies, and the companies’ share of any associated company or joint venture R&D investment. R&D expenditures are calculated based on the R&D accounting definition set out in the International Accounting Standard (IAS) 38 “Intangible assets”, which is based on the OECD “Frascati” manual. Research is defined as original and planned

\(^{10}\)Note, however, that data reported by the Scoreboard companies do not inform about the actual geographic distribution of the number of employees. A detailed geographic analysis should take into account the location of subsidiaries of the parent Scoreboard companies as well as the location of other production activities involved in the value-chains.
investigation undertaken with the prospect of gaining new scientific or technical knowledge and understanding. Expenditure on research is recognised as an expense when it incurred. Development is the application of research findings or other knowledge to a plan or design for the production of new or substantially improved materials, devices, products, processes, systems or services before the start of commercial production or use. Development costs are capitalised when they meet certain criteria and when it can be demonstrated that the asset will generate probable future economic benefits. Where part or all of R&D costs have been capitalised, the additions to the appropriate intangible assets are included to calculate the cash investment and any amortisation eliminated.

In order to account for sectoral heterogeneity with respect to R&D intensity, we regroup all firms into four sub-samples according to the level of technological sophistication. Following the OECD classification, all firms in our sample are regrouped into four 3-digit Industry Classification Benchmark (ICB) groups: high-, medium-high-, medium-low-, and low-tech companies:

- **High-tech**: Technology hardware & equipment (THE), Software & computer services (SCS), Pharmaceuticals & biotechnology (PBT), Health care equipment & services (HCE), and Leisure goods (LGO);

- **Medium-high-tech**: Industrial engineering, Electronic & electrical equipment, General industrials, Automobiles & parts, Personal goods, Other financials, Chemicals, Aerospace & defence, Travel & leisure, Support services, and Household goods & home construction;

- **Medium-low-tech**: Food producers, Fixed line telecommunications, Beverages, General retailers, Alternative energy, Media, Oil equipment, services & distribution, and Tobacco;

The descriptive statistics of R&D activity for each group of companies is reported in Table 2. According to Table 2, the R&D activity of high-tech firms, measured both in absolute and relative terms, substantially exceeds that of medium-tech and low-tech companies. In the present study we focus on the high-tech sub-sample which, as reported in Table 2, contains 483 firms. We use data on firm-specific employment and R&D intensity for the years 2007 and 2006, respectively, in order to avoid devastating effects of the global financial crisis on the world economy.

4.4 Covariates

The set of covariates used in our analysis is selected based on previous studies (e.g. see Hall et al., 2008, 2010), subject to their availability in our data set. It includes:
• **Net sales, SALE**: In line with the accounting definition of sales, sales taxes and shares of sales of joint ventures & associates are excluded. For banks, sales are defined as the “Total (operating) income” plus any insurance income. For insurance companies, sales are defined as “Gross premiums written” plus any banking income.

• **Operating profit, OP**: Profit (or loss) before taxation, plus net interest cost (or minus net interest income) and government grants, less gains (or plus losses) arising from the sale/disposal of businesses or fixed assets. Due to the fact that companies report both positive and negative operating profit, we cannot take a logarithmic transformation of this variable. In order to do so, we created the following two variables $\ln OP^+_{2006}$ and $\ln OP^-_{2006}$. The former variable is equal to the log of actual values whenever a firm reports positive profit and zero otherwise. The latter variable is equal to the log of absolute actual values multiplied by minus one whenever a firm reports negative profit and zero otherwise.

• **Capital expenditure, CAPEXP**: The expenditure used by a company to acquire or upgrade physical assets such as equipment, property, industrial buildings. In company accounts capital expenditure is added to the asset account (i.e. capitalised), thus increasing the amount of assets. It is disclosed in accounts as additions to tangible fixed assets.

• **Market capitalisation, MCAP**: The share price multiplied by the number of shares issued at a given date. Market capitalisation data have been extracted from both the Financial Times London Share Service and Reuters. These reflect the market capitalisation of each company at the close of trading on 4 August 2006. The gross market capitalisation amount is used to take into account those companies for which not all the equity is available on the market.

• **Industry sectors**: The industry sectors are based on the ICB classification. The level of disaggregation is generally the three-digit level of the ICB classification, which is then converted to NACE Rev.1.1.

• **Sectoral dummies**: Sectors are classified into high-tech, medium-high-tech, medium-low-tech, and low-tech, according to 3-digit ICB groups.

• **Regional dummies**: “Asian Tigers” (AT), “BRIC”, “EU”, “Japan”, “RoW”, “Switzerland” (CH), and “USA”.

12
5 Results

5.1 Main results

The results of the first step GPS estimation procedure (see Equation (1)) are reported in Table 3, which suggest that the variation in the R&D intensity is best captured by variables such as operating profits, market capitalisation and its square, as well as sales. Also the industry- and region-specific dummy variables contribute substantially to the explanatory power of the first step of the GPS regression. The goodness-of-fit of this regression is quite high, yielding the R^2 of 42%, creating a powerful GPS, see Equation (2).\(^\text{11}\)

Next, we verify whether the GPS is appropriately specified by testing the so-called balancing property, following the procedure suggested by Hirano and Imbens (2004). Each covariate is subdivided into three groups of approximately similar size using the distribution of the treatment intensity variable. The initial testing of the balancing property amounts to testing whether the average value of a particular variable in every group is equal to the average value in the remaining groups. The results of these tests are reported in Table 4. Only for a handful of groups we cannot reject the tested null hypothesis at usual significance levels, indicating that there is a very strong heterogeneity among covariates belonging to these three groups pertinent to different values of the treatment intensity. A well specified GPS should be able to successfully account for these differences.

In order to check whether this is the case, we subdivided each group into blocs of approximately the same sizes corresponding to the quintiles of the respective GPS. The resulting cell sizes are reported in Table 5. Observe that the total number of firms reported in Table 5 is less than reported above in Table 4, i.e. 442 vs. 483. This is because we imposed the so-called common support condition, ensuring that we deal with observations with similar GPS values but different treatment intensities. As argued by Becker et al. (2012), it is advisable to impose the common-support condition in order to substantially improve the balancing properties of the GPS and hence achieve more reliable estimation results.

The balancing properties of covariates adjusted for the GPS are reported in Table 6. Compared to the results for unadjusted covariates reported in Table 4, there is a substantial improvement, as only three test statistics exceed the nominal 5% significance level.\(^\text{12}\) The mean absolute value of all t-statistics reported in Table 6 drops to 0.90 from the corresponding value of 3.41 computed across all groups and covariates in Table 4. Hence, we can conclude that the generalised propensity scores are appropriately defined. Next, we proceed to the estimation of the dose-response relationship.

\(^{11}\)The assumption of normally distributed GPS, see Equation (2), was verified by means of the Kolmogorov-Smirnov test. The associated p-value is 0.26.

\(^{12}\)Observe that given a total number of reported t-test statistics this empirical rejection rate approximately corresponds to the nominal test level of 5%.
between innovation and employment variables.

The estimation results for the second-step regression corresponding to Equation (3) are reported in Table 7. The estimated R^2 is 0.40, which is quite remarkable given the parsimonious specification. The second step GPS regression results reported in Table 7 clearly show that the employment response to the firm innovation (proxied by R&D expenditures) is highly non-linear with all included polynomial terms of the latter variable reporting highly significant coefficients. It is also worthwhile noticing that the GPS variable enters as a significant variable both in levels and via the interactive term with the (log) of our treatment variable, confirming its relevance in eliminating the sample selection bias.\footnote{The higher order power transformations of the GPS variable turned out to be insignificant and therefore were omitted from the model specification for the sake of parsimony.}

In order to facilitate the interpretation of the estimation results, we plot the estimated dose-response, treatment effect and elasticity functions in Figures 1, 2 and 3, respectively. In order to provide an idea about the firm distribution for different R&D intensity levels, vertical lines are added to distinguish between the four quartiles. For example, in the high-tech sectors the bottom quartile contains firms with R&D intensity levels up to 160%. The cut-offs for the other three quartiles are at 350% and 690%, respectively.

At low innovation intensity levels (the share of the R&D investment in the total capital expenditure between zero and 35-40%) an additional investment into R&D may even destruct jobs. This can be seen in the negative interval in Figure 3. The job destruction effect of moderate innovators can be explained by the missing critical mass and insufficient absorptive capacity to benefit from the intramural research in companies with an insufficient innovative capacity. Our results are consistent with findings of Geroski (1998) as well as Kancs and Siliverstovs (2012), who find that a certain critical mass of the R&D capacity is required, before a significant firm growth can be achieved from the investment in R&D. Our results are also consistent with the hypothesis of the absorptive capacity, which has been found to be important particularly for moderate innovators. Firms must be capable of absorbing and using new knowledge effectively, if they are to benefit from the intramural and extramural R&D investment (which apparently is not the case at very low R&D levels) (Fabrizio, 2009). Another reason why increasing R&D expenditures may destruct jobs in modestly innovating companies could be a larger room for technological efficiency improvements. Given that modest innovators have a higher potential for creating a more efficient workforce and replacing workers through the acquisition of capital goods, the compensation may be only partial for modest innovators.

At medium to medium-high innovation intensity levels (the share of the R&D investment in the total capital expenditure is around 100%) the innovation impact on employment is positive and
statistically significantly different from zero. The employment elasticity with respect to innovation goes up to 0.7%, which implies that increasing innovation by 1% raises employment by 0.7%. There may be several reasons, why innovation followers create more jobs than modest innovators. First, through new investments. Given that the convergence between falling costs and lower prices is not instantaneous, extra profits that are accumulated by innovative firms are often reinvested. A larger production capacity in innovation followers requires more workers and hence creates more jobs. Second, by increasing income. Given that more improvements in productivity are transmitted to higher wages in innovation followers, likely they will induce a higher consumption and hence a higher employment. According to Leonardi (2003), more educated workers (which are employed in more innovative firms) consume more skill-intensive goods. Hence, an increase in the income of high-skill workers increases the demand for skill-intensive goods, resulting, in such a way, in a higher output of innovative firms in high-tech sectors employing high-skill workers. An increase in the aggregate demand in turn increases production and employment. Third, through new products/varieties resulting from innovation. New products/varieties entail a creation of new jobs in innovation followers, but a destruction of jobs in modest innovators Bogliacino et al. (2012); Bogliacino and Vivarelli (2012); Bogliacino et al. (2013). Finally, through a decrease in output prices, resulting in lower production costs, which stimulates the demand for innovative firms’ products and, as a result, increases the demand for workers.

The job creation effect of innovation reaches its peak when the R&D intensity is around 100% of the total capital expenditure, after which the positive employment effect declines and becomes statistically indifferent from zero. At high and very high innovation intensity levels (the share of R&D investment in the total capital expenditure above 150%) the innovation impact on employment becomes negative again, implying that, on average, an additional R&D investment in innovation leaders destructs jobs. These results of decomposing the employment effect by innovation intensity, suggesting that the displacement effect seems to be larger than the compensation effect for innovation leaders, whereas the compensation effect seems to be greater than the displacement effect for innovation followers, are new and have not been reported in the literature before.

14 Note, however, that the new investments can be capital-intensive, which may partially mitigate the compensation effect.
15 Leonardi (2003) derives theoretically in a general equilibrium model, and estimates empirically for the UK that more educated workers demand more skill-intensive goods. According to Leonardi (2003), in the UK the induced demand shift can explain 3% of the total relative demand shift between 1981 and 1997.
16 At extremely high R&D intensity levels (above 1300%) our results suggest positive employment effect of innovation again. However, the number of firms with such an extremely high R&D intensity is very small in our sample (and in the population). Therefore, these results for very high innovation intensity levels should be considered with caution.
5.2 Comparison with previous studies

Our estimation results complement those of Ciriaci et al. (2013), Bogliacino et al. (2012), Bogliacino and Vivarelli (2012) and Bogliacino (2014), who provide the initial attempts to decompose the employment effect of innovation according to R&D intensity levels. Using the balanced panel comprising of 3300 Spanish firms observed of the period 2002-2009, Ciriaci et al. (2013) investigate the employment effect of innovation both for innovative and non-innovative firms. Ciriaci et al. (2013) find that those firms, which engage more intensively in innovation activities, create more jobs than less innovative firms. In particular, this effect is more pronounced for small and young innovative firms. At the same time they point out that for this group of firms, a successful launch of new products in the market as a result of boosting the innovation activity can lead to a higher growth in sales rather than in employment, which is consistent with the labour-saving effects of technological advances, discussed above.

Bogliacino et al. (2012) studies the employment effect of R&D expenditure using the sample of 677 EU firms observed during the period 1990-2008. The elasticities of interest are estimated using the dynamic panel model allowing for lagged employment by means of the Least Squares Dummy Variable Corrected (LSDVC) estimator (Bun and Kiviet, 2003; Bruno, 2005). The results are obtained for the sample of all firms as well as for sub-samples comprising service-sector firms, all manufacturing firms and sub-samples comprising manufacturing firms further subdivided into high-tech and non-high-tech firms. The estimated short-run elasticities are 0.023% for the whole sample, 0.056% for service-sector firms, and 0.049% for high-tech manufacturing firms. It is interesting to observe that the corresponding elasticity estimate for non-high-tech manufacturing firms is not significant though positive (0.021%). Using the estimated coefficient on the lagged employment variable Bogliacino et al. (2012, Table 1) derive long-run elasticities. The long-run elasticity of employment calculated for the whole sample is 0.075%, 0.097% for service-sector firms and approximately of equal magnitude of 0.11% both for all manufacturing firms and high-tech manufacturing firms.

Bogliacino and Vivarelli (2012) conduct another study on the employment effect of innovation activity using a sample of 2295 firms from 15 European countries available for the period 1996—2005. The main results of this study are reported for a number of dynamic panel data estimators such as random-effects, fixed-effects as well as two versions of the Generalised Method of Moments \[\text{GMM-DIF, Arrellano and Bond (1991)}\] and \[\text{GMM-SYS, Blundell and Bond (1998)}\], where the last estimator is referred to as the most reliable one (Bogliacino and Vivarelli, 2012, Section IV). These estimators are applied for the whole sample of firms. The short-run elasticity reported by the GMM-SYS estimator is 0.025%, which is very similar to that reported in Bogliacino et al.
However, the long-run elasticity is about 0.31%, which is about four times larger than that reported in Bogliacino et al. (2012) for the whole sample (0.075%). In order to ensure the robustness of estimation results, a distinction is made between firms with a different innovation intensity by allowing for differential employment effects of high-tech, medium-tech and low-tech firms. The elasticities of interest are obtained by means of the LSDVC rather than the GMM estimator, while it is argued that the former one outperforms the latter one under given estimation conditions. The main result is that the job creation effect of the R&D expenditure only is evident for the high-tech sector; both for medium- and low-tech sectors the estimated short-run elasticities are not significantly different from zero. For the high-tech sector, short- and long-run elasticities are 0.017% and 0.17%, respectively.

Our results, emphasising the complex non-linear interaction between employment and innovation, are also consistent with those of Bogliacino (2014), who equally finds that R&D investment expenditure has a non-linear effect on firm employment. Bogliacino (2014) also reports that the productivity impact of R&D takes significant lags, whereas the employment effect is effective already since the beginning of the R&D process. According to Bogliacino (2014), both the intensive and extensive margins of R&D work in the same direction: for a given firm size, increasing the R&D intensity raises the employment elasticity, and for a given R&D intensity, increasing the firm size increases also the employment effect. These results confirm our policy conclusions that policy makers have two alternative policy strategies for targeting innovation and employment objectives: policy instruments aiming at the growth of innovative companies, and policy instruments aiming at increasing the number of companies that undertake innovative activities in the EU.

It is instructive to compare our results with traditional point estimates available in the previous literature, despite the fact that the studies cited above focus on the employment elasticity with respect to a nominal measure of the R&D expenditure, whereas we focus on the employment elasticity with respect to a relative measure of the R&D expenditure. Even though the range of elasticity estimates for high-tech companies reported in our study in Figure 3 is quite large, as it varies with the level of the R&D intensity [-0.80%, 0.70%], the positive values of the employment elasticity observed for firms pertaining to the lower quartile of the R&D intensity distribution are in a comparable range with the estimates of the long-run employment elasticities of R&D, as discussed above.

Our results are also consistent with the evidence from general equilibrium macroeconomic models, which simulate the impact of R&D and innovation policies (Brandsma and Kancs, 2016). The simulated employment effects of innovation in macroeconomic models capture important general equilibrium effects and vertical and horizontal linkages between firms, which is not possible in micro-econometric studies, such as the one presented in this paper. Combining the micro and macro
approaches for studying the employment effect of innovation is a promising area for the future research.

5.3 Robustness checks

In order to verify the robustness of the results reported in the previous section, we perform several robustness checks. First, we re-estimate regressions in Equations (2) and (3) using enlarged data sets that include both high- and medium-tech firms as well as all firms in our sample. Secondly, we re-estimates the second-step regression using our preferred sample of high-tech firms but after taking a logarithmic transformation of the GPS variable obtained in the first step, similarly as it was done in the empirical example in Hirano and Imbens (2004). These estimation results are presented in Table 8.

In panel (A) of Table 8 we report the estimation results of Equation (3) keeping the square and cubic transformations of the score variable. As seen, these are not significant at usual significance levels, and therefore the more parsimonious form of the regression, reported in Table 7, is preferred. This choice of the model specification is also supported in terms of the Schwarz Information Criterion (SIC).

In panel (B) estimation results are reported using an enlarged information set including both high- and medium-high tech firms. This results in a correspondingly increased sample size of 771 firms. However, such a model specification yields a much lower explanatory power with the reported goodness-of-fit measure decreasing from $R^2 = 0.40$ in Table 7 to $R^2 = 0.21$. In addition, the coefficient pertaining to the score variable in levels is no longer significantly different from zero. Only the interaction term between the score and (log of) the treatment variables remains statistically significant. A further increase of the sample size incorporating all the firms in our sample yields similar results, see panel (C). We observe a further decrease in the regression explanatory power with the reported $R^2 = 0.15$ and the score variable s not being significant in this model. After comparing these estimation results with those reported in Table 7, we can conclude that focusing on a smaller data set involving less heterogeneous firms yields more clear-cut results that are statistically superior to those obtained using a larger pool of more diverse firms. It seems that for the latter data set more explanatory variables are needed than we have at hand in order to account for the inherent firm heterogeneity.

In panel (D) of Table 7 we report the estimation results of the second-step regression, where we inserted the logarithmic transformation of the score variable. Also in this case we observe that the underlying model in Table 7 is statistically superior to that one both in terms of the regression explanatory power and SIC values.
The question of whether the technological change creates or destroys jobs has been posed since the beginning of the Industrial Revolution in the 19th century. While, the economic theory, the estimation strategy and the empirical evidence have improved significantly since then, the key questions and challenges surrounding the innovation-employment relationship remain. The present paper aims to contribute to this literature by attempting to identify the R&D intensity levels under which firm innovation is complementary to the firm employment and under which it may have an adverse impact on the firm employment. The objective of the study is to reveal the entire innovation-employment relationship, which is done by estimating the employment effect of innovation for different R&D intensity levels in a continuous framework. This is our main contribution to the literature and policy debate; to the best of our knowledge no comparable studies analysing the employment effect of innovation in a continuous setting are available in the literature.

In order to answer these questions, we base our empirical micro-econometric analysis on a large international firm-level panel dataset, and our proxy for technology is a measurable and continuous variable, while the majority of previous studies have relied on either indirect proxies of the technological change or dummy variables (such as the occurrence of the product and process innovation). In particular, we employ the EU Industrial R&D Investment Scoreboard data set, which comprises data on R&D investment, as well as other financial and economic variables for the top 1173 R&D global performers, 483 of which are active in high-tech sectors, which we analyse in detail, as high-tech companies create most jobs both in absolute and relative terms. In addition to firm-level innovation expenditures, we make use also of economic and financial variables, which allow us to control for important firm-specific effects. Moreover, the R&D Scoreboard also identifies the industrial sector (of the parent subsidiary) as well as the geographical region of the R&D investment (according to the location of firm’s headquarter), which allows us to control for fixed sector-specific and location-specific effects.

In order to decompose the employment effect by the innovation intensity, we employ flexible semi-parametric methods, which allow us to recover the full functional relationship between the R&D investment and the firm employment. This is not possible in the standard estimation approach, which yields only point estimates and hence may hide important non-linearities in the innovation-employment relationship (Kancs and Siliverstovs, 2012). We use semi-parametric methods for the causal inference in quasi-experimental settings with continuous treatments, by considering the innovation expenditure of firms as a continuous treatment and the employment at the firm-level as an outcome variable. The functional form of the impact of R&D expenditure on firm employment is identified under the assumption of weak unconfoundedness, implying that the systematic information
in the innovation expenditure can be conditioned out by controlling for observable determinants of the innovation expenditure, achieving a quasi-randomisation. This allows us to address important estimation issues, such as the simultaneity bias, from which many previous studies suffer (Rosenbaum and Rubin, 1983; Hirano and Imbens, 2004).

Our results confirm previous findings that innovation can both create and destruct jobs (which, as we show, depends strongly on the innovation intensity). Second, the relationship between innovation and employment is highly non-linear. At low innovation intensity levels (the share of the R&D investment in the total capital expenditure between zero and 35-40%) an additional investment into R&D may even destruct jobs. At medium to medium-high innovation intensity levels (the R&D intensity around 100%) the innovation impact on employment is positive and statistically significantly different from zero. The employment elasticity with respect to innovation is 0.7%, which implies that increasing innovation by 1% raises employment by 0.7%. The job creation effect of innovation reaches its peak when the R&D intensity is around 100% of the total capital expenditure, after which the positive employment effect declines and becomes statistically indifferent from zero. At high and very high innovation intensity levels (the share of the R&D investment in the total capital expenditure above 150%) the innovation impact on employment becomes negative again, implying that, on average, an additional R&D investment in highly innovative companies destructs jobs. These results of decomposing the employment effect by innovation intensity are new and have not been reported in the literature before.

Our results have important messages for policy makers. First, our findings confirm the important role that innovation followers can play in creating jobs and in ensuring the sustainability of high employment in the medium- to long-run. In light of the results of Crepon et al. (1998),

two alternative policy strategies can be identified how policy makers can target this objective: policy instruments aiming at the growth of innovation followers, and policy instruments aiming at increasing the number of innovation followers, as they both undertake innovative activities and create employment in the EU. Second, our results point to potential complementarities between the two Europe 2020 policy targets aiming to increase the R&D/GDP ratio and the employment rate, particularly by supporting innovation followers. Indeed, the empirical evidence, which we provide in this study, supports the view that R&D expenditures can be beneficial to the job creation capacity. These findings imply that both the innovation and employment targets of the Europe 2020 Strategy can be reached simultaneously, by designing tailored policies for innovation followers as they create most of the employment. On the other hand, our results suggest that innovation leaders and modest innovators tend to destruct jobs through additional investment into R&D,

17 The model of Crepon et al. (1998) distinguishes between four stages of innovation process: the decision to innovate, the decision on how much to spend on innovation activities, the relation between expenditure on innovation and innovation output, and the relation between innovation output and performance.
implying that these companies should not be targeted by the policy to achieve both the innovation and employment targets of the Europe 2020 Strategy. According to Kancs and Siliverstovs (2012), innovation leaders are key for achieving the innovation target of the Europe 2020 Strategy by boosting firm productivity and competitiveness. In summary, the findings of the present study and Kancs and Siliverstovs (2012) suggest that innovation leaders should be targeted, if the policy objective is to boost productivity and competitiveness, whereas innovation followers should be targeted, if policy objective is to achieve both the innovation and employment targets of the Europe 2020 Strategy.

Turning to limitations, an important caveat of our empirical analysis concerns the nature of the Scoreboard sample. First, while other data sets, such as the OECD BERD data, can be considered as fully representative of OECD economies, in the EU Industrial R&D Investment Scoreboard data used in the present study only R&D ”champions” are considered. This is a clear limitation of our data, the results of which cannot be straightforwardly extrapolated to e.g. SMEs. However – notwithstanding this source of sample selection – our analysis still provides interesting insights, and in addition has support also from the empirical evidence on the concentration of innovative activities. It is well documented in the existing literature that innovative activities are highly concentrated – only a small share of firms around the world innovate, the majority of firms in most regions around the world do not engage in any significant R&D activities, they imitate (Slivko and Theilen, 2014). Hence, by considering the top 1173 innovators which account for almost 80% of the global R&D expenditure (top 2500 companies account for more than 90% of the global R&D expenditure), ensures good representativeness of R&D activities. A further limitation of the data used in our study is that R&D Scoreboard data do not allow us to identify the effect of product and process innovations separately. However, as discussed in the introduction, the employment effect of innovation can be very different depending on the nature of innovation. In order to separately identify the employment effect of the product and process innovation, other sources of data, such as the Community Innovation Survey (CIS), need to be used, which is a promising area for the future research.
References

Figure 1: Dose-Response function of **high-tech** companies: Average expected response of employment (2007) [Y-axis] to R&D intensity in 2006 [X-axis], GPS-adjusted. Dashed lines: bootstrapped 90 % confidence interval based on 1000 replications. Vertical lines denote quartiles of the R&D intensity distribution.
Figure 2: Treatment Effect function of high-tech companies: Derivative of the average expected response of employment (2007) [Y-axis] to R&D intensity in 2006 [X-axis], GPS-adjusted. Dashed lines: bootstrapped 90 % confidence interval based on 1000 replications. Vertical lines denote quartiles of the R&D intensity distribution.
Figure 3: Elasticity of high-tech companies: Average expected response of employment in 2007 [Y-axis] to R&D intensity in 2006 [X-axis], GPS-adjusted. Dashed lines: bootstrapped 90 % confidence interval based on 1000 replications. Vertical lines denote quartiles of the R&D intensity distribution.
Figure 4: Dose-Response function of all companies: Average expected response of employment (2007) [Y-axis] to R&D intensity in 2006 [X-axis], GPS-adjusted. Dashed lines: bootstrapped 90% confidence interval based on 1000 replications. Vertical lines denote quartiles of the R&D intensity distribution.
Figure 5: Treatment Effect function of all companies: Derivative of the average expected response of employment (2007) [Y-axis] to R&D intensity in 2006 [X-axis], GPS-adjusted. Dashed lines: bootstrapped 90% confidence interval based on 1000 replications. Vertical lines denote quartiles of the R&D intensity distribution.
Figure 6: Elasticity of all companies: Average expected response of employment in 2007 [Y-axis] to R&D intensity in 2006 [X-axis], GPS-adjusted. Dashed lines: bootstrapped 90 % confidence interval based on 1000 replications. Vertical lines denote quartiles of the R&D intensity distribution.
Figure 7: Dose-Response function of **high- and medium-high-tech** companies: Average expected response of employment (2007) [Y-axis] to R&D intensity in 2006 [X-axis], GPS-adjusted. Dashed lines: bootstrapped 90% confidence interval based on 1000 replications. Vertical lines denote quartiles of the R&D intensity distribution.
Figure 8: Treatment Effect function of high- and medium-high-tech companies: Derivative of the average expected response of employment (2007) [Y-axis] to R&D intensity in 2006 [X-axis], GPS-adjusted. Dashed lines: bootstrapped 90 % confidence interval based on 1000 replications. Vertical lines denote quartiles of the R&D intensity distribution.
Figure 9: Elasticity of **high- and medium-high-tech** companies: Average expected response of employment in 2007 [Y-axis] to R&D intensity in 2006 [X-axis], GPS-adjusted. Dashed lines: bootstrapped 90% confidence interval based on 1000 replications. Vertical lines denote quartiles of the R&D intensity distribution.
Table 1: Top 20 global innovation leaders in 2014

<table>
<thead>
<tr>
<th>Rank</th>
<th>Company</th>
<th>Industry</th>
<th>R&D*</th>
<th>ICB classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Volkswagen</td>
<td>Automotive</td>
<td>13.5</td>
<td>medium high-tech</td>
</tr>
<tr>
<td>2</td>
<td>Samsung</td>
<td>Computing and electronics</td>
<td>13.4</td>
<td>high & medium high-tech</td>
</tr>
<tr>
<td>3</td>
<td>Intel</td>
<td>Computing and electronics</td>
<td>10.6</td>
<td>high & medium high-tech</td>
</tr>
<tr>
<td>4</td>
<td>Microsoft</td>
<td>Software and internet</td>
<td>10.4</td>
<td>high-tech</td>
</tr>
<tr>
<td>5</td>
<td>Roche</td>
<td>Health care</td>
<td>10</td>
<td>high & medium high-tech</td>
</tr>
<tr>
<td>6</td>
<td>Novartis</td>
<td>Health care</td>
<td>9.9</td>
<td>high & medium high-tech</td>
</tr>
<tr>
<td>7</td>
<td>Toyota</td>
<td>Automotive</td>
<td>9.1</td>
<td>medium high-tech</td>
</tr>
<tr>
<td>8</td>
<td>Johnson & Johnson</td>
<td>Health care</td>
<td>8.2</td>
<td>high & medium high-tech</td>
</tr>
<tr>
<td>9</td>
<td>Google</td>
<td>Software and internet</td>
<td>8</td>
<td>high-tech</td>
</tr>
<tr>
<td>10</td>
<td>Merck</td>
<td>Health care</td>
<td>7.5</td>
<td>high & medium high-tech</td>
</tr>
<tr>
<td>11</td>
<td>GM</td>
<td>Automotive</td>
<td>7.2</td>
<td>medium high-tech</td>
</tr>
<tr>
<td>12</td>
<td>Daimler</td>
<td>Automotive</td>
<td>7</td>
<td>medium high-tech</td>
</tr>
<tr>
<td>13</td>
<td>Pfizer</td>
<td>Health care</td>
<td>6.7</td>
<td>high & medium high-tech</td>
</tr>
<tr>
<td>14</td>
<td>Amazon</td>
<td>Software and internet</td>
<td>6.6</td>
<td>high-tech</td>
</tr>
<tr>
<td>15</td>
<td>Ford</td>
<td>Automotive</td>
<td>6.4</td>
<td>medium high-tech</td>
</tr>
<tr>
<td>16</td>
<td>Sanofi-Aventis</td>
<td>Health care</td>
<td>6.3</td>
<td>high & medium high-tech</td>
</tr>
<tr>
<td>17</td>
<td>Honda</td>
<td>Automotive</td>
<td>6.3</td>
<td>medium high-tech</td>
</tr>
<tr>
<td>18</td>
<td>IBM</td>
<td>Computing and electronics</td>
<td>6.2</td>
<td>high & medium high-tech</td>
</tr>
<tr>
<td>19</td>
<td>GlaxoSmithKline</td>
<td>Health care</td>
<td>6.1</td>
<td>high & medium high-tech</td>
</tr>
<tr>
<td>20</td>
<td>Cisco</td>
<td>Computing and electronics</td>
<td>5.9</td>
<td>high & medium high-tech</td>
</tr>
</tbody>
</table>

Source: EU Industrial R&D Investment Scoreboard (2015). Notes: *Billion USD.

Table 2: Distribution characteristics of R&D intensity

<table>
<thead>
<tr>
<th>Quantiles</th>
<th>min</th>
<th>25%</th>
<th>50%</th>
<th>75%</th>
<th>max</th>
<th>Obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>low-tech</td>
<td>0.003</td>
<td>0.041</td>
<td>0.102</td>
<td>0.280</td>
<td>4.306</td>
<td>133</td>
</tr>
<tr>
<td>medium-low-tech</td>
<td>0.012</td>
<td>0.093</td>
<td>0.255</td>
<td>0.462</td>
<td>6.804</td>
<td>79</td>
</tr>
<tr>
<td>medium-high-tech</td>
<td>0.004</td>
<td>0.428</td>
<td>0.773</td>
<td>1.412</td>
<td>9.457</td>
<td>478</td>
</tr>
<tr>
<td>high-tech</td>
<td>0.045</td>
<td>1.679</td>
<td>3.707</td>
<td>7.448</td>
<td>126.380</td>
<td>483</td>
</tr>
</tbody>
</table>

Notes:
RDCAPEX: R&D intensity is defined as a share of R&D expenditure in capital expenditure in 2006.
Table 3: Regression results

<table>
<thead>
<tr>
<th></th>
<th>GPS: first-step regression, Equation (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incpt</td>
<td>4.305</td>
</tr>
<tr>
<td>ln OP_{2006}</td>
<td>-0.081</td>
</tr>
<tr>
<td>ln OP_{2006}</td>
<td>-0.036</td>
</tr>
<tr>
<td>ln MCAP_{2006}</td>
<td>-0.433</td>
</tr>
<tr>
<td>[ln MCAP_{2006}]^2</td>
<td>0.040</td>
</tr>
<tr>
<td>ln SALE_{2006}</td>
<td>-0.314</td>
</tr>
<tr>
<td>[ln SALE_{2006}]^2</td>
<td>-0.001</td>
</tr>
<tr>
<td>AT</td>
<td>-1.713</td>
</tr>
<tr>
<td>BRIC</td>
<td>-1.471</td>
</tr>
<tr>
<td>EU</td>
<td>-0.162</td>
</tr>
<tr>
<td>Japan</td>
<td>0.014</td>
</tr>
<tr>
<td>RoW</td>
<td>-0.207</td>
</tr>
<tr>
<td>USA</td>
<td>0.044</td>
</tr>
<tr>
<td>THE</td>
<td>0.184</td>
</tr>
<tr>
<td>SCS</td>
<td>0.525</td>
</tr>
<tr>
<td>PBT</td>
<td>0.199</td>
</tr>
<tr>
<td>HCE</td>
<td>-0.411</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.42</td>
</tr>
<tr>
<td>Obs.</td>
<td>483</td>
</tr>
</tbody>
</table>

Notes:
The dependent variable \(r_{it}\) in the first-step regression is the log of R&D intensity in 2006, defined as the share of R&D expenditure in capital expenditure in the same year. The regression contains regional (AT, BRIC, EU, Japan, RoW, USA) and industry (THE, SCS, PBT, HCE) dummies, see Section 4.
Table 4: Initial balancing properties of covariates

<table>
<thead>
<tr>
<th></th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ln OP$^{+}_{2006}$</td>
<td>9.43</td>
<td>0.91</td>
<td>-10.26</td>
</tr>
<tr>
<td>ln OP$^{-}_{2006}$</td>
<td>5.16</td>
<td>0.31</td>
<td>-4.73</td>
</tr>
<tr>
<td>ln MCAP2006</td>
<td>7.58</td>
<td>1.07</td>
<td>-8.63</td>
</tr>
<tr>
<td>[ln MCAP2006]2</td>
<td>6.80</td>
<td>1.10</td>
<td>-8.55</td>
</tr>
<tr>
<td>ln SALE2006</td>
<td>9.94</td>
<td>1.23</td>
<td>-10.03</td>
</tr>
<tr>
<td>[ln SALE2006]2</td>
<td>8.77</td>
<td>0.77</td>
<td>-10.53</td>
</tr>
<tr>
<td>AT</td>
<td>1.99</td>
<td>-2.47</td>
<td>-1.00</td>
</tr>
<tr>
<td>BRIC</td>
<td>1.39</td>
<td>-0.38</td>
<td>-2.01</td>
</tr>
<tr>
<td>EU</td>
<td>-2.16</td>
<td>-0.93</td>
<td>3.00</td>
</tr>
<tr>
<td>Japan</td>
<td>3.06</td>
<td>-0.23</td>
<td>-3.95</td>
</tr>
<tr>
<td>RoW</td>
<td>0.91</td>
<td>0.91</td>
<td>-2.53</td>
</tr>
<tr>
<td>USA</td>
<td>-1.23</td>
<td>0.90</td>
<td>0.32</td>
</tr>
<tr>
<td>THE</td>
<td>0.67</td>
<td>1.26</td>
<td>-1.99</td>
</tr>
<tr>
<td>SCS</td>
<td>-4.77</td>
<td>-0.84</td>
<td>4.76</td>
</tr>
<tr>
<td>PBT</td>
<td>-1.82</td>
<td>1.08</td>
<td>0.65</td>
</tr>
<tr>
<td>HCE</td>
<td>4.49</td>
<td>-1.81</td>
<td>-4.59</td>
</tr>
<tr>
<td>Obs.</td>
<td>161</td>
<td>161</td>
<td>161</td>
</tr>
</tbody>
</table>

Notes:
Groups of equal size were created using distribution of the continuous treatment variable, R&D intensity. Table entries are t-values of the test for the equal means between observations belonging to a particular group and those observations that do not belong to this group.

Table 5: Cell size for testing the balancing property of GPS

<table>
<thead>
<tr>
<th></th>
<th>Group 1</th>
<th>Control 1</th>
<th>Group 2</th>
<th>Control 2</th>
<th>Group 3</th>
<th>Control 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block 1</td>
<td>31</td>
<td>185</td>
<td>31</td>
<td>93</td>
<td>28</td>
<td>212</td>
</tr>
<tr>
<td>Block 2</td>
<td>30</td>
<td>50</td>
<td>31</td>
<td>52</td>
<td>27</td>
<td>39</td>
</tr>
<tr>
<td>Block 3</td>
<td>30</td>
<td>24</td>
<td>30</td>
<td>60</td>
<td>27</td>
<td>18</td>
</tr>
<tr>
<td>Block 4</td>
<td>30</td>
<td>19</td>
<td>31</td>
<td>36</td>
<td>27</td>
<td>25</td>
</tr>
<tr>
<td>Block 5</td>
<td>31</td>
<td>12</td>
<td>31</td>
<td>47</td>
<td>27</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>152</td>
<td>290</td>
<td>154</td>
<td>288</td>
<td>136</td>
<td>306</td>
</tr>
</tbody>
</table>

Notes:
The block size of each treatment group is held approximately the same. For each group it is determined by quintiles of the estimated GPS.
Table 6: GPS-adjusted balancing properties of covariates

<table>
<thead>
<tr>
<th></th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ln OP$^+_2006$</td>
<td>1.28</td>
<td>0.47</td>
<td>-1.08</td>
</tr>
<tr>
<td>ln OP$_{2006}$</td>
<td>1.05</td>
<td>-0.59</td>
<td>0.60</td>
</tr>
<tr>
<td>ln MCAP$_{2006}$</td>
<td>1.28</td>
<td>0.48</td>
<td>-1.06</td>
</tr>
<tr>
<td>[ln MCAP$_{2006}$]</td>
<td>1.01</td>
<td>0.72</td>
<td>-1.16</td>
</tr>
<tr>
<td>ln SALE$_{2006}$</td>
<td>1.36</td>
<td>0.43</td>
<td>-1.62</td>
</tr>
<tr>
<td>[ln SALE$_{2006}$]</td>
<td>0.98</td>
<td>0.44</td>
<td>-1.60</td>
</tr>
<tr>
<td>AT</td>
<td>-1.00</td>
<td>-1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>BRIC</td>
<td>1.41</td>
<td>-1.42</td>
<td>-1.42</td>
</tr>
<tr>
<td>EU</td>
<td>-0.74</td>
<td>-0.04</td>
<td>0.06</td>
</tr>
<tr>
<td>Japan</td>
<td>0.28</td>
<td>-0.24</td>
<td>-0.10</td>
</tr>
<tr>
<td>RoW</td>
<td>0.39</td>
<td>0.73</td>
<td>-2.84</td>
</tr>
<tr>
<td>USA</td>
<td>0.51</td>
<td>-0.20</td>
<td>0.52</td>
</tr>
<tr>
<td>THE</td>
<td>-0.15</td>
<td>0.31</td>
<td>1.52</td>
</tr>
<tr>
<td>SCS</td>
<td>-0.69</td>
<td>-1.33</td>
<td>0.55</td>
</tr>
<tr>
<td>PBT</td>
<td>-0.12</td>
<td>1.97</td>
<td>-0.66</td>
</tr>
<tr>
<td>HCE</td>
<td>1.16</td>
<td>-0.68</td>
<td>-2.84</td>
</tr>
<tr>
<td>Obs.</td>
<td>152</td>
<td>154</td>
<td>136</td>
</tr>
</tbody>
</table>

Notes:
Table entries are t-values of the test for the equal means between observations belonging to a particular group and those observations that do not belong to this group, accounting for GPS.

Table 7: Regression results

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Incpt</td>
<td>7.242</td>
<td>0.289</td>
<td>25.088</td>
<td>0.000</td>
</tr>
<tr>
<td>ln r</td>
<td>0.488</td>
<td>0.171</td>
<td>2.862</td>
<td>0.004</td>
</tr>
<tr>
<td>[ln r]²</td>
<td>0.430</td>
<td>0.097</td>
<td>4.425</td>
<td>0.000</td>
</tr>
<tr>
<td>[ln r]³</td>
<td>-0.145</td>
<td>0.025</td>
<td>-5.908</td>
<td>0.000</td>
</tr>
<tr>
<td>s</td>
<td>6.708</td>
<td>0.946</td>
<td>7.095</td>
<td>0.000</td>
</tr>
<tr>
<td>ln r * s</td>
<td>-5.485</td>
<td>0.593</td>
<td>-9.246</td>
<td>0.000</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>σ^2</td>
<td>1.678</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>0.40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obs.</td>
<td>442</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIC</td>
<td>259.36</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 8: GPS: Second-stage regression — Robustness check

<table>
<thead>
<tr>
<th>PANEL</th>
<th>(A)</th>
<th>(B)</th>
<th>(C)</th>
<th>(D)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ICB3</td>
<td>High-tech</td>
<td>(High+Med-High)-tech</td>
<td>All</td>
</tr>
<tr>
<td>Incpt</td>
<td>6.675</td>
<td>0.506</td>
<td>0.000</td>
<td>8.805</td>
</tr>
<tr>
<td>ln r</td>
<td>0.430</td>
<td>0.182</td>
<td>0.019</td>
<td>0.544</td>
</tr>
<tr>
<td>[ln r]^2</td>
<td>0.467</td>
<td>0.100</td>
<td>0.000</td>
<td>-0.031</td>
</tr>
<tr>
<td>[ln r]^3</td>
<td>-0.149</td>
<td>0.025</td>
<td>0.000</td>
<td>-0.081</td>
</tr>
<tr>
<td>s</td>
<td>17.562</td>
<td>7.142</td>
<td>0.014</td>
<td>2.497</td>
</tr>
<tr>
<td>s^2</td>
<td>-50.613</td>
<td>32.563</td>
<td>0.121</td>
<td>-5.032</td>
</tr>
<tr>
<td>s^3</td>
<td>67.447</td>
<td>44.330</td>
<td>0.129</td>
<td>4.802</td>
</tr>
<tr>
<td>ln r * s</td>
<td>-5.510</td>
<td>0.595</td>
<td>0.000</td>
<td>-2.858</td>
</tr>
<tr>
<td>σ^2</td>
<td>1.677</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>0.402</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obs.</td>
<td>442</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIC</td>
<td>269.080</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>