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1 Introduction

A central theme in the economics of information concerns the ability of agents to earn
rents because they have private information. For example, the buyer of a good may be
able to obtain a surplus because the seller does not know how much the good is worth to
the buyer.

However, Crémer and McLean (1988) have shown that, when there are multiple poten-
tial buyers for a good and these buyers have quasilinear utility functions with correlated
private values, then, under certain conditions, in a Bayesian setting, a seller can extract all
the surplus from the sale of his good, i.e. all information rents can be made to disappear.
Specifically, if the potential buyers have only finitely many types, a Bayesian incentive
mechanism that extracts all the potentially available surplus from buyers can be designed
if and only if, for each agent i and each type ti of this agent, the vector of probabilities that
agent i assigns to different constellations of the other agents’ types when his own type is
ti cannot be represented as a convex combination of the vectors of beliefs that he has at
types other than ti.

McAfee and Reny (1992) extended the analysis of Crémer and McLean (1988) to the
case where each agent’s type set is the unit interval and where each agent’s beliefs about
other agents’ types are given by a probability distribution with a continuous density func-
tion. They showed that (approximately) full surplus extraction can be obtained if and only
if the density functions that represent agents’ beliefs satisfy a function space version of the
Crémer-McLean condition.

Our paper makes three contributions to this literature. First, we extend the analysis
of McAfee and Reny (1992) to allow for arbitrary abstract (Harsanyi) type spaces, rather
than naive type spaces in which ”types” and payoff parameters are the same so that beliefs
depend only on payoff parameters. We give a necessary and sufficient condition for full
surplus extraction in an arbitrary abstract type space (with arbitrary beliefs) and call it
the generalized McAfee-Reny condition. This condition coincides with the McAfee-Reny
condition if the mapping from abstract types to payoff parameters and beliefs is injective,
but otherwise it is slightly weaker.

Second, we show that full surplus extraction is generic in the sense that, for a given
type space Ti of agent i, the generalized McAfee-Reny condition holds for a residual set,
i.e., for a countable intersection of open and dense sets, of continuous functions mapping
types into payoff parameters and beliefs. For models with a continuum of types, generic-
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ity of full surplus extraction has been a matter of dispute.1 On the one hand, Heifetz and
Neeman (2006) have suggested that full surplus extraction is generically impossible.2 On
the other hand, Chen and Xiong (2013) have shown that in a particular class of models,
approximately full surplus extraction is generically possible. Our result is both stronger
and more general than that of Chen and Xiong (2013). It is also ”topology-free” in the
sense that we do not specify a topology on beliefs but only require the topology on beliefs
to by induced by a metric that is a convex function.

We use ideas from embedding theory. An embedding is a continuous injective func-
tion from a space X to a space Y. The classical embedding theorem asserts that, if X is a
compact finite-dimensional metric space and Y is a metric space with a sufficiently high
dimension, the set of embeddings is residual in the space of continuous functions from
X to Y, endowed with the uniform topology.3 The McAfee-Reny condition for surplus
extraction is similar to, but substantially stronger than injectiveness. Therefore we cannot
use the embedding theorem itself but need a new mathematical result. The proof of this
result is similar to the proof of the embedding theorem but makes essential use of the fact
that, in a model with a continuum of types, the space of beliefs, i.e. probability measures
over constellations of the other agents’ types, is infinite-dimensional.

The third contribution of this paper extends our analysis to the universal type space,
i.e. the space that is obtained if agents’ ”types” are defined by their payoff parameters
and their hierarchies of beliefs about other agents’ payoff parameters, beliefs about other
agents’ payoffs and first-order beliefs, beliefs about other agents’ payoffs, first-order and
second-order beliefs... etc. In this setting, an agent’s belief hierarchy determines a proba-
bility measure over the possible constellations of the other agents’ payoff parameters and
belief hierarchies. The induced mapping from ”types” of agent i to beliefs over the other
agent’s ”types” violates the generalized McAfee-Reny condition if the domain is taken
to be the universal types space as a whole, but the restriction of this mapping to a sub-

1For models with finitely many types, as in Crémer and McLean (1988), genericity of full surplus extraction
is automatically obtained if the set of other agents’ types is sufficiently large.

2Barelli (2009) also makes this claim, but Chen and Xiong (2011) show that his analysis involves an error.
3In Gizatulina and Hellwig (2014), we used this theorem to show that injective belief functions are generic

in the space of continuous functions from agents’ types to their beliefs. If a belief function is injective, then,
regardless of how the agent’s payoff parameters depend on his type, his payoff parameters can be inferred
from his beliefs. As was shown by Neeman (2004) and Heifetz and Neeman (2006), this so-called BDP prop-
erty (”beliefs determine preferences”) is necessary for full surplus extraction; see also Section 2.1 below. The
relation between Heifetz and Neeman (2006) and our work is further discussed in Section 4.1 below.
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set of the universal type space may satisfy this condition. We show that the generalized
McAfee-Reny condition holds on a given subset of the universal type space if and only if
it holds for all abstract type spaces that generate constellations of payoff parameters and
belief hierarchies in the given subset of the universal type space. We also show that the set
of compact subsets of the universal type space that satisfy the generalized McAfee-Reny
condition is a residual subset of the set of all compact subsets of the universal type space.

Genericity results are highly sensitive to the topologies that are used. As indicated
above, we do not actually specify any particular topologies but give qualitative conditions
on the topologies. These conditions are met by all the topologies that have been proposed
in the recent literature.4 For example, our genericity result for full surplus extraction in
the universal type space holds regardless of whether the universal type space is given the
product topology, as in Mertens and Zamir (1985), or the uniform strategic topology, as in
Dekel, Fudenberg, and Morris (2006).

Our results contrast with the suggestion of Heifetz and Neeman (2006) that in arbi-
trary infinite type spaces full surplus extraction will only be possible in exceptional cases.
The difference between their analysis and ours is explained in detail in Section 4.1 below.
Despite the difference between their assessment of genericity and ours, we do not disagree
with their assessment that full surplus extraction is unlikely in the real world. However,
in our view, the inability to extract surplus is due to the mechanism designer’s lack of
information about the participants’ belief mappings, rather than the exceptional nature
of belief mappings supporting full surplus extraction. In any given situation, it seems
quite unlikely that a mechanism designer should know the participants’ belief functions
as precisely as he must in order to fully exploit the dependence of beliefs on types for sur-
plus extraction. This lack of information about the participants’ belief functions should
be dealt with on its own terms, for example by a robustness requirement along the lines
of Bergemann and Morris (2005).

As we already mentioned, Chen and Xiong (2013) also have a result showing that full
surplus extraction is generically possible. They use a very different approach, defining
the FSE property as a property of priors and relying on approximations by finite type
spaces, in which the Crémer-McLean result applies. Their approach works for allocation
problems and payment functions that allow for the exclusion of individuals but cannot
be used if exclusion is not feasible, for example if the allocation problem involves the

4For abstract type spaces, see Engl (1995), for the universal type space, see, in particular, Dekel, Fudenberg,
and Morris (2006), and Chen, DiTillio, Faingold, and Xiong (2010).
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provision of a non-excludable public good. Their approach also cannot be used if the
space of beliefs over constellations of other agents’ types has a topology under which the
measures with finite supports are not dense, such as the topology of weak convergence
that is induced if the spaces of the other agents’ types have the uniform strategic topology
of Dekel, Fudenberg, and Morris (2006) and Chen, DiTillio, Faingold, and Xiong (2010).

In the following, Section 2 presents our results for abstract type space. Sections 2.1
and 2.2 introduce the McAfee-Reny condition and the generalized McAfee-Reny condi-
tion for full surplus extraction in naive type spaces and in arbitrary abstract type spaces.
Section 2.3 presents the basic genericity results for these conditions. Section 2.4 provides
a genericity result for common priors generating belief functions that admit full surplus
extraction. Section 2.5 proves the main genericity theorem.

Section 3 presents our results for the universal type space. Following an introduction
of the universal type space in Section 3.1, Section 3.2 discusses the feasibility of full surplus
extraction as a property of compact subsets of the universal type space. Section 3.3 gives
a genericity result for compact subsets that admit full surplus extraction, Section 3.4 a
genericity result for common priors on the universal type space.

Section 4 relates our analysis to that of Heifetz and Neeman (2006), and Chen and
Xiong (2013). Section 5 contains some concluding remarks.

2 Full Surplus Extraction in Abstract-Type-Space Models

2.1 The McAfee-Reny Condition

McAfee and Reny (1992) consider the following problem: Suppose that a game of incom-
plete information between agents i = 1, ..., I has a Bayes-Nash equilibrium in which agent
i obtains the payoff

πi(t1, ..., tI), (1)

where t1, ..., tI are different agents’ types. Is it possible to design incentive-compatible
systems of participation fees that extract this surplus from each agent?5

5In Crémer and McLean (1988) and McAfee and Reny (1992), the function πi indicates the equilibrium
payoff from the truth-telling equilibrium of a second-price auction. As was pointed out to us by a referee,
there is no need to restrict the analysis to payoff functions resulting from dominant-strategy equilibria. It is
however necessary to assume that πi is continuous.

5



For any i, the type ti of agent i is an element of a metric space Ti. Given the type ti,
the belief of agent i if given by a probability measure bi(ti) about the other agents’ types.
The belief bi(ti) is an element of the spaceM(T−i) of probability measures on the product
space T−i := ∏

j 6=i
Tj. Given bi(ti), the agent’s expected payoff from participating in the

game with the equilibrium payoff function πi is given as

π̄i(ti) :=
∫

T−i

πi(t1, ..., tI) bi(dt−i|ti). (2)

McAfee and Reny (1992) consider a system of participation fees with the following
structure. Each agent i can choose one out of Ni fee schedules zi

1, ..., zi
Ni

, which make the
fee he has to pay depend on the other agents’ types. Thus, if agent i chooses the schedule
zi

n, his payment will be zi
n(t−i). Given his type ti and his belief bi(ti), his expected payment

under the fee schedule zn is

z̄i
n(bi(ti)) :=

∫
T−i

zi
n(t−i) bi(dt−i|ti). (3)

and the agent may be presumed to choose the schedule with the smallest expected pay-
ment z̄n(ti). His actual expected payment is thus equal to

Z̄i(bi(ti)) := min(z̄i
1(bi(ti)), ..., z̄i

Ni
(bi(ti))). (4)

The belief function bi : Ti → M(T−i) is said to admit full surplus extraction in the sense
of McAfee and Reny (1992) if and only if, for every continuous function π̄i : Ti → R+ and
every ε > 0, there exists a system zi

1, ..., zi
Ni

of participation fee schedules for agent i such
that the induced expected payment Z̄i(bi(ti)) as given by (3) and (4) satisfies

π̄i(ti)− ε ≤ Z̄i(bi(ti)) ≤ π̄i(ti) (5)

for all ti ∈ Ti.6 Whereas the surplus that can be extracted from agent i depends on the

6Condition (5) provides for approximate rather than full surplus extraction. As explained by McAfee and
Reny, exact surplus extraction is not to be expected. For example, if the belief function bi has a continuous
density, one can find an expected-payoff function π̄i for which exact surplus extraction is not possible, i.e.
there is no system of fee schedules zi

1, ..., zi
Ni

such that min(z̄i
1(ti), ..., z̄i

Ni
(ti)) = π̄i(ti) for all ti. However,

since the choice of ε in (5) is arbitrary, the divergence from full surplus extractions can be made arbitrarily
small. Chen and Xiong (2013) have a different and somewhat weaker notion of approximate, rather than full
surplus extraction. Whereas McAfee and Reny (1992) define the FSE property type by type, Chen and Xiong
(2013) define the FSE property in terms of ex ante expected surplus, as a property of priors assigning small
probabilities to the set of types for which the unrealized or unextracted surplus is significant.
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functions bi and π̄i jointly, the FSE property requires full surplus extraction for all contin-
uous π̄i and therefore pertains to the belief function only.

McAfee and Reny (1992) give a necessary and sufficient condition under which a belief
function has the FSE property. The following theorem extends their result to the present,
more general formulation.7

THEOREM 2.1 Assume that Ti is compact. Assume also that the belief function bi maps Ti con-
tinuously intoM(T−i) whereM(T−i) is endowed with a topology that is at least as fine as the
topology of weak convergence of probability measures. Then bi admits full surplus extraction if
and only if, for every t̄i ∈ Ti and every probability measure µi on Ti,

ϕbi(µi) = ϕbi(δt̄i
) implies µi = δt̄i

, (*)

where δt̄i
is the degenerate measure that assigns all mass to the the singleton {t̄i} and ϕbi(µi) is

defined so that

ϕbi(B|µi) :=
∫

Ti

bi(B|ti)µi(dti) (6)

for any measurable set B ⊂ T−i.

The proof of Theorem 2.1 is sketched in the appendix. The argument is by and large
the same as in McAfee and Reny (1992).

The McAfee-Reny condition (*) can be interpreted as an extended screening condition.
For any belief function bi and any measure µi ∈ M(T−i), the measure ϕbi(µi) indicates the
beliefs that agent i would have about the other agents’ types if he thought that his own
type was distributed as µi. Given the assumption that each agent knows his own type, the
notion of agent i’s forming beliefs about the other agents’ types on the basis that his own
type is distributed as µ may seem strange This notion is natural though if we replace the
type space Ti by the spaceM(Ti) of probability measures on Ti and if we think about an
extended type of agent i as measure µi on Ti. If the measure µi is nondegenerate, the agent
knows his extended type but has only probabilistic beliefs about his own type (and by
implication, his payoff type and his belief type).

7The result in McAfee and Reny (1992) actually assumes that Ti is the unit interval and that, for any ti ∈ Ti,
the belief bi(ti) has a density function fbi

: Ti × T−i → R+ that is jointly continuous in ti and t−i. However,
McAfee and Reny (1992) also note, without proof, that their result holds whenever Ti is a compact metric
space.
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The McAfee-Reny condition is then equivalent to the requirement that the beliefs that
are associated with any degenerate extended type, i.e. any measure on Ti that is concen-
trated at a singleton, must be distinguishable from the beliefs that are associated with any
other extended type. This requirement is stronger than injectiveness of the belief function
on the original type space Ti but weaker than injectiveness of the belief function on the
extended type spaceM(Ti); it does not exclude the possibility that the same beliefs might
be associated with two nondegenerate extended types.8

2.2 The Generalized McAfee-Reny Condition

We now turn to more general incomplete-information models of the form

T = {Ti, θi(.), bi(.)}I
i=1, (7)

where, for any i, Ti is an abstract (Harsanyi) type space, Θi is a metric space, the set of
payoff parameters for agent i, θi : Ti → Θi, is a function that indicates how the payoff
parameters of agent i depend on the abstract type ti, and bi : Ti →M(T−i) is the agent’s
belief function.

The McAfee-Reny model of the preceding section corresponds to the special case
where payoff parameter and abstract types coincide, i.e. where Θi = Ti and θi(.) is the
identity mapping. In this special case, beliefs depend only on payoff parameters.

In the more general formulation, equilibrium payoffs from a game would take the
form

πi(t1, ..., tI) = π∗i (θ1(t1), ..., θI(tI), b1(t1), ...bI(tI)), (8)

and the expected payoff of agent i with belief bi(ti) would take the form

π̄i(ti) = π̄∗i (θi(ti), bi(ti)), (9)

8McAfee and Reny (1992) themselves give an interpretation of (*) that is based on the notion that µ can be
thought of as a prior on Ti. In this case, a violation of (*) would indicate that, relative to the prior µ, agent
i’s learning that his own type is ti does not provide him with any new information about the other agents’
types. This explanation however is problematic if the measure µ does not have ti in its support, for example,
if µ is a degenerate measure that assigns all mass to t′i 6= ti. Moreover, the interpretation of µ as a prior
raises the question of how to interpret the requirement that condition (*) hold for all measures other than the
degenerate measure with unit mass at ti.
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so that the abstract type ti of agent i affects the agent’s expected payoff π̄i(ti) only through
its impact on the payoff parameter θi(ti) and the belief bi(ti).9

If the functions π̄∗i , θi, and bi are continuous, then obviously the expected-payoff func-
tion π̄i in (9) belongs to the class of functions considered in the McAfee-Reny definition of
the FSE property, By Theorem 2.1 therefore, (approximately) full surplus extraction from
agent i is still possible if the belief function bi satisfies the McAfee-Reny condition.

However, if all payoff functions take the form (8), a definition of the FSE property that
requires surplus extraction for all payoff functions of the form (1), is too strong.10 We
therefore introduce a less demanding condition and refer to it as the FSE* property. A pair
(θi(·), bi(·)) of functions relating abstract types to payoff parameters and beliefs has the
FSE* property if and only if, for every continuous function π̄∗i : Θi ×M(T−i) → R+ and
every ε > 0, there exists a system zi

1, ..., zi
Ni

of participation fee schedules for agent i such
that the induced expected payment Z̄i(bi(ti)) as given by (3) and (4) satisfies

π̄∗i (θi(ti), bi(ti))− ε ≤ Z̄i(bi(ti)) ≤ π̄∗i (θi(ti), bi(ti)) (10)

for all ti ∈ Ti.11

Trivially, a pair (θi(·), bi(·)) has the FSE* property if bi(·) has the FSE property. The
converse is true if and only if the map

ti → (θi(ti), bi(ti)) (11)

is injective, or, equivalently, if the type space Ti is non-redundant, i.e. no two distinct
types generate the same pair of payoff parameters and beliefs.

The following result adapts Theorem 2.1 to the present, more general setting.
9Typically the payoff πi(t1, ..., tI) and expected payoff π̄i(ti) also depend on the functions θi(·) and bi(·) as

these functions determine the participants’ choices of strategies in whatever game they are playing. However
this dependence does not matter for the possibility of surplus extraction. Therefore we do not make it explicit.

10For example, if Ti = [0, 1] but all θi(.) and bi(.) map into two different payoff values and three different
belief values, the strong injectivity property of bi : Ti → M(T−i) is not necessary to extract surplus from at
most 6 different pairs of payoffs and beliefs.

11 With arbitrary abstract type spaces, one may have reservations about participation fee schedules zi
n

that condition on the other agents’ abstract types. These types may not be observable and verifiable. To take
account of this objection, one can have the participation fee schedules condition on verifiable messages mj(tj)

that may but need not reflect the other agents’ payoff parameters and/or beliefs. Expected payments then
depend on bi(ti) through the induced distribution bi(ti) ◦ m−1

−i (·) of message vectors, where, for t−i ∈ T−i,
m−i(t.i) = (mj(ti))j 6=i. Our analysis goes through unchanged, except that the assumption below about type
spaces having more than finitely many elements must be replaced by an assumption that the ranges of the
mappings mi, i = 1, ..., I, have more than finitely many elements.
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THEOREM 2.2 Assume that Ti is compact. Assume also that the map (11) maps Ti continuously
into the space Θi ×M(T−i) whereM(T−i) is endowed with a topology that is at least as fine as
the topology of weak convergence of probability measures. Then the pair (θi(·), bi(·)) has the FSE*
property if and only if, for every t̄i ∈ Ti and every probability measure µ on Ti,

ϕbi(µ) = ϕbi(δt̄i
) implies µ ◦ (θi(·), bi(·))−1 = δ(θi(t̄i),bi(t̄i)), (**)

where δ(θi(t̄i),bi(t̄i)) is the degenerate measure that assigns all mass to the the singleton {(θi(t̄i), bi(t̄i))}
and ϕbi(µi) is defined as in Theorem 2.1.

Proof. If Ti is compact, the range R(θi(·), bi(·)) of the continuous function (11), a subset
of the metric space Θi ×M(T−i), is also compact. We may think of R(θi(·), bi(·)) as a
type space in its own right and of the projection from R(θi(·), bi(·)) toM(T−i) as a belief
mapping. One easily verifies that the pair (θi(·), bi(·)) has the FSE* property if and only
if the projection from R(θi(·), bi(·)) toM(T−i) has the FSE property as defined in Section
2.1. By Theorem 2.1, the projection from R(θi(·), bi(·)) to M(T−i) has the FSE property
if and only if, for every pair (θ̄i, b̄i) ∈ R(θi(·), bi(·)) and every probability measure µ∗ on
R(θi(·), bi(·)),

ϕprojM(T−i)
(µ∗) = ϕprojM(T−i)

(δ(θ̄i ,b̄i)
) implies µ∗ = δ(θ̄i ,b̄i)

. (12)

We further note that, by the definition of R(θi(·), bi(·)), a pair (θ̄i, b̄i) belongs to R(θi(·), bi(·))
if and only if there exists t̄i ∈ Ti such that (θ̄i, b̄i) = (θi(t̄i), bi(t̄i)), and a measure µ∗

belongs to M(R(θi(·), bi(·))) if and only if there exists µ ∈ M(Ti) such that µ∗ = µ ◦
(θi(·), bi(·))−1. Moreover, (θ̄i, b̄i) = (θi(t̄i), bi(t̄i)) and µ∗ = µ ◦ (θi(·), bi(·))−1 imply

ϕprojM(T−i)
(δ(θ̄i ,b̄i)

) = ϕbi(δt̄i
) and ϕprojM(T−i)

(µ∗) = ϕbi(µ)

and, hence,

ϕprojM(T−i)
(µ∗) = ϕprojM(T−i)

(δ(θ̄i ,b̄i)
) if and only if ϕbi(µ) = ϕbi(δt̄i

).

Thus, (12) is equivalent to condition (**).

We refer to condition (**) as the generalized McAfee-Reny condition. This condition is
obviously weaker than the McAfee-Reny condition itself. The following corollary pro-
vides a decomposition of condition (**) that makes the underlying structure more trans-
parent.
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COROLLARY 2.3 Under the assumptions of Theorem 2.2, the function (θi(·), bi(·)) from Ti to
Θi ×M(T−i) has the FSE* property if and only if the following two conditions hold:

(a) for every t̄i ∈ Ti and every probability measure µ on Ti,

ϕbi(µ) = ϕbi(δt̄i
) implies ϕbi(µ) ◦ b−1

i = δbi(t̄i),

i.e. all types ti in the support of µ have the same beliefs bi(ti) = bi(t̄i);
(b) for any two types ti and t′i in Ti

θi(ti) 6= θi(t′i) implies bi(ti) 6= bi(t′i).

Proof. Suppose that the pair (θi(·), bi(·)) satisfies (a) and (b). If t̄i ∈ Ti and µ ∈ M(Ti) are
such that ϕbi(µ) = ϕbi(δt̄i

), then (a) implies that all types in in the support of µ have beliefs
equal to bi(t̄i). By (b), it follows that all types in the support of µ have payoff parameters
equal to θi(t̄i). The measure µ is thus concentrated on the set of types with payoff-belief
pairs equal to (θi(t̄i), bi(t̄i)). Thus, if (a) and (b) hold, the generalized McAfee-Reny con-
dition is satisfied.

Conversely, if the generalized McAfee-Reny condition holds, (a) follows immediately.
To see that (b) must also hold, suppose that there exist two types ti and t′i in Ti such
that θi(ti) 6= θi(t′i) and bi(ti) = bi(t′i). Let µ = 1

2 δti +
1
2 δt′i

. Then ϕbi(µ) = ϕbi(δti) but
µ ◦ (θi(·), bi(·))−1 6= δ(θi(t̄i),bi(t̄i)), i.e. the generalized McAfee-Reny condition does not
hold.

Condition (b) corresponds to what Neeman (2004) and Heifetz and Neeman (2006)
call the BDP property - ”beliefs determine preferences”: If one knows an agent’s beliefs, then
one can infer the agent’s payoff parameters. The necessity of this property for full surplus
extraction was originally established by Neeman (2004) and Heifetz and Neeman (2006).

Condition (a) can be interpreted as a screening condition, like the McAfee-Reny con-
dition but somewhat weaker. Whereas the McAfee-Reny condition requires that the belief
bi(t̄i) of any type t̄i ∈ Ti must be distinguishable from the beliefs that are associated with
any extended type, the generalized McAfee-Reny condition only requires that bi(t̄i) must
be distinguishable from any extended type that assigns positive probability to payoff pa-
rameters different from θi(t̄i).
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2.3 Genericity of the FSE and FSE* Properties

We study the genericity of full surplus extraction in terms of the set of belief functions hav-
ing the FSE property. Because a pair (θi(·), bi(·)) of functions mapping abstract types into
payoff parameters and beliefs has the FSE* property whenever bi(·) has the FSE property,
any genericity result for belief functions bi that have the FSE property is easily translated
into a genericity result for pairs (θi(·), bi(·)) that have the FSE* property.

We consider belief functions bi : Ti → M(T−i) that are continuous. The meaning of
this assumption depends on the topology that is imposed onM(T−i), the space of prob-
ability measures on T−i := ∏

j 6=i
Tj with the Borel σ-algebra B(T−i) = ∏

j 6=i
B(Tj). In principle,

the topology should be specified so as to properly reflect the continuity properties of the
functions and correspondences that one is interested in. Given the restriction to continu-
ous payoff functions πi and given the use of continuous participation fee schedules zi

n, a
natural candidate for a topology onM(T−i) is the topology of weak convergence of prob-
ability measures, under which the mappings from measures into integrals of bounded
continuous functions are continuous.12 With this topology, participants’ objective func-
tions can usually be taken to be continuous and behaviour correspondences upper hemi-
continuous in their beliefs.

Use of the topology of weak convergence has however been criticized because this
topology is too coarse to provide for what Dekel, Fudenberg, and Morris (2006) refer to
as lower hemi-continuity, i.e. the property that the minimal ε ≥ 0 for which strategies
are interim ε-rationalizable should depend continuously on their types.13 This criticism

12As is well known, if T−i is a separable metric space, M(T−i) can be identified with the space of con-
tinuous linear functionals on the space C(T−i) of bounded continuous real-valued functions on T−i, i.e. the
dual of C(T−i), and the topology of weak convergence coincides with the weak* topology. If T−i is not sep-
arable, the dual of C(T−i) corresponds to the space rba(T−i) of regular (finitely) additive set functions on
(T−i,B(T−i)), which is larger thanM(T−i). In this case, the topology of weak convergence coincides with
the subspace topology that is induced by the weak* topology on rba(T−i). See, e.g., Parthasarathy (1967), p.
35.

13See Dekel, Fudenberg, and Morris (2006), Chen, DiTillio, Faingold, and Xiong (2010). Their criticism of
the weak* topology is formulated in the context of the universal type space, but applies in abstract type space
as well. As an example, consider the following version of Rubinstein (1989) e-mail game. Let I = 2, and set
T1 = T2 = {0, 1

2 , 2
3 , ..., 1}. Suppose that each agent has action set {0, 1} and that the payoffs are given as (0, 0)

if both agents choose the action ai = 0 (1, 1) if t1 > 0 and both agents choose the action ai = 1, and (−x,−x)
in all other cases, i.e. if t1 = 0 or if t1 > 0 and ai 6= a−i.

Specify a belief function b1 for agent 1 so that, for some α ∈ (0, 1) and n = 1, 2, ..., b1(
n

n+1 ) = αδ(n−1)/n +

(1− α)δn/(n+1) and b1(1) = δ1, where for any t ∈ [0, 1], δt is the degenerate measure that assigns all proba-

12



would call for the use of a finer topology.
We do not actually specify a particular topology onM(T−i) but assume that the topol-

ogy onM(T−i) is metrizable by a metric that is a convex function onM(T−i) ×M(T−i).
This assumption includes the topology of weak convergence of probability measures,
which is metrizable by the metric

ρBL(β, β̂) = sup
f

∣∣∣∣∫T−i

f (t−i)β(dt−i)−
∫

T−i

f (t−i)β̂(dt−i)

∣∣∣∣ (13)

where the supremum is taken over the set of bounded Lipschitz continuous functions
f : T−i → R for which

sup
t−i∈T−i

| f (t−i)|+ sup
t−i∈T−i
t̂−i∈T−i

∣∣ f (t−i)− f (t̂−i)
∣∣

d(t−i, t̂−i)
≤ 1,

where d is the metric on T−i.14 The function ρBL is obviously convex.
Metrizability by a convex metric is also satisfied by any topology that can be induced

by a metric of the form
ρ(β, β̂) =

∥∥β− β̂
∥∥ ,

where ‖·‖ is a norm on the space of signed measures on T−i. An example is the metric

ρTV(β, β̂) = sup
B∈B(T−i)

∣∣β(B)− β̂(B)
∣∣ , (14)

which identifies the distance between two measures β and β̂ with the total variation of the
signed measure β− β̂. The topology that induced by the total-variation metric is immune

bility mass to the singleton {t}. Similarly, specify a belief function b2 for agent 2 so that, for some β ∈ (0, 1)
and n = 1, 2, ..., b2(

n
n+1 ) = βδn/(n+1) + (1− β)δ(n+1)/(n+2) and b2(1) = δ1.

If the measures b1(t1), t1 ∈ T1, are absolutely continuous with respect to some fixed measure λ on T2, then,
for n = 1, 2, ..., the density of b1(

n
n+1 ) with respect to λ satisfies fb1

( n
n+1 |

n
n+1 ) = (1− α)/λ({ n

n+t}). Because
λ is a probability measure, it must be the case that λ({ n

n+t}) goes to zero as n goes out of bounds. Hence
fb1

( n
n+1 |

n
n+1 ) fails to converge to fb1

(1|1) = 1/λ({1}) as n goes out of bounds and n
n+t converges to one.

One easily verifies that, if x is sufficiently large, then for each agent i, the action ai = 1 is interim rational-
izable if ti = 1 but not if ti < 1. Indeed, if ε > 0 is sufficiently small, then ai = 1 is not even ε-rationalizable if
ti < 1. We return to the issue in the context of the universal type space in Section 3.

14See Dudley (2002), p. 395.
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to the criticism of Dekel, Fudenberg, and Morris (2006).15 The proof that the functions ρw

and ρTV are convex is straightforward and is left to the reader.
Given the topology on M(T−i), we write C(Ti,M(T−i)) for the space of continuous

belief functions from Ti to M(T−i), and we endow this space with the topology of uni-
form convergence. We also write E∗(Ti,M(T−i)) for the set of those belief functions
in C(Ti,M(T−i)) that satisfy the McAfee-Reny condition (*) for full surplus extraction.
Throughout the remainder of the paper, we impose the following assumption.

Assumption Each of the type spaces Ti has more than finitely many elements.

If the type spaces are finite sets and T−i has at least as many elements as Ti, the analysis
of Crémer and McLean (1988) implies that E∗(Ti,M(T−i)) is actually an open and dense
subset of C(Ti,M(T−i)).16 With infinite type spaces, we only obtain residualness and
denseness.

THEOREM 2.4 Assume that the metric space Ti is compact. Assume also that the topology on
M(T−i) is at least as fine as the topology of weak convergence and is induced by a metric that is
a convex function onM(T−i) ×M(T−i). Then the set E∗(Ti,M(T−i)) of continuous functions
from Ti toM(T−i) that have the FSE property is a residual subset of the space C(Ti,M(T−i)), i.e.,
E∗(Ti,M(T−i)) contains a countable intersection of open and dense subsets of C(Ti,M(T−i)). If
the metric spaceM(T−i) is complete, E∗(Ti,M(T−i)) is itself dense in C(Ti,M(T−i)).

Theorem 2.4 is the major mathematical contribution of this paper. Its proof is given at
the end of our discussion of abstract type spaces, in Section 2.5 below.

To complete the discussion here, we note that, by the arguments given above, the set
C(Ti, Θi)×E∗(Ti,M(T−i)) is contained in a subset of the set E∗∗(Ti, Θi×M(T−i)) of pairs
(θi(·), bi(·)) that have the FSE* property. Thus Theorem 2.4 immediately yields:

15Engl (1995) shows that, if beliefs have the topology of set-wise convergence, then the Nash equilibrium
correspondence has the required lower semi-continuity property. Engl’s arguments are easily extended to the
correspondence of interim ε-rationalizable actions. Since the topology of setwise convergence is coarser than
the topology induced by the total-variation metric, the lower semi-continuity property also holds if beliefs
are endowed with the latter topology.

16For the case of finite type sets, Crémer and McLean (1988) also showed that full surplus extraction
through a dominant-strategy mechanism can be achieved if and only if the matrix of posterior beliefs of
all types of each agent has the rank ni where ni is the cardinality of the type space of agent i.

14



COROLLARY 2.5 Under the assumptions of Theorem 2.4, the set E∗∗(Ti, Θi ×M(T−i)) of con-
tinuous functions from Ti to Θi ×M(T−i) that have the FSE* property is a residual subset of
the space C(Ti, Θi ×M(T−i)), i.e. E∗∗(Ti, Θi ×M(T−i)) contains a countable intersection of
open and dense subsets of C(Ti, Θi ×M(T−i)). If the metric space Θi ×M(T−i) is complete,
E∗∗(Ti, Θi ×M(T−i)) is itself dense in C(Ti, Θi ×M(T−i)).

2.4 Genericity of Common Priors with the FSE Property

Whereas the analysis so far has focused on a single agent, we now consider the scope
for surplus extraction from all participants together. We restrict our analysis to the case
where the belief functions bi, i = 1, ..., I, can be interpreted as regular conditional dis-

tributions that are derived from a common prior on the space T :=
I

∏
i=1

Ti of vectors of

all agents’ types. As before, for any i, we allow M(T−i) to have any topology that is at
least as fine as the weak* topology and is induced by a metric that is a convex function
on M(T−i) ×M(T−i). The belief function bi is again treated as an element of the space
C(Ti,M(T−i)) of continuous functions from Ti toM(T−i). We consider priors that have
marginal distributions with full supports, T1, ..., TI , and that admit continuous regular
conditional distributions for t−i given ti, for all i. The set of such priors is denoted as
Mc

f (T).

REMARK 2.6 For any µ ∈Mc
f (T) and any i, there exist a unique µi(µ) ∈ M(Ti) and a unique

bi(µ) ∈ C(Ti,M(T−i)) such that, under the prior µ, µi(µ) is the marginal distribution on Ti and
bi(µ) is a regular conditional distribution for t−i given ti.

Proof. Fix µ ∈ Mc
f (T). Existence and uniqueness of the marginal distributions µi(µ),

i = 1, ..., I are standard. The definition ofMc
f (T) implies that, for any i, there also exists

a function bi(µ) ∈ C(Ti,M(T−i)) that is a regular conditional distribution for t−i given
ti. Consider any other function b̂i in C(Ti,M(T−i)). If b̂i 6= bi(µ), there exists ti ∈ Ti such
that b̂i(ti) 6= bi(ti, µ). Because b̂i and bi(µ) are both continuous functions, it follows that
b̂i(t′i) 6= bi(t′i, µ) for all t′i in an open neighbourhood of ti. Because µ has full support, ti

belongs to the support of µi(µ), and we must have µ({t′i ∈ Ti | b̂i(t′i) 6= bi(t′i, µ)}) > 0.
Since regular conditional distributions induced by a given prior coincide almost surely, it
follows that b̂i cannot be a regular conditional distribution for t−i given ti under the prior
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µ, i.e., bi(µ) is the only continuous function that is a regular conditional distribution for
t−i given ti under the measure µ.

For simplicity, we focus on the FSE property rather than the FSE* property. Given the
mappings µ → bi(µ) from Mc

f (T) to C(Ti,M(T−i)), i = 1, ..., I, we say that a prior µ

admits full surplus extraction if and only if each of the belief functions bi(µ), i = 1, ..., I, has
the FSE property. We refer to such priors as FSE priors and denote the set of FSE priors on
T as F (T). The following theorem establishes the genericity of FSE priors inMc

f (T).

THEOREM 2.7 Assume for each i, that Ti is a compact metric space and that the topology on
M(T−i) is at least as fine as the topology of weak convergence and is induced by a metric that
is a convex function onM(T−i)×M(T−i). LetMc

f (T) be endowed with the coarsest topology
under which each of the mappings µ → µi(µ), µ → bi(µ), i = 1, ..., I, is continuous. Then the
set F (T) of FSE priors is a residual and dense subset ofMc

f (T), i.e., F (T) contains a countable
intersection of open and dense subsets ofMc

f (T). If the spacesM(T−i) are complete, the setF (T)
is itself dense.

Proof. For i = 1, ..., I, let Fi(T) ⊂ Mc
f (T) be the set of priors µ for which the belief

function bi(µ) belongs to the set E∗(Ti,M(T−i)) of functions in C(Ti,M(T−i) that satisfy
the McAfee-Reny condition for full surplus extraction. Clearly,

F (T) =
I⋂

i=1

Fi(T). (15)

To prove that F (T) is a residual subset ofMc
f (T), it is therefore enough to show that each

of the sets Fi(T), i = 1, ..., I, contains a countable intersection of open and dense subsets
ofMc

f (T).
We claim that, with the specified topology onMc

f (T), for any i, the map µ → bi(µ) is
open as well as continuous. To see this, it suffices to note that this map is the composition

of the map µ → {µj(µ), bj(µ)}I
j=1 from Mc

f (T) to
I

∏
j=1

[M(Ti) × C(Tj,M(T−j))] and the

projection from
I

∏
j=1

[M(Ti)×C(Tj,M(T−j))] to C(Ti,M(T−i)). The topology onMc
f (T) is

specified so that the open subsets ofMc
f (T) are exactly those sets V for which the image

sets {{µj(µ), bj(µ)}I
j=1|µ ∈ V} are open in

I
∏
j=1

[M(Ti) × C(Tj,M(T−j))]. Therefore the

map µ→ {µj(µ), bj(µ)}I
j=1 is open as well as continuous. Since the projection is also open

and continuous, it follows that, for any i, the map µ→ bi(µ) is open and continuous.
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For any i, Theorem 2.4 implies that the set E∗(Ti,Mλ(T−i)) contains a sequence {W i
k}∞

k=1

of open and dense subsets of C(Ti,M(T−i). For any i and k, define

Vi
k := {µ ∈ Mc

f (T)|bi(µ) ∈W i
k}. (16)

By the definition of Fi(T), Vi
k ⊂ Fi(T) for all k. Hence, ∩∞

k=1Vi
k ⊂ Fi(T). Because W i

k is
open and the function µ → bi(µ) is continuous, Vi

k is also open for each k. Because the
function ν→ bi(·, ν) is open, the set

{bi(µ) ∈ C(Ti,M(T−i)|µ ∈ V∗}

is open whenever V∗ is an open subset of Mc
f (T). Since W i

k is dense, it follows that the
intersection

W i
k ∩ {bi(µ) ∈ C(Ti,M(T−i)|µ ∈ V∗}

is non-empty, and therefore also the intersection Vi
k ∩ V∗ is non-empty whenever V∗ is

open. Thus Vi
k is dense as well as open inMc

f (T). It follows that Fi(T) contains a count-
able intersection of open and dense subsets ofMc

f (T) By (15) therefore F (T) is a residual
subset ofMc

f (T).
For any i, if M(T−i) is complete, then, by Theorem 2.4, E∗(Ti,M(T−i)) is dense in

C(Ti,M(T−i)). Trivially also,M(Ti)×E∗(Tj,M(T−j)) is dense inM(Ti)×C(Tj,M(T−j)).
Because the map µ → (µi(µ), bi(µ) fromMc

f (T) toM(Ti)× C(Tj,M(T−j)) is open and
continuous, it follows that Fi(T) is dense inMc

f (T). Because a finite intersection of dense
sets is itself dense, it follows that, if all the spacesM(T−i) are complete, then F (T) is also
dense inMc

f (T).

In Theorem 2.7, the topology onMc
f (T) depends on the topologies that are imposed

on M(T−i), i = 1, ..., I. As in Theorem 2.4, these topologies are not actually specified;
only a requirement of metrizability by a convex metric is imposed. As mentioned, this
convexity requirement is satisfied, e.g., be the weak* topology and by the total-variation
topology.

One easily verifies that, if M(T−i) is endowed with the weak* topology, then the
topology onMc

f (T) that is defined by the continuity requirement in Theorem 2.7 is also
the weak* topology. However, if M(T−i) is endowed with the total-variation topology,
the topology on Mc

f (T) that is defined by the continuity requirement in Theorem 2.7
is obviously finer than the weak’ topology. Because the ranges M(Ti) of the mappings
µ → µi(µ), i = 1, ..., I, have the weak* topology, rather than the total variation topology,
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the topology on Mc
f (T) that is defined by the continuity requirement in Theorem 2.7 is

also coarser than the total-variation topology onMc
f (T) itself.17

Given that the FSE property for belief functions is stronger than the FSE* property
for pairs of payoff and belief functions, Theorem 2.7 can be used to obtain a genericity
result for the FSE* property in abstract type spaces with common priors. The argument is
similar to the one that was used to derive Corollary 2.5 from Theorem 2.4. The details are
left to the reader.

2.5 Proof of Theorem 2.4

The proof of Theorem 2.4 involves ideas from the topological theory of embeddings. The
classical embedding theorem for continuous functions asserts that, if X and Y are finite-
dimensional compact metric spaces and if the dimension of Y is strictly greater than twice
the dimension of X, then the set of embeddings, i.e. of continuous injective functions, is
a residual subset of the set of continuous functions from X to Y when the space of these
functions has the topology of uniform convergence.18

The McAfee-Reny condition is stronger than injectivity: If the measure µi in condition
(*) is itself degenerate, i.e., if µi = δti for some ti ∈ Ti, then condition (*) specializes to the
requirement that

ϕbi(δti) = ϕbi(δt̄i
) implies δti = δt̄i

,

which implies that the mapping bi is injective. The set E∗(Ti,M(T−i)) is thus a subset of
the set E(Ti,M(T−i)) of continuous injective functions from Ti to M(T−i). Theorem 2.4
implies that E(Ti,M(T−i)) is a residual subset of C(Ti,M(T−i)).

Because the McAfee-Reny condition is stronger than injectivity, we cannot use the
embedding theorem itself but need a new argument. The argument involves the same
ideas as the proof of the classical embedding theorem, but makes essential use of the fact
that the spaceM(T−i) is infinite-dimensional. Even if the domain Ti of the belief functions

17To see this point, consider the following example, which is adapted from the Supplementary Material to
Chen and Xiong (2013). Let I = 2, T1 = [0, 1] ∪ {τ1

1 , τ2
1 }, T2 = [0, 1]. Consider the subset P̂ of measures in

Mc
f (T) that take the form (1− 2α)µ + αδ(τ1

1 ,τ2)
+ αδ(τ2

1 ,τ2)
for some µ ∈ Mc

f (T) and α ∈ (0, 1
2 ), where τ2 is an

arbitrary but fixed element of T2. One easily verifies that, ifMc
f (T) has the total variation topology, then P̂

is open and dense inMc
f (T). Moreover, if π1(τ

1
1 , τ2) 6= π1(τ

2
1 , τ2), priors in P̂ do not have the FSE property.

18See, e.g., Hurewicz and Wallman (1941). In Gizatulina and Hellwig (2014), we used this theorem to show
that the set of belief functions having the BDP property is residual in C(Ti,M(T−i)).

18



of agent i is a finite-dimensional set, the conclusion of the theorem can only be obtained if
the range is infinite-dimensional.19

LetM(Ti) be the space of probability measures on Ti, endowed with the topology of
weak convergence of probability measures. Because Ti is a compact metric space, Theo-
rem 6.5 in Parthasarathy (1967) implies thatM(Ti) of is also a compact metric space. We
write d for the metric onM(Ti).

The metric on M(T−i) is denoted by ρ. The convexity assumption in the theorem
implies that, for any index set L, any two mappings ` → β(`), ` → β̂(`) from L to
M(T−i), and any measure α on L, we have

ρ

(∫
L

β(`)α(d`),
∫
L

β̂(`)α(d`)
)
≤
∫
L

ρ(β(`), β̂(`))α(d`). (17)

For any ε > 0, we define Gε as the subset of C(Ti,M(T−i)) that contains all mappings
bi with the property that, for any ti ∈ Ti and all µ ∈ M(Ti),

ϕbi(δti) = ϕbi(µ) implies d(µ, δti) < ε, (18)

where d(µ, δti) is the distance between the measures µ and δti

Claim 1: E∗(Ti,M(T−i)) = ∩∞
k=1G1/k.

Proof. If bi ∈ G1/k for all k, then for any ti ∈ Ti and all µ ∈ M(Ti), ϕbi(δti) = ϕbi(µ) implies
0 ≤ d(µ, δti) ≤ 1/k, hence d(µ, δti) = 0 and µ = δti . Conversely, if bi ∈ E∗(Ti,M(T−i)),
then, by (*), ϕbi(δti) = ϕbi(µ) implies d(µ, δti) = 0 < 1/k for all ti ∈ Ti, all µ ∈ M(Ti), and
hence bi ∈ G1/k for all k.

Claim 2: For any ε > 0, the set Gε is an open subset of C(Ti,M(T−i)).
Proof. Fix any bi ∈ Gε, and let

Γ := {(ti, µ) ∈ Ti ×M(Ti)|d(µ, δti) ≥ ε}

and
η := min

(ti ,µ)∈Γ
ρ(ϕbi(δti), ϕbi(µ)). (19)

Because Ti andM(Ti) are compact, the minimum in (19) is well defined, i.e., there exists
(ti, µ) ∈ Γ such that d(ϕbi(δti), ϕbi(µ)) = η. Since bi ∈ Gε and, for (ti, µ) ∈ Γ, d(µ, δti) ≥ ε,
it follows that η > 0.

19In Appendix B, we show that, for any n, there is a function from [0, 1] to [0, 1]n that violates condition (*)
and cannot be approximated by functions from [0, 1] to [0, 1]n that satisfy condition (*).
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Now let b̄i be any mapping in C(Ti,M(T−i)) such that

ρ(b̄i(ti), bi(ti)) <
η

2
(20)

for all ti ∈ Ti, and consider the distance ρ(ϕb̄i
(µ), ϕbi(µ)) for any µ ∈ M(Ti). By (6) and

(17), with L = Ti, β(·) = b̄i(·), β̂(·) = bi(·), and α = µ, we have

ρ(ϕb̄i
(µ), ϕbi(µ)) = ρ

(∫
Ti

b̄i(ti)µ(dti),
∫

Ti

bi(ti)µ(dti)

)
≤

∫
Ti

ρ(b̄i(ti), bi(ti))µ(dti).

By (20), it follows that
ρ(ϕb̄i

(µ), ϕbi(µ)) <
η

2
. (21)

Thus, if ti and µ are such that ϕb̄i
(δti) = ϕb̄i

(µ), it must be the case that ρ(ϕbi(δti), ϕbi(µ)) <

η. By the definition of η, it follows that d(µ, δti) < ε, which proves that b̄i is also an element
of Gε. Thus, along with bi, any element of the open η

2 –ball around bi is an element of Gε.
The claim follows immediately.

Claim 3: For any ε > 0, the set Gε is a dense subset of C(Ti,M(T−i)).
Proof. Let ε > 0 be given. Fix any bi ∈ C(Ti,M(T−i)) and any η > 0. We will show that
there exists a function b̄i ∈ Gε such that

ρ(b̄i(ti), bi(ti)) < η (22)

for all ti ∈ Ti.
Relying on the fact that the continuous function bi is uniformly continuous on the

compact set Ti, let ζ ∈ (0, ε) be such that, for any ti and t̄i in Ti, d(δti , δt̄i
) < ζ implies

ρ(bi(ti), bi(t′i)) < η
2 . Because Ti is a metric space, there exists a covering U1, U2, ... of Ti

such that
d(Uk) < ζ (23)

and
ρ(bi(Uk)) <

η

2
(24)

for all k. where d(Uk) and ρ(bi(Uk)) are defined as the suprema of d(ti, t̄i) and of ρ(bi(ti), bi(t̄i)),
respectively, over ti, t̄i in Uki.

Because Ti is compact, the covering U1, U2, ... of Ti has a finite subcovering, which we
denote as U1, U2, .., UK. Given the sets U1, U2, .., UK, we may select measures β1, ..., βK in
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M(T−i) such that, for k = 1, ..., K, ρ(βk, bi(t̄i)) < η
2 for some t̄i ∈ Uk, and, moreover, for

some continuous function g : T−i → [0, 1]K, the integrals∫
T−i

g(t−i)dβk(t−i), k = 1, ..., K, (25)

are linearly independent. The existence of such β1, ..., βK and g follows from the fact that
T−i has more than K distinct elements.20

For each ti ∈ Ti and k = 1, 2, ..., K, set

wk(ti) = min
t̄′i∈Ti\Uk

d(ti, t̄i)

and
αk(ti) =

wk(ti)

∑K
`=1 w`(ti)

.

This is well defined because for each ti ∈ Ti, there exists at least one ` such that ti ∈ U`

and therefore w`(ti) > 0 and ∑K
`=1 w`(ti) > 0.

We now define b̄i : Ti →M(T−i) by setting

b̄i(ti) =
K

∑
k=1

αk(ti)βk (26)

for any ti ∈ Ti. The functions wk and αk are obviously continuous. Therefore b̄i ∈ C(Ti,M(T−i)).
Moreover, for any ti ∈ Ti and k = 1, ..., K, αk(ti) > 0 implies ti ∈ Uk and hence ρ(βk, bi(ti)) <
η
2 . From using (17) with L = {1, ..., K}, β(k) = βk, and β̂(k) = bi(ti), k = 1, ..., K, it follows

20To see this, observe that, since T−i has infinitely many elements, there exist K distinct elements t1
−i, ..., tK

−i
of T−i with open neighbourhoods B1, ..., BK that are disjoint. By Urysohn’s lemma, there exist continuous
functions gk : T−i → [0, 1], k = 1, 2, ...K, such that for each k, gk(tk

−i) = 1 and gk(t−i) = 0 for t−i /∈ Bk. We
write g = (gk)K

k=1.
Select measures β0

1, ..., β0
K in M(T−i) such that, for k = 1, ..., K, ρ(β0

k, bi(t̄i)) <
η
2 for some t̄i ∈ Uk. If

the vectors
∫

T−i
g(t−i)dβ0

k(t−i), k = 1, ..., K, are linearly independent, set βk = β0
k for k = 1, ..., K. If the

vectors
∫

T−i
g(t−i)dβ0

k(t−i), k = 1, ..., K, are linearly dependent, set βk = (1 − ε)β0
k + εδtk

−i
for k = 1, ..., K,

where, for each k, δtk
−i

is the degenerate measure with unit mass at tk
−i and ε > 0 is sufficiently small so that

ρ(βk, bi(t̄i)) <
η
2 for all k. If ε is chosen not to be an eigenvalue of the matrix (

∫
T−i

g(t−i)dβ0
k(t−i))

K
k=1, the

vectors
∫

T−i
g(t−i)dβ0

k(t−i), k = 1, ..., K, are linearly independent.
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that

ρ(b̄i(ti), bi(ti)) = ρ

(
K

∑
k=1

αk(ti)βk, bi(ti)

)

≤
K

∑
k=1

αk(ti)ρ (βk, bi(ti))

<
K

∑
k=1

αk(ti)

[
inf

t̄i∈Uk

ρ(βk, bi(t̄i)) +
η

2

]
< η, (27)

uniformly in ti, which establishes (22). In the derivation for (27), the last inequality follows
because βk had been chosen so that ρ(βk, bi(t̄i)) <

η
2 for some t̄i ∈ Uk; the last inequality

but one follows from (24) and the triangle inequality.
It remains to be shown that b̄i ∈ Gε. For this purpose, consider any ti ∈ Ti and µ ∈

M(Ti), and suppose that
ϕb̄i

(δti) = ϕb̄i
(µ).

By construction,

ϕb̄i
(δti) = b̄i(ti) =

K

∑
k=1

αk(ti) βk

and

ϕb̄i
(µ) =

∫
Ti

b̄i(t̄i)µ(dt̄i) =
K

∑
k=1

∫
Ti

αk(t̄i)βk µ(dt̄i).

Thus, ϕb̄i
(δti) = ϕb̄i

(µ) implies

K

∑
k=1

αk(ti) βk =
K

∑
k=1

∫
Ti

αk(t̄i)βk µ(dt̄i)

For the integrals in (25), we therefore obtain

K

∑
k=1

αk(ti)
∫

T−i

g(t−i)dβk(t−i) =
K

∑
k=1

∫
Ti

αk(t̄i)
∫

T−i

g(t̄−i)βk(dt̄−i) µ(dt̄i)

=
K

∑
k=1

∫
Ti

αk(t̄i)
∫

T−i

g(t̄−i)µ(dt̄i) βk(dt̄−i),

and hence,
K

∑
k=1

[
αk(ti)−

∫
αk(t̄i)µ(dt̄i)

] ∫
g(t−i)βk(dt−i) = 0. (28)
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Because the integrals
∫

T−i
g(t−i)dβk(t−i), k = 1, ..., K, are linearly independent, equation

(28) implies that

αk(ti)−
∫

αk(t̄i)µ(dt̄i) = 0 (29)

for all k. For any k, therefore, αk(ti) = 0 implies
∫

αk(t̄i)µ(dt̄i) = 0. Since αk(ti) = 0 if
ti /∈ Uk and αk(t̄i) > 0 if t̄i ∈ Uk, it follows that, if ti /∈ Uk, then µ(Uk) = 0. Thus, the
measure µ must be concentrated on the union of the sets Uk that contain ti. By (23), any
one of these sets, and therefore their union, is contained in Bζ(ti), the open ζ-ball around
ti. Thus, µ(Bζ(ti)) = 1. It follows that d(δti , µ) < ζ. Since ζ < ε, we infer that b̄i ∈ Gε.
Claim 3 is thereby established.

The first statement of the theorem follows from Claims 1 – 3.
Claim 4: IfM(T−i) is complete, E∗(Ti,M(T−i)) is dense in C(Ti,M(T−i)).

Proof. IfM(T−i) is complete, C(Ti,M(T−i)) is also a complete metric space21 and there-
fore a Baire space. The claim thus follows from the first statement of the theorem.

Above we noted that the metrics ρw and ρTV for the weak* topology and the total-
variation topology on M(T−i) both satisfy the convexity assumption of Theorem 2.4.
By standard arguments, in both topologies, M(T−i) is also complete.22 Thus, with both
topologies, E∗(Ti,M(T−i)) is also dense in C(Ti,M(T−i)).

3 Full Surplus Extraction in Universal-Type-Space Models

3.1 The Universal Type Space

We now extend our analysis to the Θ-based universal type space, where Θ =
I

∏
i=1

Θi and

Θ1, .., ΘI are compact metric spaces of payoff parameters for agents 1, .., I. We restrict our
analysis to the special case where each agent i knows his own basic type ti and his own
beliefs of different orders.

For i = 1, ..., I, define sets X0
i , X1

i , ... inductively by setting

X0
i = Θ−i, X1

i = Θ−i ×M(X0
−i), (30)

21See, e.g., Aliprantis and Border (2007), p. 74.
22For the weak* topology, it suffices to note that, because T−i is compact, M(T−i) is also compact and

hence complete; see Theorem 6.5 in Parthasarathy (1967). For the total-variation topology, see Dunford and
Schwartz (1988), p. 161.
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and, for any n ≥ 2,

Xn
i =

{
(θ−i, µ1

−i, ...µn
−i) ∈ Θ−i ×M(X0

−i)...×M(Xn−1
−i ) : margXk−1

−i
µk
−i = µk−1

−i , k = 2, ..., n
}

.
(31)

The Θ-based universal type space of agent i is defined as

Ui =
{
(θi, µ1

i , µ2
i , ...) ∈ Θi ×M(X0

i )×M(X1
i )× ... : margXn−1

i
µn

i = µn−1
i , n = 2, 3...

}
.

(32)
For a typical element

ui = (θi, µ1
i , µ2

i , ...), (33)

of Ui, θi indicates the payoff parameters of agent i and µ1
i , µ2

i , ... indicates the hierarchy
of the agent’s beliefs about the other agents’ parameters and the other agents’ beliefs of
different orders.

To consolidate the hierarchy of beliefs of different orders into a single belief about the
other agent’s types, the spaces Uj, j 6= i, of other agents’ types must be endowed with a
measurable structure. Following Mertens and Zamir (1985), we note that, for any j, the
space Uj is a subspace of the product

Ūj = Θj ×M(X0
j )×M(X1

j )× ... (34)

Because, for each j, Θj is a compact metric space, for each j, X0
j = Θ−j is also a compact

metric space and so is X0
−j as well asM(X0

−j) when endowed with the weak* topology.
By a straightforward induction, it follows that, for each j and n = 2, 3, ..., Xn

j and Xn
−j are

compact metric spaces and so isM(Xn
−j) when endowed with the weak* topology. Given

these topologies and the associated Borel σ-algebras B(Θj), B(M(X0
−j)), B(M(X1

−j)),
B(M(X2

−j)) on the factors of the product in (34), we write B∞(Ūj) for the product σ-
algebra on Ūj and

B∞(Uj) := {B ⊂ Uj|B ∈ B(Ūi)} (35)

for the induced σ-algebra on Uj. Taking products again, we also writeB∞(Ui) for the prod-
uct σ-algebra on U−i = ∏

j 6=i
Uj and we writeM∞(U−i) for the set of probability measures

on (U−i,B∞(U−i)).
For any ui = (θi, µ1

i , µ2
i , ...) ∈ Ui, the consistency condition margXn−1

i
µn

i = µn−1
i , n =

2, 3... implies that the belief hierarchy µ1
i , µ2

i , ... satisfies the conditions of Kolmogorov’s
extension theorem. Consequently, there exists a unique measure

βi(ui) ∈ M∞(U−i) (36)
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that induces µ1
i , µ2

i , ... as marginal distributions on Θ−i, X1
−i, ....

The map
ui → βi(ui) (37)

defines a Borel isomorphism between the space of agent i′s belief hierarchies, i.e., the
projection of Ui to the productM(X0

−i)×M(X1
−i)× ... and the spaceM∞(U−i) of prob-

ability measures on the product of the other agents’ universal type spaces. Moreover, the
mapping

ui → (θi(ui), βi(ui)), (38)

with
θi(ui) := projΘi(Ui), (39)

defines a bijection between the universal type space Ui of agent i and the space Θi ×
M∞(U−i) of agent i’s payoff characteristics and beliefs. Mertens and Zamir (1985) and
Hellwig (2016) give conditions on the topologies on Ui and Θi ×M∞(U−i) under which
this mapping is actually a homeomorphism. We discuss these conditions in the context
of our genericity results below. If the mapping (38) is a homeomorphism, the continuity
properties of the strategic behaviour of agent i do not depend on whether we think of the
agent’s ”type” as an element of Ui or as an element of Θi ×M∞(U−i).

3.2 The FSE Property in the Universal Type Space

In the universal type space setting, equilibrium payoffs in a strategic game take the form
Πi(θ1(ui), β1(u1), ..., θI(uI), β I(uI)). The analogue of (10), the condition for (approximately)
full surplus extraction, takes the form

Π̄i(θi(ui), βi(ui))− ε ≤ min
n

∫
zi

n(u−i) βi(du−i | ui) ≤ Π̄i(θi(ui), βi(ui)), (40)

where Π̄i(θi(ui), βi(ui)) is the interim expected value of Πi(θ1(ui), β1(u1), ..., θI(uI), β I(uI))

under the measure βi(ui) that is given by (37).
Whereas (40) is formally similar to (2), with βi as the agent’s belief mapping, there

is an important difference between the two. In the abstract-type-space setting, the FSE
property was defined as a property of belief functions, and the question was what can
be said about the set of belief functions with this property. In the universal-type-space
setting, there is only one belief function βi, which is fixed and cannot be varied without

25



losing the interpretation of the universal type space as a space of payoff characteristics
and belief hierarchies.

Moreover, when considered as a function on Ui the pair of mappings (θi(·), βi(·)) does
not satisfy the generalized McAfee-Reny condition for full surplus extraction. In fact,
given the product structure of both the domain and the range Θi ×M∞(U−i) of the map-
ping ui → (θi(ui), βi(ui)), any belief in M∞(U−i) can be paired with any set of payoff
parameters in Θi. At the level of the universal type space as a whole, the FSE property
and the FSE* property fail to hold.

However, these properties can be obtained as properties of subsets of the universal type
space. We say that a set Si ⊂ Ui has the FSE* property if the restriction to Si of the mapping
(38) has the FSE* property, i.e. if, for every ε > 0 and every continuous payoff function Π̄i

from Θi ×M∞(U−i) to R+, there exist a system zi
1, ..., zi

Ni
of participation fee schedules

for agent i such that (40) holds for all ui ∈ Si. We also say that a set Si ⊂ Ui has the FSE
property if the restriction to Si of the Borel isomorphism (37) has the FSE property, i.e.
if, for every ε > 0 and every continuous payoff function Π̄i from Si to R+, there exist a
system zi

1, ..., zi
Ni

of participation fee schedules for agent i such that for all ui ∈ Si,

Π̄i(ui)− ε ≤ min
n

∫
zi

n(u−i) βi(du−i | ui) ≤ Π̄i(ui).

From Theorems 2.1 and 2.2 and the fact that the mapping (38) is a bijection, we imme-
diately obtain:

REMARK 3.1 Let U1, ..., UI be metric spaces and assume that the Borel isomorphism (37) is con-
tinuous. A compact set Si ⊂ Ui has the FSE property if and only if it has the FSE* property. Both
properties hold if and only if the restriction to Si of the bijection (37) satisfies the McAfee-Reny
condition, i.e., if and only if, for all ūi ∈ Si and every probability measure µi on Si,

ϕβi(µi) = ϕβi(δūi) implies µi = δūi , (*)

where δūi is the degenerate measure that assigns all mass to the singleton {δūi} and ϕβi(µi) is
defined to that

ϕβi(B|µi) :=
∫

Si

βi(B|ui)µi(dui)

for all B ∈ B∞(U−i).

Given that the FSE and FSE* properties of a compact subset of the universal type space
are equivalent, from now on, we drop the distinction and refer only to the FSE property.
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For an epistemic interpretation of this property, we introduce the notion of an informa-
tion base for a subset of the universal type space. For any compact set Si ⊂ Ui, a compact
metric space Ti and a continuous mapping ψi : Ti → Ui are said to provide an information
base for Si if Si is the range of ψi.23 The following proposition relates the FSE property of
a set Si ⊂ Ui to the properties of of any information base (Ti, ψi) of Si.24

PROPOSITION 3.2 Assume that U1, ..., UI are metric spaces and that the Borel isomorphism (37)
is continuous. A compact set Si ⊂ Ui has the FSE property if and only if, for every information
base (Ti, ψi) of Si, the mapping

(θ∗i (·), β∗i (·)) = (θi(·), βi(·)) ◦ ψi (41)

from Ti to Θi ×M(U−i), which is the composition of the mapping (38) with the mapping ψi, has
the FSE* property.

Proof. The ”only if” part of the proposition is trivial because any compact set Si ⊂ Ui,
together with the identity mapping, is an information base for itself. For the ”if” part,
consider any compact metric space Ti and any continuous function ψi from Ti to Ui such
that ψi(Ti) = Si. The continuity of the pair (θi(·), βi(·)) implies that the composition
(θ∗i (·), β∗i (·)) = (θi(·), βi(·)) ◦ ψi is continuous. By Theorem 2.2, (θ∗i (·), β∗i (·)) has the
FSE* property if and only if it satisfies the generalized McAfee-Reny condition. Thus, we
must show that the implication

ϕβ∗i
(µ) = ϕβ∗i

(δt̄i
) implies µ ◦ (θ∗i (·), β∗i (·))−1 = δ(θ∗i (t̄i),β∗i (t̄i)) (**)

holds for every t̄i ∈ Ti and every probability measure µi on Ti. Let t̄i ∈ Ti and µi ∈ M(Ti)

23For an extensive discussion of epistemic interpretations of such a formalism in terms of hard or soft
information, see Section 2.4 of Dekel and Siniscalchi (2015). In their analysis, the mapping ψ corresponds to
the canonical mapping of an abstract type space T = {Ti, θi(.), bi(.)}i∈I into the universal type space. See also
Dekel, Fudenberg, and Morris (2006), in particular, p. 281.

24The participation fee schedules zi
n(u−i) in (40) condition on the other agents’ payoff parameters and be-

lief hierarchies, not just on their payoff parameters. It is quite possible for βi to satisfy the McAfee-Reny
condition and for (θi(·), βi(·)) ◦ ψi to satisfy the generalized McAfee-Reny condition even though the func-
tion projM(Θ−i) ◦ βi(·) that indicates the agent’s first-order beliefs about the other agents’ payoff parameters
violates the McAfee-Reny condition and (θi(·), projM(Θ−i) ◦ βi(·)) ◦ ψ̂i violates the generalized McAfee-Reny
condition. In this case, fee schedules that condition on the other agents’ belief hierarchies, as well as their
payoff parameters, can provide for surplus extraction where fee schedules conditioning on payoff parameters
alone cannot. For a detailed discussion and examples, see Gizatulina (2015).
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be such that the premise of (**) holds. Let ūi = ψi(t̄i) and µ̂i = µi ◦ ψ−1
i . Then obviously

ϕβi(µ̂i) = ϕβ∗i
(µ) and ϕβi(δūi) = ϕβi(δt̄i

),

so the premise of (**) implies that ϕβi(µ̂i) = ϕβi(δūi). If Si has the FSE property, then, by
Remark 3.1, it follows that µ̂i = δūi . Therefore,

µ ◦ (θ∗i (·), β∗i (·))−1 = µ ◦ ψ−1
i ◦ (θi(·), βi(·))−1 = δūi ◦ (θi(·), βi(·))−1 = δ(θ∗i (t̄i),β∗i (t̄i)), (42)

where the first equation follows from (41), the second equation from the equation µ̂i = δūi ,
and the third equation from the fact that, by the definition of ūi, (θi(ūi), βi(ūi)) = ψi(t̄i).
The implication (**) is thus satisfied and the mapping ψi thus has the FSE* property if Si

has the FSE property.

Proposition 3.2 implies, in particular, that, if a set Si ⊂ Ui has two different infor-
mation bases (T1

i , ψ1
i ), (T

2
i , ψ2

i ), then either both of the mappings (θi(·), βi(·)) ◦ ψ1
i and

(θi(·), βi(·)) ◦ ψ2
i have the FSE* property or none of them has it. Whereas the notion of

information base might look like a device to reintroduce abstract type spaces by the back
door, the scope for full surplus extraction is independent of the details of the space Ti of
information variables and depends only on the range of the mapping

ψi : Ti → Ui (43)

that maps information variables into pairs of payoff parameters and belief hierarchies.
This range, and by implication, the possibility of full surplus extraction, is unaffected un-
der any strategically irrelevant modification of Ti such as the introduction of additional
information values with associated pairs of payoff parameters and belief hierarchies du-
plicating some of those that are already in the range of ψi or a replacement of ψi by the
composition of ψi with some permutation p of the set of information variables.

3.3 Genericity of the FSE Property in the Class of Compact Subsets of the Uni-
versal Type Space

The following result shows that the FSE property is generic in the class of compact subsets
of the universal type space.
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THEOREM 3.3 Assume that U1, ..., UI are metric spaces and endow the space of closed subsets
of Ui with the Hausdorff topology. Assume further that the topology onM∞(U−i) is at least as
fine as the topology of weak convergence and is induced by a metric that is a convex function on
M∞(U−i) ×M∞(U−i) and that the mapping (38) from Ui to Θi ×M∞(U−i) is a homeomor-
phism. Then the set of compact subsets of Ui that have the FSE property is a residual subset of the
class of compact subsets of Ui.

Theorem 3.3 is our main result concerning the genericity of full surplus extraction in
the universal type space. Like Theorem 2.4, Theorem 3.3 does not specify any partic-
ular topologies on the spaces that are involved, but merely give qualitative conditions
that the topologies must satisfy. The requirement that U−i be a metric space is of course
satisfied when the spaces U1, .., UI have the product topology, as in Mertens and Zamir
(1985). In this case, obviously, M∞(U−i) with the topology of weak convergence is also
a metric space, and, by the argument given in Section 2.3, the metric can be specified as
a convex function on M∞(U−i) ×M∞(U−i). Moreover, as was shown by Mertens and
Zamir (1985), the mapping ui → (θi(ui), βi(ui)) defines a homeomorphism between Ui

and Θi ×M∞(U−i), so all the topological requirements of Theorem 3.3 are satisfied.
However, the product topology is not the only topology on the universal type space

for which these requirements hold. The also hold if the spaces U1, .., UI have the uniform
strategic topology of Dekel, Fudenberg, and Morris (2006) or the uniform weak topology
of Chen, DiTillio, Faingold, and Xiong (2010). These topologies have been proposed to
remedy a defect of the product topology, namely that the product topology is too coarse
to provide for what Dekel, Fudenberg, and Morris (2006) refer to as lower hemi-continuity,
i.e. the property that the minimal ε ≥ 0 for which strategies are interim ε-rationalizable
should depend continuously on their types.25

The uniform strategic and uniform weak topologies actually coincide.26 The uniform
weak topology is defined with reference to a metric that defines the distance between two
elements u1

i , u2
i of the universal type space for agent i as the supremum of the distances

25Under the product topology, the weight given to higher order beliefs eventually declines as one moves
up in the hierarchy of beliefs; this property of the product topology makes it unsuitable for capturing the
continuity properties of strategic behaviour in games such as Rubinstein’s e-mail game, in which beliefs of
arbitrarily high orders can make a significant difference. See Rubinstein (1989), Dekel, Fudenberg, and Morris
(2006), Chen, DiTillio, Faingold, and Xiong (2010).

26See Chen, DiTillio, Faingold, and Xiong (2010). Both topologies are finer than the strategic topology of
Dekel, Fudenberg, and Morris (2006), which in turn is finer than the product topology.
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between the individual components of u1
i and u2

i , the distance between the payoff pa-
rameters θ1

i and θ2
i , the first-order beliefs (µ1

i )
1 and (µ1

i )
2, etc. Given this metric topology

on the universal type spaces U1, .., UI , the topology of weak convergence on M∞(U−i)

is specified with reference to the convergence of integrals of bounded continuous real-
valued functions on U−i where continuity is defined with in terms of the product topol-
ogy on U−i that is induced by the uniform weak topology on Uj, j 6= i. Assuming the
continuum hypothesis, Hellwig (2016) shows that, with this topology,M∞(U−i) is a met-
ric space, and the map ui → (θi(ui), βi(ui)) defines a homeomorphism between Ui and
Θi ×M∞(U−i).27 The metric onM∞(U−i) that is used in Hellwig (2016) does not satisfy
our convexity condition but in the appendix, we show that the topology of weak conver-
gence onM∞(U−i) with Uj, j 6= i, having the uniform weak topology can also be induced
by the bounded Lipschitz metric, which, as we saw in Section 2.3, does satisfy the convex-
ity assumption of Theorem 3.3. Thus, Theorem 3.3 is also applicable when the universal
type space is given the uniform weak topology.28

The proof of Theorem 3.3 makes use of Proposition 3.2 and of the genericity results in
Section 2. We begin with a restatement of Corollary 2.5 for the present setting.

REMARK 3.4 Assume that Ti is a compact metric space, that U−i is a metric space, and that
the topology onM∞(U−i) is at least as fine as the topology of weak convergence and is induced
by a metric that is a convex function on M∞(U−i) ×M∞(U−i). Then the set E∗∗(Ti, Θi ×
M∞(U−i)) of continuous functions from Ti to Θi ×M∞(U−i) that have the FSE* property is
a residual subset of the space C(Ti, Θi ×M∞(U−i)), i.e. E∗∗(Ti, Θi ×M∞(U−i)) contains a

27The analysis is complicated by the fact that, as shown by Chen, DiTillio, Faingold, and Xiong (2010),
with the uniform weak topology, the universal type space is not separable. Moreover, the associated Borel
σ-algebras on Uj and on U−i = ∏

j 6=i
Uj are strictly larger than the product σ-algebras, which coincide with

the Borel σ-algebras induced by the product topology. (Chen, DiTillio, Faingold, and Xiong (2010) claim the
opposite, but Chen et al. (2016) correct this claim.) Because the Kolmogorov extension theorem provides
no basis for assigning probabilities to sets in the larger σ-algebra that are not also in the smaller σ-algebra,
Hellwig (2016) considers only measures inM∞(U−i), i.e. measures that are defined on the smaller σ-algebra,
with a topology that reflects the choice of the uniform weak topology for the spaces spaces Uj, j 6= i.

28In contrast, Chen and Xiong (2013) assume that the universal type space has the product topology and
make essential use of this assumption. With the product topology, the universal type space is separable and,
in the topology of weak convergence, the set of priors with finite supports is dense. This fact is crucial for
their argument involving finite approximations of arbitrary priors. With the uniform weak topology, the
universal type space is not separable, and the set of priors with finite supports is not dense.
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countable intersection of open and dense subsets of C(Ti, Θi ×M∞(U−i)). If the metric space
Θi ×M∞(U−i) is complete, E∗∗(Ti, Θi ×M∞(U−i)) is itself dense in C(Ti, Θi ×M∞(U−i)).

Given a compact metric space Ti, we say that a set Si ⊂ Ui is Ti-compatible if there ex-
ists a continuous function ψi : Ti → Ui such that the pair (Ti, ψi) provides an information
base for Si.

PROPOSITION 3.5 Assume that U1, ..., UI are metric spaces and endow the space of closed subsets
of Ui with the Hausdorff topology. Assume further that the topology onM∞(U−i) is at least as
fine as the topology of weak convergence and is induced by a metric that is a convex function on
M∞(U−i) ×M∞(U−i) and that the mapping mapping (38) from Ui to Θi ×M∞(U−i) is a
homeomorphism. If Ti is a compact metric space, the set of Ti-compatible subsets of Ui that have
the FSE property is a residual subset of the set of Ti-compatible subsets of Ui.

Proof. Let Ti be any compact metric space. Because homeomorphisms map open and
dense sets into open and dense sets, Remark 3.4 and the assumption that the mapping (38)
from Ui to Θi×M∞(U−i) is a homeomorphism imply that the set of functions ψi : Ti → Ui

for which the composition (41) has the FSE* property is a residual subset of the space
C(Ti, Ui).

For any ψi ∈ C(Ti, Ui), let Gi(Ti, ψi) ⊂ Ti ×Ui be the graph of ψi. Because Ti is com-
pact and C(Ti, Ui) has the topology of uniform convergence, the map ψi → Gi(Ti, ψi)

is a homeomorphism.29 By another application of the fact that homeomorphisms map
open and dense sets into open and dense sets, it follows that the graphs Gi(Ti, ψi) of the
functions ψi : Ti → Ui for which the composition (41) has the FSE* property form a resid-
ual subset of the class {Gi(Ti, ψi) : ψi ∈ C(Ti, Ui)}. Because, for any ψi ∈ C(Ti, Ui), the
range Si(Ti, ψi) of ψi is the projection of Gi(Ti, ψ̂i) to Ui and the projection mapping is
open and continuous, it follows that the ranges Si(Ti, ψi) of the functions ψi ∈ C(Ti, Ui)

for which the composition (41) has the FSE* property form a residual subset of the class
{Si(Ti, ψi) : ψi ∈ C(Ti, Ui)}, i.e. the class of Ti-compatible subsets of Ui. Since the ranges
Si(Ti, ψi) of the functions ψi ∈ C(Ti, Ui) are just the Ti-compatible subsets of the universal
type space, the proposition follows.

Proof of Theorem 3.3. Let Ti = {Tk
i }k∈K be the family of compact metric subsets of the

countable product [0, 1]∞. For any k, let Ei(Tk
i ) be the class of Tk

i -based subsets of Ui that

29See Naimpally (1966).
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have the FSE property. Then
Ei(Ti) := ∪k∈KEi(Tk

i ) (44)

is the class of sets Si ⊂ Ui that have the FSE property and that have an information base
(Ti, ψi) with Ti ∈ Ti. We will show that Ei(Ti) contains a countable intersection of open
and dense sets of compact subsets of Ui.

For any k, let Ei(Tk
i ) be the class of Tk

i -based subsets of Ui that have the FSE property.
Proposition 3.5 implies that, for any k ∈ K, there exists a sequence {Ok

n}∞
n=1 of open and

dense sets of compact subsets of Ui such that

Ei(Tk
i ) ⊃ ∩∞

n=1Ok
n. (45)

Ei(Ti) ⊃ ∪k∈K ∩∞
n=1 Ok

n. (46)

We claim that we also have

∪k∈K ∩∞
n=1Ok

n = ∩∞
n=1 ∪k∈K Ok

n (47)

and therefore,
Ei(Ti) ⊃ ∩∞

n=1 ∪k∈K Ok
n (48)

To prove this claim, we note that, by the argument in the proof of Proposition 3.5, every
one of the sets Ok

n is of the form

Ok
n = {projUi

G|G ∈ Pk
n},

where Pk
n is a set of graphs Gi(Tk

i , ψi) ⊂ Tk
i ×Ui of functions ψi ∈ C(Ti, Ui). For any k and

n and any G ∈ Pk
n ,

proj[0,1]∞ G = Tk
i

For any k and k′ 6= k and any n and n′, G ∈ Pk
n implies proj[0,1]∞ G 6= Tk′

i and therefore
G /∈ Pk′

n′ . Thus, Pk
n ∩ Pk′

n′ = ∅ if k′ 6= k. By elementary set theory, it follows that

∪k∈K ∩∞
n=1 Pk

n = ∩∞
n=1 ∪k∈K Pk

n .

But then, we also have

∪k∈K ∩∞
n=1 Ok

n = ∪k∈K ∩∞
n=1 {projUi

G| G ∈ Pk
n}

= {projUi
G| G ∈ ∪k∈K ∩∞

n=1 Pk
n}

= {projUi
G| G ∈ ∩∞

n=1 ∪k∈K Pk
n}

= ∩∞
n=1 ∪k∈K {projUi

G| G ∈ Pk
n}

= ∩∞
n=1 ∪k∈K Ok

n,
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which proves (47).
Now, for any n, the set ∪k∈KOk

n is open, being a union of open sets. It is also dense in
the union ∪k∈K

{
Si(Tk

i , ψi) : ψi ∈ C(Tk
i , Ui)

}
because, by the denseness of the sets Ok

n for
k ∈ K, for any k′ ∈ K and ψ̂i ∈ C(Tk′

i , Ui), any neighbourhood of Si(Tk′
i , ψ̂i) intersects Ok′

n

and therefore ∪k∈KOk
n.

To complete the argument, we note that any compact set Si ⊂ Ui is homeomorphic to
a compact subset of the product [0, 1]∞.30 The union ∪k∈K

{
Si(Tk

i , ψi) : ψi ∈ C(Tk
i , Ui)

}
is

therefore just equal to the set of compact subsets of Ui. Residualness of the FSE property
in the union of Tk

i -based subsets of Ui, k ∈ K, is equivalent to residualness in the class of
compact subsets of Ui.

3.4 Genericity of the FSE Property in the Space of Common Priors on the Uni-
versal Type Space

We finally provide a universal type space analogue of Theorem 2.7. LetM∗(U) of com-
mon priors, the set of probability measures on U such that, for each i, the function βi(·)
that is given by Kolmogorov’s extension theorem is a regular conditional distribution for
u−i given ui. Consider the setMc

f (U) ⊂ M∗(U) such that, for any µ ∈ Mc
f (U) and any

i, the support of the marginal distribution νi(µ) is a compact set. We say that µ ∈ Mc
f (U)

has the FSE property if and only if, for every i the support of the marginal distribution
νi(µ) has the FSE property.

Given Theorem 3.3, the same argument that was used to derive Theorem 2.7 from
Theorem 2.4 now yields a genericity result in the space of priors on the universal type
space.

THEOREM 3.6 Assume that U1, ..., UI are metric spaces. For each i, endow the space of closed
subsets of Ui with the Hausdorff topology. Assume that the topology on M∞(U−i) is at least
as fine as the topology of weak convergence and is induced by a metric that is a convex function
onM∞(U−i) ×M∞(U−i) and, finally, that the mapping (38) from Ui to Θi ×M∞(U−i) is a
homeomorphism. If Mc

f (U) is endowed with the coarsest topology under which the mappings
from priors to the supports of marginal distributions on the spaces Ui, i = 1, ..., I, are continuous,
then the set F (U) of priors inMc

f (U) that have the FSE property is a residual subset ofMc
f (U).

Proof. For any i, let Fi(U) be the set of priors µ ∈ Mc
f (U) such that the support of the

30See, e.g., Engelking (1989), p. 260.
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marginal distribution νi(µ) has the FSE property. By the argument given in the proof of
Theorem 2.7, it suffices to prove that each one of the sets Fi(U), i = 1, ..., I, is residual in
Mc

f (U). For each i, the supports of the marginal distributions νi(µ), µ ∈ Mc
f (U), belong

to the class Si of compact subsets of Ui.
The mapping µ→ supp νi(µ) is in fact the composition of the mapping

µ→ (supp ν1(µ), ..., supp νI(µ)) (49)

fromMc
f (U) to the product S1 × ...× SI with the projection from S1 × ...× SI to Si. For

the given topology on Mc
f (U), the mapping (49) is open and continuous. Because the

projection from S1× ...×SI to Si is also open and continuous, it follows that the mapping
µ → supp νi(µ) is also open and continuous. The theorem now follows from Remark 3.4
and the observation that open and dense sets are preserved under continuous and open
mappings and their inverses.

4 Relation to the Literature

4.1 Relation to Heifetz and Neeman (2006)

The thrust of our results runs counter to that of Heifetz and Neeman (2006). They consider
families of incomplete-information models (7) that are consistent with common priors and
study the genericity of the full surplus extraction property within the set P of common
priors for the models in a given family. Under the additional assumption that the family
of models is what they call ”closed under finite unions”, they show that P is a convex
set and that any prior of the form F = ∑J

j=1 αjFj with αj > 0 and Fj ∈ P for all j has the
BDP property if and only if each of the distributions Fj has the BDP property. Because
the BDP property is necessary for full surplus extraction, they conclude that, unless all
incomplete-information models T k, k ∈ K, have BDP priors, the set of priors that do not
admit full surplus extraction is geometrically and measure-theoretically generic in P .

The difference between our results and those of Heifetz and Neeman (2006) is not only
a matter of topological versus geometric or measure-theoretic genericity but also one of
genericity in the full space versus genericity in the set of priors for the models in a given
family. This restriction begs the question what can be said about the set of families for
which they obtain non-genericity of full surplus extraction relative to the set of all families
of incomplete-information models that are closed under finite unions.
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The requirement that the family be closed under finite unions can actually be quite
restrictive. In related work (Gizatulina and Hellwig (2013)), we show that, if, for any
i, the type sets Tk

i of agent i in different models in the family are subsets of a complete
separable metric space and if they have non-empty interiors, then a family of models that
is closed under finite unions is at most countable. As a consequence of Theorem 2.7, one
can then show that, for a given sequence of such type sets, full surplus extraction can be
obtained for all models in a residual set of families. The set of families to which the Heifetz
and Neeman (2006) analysis applies, i.e. the set of families with at least one member for
which full surplus extraction cannot be obtained, is itself sparse in the set of all families
of models with the given family of type spaces.

4.2 Relation to Chen and Xiong (2013)

Chen and Xiong (2013) also study the genericity of (almost) full surplus extraction. They
consider common priors on the universal type space and define approximately full sur-
plus extraction in terms of expected surplus, rather than type by type. They endow the
universal type space with the product topology and the space of common priors with
the topology of weak convergence. For a special class of allocation problems and payoff
functions in which it is feasible to exclude agents on an individual basis, they show that a
residual set of priors admits approximately full surplus extraction.

The argument is, briefly, the following: Since we know from Crémer and McLean
(1988) that full surplus extraction is generic in the set of priors with finite supports, with
a topology in which priors with finite supports are dense, it follows that every prior can
be approximated by priors that admit full surplus extraction. Residualness follows by
showing that, for every ε > 0, the set of priors that extract all but ε of the expected surplus
is open. For this purpose, Chen and Xiong (2013) take an FSE prior with a sufficiently large
finite support, extend the Crémer-McLean payment function to a continuous function on
the entire space and reduce each agent’s payment by some η > 0. For every prior in a
neighbourhood of the FSE prior, the resulting mechanism extracts all but 2η on a set of
probability 1− η. On the remaining set of types, an agent’s expected net payoff may be
large (but bounded) or negative. If it is negative, the agent is excluded; exclusion involves
a loss of surplus but as long as the amount is bounded and the other agents’ incentives
are unaffected, this loss does not matter because its probability is small.

The analysis of Chen and Xiong (2013) does not actually depend on their working with
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the universal type space but goes through with abstract (Harsanyi) type spaces as well.
However, the analysis does depend on (i) the assumption that agents can be excluded on
an individual basis, (ii) the definition of approximately full surplus extraction in terms of
expected values, rather than type by type, and (iii) reliance on a topology in which the
priors with finite supports are dense.

If there is no scope for such an exclusion of individuals the argument of Chen and
Xiong (2013) cannot be used.31 An example would the problem of providing a non-
excludable public good when there are interim participation constraints. Whereas it is
well known that, with independent private values, in this problem efficiency cannot be
achieved,32 our results in this paper suggest that, with correlated private values, it is
generically possible to achieve ε-efficiency, where ε > 0 may be taken to be arbitrarily
small. In this context, the argument of Chen and Xiong (2013) cannot be used because
one cannot exclude agents individually. One can ”exclude” all participants jointly by not
providing the public good at all, but if one uses this kind of exclusion to discipline one
agent, there may be harmful side effects on the incentives of other agents.

Because exclusion may significantly reduce the surplus that is achieved, in the ap-
proach of Chen and Xiong (2013), approximately full surplus extraction is not to be ex-
pected type by type, but only in terms of expected values. This is why full surplus extrac-
tion in the sense of Chen and Xiong has to be defined in terms of priors, rather than type
by type, as in (5). Given that approximately full surplus extraction is defined in terms of
expected values only, Chen and Xiong (2013) do not need the generalized McAfee-Reny
condition, as agents who make for a violation of this condition can simply be excluded.
Without exclusion, and with a notion of (approximately) full surplus extraction type by
type, the generalized McAfee-Reny condition is necessary.

In abstract type spaces, the presumption that finite-support priors are dense excludes
the possibility that beliefs over other agents types might be topologized by the total varia-
tion norm. In the universal type space, this presumption excludes the possibility of impos-
ing the uniform weak or the uniform strategic topology. In contrast, by working directly
with the (generalized) McAfee-Reny condition, we forego the need to work with finite
approximations so our results leave more freedom for the specification of the topologies
on beliefs.

31More precisely, as they point out, the mechanism designer must be able to impose an outcome at which
agent i’s net payoff is zero no matter what types the other agents may have.

32See Güth and Hellwig (1986), Rob (1989) and Mailath and Postlewaite (1990).
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5 Concluding Remarks

Our paper greatly extends the domain of Crémer and McLean (1988) finding that in mod-
els with correlated types, it is generically possible to design incentive mechanisms so as
to extract all the available surplus. Whereas Crémer and McLean (1988) established this
finding for models with finite type sets, we allow agents’ type sets to be arbitrary, e.g.
infinite-dimensional, compact spaces.

The key to our analysis is a new mathematical result showing that the condition that
McAfee and Reny (1992) established as being necessary and sufficient for approximately
full surplus extraction in naive type spaces is satisfied by a residual set of belief functions,
i.e. of continuous functions mapping an agent’s types to his beliefs about the possible
constellations of other agents’ types. In arbitrary abstract type types, the McAfee-Reny
condition may be stronger than necessary but then its genericity implies that the gener-
alized McAfee-Reny condition, which is necessary and sufficient for approximately full
surplus extraction, is also satisfied generically.

In the universal type space, we study the possibility of surplus extraction as a property
of subsets of the universal type space that is obtained if the restriction of the Kolmorogov
mapping to the subset in question satisfies the McAfee-Reny condition. Relying on our
results for abstract type spaces, we find that the set of subsets of the universal type space
that admit full surplus extraction is residual in the class of compact subsets of the univer-
sal type space.

Our genericity results do not rely on any particular topology. We only require that the
set of an agent’s types be a compact metric space and that the topology on the space of an
agent’s beliefs be metrizable in a certain way.

Our separate analyses of the genericity of full surplus extraction in abstract and uni-
versal type spaces raise the question whether the two sets of results can be linked. The
universal type space takes its name from the proposition, proved by Mertens and Zamir
(1985), that every abstract type space can be embedded in it. It seems natural to suppose
that the image of this embedding in the universal type space is a set admitting full surplus
extraction if and only the abstract-type-space model does. However, except for the case
where the universal type space has the product topology and all beliefs have the relevant
topology of weak convergence, it is not clear how the topologies on the different spaces
are matched. In the abstract-type-space model, one might impose a topology so that, the
mapping to the universal type space is continuous, but then the question is whether this
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topology has an interpretation of its own in the abstract-type-space model itself. Obtain-
ing a better understanding of the relation between the different topologies on the different
spaces and, by implication, of the relation between different genericity results is a problem
for future research.

Appendix A Generalizing the McAfee-Reny Result: Proof Sketch
for Theorem 2.1

The proof of Theorem 2.1 is by and large the same as the proof of Theorem 2 in McAfee
and Reny (1992), with due changes to account for the fact that Ti is an arbitrary compact
metric space, rather than the unit interval, and for the fact that beliefs need not have
densities. Therefore we will not go into all the details but merely indicate where and how
the argument of McAfee and Reny must be adapted.

In the analysis of McAfee and Reny (1992), a special role is played by what they call
the set of ”(ε, δ)-u-shaped functions at ti0”. In the present, more general setting, an (ε, δ)-
u-shaped function at ti0 is a function u ∈ C(Ti) such that

(i) u(ti) ≥ 0 for all ti ∈ Ti,
(ii) u(ti0) ≤ ε, and
(iii) u(ti) ≥ 1 for all ti ∈ Ti\Bδ(ti0), where Bδ(ti0) is the closed δ-ball around ti0.
The set of such (ε, δ)-u-shaped function at ti0 is denoted as U(ε, δ, ti0). This set plays a

key role in the following auxiliary result, which extends Theorem 1 of McAfee and Reny
(1992).

PROPOSITION A.1 Suppose that a set A ⊂ C(Ti) satisfies:
(i) A is closed under addition and under multiplication by a positive scalar.
(ii) For any N, x1, ..., xN ∈ A implies y ∈ A, where y is defined by setting y(ti) = min(x1(ti), ..., xN(ti))

for any ti ∈ Ti.
(iii) 1, −1 ∈ A
(iv) For all ε > 0, δ > 0, and every ti0 ∈ Ti, U(ε, δ, ti0) ∩ Ā 6= ∅.
Then Ā = C(Ti).

The proof of Proposition A.1 is step by step the same as the proof of Theorem 1 in
McAfee and Reny (1992), except that the unit interval as the domain of functions must be
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replaced by Ti and intervals of the form [ti0 − δ, ti0 + δ] must be replaced by the closed
δ-balls Bδ(ti0) around ti0.

Similarly, the proof of the necessity of condition (*) for full surplus extraction is step by
step the same as the proof of the necessity statement in Theorem 2 of McAfee and Reny,
again with the proviso that the interval [0, 1] be replaced by Ti and intervals of the form
[ti0 − δ, ti0 + δ] be replaced by the closed δ-balls Bδ(ti0) around ti0.

Before turning to the proof of sufficiency of condition (*) for full surplus extraction,
we recall the following notation from McAfee and Reny. Given a belief function bi, we set

R(bi) := {y : Ti → R|y(ti) =
∫

z(t−i)bi(dt−i|ti) for all ti, for some z ∈ C(T−i)}

and

r(bi) := {x : Ti → R|x(ti) = min{y1(ti), ..., yN(ti)} for all ti, for some N and y1, ..., yN in R(bi).

Under the given assumptions on bi, Ti, and T−i, with a topology onM(T−i) that is at least
as fine as the weak* topology, we have

R(bi) ⊂ C(Ti) and r(bi) ⊂ C(Ti).

Proof of the sufficiency statement in Theorem 2.1.
As in McAfee and Reny (1992), the proof is indirect. Suppose condition (*) is not

sufficient for full surplus extraction. Then there exists bi ∈ C(Ti,M(T−i)) such that (*)
holds for all t̄i ∈ Ti and all µ ∈ M(Ti) and C(Ti)\r̄(bi) 6= ∅, where r̄(bi) is the closure
of r(bi). By Proposition A.1, C(Ti)\r̄(bi) 6= ∅ implies that the set r(bi) violates one of
the conditions in that proposition; the only candidate is condition (iv). Thus there exist
ε0 > 0, δ0 > 0, and ti0 ∈ Ti such that U(ε0, δ0, ti0) ∩ r̄(bi) = ∅. Since R(bi) ⊂ r(bi), it
follows that U(ε0, δ0, ti0) ∩ R̄(bi) = ∅, where R̄(bi) is the closure of R(bi).

As discussed by McAfee and Reny (1992), one can now use the separating hyperplane
theorem and the Riesz representation theorem to assert the existence of a constant c and a
regular, countably additive, signed measure µ 6= 0 on Ti such that∫

Ti

x(ti)dµ(ti) ≤ c for all x ∈ R̄(bi), and (50)

∫
Ti

x(ti)dµ(ti) ≥ c for all x ∈ U(ε0, δ0, ti0). (51)

39



Since R̄(bi) is a linear subspace of C(Ti), the constant c must actually be zero and we must
have ∫

Ti

x(ti)dµ(ti) = 0 for all x ∈ R̄(bi), (52)

By the definition of R(bi), it follows that∫
Ti

∫
T−i

z(t−i)dbi(t−i|ti)dµ(ti) = 0 (53)

for all z ∈ C(T−i).
By the Jordan decomposition theorem, we may write µ as the difference between two

positive measures µ+ and µ−, at least one of which is finite. Thus, (53) can be rewritten in
the form ∫

Ti

∫
T−i

z(t−i)dbi(t−i|ti)dµ+(ti) =
∫

Ti

∫
T−i

z(t−i)dbi(t−i|ti)dµ−(ti). (54)

If z ∈ C(T−i) is the constant function with value one, (54) specializes to the equation

µ+(Ti) = µ−(Ti),

so µ+ and µ− are both finite. Moreover, there is no loss of generality in setting µ+(Ti) =

µ−(Ti) = 1, so both µ+ and µ− belong to M(Ti). (54) can therefore be rewritten in the
form ∫

T−i

z(t−i)dϕbi(t−i|µ+) =
∫

T−i

z(t−i)dϕbi(t−i|µ−). (55)

If (55) is to hold for all z ∈ C(T−i), it must be the case that

ϕbi(µ
+) = ϕbi(µ

−). (56)

By (*), it follows that neither µ+ nor µ− can be the point measure δti0 at ti0. For suppose
that µ+ = δti0 . Then (56) implies ϕbi(µ

−) = ϕbi(δti0) and, by (*), µ− = δti0 , which is
incompatible with µ = µ+ − µ− 6= 0. By a precisely symmetric argument, µ− = δti0 is also
impossible.

Since µ− is regular, it follows that there exists a closed set A ⊂ Ti, such that µ−(A) >

0, µ+(A) = 0, and for some δ ∈ (0, δ0], the intersection of A with the δ-ball Bδ(ti0) around
ti0 is empty. Fixing K > 1/µ−(A), we can define a step function xK by setting

xK(ti) = 0 if ti ∈ Bδ(ti0),

xK(ti) = K if ti ∈ A,

xK(ti) = 1 otherwise.
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For this step function, we find
∫

xK(ti)dµ(ti) ≤ 1− Kµ−(A) < 0. Now xK itself is not
continuous, but can be approximated by a sequence {xn}∞

n=1 of continuous functions so
that the integrals

∫
xn(ti)dµ(ti) converge to

∫
xK(ti)dµ(ti) as n becomes large. For any

sufficiently large n, therefore,
∫

xn(ti)dµ(ti) < 0.
However, as discussed by McAfee and Reny (1992), the sequence {xn}∞

n=1 can be cho-
sen so that xn ∈ U(ε0, δ0, ti0). By (51) and the fact that c = 0, it follows that

∫
xn(ti)dµ(ti) ≥

0 for all n. The assumption that condition (*) is not sufficient for full surplus extraction has
thus led to a contradiction and must be false.

Appendix B Necessity of infinite-dimensionality of the range in
Theorem 2.4

In more abstract terms, Theorem 2.4 can be restated as follows:

THEOREM B.1 Let X and Y be nonempty compact metric spaces. Assume that the topology on
M(Y) is induced by a metric that is a convex function onM(Y) ×M(Y). Let E∗(Xi,M(Y)) be
the set of continuous functions b from X toM(Y) that satisfy condition (*), i.e., the requirement
that, for any x ∈ X and any µ ∈ M(X),

ϕb(µ) = ϕb(δx) implies µ = δx,

where δx is the degenerate measure that assigns all mass to the singleton {x} and ϕb :M(X) →
M(Y) is defined so that, for any µ ∈ M(X)

ϕb(B|µ) =
∫

b(B|x)µ(dx)

for all measurable B ⊂ Y. If Y has more than finitely many elements, then E∗(Xi,M(Y)) is a
residual subset of the space C(X,M(Y)), i.e., E∗(X,M(Y)) contains a countable intersection of
open and dense subsets of C(X,M(Y)).

In Section 2.5, we asserted that the genericity claim made in this theorem would be
false if the functions under considerations have a finite-dimensional range. This con-
trasts with the genericity of embeddings, which by the classical embedding theorem holds
whenever the dimension of the range is more than twice the dimension of the domain of
the functions under consideration. The following result provides a formal statement.
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PROPOSITION B.2 Let X be a metric space with more then N elements. Let C(X, [0, 1]N) be the
space of continuous functions from X to [0, 1]N , endowed with the uniform topology. There exists
an open subset U of C(X, [0, 1]N) such that, for every f ∈ U , there exists x ∈ X such that

f (x) ∈ co{ f (X\{x})}, (57)

i.e., the value of the function at x belongs to the convex hull of its values at points other than x.

COROLLARY B.3 For X as specified in Proposition B.2, let E∗(X, [0, 1]N) be the subset of those
functions f ∈ C(X, [0, 1]N) for which there exists no x ∈ X for which (57) holds. Then the set
E∗(X, [0, 1]N) is not dense in C(X, [0, 1]N).

Proof of Proposition B.2. Choose p1, ..., pN+2 in [0, 1]N so that p1, ..., pN+1 are in general
position33 and

pN+2 =
N+1

∑
i=1

αi pi, (58)

where ∑N+1
i=1 αi = 1 and αi > 0 for all i.

Fix a function g ∈ C(X, [0, 1]N) such that, for i = 1, ..., N + 2,

g(xi) = pi. (59)

Then, obviously,
g(xN+2) ∈ co{g(x1), ..., g(xN+1)}; (60)

In fact, since αi > 0 for all i, g(xN+2) = pN+2 belongs to the interior of co{g(x1), ..., g(xN+1)},
i.e., there exists ε > 0 such that the ε-ball Bε(pN+2) around g(xN+2) = pN+2 is fully con-
tained in the convex hull of g(x1) = p1, ..., g(xN+1) = pN+1.

Now, fix η = ε
2 and let U be the open η-neighbourhood of g, i.e. the set of all functions

f such that d( f (x), g(x)) < η for all x ∈ X, where d is the metric on [0, 1]N . We claim that,
for any f ∈ U ,

f (xN+2) ∈ co{ f (x1), ..., f (xN+1)}. (61)

To prove this claim, we will show that the ε
2 -ball B

ε
2 (pN+2) around g(xN+2) = pN+2 is a

subset of the convex hull of f (x1), ..., f (xN+1), i.e., that

B
ε
2 (pN+2) ⊂ co{ f (x1), ..., f (xN+1)}. (62)

33r distinct vertices are in general position in [0, 1]N , if there are no m + 2 vertices (m = 1, ..., N − 1) among
them that lie in an m-dimensional linear subspace of [0, 1]N .
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(62) implies (61) because, for f ∈ U , d( f (xN+2), g(xN+2)) < η = ε
2 , and therefore,

f (xN+2) ∈ B
ε
2 (pN+2).

To prove (62), we first note that

co{p1, ..., pN+1} ⊂ Bη(co{ f (x1), ..., f (xN+1)}). (63)

To see this, observe that, for any q ∈ co{p1, ..., pN+1}, there exist α
q
i , i = 1, ..., N + 1, such

that

q =
N+1

∑
i=1

α
q
i pi.

For f ∈ U , the distance between q and the element ∑N+1
i=1 α

q
i f (xi) of co{ f (x1), ..., f (xN+1)}

is less than η, i.e. q ∈ Bη({co{ f (x1), ..., f (xN+1)}).
Since Bε(pN+2) ⊂ co{p1, ..., pN+1}, it follows that

Bε(pN+2) ⊂ Bη(co{ f (x1), ..., f (xN+1)}). (64)

Now (62) follows because η = ε
2 . For suppose that (62) fails so that there exists some

v ∈ B
ε
2 (pN+2)\co{ f (x1), ..., f (xN+1)}. Let y be the element of co{ f (x1), ..., f (xN+1)} that

is closest to v, and let
z = v + δ(v− y) (65)

where δ is chosen so that d(z, v), the distance between z and v, is exactly η. By the triangle
inequality,

d(pN+2, z) ≤ d(pN+2, v) + d(v, z).

By construction, d(v, z) = η = ε
2 and d(pN+2, v) ≤ ε

2 . Thus, z ∈ Bε(pN+2). By (64), it
follows that there exists u ∈ co{ f (x1), ..., f xN+1)} such that

d(z, u) ≤ η. (66)

Using (65), we obtain

d(z, u) = d(v + δ(v− y), u) = (1 + δ)d(v, λu + (1− λ)y),

where λ := 1
1+δ . By the definition of y and another application of (65), it follows that

d(z, u) ≥ (1 + δ)d(v, y) > δd(v, y) = d(z, v) (67)

Upon combining (66) and (67), we find that d(z, v) < η, contrary to the assumption that
d(z, v) = η. The assumption that (62) fails has thus led to a contradiction and must be
false.
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Appendix C The Bounded Lipschitz Metric and the Topology of
Weak Convergence onM∞(Uuw

−i )

As in the text, M∞(U−i) is the set of probability measures on the product space U−i =

∏
j 6=i

Uj with the product σ-algebra B∞(U−i) = ∏
j 6=i
B∞(Uj), where, for each j, B∞(Uj) the σ-

algebra that is induced on Uj by endowing the product of the spaces of payoff parameters,
first-order beliefs, second-order beliefs, etc. with the product σ-algebra that is induced
by the Borel σ-algebras on the underlying factor spaces. Trivially, B∞(U−i) coincides with
the Borel σ-algebra on U−i that is obtained by endowing each of the spaces Uj, j 6= i,
with the product topology. However, as explained in the text, B∞(U−i) is strictly smaller
than the Borel σ-algebra on U−i that is obtained by endowing each of the spaces Uj, j 6= i,
with the uniform weak topology.34 In the following, we use the notation Uuw

−i to indicate
that the spaces Uj, j 6= i, are endowed with the uniform weak topology and the nota-
tion M∞(Uuw

−i ) to indicate that the space of probability measures on (U−i,B∞(U−i)) is
endowed with the topology of weak convergence that is induced by the uniform weak
topology on the spaces Uj, j 6= i, i.e. the topology that is induced by the convergence
of integrals of bounded B∞(U−i)-measurable real-valued functions that are continuous
with respect to the topology on U−i that is induced by the uniform weak topology on the
spaces Uj, j 6= i.

As was pointed out by Chen, DiTillio, Faingold, and Xiong (2010), the spaces Uuw
j , j 6= i

and, by implication, Uuw
−i are not separable. Most results on the metrizability of the topol-

ogy of weak convergence of probability measures, e.g., by the Prohorov or by the bounded
Lipschitz metric, presume that the underlying spaces are separable. ForM∞(Uuw

−i ), there-
fore, one cannot presume such results but must show that the usual arguments can be
properly extended. For (a suitable version of) the Prohorov metric, such an extension
is provided in Hellwig (2016). Here we provide an extension for the bounded Lipschitz

34As mentioned in the text, the uniform weak topology on Uj is obtained by defining a metric ρuw so that,
for any two elements

uk
j = (θk

j ,
(

µ1
j

)k
,
(

µ2
j

)k
, ...),

k = 1, 2, of Uj,

ρuw(u1
j , u2

j ) = sup
{

dθ(θ
1
j , θ2

j ), d1(
(

µ1
j

)1
,
(

µ1
j

)2
), ...

}
,

where dθ , d1, d2, ... etc. are the metrics on the underlying spaces of payoff parameters, first-order, second-order
etc. beliefs.
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metric that we introduced in Section 2.3.

PROPOSITION C.1 Assume that all measures inM∞(Uuw
−i ) have separable supports. Then the

topology of weak convergence on M∞(Uuw
−i ) is metrizable by the bounded Lipschitz metric ρBL,

which is defined so that, for any µ and µ̂ in ρBL

ρBL(µ, µ̂) = sup
f

∣∣∣∣∫U−i

f (u−i)µ(du−i)−
∫

U−i

f (u−i)µ̂(du−i)

∣∣∣∣ (68)

where the supremum is taken over the set of bounded, B∞(U−i)-measurable, Lipschitz continuous
function f : Uuw

−i → R for which

sup
u−i∈U−i

| f (u−i)|+ sup
u−i∈U−i
u−i∈U−i

| f (u−i)− f (û−i)|
d(u−i, û−i)

≤ 1,

where d is the metric on Uuw
−i .

Proof Sketch. The argument relies on the corresponding result in Dudley (2002), Theo-
rem 11.3.3, p. 395. Let {µk} be a sequence of measures inM∞(Uuw

−i ) that converges to a
measure µ ∈ M∞(Uuw

−i ). For any k, let Sk be the support of µk and let S be the support
of µ. By assumption, the sets Sk, k = 1, 2, ..., and S are separable and so is the countable
union

S∗ = ∪∞
k=1Sk ∪ S.

Because one can treat the measures µk, k = 1, 2, ..., and µ, as measures on the separable set
S∗, Dudley’s arguments imply that the sequence {ρBL(µk, µ)}∞

k=1 of bounded-Lipschitz
distances converges to zero. At any µ ∈ M∞(Uuw

−i ), therefore, the topology of weak con-
vergence is at least as fine as the topology that is generated by the bounded Lipschitz met-
ric ρBL. By another argument of Dudley’s. the topology that is generated by the bounded
Lipschitz metric is at least as fine as the Prohorov topology.35 Moreover, the Prohorov
topology is at least as fine as the topology of weak convergence.36 At any µ ∈ M∞(Uuw

−i ),
therefore, the topology of weak convergence and the topology that is generated by the
bounded Lipschitz metric ρBL are equivalent. The proposition follows immediately.

35By elementary calculations, the Prohorov distance between any two measures µ and µ̂ is no greater than
2 · (ρBL(µ, µ̂))

1
2 .

36In addition to the argument in Dudley (2002), see Theorem 5, p. 238, in Billingsley (1968) and Proposition
2 in Hellwig (2016).
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By Theorem 2, p. 235, in Billingsley (1968), the assumption that all measures inM∞(Uuw
−i )

have separable supports is equivalent to the condition that each discrete subset of Uuw
−i has

a nonmeasurable cardinal. Given that the cardinality of U−i is at most that of the contin-
uum, this latter condition in turn is implied by the continuum hypothesis.
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