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Abstract

Bayesian analysis provides a convenient setting for the estimation of complex gener-
alized additive regression models (GAMs). Since computational power has tremendously
increased in the past decade it is now possible to tackle complicated inferential problems,
e.g., with Markov chain Monte Carlo simulation, on virtually any modern computer. This
is one of the reasons why Bayesian methods have become increasingly popular, leading to a
number of highly specialized and optimized estimation engines and with attention shifting
from conditional mean models to probabilistic distributional models capturing location,
scale, shape (and other aspects) of the response distribution. In order to embed many dif-
ferent approaches suggested in literature and software, a unified modeling architecture for
distributional GAMs is established that exploits the general structure of these models and
encompasses many di↵erent response distributions, estimation techniques (posterior mode
or posterior mean), and model terms (fixed, random, smooth, spatial, . . . ). It is shown
that within this framework implementing algorithms for complex regression problems, as
well as the integration of already existing software, is relatively straightforward. The use-
fulness is emphasized with two complex and computationally demanding application case
studies: a large daily precipitation climatology based on more than 1.2 million observa-
tions from more than 50 meteorological stations, as well as a Cox model for continuous
time with space-time interactions on a data set with over five thousand “individuals”.

Keywords: GAMLSS, distributional regression, MCMC, BUGS, R, software.

1. Introduction

The generalized additive model for location, scale and shape (GAMLSS, Rigby and Stasinopou-
los 2005) relaxes the distributional assumptions of a response variable in a way that allows for
modeling the mean (location) as well as higher moments (scale and shape) in terms of covari-
ates. This is especially useful in cases where, e.g., the response does not follow the exponential
family or particular interest lies on scale and shape parameters. Moreover, covariate e↵ects
can have flexible forms such as, e.g., linear, nonlinear, spatial or random e↵ects. Hence, each
parameter of the distribution is linked to an additive predictor in similar fashion as for the
well established generalized additive model (GAM, Hastie and Tibshirani 1990).

The terms of an additive predictor are most commonly represented by basis function ap-
proaches. This leads to a very generic model structure and can be further exploited because
each term can be transformed into a mixed model representation (Ruppert, Wand, and Car-
rol 2003; Wand 2003). In a fully Bayesian setting this generality remains because priors on
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parameters can also be formalized in a general way, e.g., by assigning normal priors to the
regression coe�cients of smooth terms (Brezger and Lang 2006; Fahrmeir, Kneib, Lang, and
Marx 2013).

The fully Bayesian approach using Markov chain Monte Carlo (MCMC) simulation techniques
is particularly attractive since the inferential framework provides valid credible intervals for
estimators in situations where confidence intervals for corresponding maximum likelihood es-
timators based on asymptotic properties fail. This is specifically the case in more complex
models, e.g., with response distributions outside the exponential family or when multiple pre-
dictors contain several smooth e↵ects (Klein, Kneib, and Lang 2015b). In addition, extensions
such as variable selection, non-standard priors for hyper-parameters, or multilevel models are
easily included. Due to this and due to the tremendous increase in computational power over
the past decade, the number of both, Bayesian and frequentist, estimation engines for such
complicated inferential problems has been receiving increasing attention. Existing estimation
engines already provide infrastructures for a number of regression problems exceeding uni-
variate responses, e.g., for multinomial, multivariate normal, censored, or truncated response
variables, etc. In addition, most of the engines support random e↵ect estimation which can
in principle also be utilized for setting up complex models with additive predictors (see, e.g.,
Wood 2006, Wood 2016a).

However, the majority of engines use di↵erent model setups and output formats, which makes
it di�cult for practitioners, e.g., to compare properties of di↵erent algorithms or to select the
appropriate distribution and variables, etc. The reasons are manifold: the use of di↵erent
model specification languages like BUGS (Lunn, Spiegelhalter, Thomas, and Best 2009) or
R (R Core Team 2016); di↵erent standalone statistical software packages like BayesX (Be-
litz, Brezger, Kneib, Lang, and Umlauf 2017; Umlauf, Adler, Kneib, Lang, and Zeileis 2015),
JAGS (Plummer 2003), Stan (Carpenter et al. 2017) or WinBUGS (Lunn, Thomas, Best,
and Spiegelhalter 2000); or even di↵erences within the same environment, e.g., the R pack-
ages mgcv (Wood 2016b), gamlss (Stasinopoulos and Rigby 2016) and VGAM (Yee 2015)
implement all model term infrastructures in their own fashion style. This is particularly
problematic if all packages are loaded into R’s global environment, because some functions
that are supposed to fulfill the same purpose have di↵erent interpretations.

In this article we present a unified conceptional “Lego toolbox” for complex regression models.
We show that iterative estimation algorithms, e.g., for posterior mode or mean estimation
based on MCMC simulation, exhibit very similar structures such that the process of model
building becomes relatively straightforward, since the model architecture is only a combination
of single “bricks”. Due to many parallels to the GAMLSS class, the conceptional framework
is called BAMLSS (Bayesian additive models for location, scale and shape). However, it also
encompasses many more general model terms beyond linear combinations in a design matrix
with regression coe�cients. The toolbox can be exploited in three ways: First, to quickly
develop new models and algorithms, secondly, to compare existing algorithms and samplers,
and third to easily integrate existing implementations. A proof of concept is given in the
corresponding R implementation bamlss (Umlauf, Klein, Zeileis, and Köhler 2017).

The remainder of the paper is structured as follows. In Section 2 the models supported by this
framework are briefly introduced. Section 3 presents the conceptional algorithm design used
to estimate numerous (possibly) complex models. In Section 4 the details of the “Lego bricks”
that form the estimation systems are presented. Then, Section 5 describes computational
strategies for the implementation of the framework. Finally, Section 6 illustrates the concept
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using two complex and computationally demanding illustrations: a large climatology model
for daily precipitation observations using censored heteroscedastic regression and a Cox model
for continuous time with space-time interactions.

2. Model structure

Based on data for i = 1, . . . , n observations, the models discussed in this paper assume
conditional independence of individual response observations given covariates. As in the
classes of GAMLSS (Rigby and Stasinopoulos 2005) or distributional regression models (Klein,
Kneib, Lang, and Sohn 2015c) all parameters of the response distribution can be modeled by
explanatory variables such that

y ⇠ D (h
1

(✓
1

) = ⌘

1

, h

2

(✓
2

) = ⌘

2

, . . . , hK(✓K) = ⌘K) ,

where D denotes a parametric distribution for the response variable y with K parameters
✓k, k = 1, . . . ,K, that are linked to additive predictors using known monotonic and twice
di↵erentiable functions hk(·). Note that the response may also be a q-dimensional vector
y = (y

1

, . . . , yq)>, e.g., when D is a multivariate distribution (see, e.g., Klein, Kneib, Klasen,
and Lang 2015a). The k-th additive predictor is given by

⌘k = ⌘k(x;�k) = f

1k(x;�
1k) + . . .+ fJkk(x;�Jkk), (1)

with unspecified (possibly nonlinear) functions fjk(·) of subvectors of a vector x collecting all
available covariate information, j = 1, . . . , Jk and k = 1, . . . ,K and �k = (�

1k, . . . ,�Jkk)
> are

parameters, typically regression coe�cients that need to estimated from the data. The vector
of function evaluations fjk = (fjk(x1

;�jk), . . . , fjk(xn;�jk))
> of the i = 1, . . . , n observations

is then given by

fjk =

0

B@
fjk(x1

;�jk)
...

fjk(xn;�jk)

1

CA = fjk(Xjk;�jk), (2)

where Xjk (n⇥mjk) is a design matrix and the structure of Xjk only depends on the type of
covariate(s) and prior assumptions about fjk(·). In this notation the k-th parameter vector
is given by

hk(✓k) = ⌘k = ⌘k(Xk;�k) = f
1k + . . .+ fJkk,

where Xk = (X
1k, . . . ,XJkk)

> is the combined design matrix for the k-th parameter.

While functions fjk(·) are usually based on a basis function approach, where ⌘k then is a
typical GAM-type or so-called structured additive predictor (STAR, Fahrmeir, Kneib, and
Lang 2004; Brezger and Lang 2006), in this paper we relax this assumption and let fjk(·) be
an unspecified composition of covariate data x and regression coe�cients �jk (qjk ⇥ 1). In
the case where it is derived through a basis function approach, it can be written as

fjk = Xjk�jk,

But more general and complex terms are also allowed in the BAMLSS framework. A simple
example for a fjk(·) that is nonlinear in the parameters �jk would be a Gompertz growth
curve

fjk = �

1

· exp (� exp (�
2

+Xjk�3)) .
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Note that using basis functions the individual model components Xjk�jk can be further
decomposed into a mixed model representation given by

fjk = X̃jk�̃jk +Ujk�̃jk, (3)

where �̃jk represents the fixed e↵ects parameters and �̃jk ⇠ N (0, ⌧2jkI) i.i.d. random e↵ects.
The design matrixUjk is derived from a spectral decomposition of the penalty matrixKjk and
X̃jk by finding a basis of the null space of Kjk such that X̃>

jkKjk = 0, i.e., parameters �̃jk are
not penalized (see, e.g., Ruppert et al. 2003; Wand 2003; Wood 2004; Fahrmeir et al. 2013).
Such transformations can be used to estimate functions fjk(·) using standard algorithms for
random e↵ects (see, e.g., Wood 2016a).

3. A conceptional Lego toolbox

3.1. Response and posterior distribution

The main building block of regression model algorithms is the probability density function
dy(y|✓1

, . . . ,✓K), or for computational reasons its logarithm. Estimation typically requires
to evaluate the log-likelihood function

`(�;y,X) =
nX

i=1

log dy(yi; ✓i1 = h

�1

1

(⌘i1(xi;�
1

)), . . . , ✓iK = h

�1

K (⌘iK(xi;�K)))

a number of times, where the vector � = (�>
1

, . . . ,�

>
K)> comprises all regression coe�-

cients/parameters that should be estimated, X = (X
1

, . . . ,XK) are the respective covariate
matrices whose i-th row is denoted xi and ✓k are distribution parameter vectors of length
n. Assigning prior distributions pjk(·) to the individual model components results in the
log-posterior

log ⇡(�, ⌧ ;y,X,↵) / `(�;y,X) +
KX

k=1

JkX

j=1

⇥
log pjk(�jk; ⌧ jk,↵jk)

⇤
, (4)

where ⌧ = (⌧>
1

, . . . , ⌧

>
K)> = (⌧>

11

, . . . , ⌧

>
J11

, . . . , ⌧

>
1K , . . . , ⌧

>
JKK)> is the vector of all assigned

hyper-parameters used within prior functions pjk(·) and similarly ↵ is the set of all fixed prior
specifications. More precisely, the rather general prior for the jk-th model term is given by

pjk(�jk; ⌧ jk,↵jk) / d�jk
(�jk| ⌧ jk;↵�jk

) · d⌧ jk(⌧ jk|↵⌧ jk), (5)

with prior densities (or combinations of densities) d�jk
(·) and d⌧ jk(·) that depend on the type

of covariate and prior assumptions about fjk(·). In this framework, ⌧ jk are typically variances,
e.g., that account for the degree of smoothness of fjk(·) or the amount of correlation between
observations. For example, using a spline representation of fjk(·) in combination with a
normal prior for d�jk

(·) the variances can be interpreted as the inverse smoothing parameters
in a penalized regression context, i.e., from a frequentist perspective (4) can be viewed as a
penalized log-likelihood. In addition, the fixed prior specifications ↵jk = {↵�jk

,↵⌧ jk} can
further control the shape of d�jk

(·) and d⌧ jk(·), incorporate prior beliefs about �jk, or for
GAM-type models ↵jk usually holds the so-called penalty matrices, amongst others.
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3.2. Model fitting

Bayesian point estimates of � and ⌧ are typically obtained by either one of:

E1. Maximization of the log-posterior for posterior mode estimation.

E2. Solving high-dimensional integrals, e.g., for posterior mean or median estimation.

For the possibly very complex models within the BAMLSS framework, problems E1 and E2
are commonly solved by computer intensive iterative algorithms, since analytical solutions
are available only in a few special cases. In either case, the algorithms perform an updating
scheme of type

(�(t+1)

, ⌧

(t+1)) = U(�(t)
, ⌧

(t);y,X,↵), (6)

where function U(·) is an updating function, e.g., for generating one Newton-Raphson step
in E1 or getting the next step in an MCMC simulation in E2, amongst others. The updating
scheme can be partitioned into separate updating equations using leapfrog or zigzag iteration
(see, e.g., Smyth 1996). Now let

(�(t+1)

1

, ⌧

(t+1)

1

) = U

1

(�(t)
1

,�

(t)
2

, . . . ,�

(t)
K , ⌧

(t)
1

, ⌧

(t)
2

, . . . , ⌧

(t)
K ;y,X

1

,↵

1

)

(�(t+1)

2

, ⌧

(t+1)

2

) = U

2

(�(t+1)

1

,�

(t)
2

, . . . ,�

(t)
K , ⌧

(t+1)

1

, ⌧

(t)
2

, . . . , ⌧

(t)
K ;y,X

2

,↵

2

) (7)

...

(�(t+1)

K , ⌧

(t+1)

K ) = UK(�(t+1)

1

,�

(t+1)

2

, . . . ,�

(t)
K , ⌧

(t+1)

1

, ⌧

(t+1)

2

, . . . , ⌧

(t)
K ;y,XK ,↵K)

be a partitioned updating scheme with updating functions Uk(·), i.e., in each iteration updates
for the k-th parameter are computed while holding all other parameters fixed. Furthermore,
this strategy can be applied for all terms within a parameter

(�(t+1)

jk , ⌧

(t+1)

jk ) = Ujk(�
(t)
jk , ⌧

(t)
jk , · ) j = 1, . . . , Jk, k = 1, . . . ,K, (8)

and Ujk(·) is an updating function for a single model term.

The partitioned updating system allows for having di↵erent functions Ujk(·) for di↵erent model
terms, e.g., in problem E1 some updating functions could be based on iteratively weighted
least squares (IWLS, Gamerman 1997) and some on ordinary Newton-Raphson steps (see, e.g.,
example Section 6.2). In problem E2 using MCMC simulation it is common to mix between
several sampling methods depending on the type of model term or distribution parameter.

Using highly modular systems like (7) and (8) it is possible to develop a generic estimation
algorithm for numerous possibly very complex models, which is outlined in Algorithm A1.
The algorithm starts by initializing all model parameters and predictors. Then an outer
iteration loops over all distributional parameters performing an inner iteration updating all
model terms of the respective parameter, i.e., the algorithm uses backfitting type updating
schemes. In practice, for full Bayesian inference the algorithm is applied twice, i.e., first
computing estimates for E1 and then using these as starting values for solving E2.

Finding good starting values is especially important for complex model terms, e.g., for multi-
dimensional functions fjk(·) that have multiple smoothing variances in prior densities pjk(·).
Therefore, we propose to estimate parameters ⌧ jk using a goodness-of-fit criterion within the
stepwise selection approach presented in Algorithm A2a, similar to Belitz and Lang (2008).
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Algorithm A1 Generic BAMLSS model fitting algorithm.
Input: y, X, ↵.
Set: Stopping criterion ", number of iterations T , e.g., " = 0.0001, T = 1000.
Initialize: �, ⌘, ⌧ , e.g., � = 0, ⌧ = 0.001 · 1, � = "+ 1, t = 1.
while (� > ")& (t < T ) do

Set ⌘̊ = ⌘

(t).
for k = 1 to K do
for j = 1 to Jk do

Obtain new state (�(t+1)

jk , ⌧

(t+1)

jk ) Ujk(�
(t)
jk , ⌧

(t)
jk , · ) using Algorithm A2a or A2b.

Compute f (t+1)

jk  fjk(Xjk,�
(t+1)

jk ).

Update ⌘

(t+1)

k  ⌘

(t)
k � f (t)jk + f (t+1)

jk .
end for

end for
Compute � rel.change(⌘̊,⌘(t+1)).
Increase t t+ 1.

end while
Output: Posterior mode estimates �̂ = �

(t), ⌧̂ = ⌧

(t) for E1;
or MCMC samples �(t), ⌧ (t), t = 1, . . . , T for E2.

Algorithm A2a Posterior mode updating Ujk(·) with smoothing variance selection.

Input: y, X, ↵, �(t), ⌧ (t).
Set: Goodness-of-fit criterion C.
for l = 1 to Ljk do

Set search interval for ⌧ (t+1)

ljk , e.g., Iljk = [⌧ (t)ljk · 10�1

, ⌧

(t)
ljk · 10].

Find ⌧

(t+1)

ljk  arg min
⌧?ljk2Iljk

C(Ujk(�
(t)
jk , ⌧

?
ljk, ·)).

end for
Update �

(t+1)

jk  Ujk(�
(t)
jk , ⌧

(t+1)

jk , · ).
Output: Updates �(t+1)

jk , ⌧ (t+1)

jk .

Algorithm A2b MCMC updating Ujk(·).
Input: y, X, ↵, �(t), ⌧ (t).
Set: Sampling method, e.g., derivative-based MCMC (see Section 4.2).

Sample �

?
jk  qjk(�

?
jk |�

(t)
jk ).

Compute acceptance probability ↵

⇣
�

?
jk |�

(t)
jk

⌘
.

if uniform draw U(0, 1)  ↵

⇣
�

?
jk |�

(t)
jk

⌘
then

�

(t+1)

jk  �

?
jk

else
�

(t+1)

jk  �

(t)
jk .

end if
Generate ⌧

(t+1)

jk analogously.

Output: Next state �

(t+1)

jk , ⌧ (t+1)

jk .
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In each updating step in Algorithm A1 each ⌧ jk = (⌧
1jk, . . . , ⌧Ljkjk)

> is optimized one after
the other using adaptive search intervals. Hence, the optimization problem is reduced to a
one-dimensional search that is relative fast and straightforward to implement. The algorithm
does not guarantee a global minimum given the goodness-of-fit criterion, however, the solution
is at least close and serves as good starting points for full MCMC. Optimization speed can
be further increased if for a given search interval only a grid of possible values for each ⌧ljk is
used.

The MCMC updating functions usually either accept or reject samples of the parameters and
smoothing variances are sampled after �jk. In Algorithm A2b the general sampling scheme
is shown. Note again the general structure of sampling Algorithm A2b, i.e., the proposal

functions qjk(·) generate parameter samples �(t+1)

jk , ⌧ (t+1)

jk using (possibly) di↵erent sampling
schemes like derivative-based Metropolis-Hastings and slice sampling, see Section 4.2.

4. Lego bricks

For computing parameter updates for either E1 or E2 using flexible partitioned updating
systems like (7) and (8), the following “Lego bricks” are repeatedly used in Algorithm A1:

B1. The density dy(y|✓1

, . . . ,✓K) and respective log-likelihood function `(�;y,X),

B2. link functions hk(·),

B3. model terms fjk(·) and corresponding prior densities pjk(�jk; ⌧ jk,↵jk).

Moreover, in this section we derive the details for updating Algorithms A2a and A2b, which
usually require

B4. the derivatives of inverse link functions h�1

k (·),

B5. the first order derivatives of the predictors @⌘k
@�jk

,

B6. first order derivatives of the log-likelihood

B6a. w.r.t. regression coe�cients/parameters @`(�;y,X)

@�jk
,

B6b. w.r.t. predictors @`(�;y,X)

@⌘k
,

B7. the second order derivatives of the log-likelihood

B7a. w.r.t. regression coe�cients/parameters @2`(�;y,X)

@�jk@�
>
jk

,

B7b. w.r.t. predictors @2`(�;y,X)

@⌘k@⌘
>
k

,

B8. derivatives for log-priors, e.g.,
@ log pjk(�jk;⌧ jk,↵jk)

@�jk
.

Computationally, this leads to a “Lego” system and extending the toolbox can be done in
di↵erent directions, e.g.: For a new response distribution, only building block B1, and pos-
sibly B6b and B7b are necessary, since in most cases B6a and B7a can be simplified when
fragmenting with the chain rule. For a new model term B3 and B5 are needed. And for a new



8 BAMLSS: Bayesian Additive Models for Location, Scale and Shape (and Beyond)

link function B2 and B4. Then, the new building blocks are straightforward to combine with
other previously available building blocks, moreover, most parts that are used for solving E1
can also be used for E2.

The remainder of this section is as follows. Details about commonly used prior densities in
GAM-type models, building block B3, are provided in the next section. In Section 4.2 we
derive the general parts that are needed for updating functions in Algorithm A2a and A2b,
i.e., building blocks B6a, B6b, B7a and B7b. In Section 4.3 and 4.4 we briefly discuss model
choice, Bayesian inference and prediction.

4.1. Model terms and priors

In the following we summarize commonly-used specifications for priors pjk(·) used for estimat-
ing GAM-type models that can be used for building block B3. In addition, Table 1 provides
an overview of model terms and prior structures.

Linear e↵ects

For simple linear e↵ects fjk(·) a common choice for pjk(·) is to use a non-informative (constant)
flat prior. One of the simplest informative priors is a normal prior given by

pjk(�jk; ⌧ jk,↵jk) / exp

✓
�1

2
(�jk �m)>Pjk(⌧ jk)(�jk �m)

◆
,

where ⌧ jk are assumed to be fixed with d⌧ jk(·) = 1 and ↵jk = {↵�jk
= {m}} withm as a prior

mean for �jk. The matrix Pjk(⌧ jk) is a fixed prior precision matrix, e.g., Pjk = diag(⌧ jk).
In a lot of applications a vague prior specification is used with m = 0 and a large precision
(see, e.g., Fahrmeir et al. 2013).

Nonlinear e↵ects

If the nonlinear functions fjk(·) in (1) are modeled using a basis function approach the usual
choice of prior pjk(·) is based on a multivariate normal kernel for �jk given by

d�jk
(�jk| ⌧ jk,↵�jk

) / |Pjk(⌧ jk)|
1
2 exp

✓
�1

2
�

>
jkPjk(⌧ jk)�jk

◆
. (9)

Here, the precision matrix Pjk(⌧ jk) is derived from prespecified so-called penalty matrices
↵�jk

= {K
1jk, . . . ,KLjk}, e.g., for tensor product smooths the precision matrix is Pjk(⌧ jk) =

PLjk

l=1

1

⌧ljk
Kljk. Note that Pjk(⌧ jk) is often not of full rank, therefore, d�jk

(·) is partially im-

proper. The variances ⌧ljk account for the amount of smoothness (regularization) of the
function and can be interpreted as the inverse smoothing parameters in the frequentist ap-
proach. A common choice for the prior for ⌧ jk is based on inverse gamma distributions for
each ⌧ jk = (⌧

1jk, . . . , ⌧Ljkjk)
>

d⌧ jk(⌧ jk|↵⌧ jk) =

LjkY

l=1

b

aljk
ljk

�(aljk)
⌧

�(aljk+1)

ljk exp(�bljk/⌧ljk), (10)

with fixed parameters ↵⌧ jk = {ajk,bjk}. Small values for ajk and bjk correspond to approx-
imate flat priors for log(⌧ljk). Setting bjk = 0 and ajk = �1 or ajk = �1/2 · 1 yields flat
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priors for ⌧ljk and ⌧

0.5
ljk , respectively. However, the inverse gamma prior might be problematic

if ⌧ljk is close to zero, since the results a very sensitive to the choice of ajk and bjk. Therefore,
Gelman (2006) proposes to use the half-Cauchy prior

d⌧ jk(⌧ jk|↵⌧ jk) =

LjkY

l=1

2Aljk

⇡(⌧ljk +A

2

ljk)
, Aljk > 0,

with hyper-parameters ↵⌧ jk = {Ajk}. For Aljk ! 1 the priors are uniform, hence large
values (e.g., Aljk = 25) result in weakly informative priors. A desirable property of the half-
Cauchy is that for ⌧ljk = 0 the density is a nonzero constant, whereas the density of the inverse
gamma for ⌧ljk ! 0 vanishes (see also Polson and Scott 2012). Another question is the actual
choice of hyper-parameters. A recent suggestion reducing this issue to the choice of a scale
parameter that is directly related to the functions fjk(·) (and thus much better interpretable
and accessible for the user) is given in Klein and Kneib (2016a) for several di↵erent hyper-
priors for ⌧ljk, such as resulting priors from half-Cauchy, half-normal or uniform priors for ⌧0.5ljk
or resulting penalized complexity priors (Simpson, Rue, Martins, Riebler, and Sørbye 2017),
so-called scale-dependent priors.

Multilevel e↵ects

In numerous applications geographical information and spatial covariates are given at di↵erent
resolutions. For example, spatial data that is measured within di↵erent regions, for which
additional regional covariates are available. Whenever there is such a nested structure in the
data, it is possible to model the complex (spatial) heterogeneity e↵ects using a compound
prior

�jk = ⌘̃jk(x; �̃jk) + "jk,

where "jk ⇠ N (0, ⌧̃jkI) is a vector of i.i.d. Gaussian random e↵ects and ⌘̃jk(x; �̃jk) represents
a full predictor of nested covariates, e.g., including a discrete regional spatial e↵ect. This way,
potential costly operations in updating Algorithm A2a and A2b can be avoided since the
number of observations in ⌘̃jk(x; �̃jk) is equal to the number of coe�cients in �jk, which is
usually much smaller than the actual number of observations n. Moreover, the full conditionals
(see also Section 4.2) for �̃jk are Gaussian regardless of the response distribution and leads to
highly e�cient estimation algorithms, see Lang, Umlauf, Wechselberger, Harttgen, and Kneib
(2014).

4.2. Model fitting

The construction of suitable updating functions Ujk(·) for solving problem E1 and E2 can
be carried out in many ways. In this respect, note again that algorithm A1 is very general,
i.e., does not restrict to a specific iterative procedure. In the following we describe commonly
used quantities that can be used for estimation of BAMLSS. Moreover, this section highlights
the “Lego” system character described above, that arises when using gradient-based updating
schemes for E1 and E2. More precisely, we first describe posterior mode updating as used
within Algorithm A2a, before we introduce several MCMC sampling schemes that can be
employed in the updating Algorithm A2b.
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Posterior mode

The mode of the posterior distribution is the mode of the log-posterior (4) given by

Mode(�, ⌧ |y,X,↵) = arg max
�,⌧

log ⇡(�, ⌧ ;y,X,↵)

and is equivalent to the maximum likelihood estimator

ML(�|y,X) = arg max
�

`(�;y,X)

when assigning flat (constant) priors to �jk for j = 1, . . . , Jk, k = 1, . . . ,K. For models
involving shrinkage priors, e.g., in GAM-type models given by (9), the posterior mode is
equivalent to a penalized maximum likelihood estimator for fixed parameters ⌧ jk and prior
densities d⌧ jk(·) / constant. Moreover, the structure of the log-posterior (4) usually prohibits
estimation of ⌧ jk through maximization and the estimator ⌧̂ jk is commonly derived by addi-
tionally minimizing an information criterion such as the Akaike information criterion (AIC)
or the Bayesian information criterion (BIC). See also Algorithm A2a for an adaptive stepwise
approach for estimation of ⌧ jk (see also Rigby and Stasinopoulos 2005 Appendix A.2. for
a more detailed discussion on smoothing parameter estimation). In Section 4.3, we briefly
discuss details on the computation of information criteria with equivalent degrees of freedom.

For developing general updating functions we begin with describing posterior mode estima-
tion for the case of fixed parameters ⌧ jk, because these updating functions form the basis
of estimation algorithms for ⌧ jk. Estimation of � = (�>

1

, . . . ,�

>
K)> requires solving equa-

tions @(log ⇡(�, ⌧ ;y,X,↵))/@� = 0. A particularly convenient updating function (6) for
maximization of (4) is a Newton-Raphson type updating

�

(t+1) = U(�(t)
, · ) = �

(t) �H
⇣
�

(t)
⌘�1

s
⇣
�

(t)
⌘

(11)

with score vector

s(�) =
@ log ⇡(�, ⌧ ;y,X,↵)

@�

=
@`(�;y,X)

@�

+
KX

k=1

JkX

j=1


@ log pjk(�jk; ⌧ jk,↵jk)

@�

�
.

and Hessian matrix H(�) with components

Hks(�) =
@s(�k)

@�

>
s

=
@

2 log ⇡(�, ⌧ ;y,X,↵)

@�k@�
>
s

,

for k = 1, . . . ,K and s = 1, . . . ,K. By chain rule, the part of the score vector involving the
derivatives of the log-likelihood for the k-th parameter can be further decomposed to

@`(�;y,X)

@�k
=

@`(�;y,X)

@⌘k

@⌘k

@�k
=

@`(�;y,X)

@✓k

@✓k

@⌘k

@⌘k

@�k
,

including the derivatives of the log-likelihood with respect to ⌘k and ✓k, building block B6a,
the derivative of the inverse link functions, component B4, and the derivative of the predictor
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⌘k with respect to coe�cients �k, B5. Again by chain rule, the components of Hks including
`(�;y,X), building block B7a, can be written as

Jks(�) =
@

2

`(�;y,X)

@�k@�
>
s

=

✓
@⌘s

@�s

◆>
@

2

`(�;y,X)

@⌘k@⌘
>
s

@⌘k

@�k
+

@`(�;y,X)

@⌘k

@

2

⌘k

@

2

�k| {z }
if k=s

, (12)

yielding a decomposition of building blocks B7b and B5. The second term on the right hand
side cancels out if all functions (2) can be written as a matrix product of a design matrix
and coe�cients, e.g., when using a basis function approach. Within the first term, the second
derivatives of the log-likelihood involving the predictors can be written as

@

2

`(�;y,X)

@⌘k@⌘
>
s

=
@`(�;y,X)

@✓k

@

2

✓k

@⌘k@⌘
>
s
+

@

2

`(�;y,X)

@✓k@✓
>
s

@✓k

@⌘k

@✓s

@⌘s
(13)

involving the second derivatives of the link functions.

Using a k-partitioned updating scheme as presented in (7) updating functions Uk(·) are given
by

�

(t+1)

k = Uk(�
(t)
k , · ) = �

(t)
k �Hkk

⇣
�

(t)
k

⌘�1

s
⇣
�

(t)
k

⌘
. (14)

Assuming model terms (2) that can be written as a matrix product of a design matrix and
coe�cients the Hessian matrix in (14) is given by

Hkk

⇣
�

(t)
k

⌘
=

0

B@
X>

1kWkkX1k +G
1k(⌧ 1k) · · · X>

1kWkkXJkk
...

. . .
...

X>
Jkk

WkkX1k · · · X>
Jkk

WkkXJkk +GJkk(⌧ Jkk)

1

CA

(t)

,

with diagonal weight matrix Wkk = �diag(@2

`(�;y,X)/@⌘k@⌘
>
k ) and matrices forming

building block B8

Gjk(⌧ jk) =
@

2 log pjk(�jk; ⌧ jk,↵jk)

@�jk@�
>
jk

. (15)

Here, we want to emphasize that the influence of these prior derivatives matrices is usu-
ally controlled by ⌧ jk, however, note once again that the ⌧ jk are held fixed for the moment
and usually estimation cannot be done with maximization of the log-posterior (see also Sec-
tion 4.3). Typically, using a linear basis function representation of functions fjk(·) and priors
based on multivariate normal kernels (9) matrices Gjk(⌧ jk) are a simple product of smooth-
ing variances and penalty matrices, e.g., with only one smoothing variance building block B8
becomes Gjk(⌧jk) = ⌧

�1

jk Kjk with corresponding penalty matrix Kjk.

Similarly, the score vector is

s
⇣
�

(t)
k

⌘
=

0

BB@

X>
1ku

(t)
k �G

1k(⌧ 1k)�
(t)
1k

...

X>
Jkk

u(t)
k �GJkk(⌧ Jkk)�

(t)
Jkk

1

CCA

and derivatives uk = @`(�;y,X)/@⌘k. Focusing on the j-th row of (14) leads to single model
term updating functions Ujk(·) as presented in algorithm (8). The updates are based on an
iteratively weighted least squares scheme given by

�

(t+1)

jk = Ujk(�
(t)
jk , · ) = (X>

jkWkkXjk +Gjk(⌧ jk))
�1X>

jkWkk(zk � ⌘

(t+1)

k,�j ) (16)
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with working observations zk = ⌘

(t)
k +W�1

kk u
(t)
k (in Appendix A the detailed derivations are

presented), i.e., the algorithm only requires building blocks B6b, B7b and B8. Hence, this
leads to a backfitting algorithm and cycling through (16) for terms j = 1, . . . , Jk and parame-
ters k = 1, . . . ,K approximates a single Newton-Raphson step in (11), since cross derivatives
are not incorporated in the updating scheme. Note that this yields the ingredients of the
RS -algorithm developed in Rigby and Stasinopoulos (2005) Appendix B.2. The updating
scheme (16) can be further generalized to

�

(t+1)

jk = Ujk

⇣
�

(t)
jk , zk � ⌘

(t+1)

k,�j , ·
⌘

i.e., theoretically any updating function applied on the “partial residuals” zk � ⌘

(t+1)

k,�j can be
used. Note also that this result is equivalent to updating function

�

(t+1)

jk = Ujk(�
(t)
jk , · )

= �

(t)
jk �Hkk

⇣
�

(t)
jk

⌘�1

s
⇣
�

(t)
jk

⌘
(17)

= �

(t)
jk �

h
Jkk

⇣
�

(t)
jk

⌘
+Gjk(⌧ jk)

i�1

s
⇣
�

(t)
jk

⌘
,

where matrix Jkk(·) is the derivative matrix given in (12), involving building blocks B6a, B7a
and B8.

For optimization, di↵erent strategies of the backfitting algorithm (16) can be applied. One
alternative is a complete inner backfitting algorithm for each parameter k, i.e., the backfitting
procedure updates �jk, for j = 1, . . . , Jk until convergence, afterwards updates for parameters
for the next k are calculated again by a complete inner backfitting algorithm, and so forth
(see also Rigby and Stasinopoulos 2005).

Note that for numerical reasons it is oftentimes better to replace the Hessian by the expected
Fisher information with weights Wkk = �diag(E(@2

`(�;y,X)/@⌘k@⌘
>
k )), see Klein et al.

(2015b). Moreover, to achieve convergence, algorithms for posterior mode usually initialize
the parameter vectors ✓k. Then, after one complete inner backfitting iteration the algorithm
can proceed in a full zigzag fashion or again with inner iterations. For all updating schemes
it might also be appropriate to vary the updating step length of parameter updates (half-
stepping), possibly in each iteration. This is relatively straightforward to implement, because
step length optimization is a one-dimensional problem, i.e., for each model term finding the
step length that improves the log-posterior most.

Posterior mean

The mean of the posterior distribution is

E(�, ⌧ |y,X,↵) =

Z ✓
�

⌧

◆
⇡(�, ⌧ ;y,X,↵)d

✓
�

⌧

◆
.

Clearly, the problem in deriving the expectation, and other quantities like the posterior me-
dian, relies on the computation of usually high-dimensional integrals, which can be rarely
solved analytically and thus need to be approximated by numerical techniques.

MCMC simulation is commonly used in such situations as it provides an extensible framework
that can adapt to almost any type of problem. In the following we summarize sampling
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techniques that are especially well-suited within the BAMLSS framework, i.e., techniques
that can be used for a highly modular and extensible system. In this context we describe
sampling functions for the updating scheme presented in (8), i.e., the functions Ujk(·) now
generate the next step in a Markov chain.

Note that for some models there exist full conditionals that can be derived in closed form from
the log-posterior (4). However, we especially focus on situations were this is not generally
the case. MCMC samples for the regression coe�cients �jk can be derived by each of the
following methods:

Random-walk Metropolis:
Probably the most important algorithm, because of its generality and ease of implemen-
tation, is random-walk Metropolis. The sampler proceeds by drawing a candidate �

?
jk

from a symmetric jumping distribution q(�?
jk|�

(t)
jk ), the candidate is then accepted as

the new state of the Markov chain with probability

↵

⇣
�

?
jk|�

(t)
jk

⌘
= min

2

4⇡(�?
jk| ·)

⇡(�(t)
jk | ·)

, 1

3

5

with the log-posterior ⇡(�jk| ·) evaluated at the proposed and current value. Commonly,

the jumping distribution is a normal distribution N (�(t)
jk ,⌃jk) centered at the current

iterate and fixed covariance matrix. Although this algorithm is theoretically working for
any distribution, the actual sampling performance depends heavily on starting values
and the scaling of ⌃jk. Therefore, numerous methods that try to optimize the behavior
of the Markov chain in an adaptive phase (burnin phase) have been developed. In
the seminal paper of Gelman, Roberts, and Gilks (1996), strategies that optimize the
acceptance rate to roughly 1/4 are suggested to obtain a good mixing (see also Roberts
and Rosenthal 2009). Similarly, within the presented modeling framework and a basis
function approach with multivariate normal prior (9), a convenient way is to set ⌃jk =
�jkPjk(⌧ jk)�1 and optimize �jk to the desired properties in the adaptive phase.

Derivative-based Metropolis-Hastings:
A commonly used alternative for the covariance matrix of the jumping distribution

N (�(t)
jk ,⌃jk) is to use the local curvature information

⌃jk = �
 
@

2

⇡(#;y,X)

@�jk�
>
jk

!�1

,

or its expectation, computed at the posterior mode estimate �̂jk, requiring building
blocks B7a and B8. However, fixing ⌃jk during MCMC simulation might still lead
to undesired behavior of the Markov chain especially when parameter samples move
into regions with low probability mass of the posterior distribution. A solution with
good mixing properties is to construct approximate full conditionals ⇡(�jk|·) that are
based on a second order Taylor series expansion of the log-posterior centered at the last
state (Gamerman 1997; Fahrmeir et al. 2004; Brezger and Lang 2006; Klein and Kneib
2016b). The resulting proposal density is multivariate normal (see Appendix B for a
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detailed derivation) with precision matrix

⇣
⌃(t)

jk

⌘�1

= �Hkk

⇣
�

(t)
jk

⌘

and mean

µ

(t)
jk = ⌃(t)

jk

h
s

⇣
�

(t)
jk

⌘
�Hkk

⇣
�

(t)
jk

⌘
�

(t)
jk

i

= �

(t)
jk �Hkk

⇣
�

(t)
jk

⌘�1

s
⇣
�

(t)
jk

⌘

= �

(t)
jk �

h
Jkk

⇣
�

(t)
jk

⌘
+Gjk(⌧ jk)

i�1

s
⇣
�

(t)
jk

⌘
,

which is equivalent to the updating function given in (17) and can again be build using
blocks B7a and B8. Hence, the mean is simply one Newton or Fisher scoring iteration
towards the posterior mode at the current step. The proposal density for �jk then is

q(�?
jk|�

(t)
jk ) = N (µ(t)

jk ,⌃
(t)
jk ) and the acceptance probability of the candidate is computed

by

↵

⇣
�

?
jk|�

(t)
jk

⌘
= min

2

4⇡(�?
jk| ·)q(�

(t)
jk |�

?
jk)

⇡(�(t)
jk | ·)q(�

?
jk|�

(t)
jk )

, 1

3

5
.

Again, assuming a basis function approach for functions fjk(·) the precision matrix is

⇣
⌃(t)

jk

⌘�1

= X>
jkWkkXjk +Gjk(⌧ jk),

with weights Wkk = �diag(@2

`(�;y,X)/@⌘k@⌘
>
k ), or the corresponding expectation,

as in posterior mode updating using building blocks B7b and B8. The mean can be
written as

µ

(t)
jk = ⌃(t)

jkX
>
jkWkk

⇣
zk � ⌘

(t)
k,�j

⌘

with working observations zk = ⌘

(t)
k + W�1

kk u
(t)
k (see again Appendix B for a detailed

derivation). Note again, the computation of the mean is equivalent to a full Newton step
as given in updating function (17), or Fisher scoring when using�E(@2

`(�;y,X)/@⌘k@⌘
>
k ),

in each iteration of the MCMC sampler using iteratively weighted least squares (IWLS).
If the computation of the weights Wkk is expensive, one simple strategy is to update
Wkk only after samples of all parameters of ✓k are drawn.

Slice sampling :
Slice sampling (Neal 2003) is a gradient free MCMC sampling scheme that produces
samples with 100% acceptance rate. Therefore, and because of the simplicity of the
algorithm, slice sampling is especially useful for automated general purpose MCMC im-
plementations that allow for sampling from many distributions. The basic slice sampling
algorithm samples univariate directly under the plot of the log-posterior (4). Updates
for the i-th parameter in �jk are generated by:

1. Sample h ⇠ U(0,⇡(�(t)
ijk| ·)).

2. Sample �

(t+1)

ijk ⇠ U(S) from the horizontal slice S = {�ijk : h < ⇡(�ijk| ·)}.
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The full conditional ⇡(⌧ jk| ·) for smoothing variances is commonly constructed using priors for
⌧ jk that lead to known distributions, i.e., simple Gibbs sampling is possible. E.g., this is the
case when using a basis function approach and only one smoothing variance ⌧jk is assigned.
Then, by using an inverse gamma prior (10) for ⌧jk in combination with the normal prior (9)
for �jk the full-conditional ⇡(⌧jk| ·) is again an inverse gamma distribution with

ãjk =
1

2
rk(Kjk) + ajk, b̃jk =

1

2
(�?

jk)
>Kjk�

?
jk + bjk,

and matrix Kjk is again a penalty matrix that depends on the type of model term. As
mentioned in Section 4.1, other priors than the inverse gamma might be desirable. Then,
Metropolis-Hastings steps also for the variances can be constructed, see Klein and Kneib
(2016a) for details. If a simple Gibbs sampling step cannot be derived, e.g., for multi-
dimensional tensor product splines, another strategy is to use slice sampling, since the number
of smoothing variances is usually not very large the computational burden does most of the
times not exceed possible benefits.

4.3. Model choice

In the context of BAMLSS, model choice is usually based on the full response distribution.
In the following commonly used methods used for model choice and variable selection are
outlined.

Diagnostics

Quantile residuals defined as r̂i = ��1(F(yi| ✓̂i)) with the inverse cumulative distribution
function of a standard normal distribution ��1 and F(·) denoting the cumulative distri-
bution function (CDF) of the modeled distribution D(·) with estimated parameters ✓̂i =
(✓̂i1, . . . , ✓̂iK)> plugged in, should at least approximately be standard normally distributed if
the correct model has been specified (Dunn and Smyth 1996; Klein et al. 2015b). Resulting
residuals can be assessed graphically in terms of quantile-quantile-plots. Strong deviations
from the diagonal line are then a sign for an inappropriate model fit. Instead of looking
at residuals one can use the probability integral transform (PIT, Gneiting, Balabdaoui, and
Raftery 2007) which considers ui = F(yi| ✓̂i) without applying the inverse standard normal
CDF. If the estimated model is a good approximation to the true data generating process,
the ui will then approximately follow a uniform distribution on [0, 1]. Graphically, histograms
of the ui can be used for this purpose.

Smoothing variances with posterior mode

As already mentioned in Section 4.2, depending on the structure of the priors (5) parameters
⌧ jk cannot be estimated by maximization of the log-posterior (4). For example, this is the
case for GAM-type models in combination with priors based on multivariate normal kernels
(9) where ⌧ jk represents smoothing variances.

Therefore, goodness-of-fit criteria like the Akaike information criterion (AIC), or the corrected
AIC, as well as the Bayesian information criterion (BIC), amongst others, are commonly used
for selecting the smoothing variances ⌧ jk. These criteria try to penalize overly complex
models, i.e., are trying to prevent over-fitting. For models using a basis function approach,
estimating model complexity using (possibly) nonlinear functions is based on the so-called
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equivalent degrees of freedom (EDF). For each model component the EDF used to estimate
the function are calculated by

edfjk(⌧ jk) := trace
⇥
Jkk(�jk)(Jkk(�jk) +Gjk(⌧ jk))

�1

⇤
,

where Jkk(·) is the derivative matrix given in (12) and matrix Gjk(⌧ jk) is the prior derivative
matrix as given in (15). The total degrees of freedom used to fit the model are then estimated
by
P

k

P
j edfjk(⌧ jk). Note that the definition of EDF here is slightly more general and is

usually defined as the trace of the smoother matrix (see, e.g., Hastie and Tibshirani 1990)
and can be applied even for more complex likelihood structures, e.g., in a flexible Cox model
(Hofner 2008).

Instead of global optimization of smoothing variances, a fast strategy is the adaptive stepwise
selection approach presented in Algorithm A2a.

Variable selection with posterior mean

The deviance information criterion (DIC) can be used for model choice and variable selection
in Bayesian inference. It is easily be computed from the MCMC output without requiring
additional computational e↵ort. If �(1)

, . . . ,�

(T ) is a MCMC sample from the posterior for the
complete parameter vector �, the DIC is given byD(�)+pd = 2D(�)�D(�) = 2

T

P
D(�(t))�

D( 1

T

P
�

(t)) where D(�) = �2 · `(�;y,X) is the model deviance and pd = D(�) �D(�) is
an e↵ective parameter count.

4.4. Inference and prediction

Under suitable regularity conditions inference for parameters �jk can be based on the asymp-
totic normality of the posterior distribution

�jk |y
a⇠ N

⇣
�̂jk,H(�̂jk)

�1

⌘
,

with �̂jk as the posterior mode estimate. However, this approach is problematic since it does
not take into account the uncertainty of estimated smoothing parameters. Moreover, from a
computational perspective it can be di�cult to derive the full Hessian information, because
this might involve complex cross derivatives of the parameters and there are cases where
standard numerical techniques cannot be applied (see Section 6.2).

Instead, applying fully Bayesian inference is relatively easy by direct computation of desired
statistics from posterior samples. Computational costs are relatively low, since only samples
for parameters �jk and ⌧

2

jk need to be saved (in practice about 2000–3000 are su�cient) from
which inference of any combination of terms is straightforward, too.

The posterior predictive distribution is approximated similarly. Random samples for response
observations given new covariate values x? are computed by drawing samples from the re-
sponse distribution

y

? ⇠ D
⇣
h

1

(✓
1

) = ⌘

1

(x?;�(t)
1

), . . . , hK(✓K) = ⌘K(x?;�(t)
K )
⌘

for each posterior sample �

(t)
k ; k = 1, . . . ,K, t = 1, . . . , T .
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5. Strategies for implementation

An implementation of the conceptional framework proposed in the previous sections is pro-
vided in the R package bamlss (Umlauf et al. 2017). In this section, we outline the strategies
that have been guiding this implementation but technical and R-specific details are kept brief.
Instead we focus on how the flexible conceptual framework with its“Lego bricks”can be turned
into an extensible and modular computational framework that readily allows to contruct esti-
mation algorithms as well as interfaces to existing software packages such as JAGS (Plummer
2003) or BayesX (Belitz et al. 2017).

To provide a common toolbox that allows to play with the Lego bricks introduced in the
previous sections, a general BAMLSS software system can be set up as shown in Figure 1.
This proceeds in the following steps:

1. A unified model description where a formula specifies how to set up the linear predictors
from the data and the family provides information about the Lego bricks B1–B8.

2. A generic method for setting up model terms and a model.frame along with the corre-
sponding prior structures. A transformer can optionally set up modified terms, e.g.,
design and penalty matrices for smooth terms when using the mixed model representa-
tion (3).

3. Support for modular and exchangeable updating functions or complete model fitting en-
gines in order to optionally implement either E1 or E2. First, an (optional) optimizer
function can be run, e.g., for computing posterior mode estimates (E1) using Algo-
rithm A1 and A2a. Second, a sampler is employed for full Bayesian inference with
MCMC using Algorithm A1 in combination with A2b, which uses the posterior mode
estimates from the optimizer as staring values. An additional step can be used for
preparing the results.

4. Standard post-modeling extractor functions to create sampling statistics, visualizations,
predictions, etc.

The items above are then essentially just collected in the main model fitting function called
bamlss(). The most important arguments are

bamlss(formula, family = "gaussian", data = NULL,

weights = NULL, subset = NULL, offset = NULL, na.action = na.omit,

transform = NULL, optimizer = NULL, sampler = NULL, results = NULL,

start = NULL, ...)

where the first two lines basically represent the standard model frame specifications (see
Chambers and Hastie 1992).
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formula

family

data

model.frame

transformer

optimizer

(e.g., A1 + A2a)

(e.g., A1 + A2b)
sampler

results

summary

plot

select

predict

Figure 1: Flexible BAMLSS architecture.

The formula combines the classic Wilkinson and Rogers (1973) symbolic description – used
in most standard R regression functions (Chambers and Hastie 1992) – with the infrastructure
for smooth model terms like s(), te(), ti(), etc. – based on recommended R package mgcv
(Wood 2016b) – and handling multiple additive predictors – utilizing the extended formula
processing of Zeileis and Croissant (2010). Thus, a formula can be as simple as in a typical
linear regression model with a response variable y and regressors x1 and x2

y ⇠ x1 + x2

but also with smooth terms in further covariates x3, x4, and x5

y ⇠ x1 + x2 + s(x3) + s(x4, x5)

or even with di↵erent additive predictors for di↵erent model parameters, e.g.,

list(

y ⇠ x1 + x2 + s(x3) + s(x4),

sigma ⇠ x1 + x2 + s(x3)

)

in a normal model with y ⇠ N (µ = ⌘µ, log(�) = ⌘�).

Similarly to other flexible model fitting functions users can specify their own family objects
in order to plug in di↵erent Lego bricks for B1–B8. Family objects from the gamlss package
(Stasinopoulos and Rigby 2016) are readily supported.

Estimation is performed by an optimizer and/or sampler function, which can be provided
by the user. The default optimizer function implements the IWLS backfitting algorithm (16)
with automatic smoothing variance selection, see also Algorithm A2a. The default sampler
function implements derivative-based MCMC using IWLS proposals, smoothing variances are
sampled using slice sampling, see also Section 4. For writing new optimizer and sampler
functions only a simple general format of function arguments and return values must be
adhered to.

More technical details are deferred to the documentation manual of package bamlss.
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6. Illustrations

6.1. Censored heteroscedastic precepitation climatolgy from daily data

Climatology models are one important component of the meteorological tool set. The accu-
rate and complete knowledge of precipitation climatologies is especially relevant for problems
involving agriculture, risk assessment, water management, tourism etc. One particular chal-
lenge of such models is the prediction at high temporal and spatial resolutions, especially in
areas without measurement. This is usually accounted for by simple averaging/smoothing at
a coarse temporal scale (e.g., monthly aggregations) combined with a second step using spatial
interpolation methods like Kriging (Krige 1951). However, such approaches may not work
well enough at a daily resolution where precipitation data is skewed and exhibits high density
at zero observations. To address these issues, Stau↵er, Messner, Mayr, Umlauf, and Zeileis
(2017) have recently suggested an additive regression model for daily precipitation observa-
tions based on a censored normal response distribution and various smooth spatio-temporal
e↵ects.

Following the model of Stau↵er et al. (2017) for the province of Tyrol in Austria, we take their
approach a step further and establish a daily precipitation climatology for all of Austria using a
large and freely-available homogenized data source. The data are taken from the HOMSTART
project (http://www.zamg.ac.at/cms/de/forschung/klima/datensaetze/homstart/)
conducted at the Zentralanstalt für Meteorologie und Geodynamik (ZAMG) and funded by
the Austrian Climate Research Programme (ACRP, Nemec, Chimani, Gruber, and Auer 2011;
Nemec, Gruber, Chimani, and Auer 2013). Homogenization was successfully carried out for
daily precipitation time series within 1948–2009 from a rather dense net of 57 meteorological
stations (see the left panel of Figure 2). Umlauf, Mayr, Messner, and Zeileis (2012) previously
investigated the data based on a much simpler ordered probit model to answer the question
whether it rains more frequently on weekends than during work days (it does not). Here, we
reanalyze the data using a much more complex additive regression model with a normal re-
sponse left-censored at zero. To make positive observations more “normal”, a commonly-used
square-root transformation has been applied prior to regression modeling (see the right panel
of Figure 2).

Specifically, the censored normal model with latent Gaussian variable y

? and observed re-
sponse y, the square root of daily precipitation observations, is given by

y

? ⇠ N (µ,�2)

µ = ⌘µ

log(�) = ⌘�

y = max(0, y?).

Because precipitation in the Alps is driven by the season and local characteristics, e.g., dif-
fering altitude form north to south, we use the following additive predictor for parameter µ

and �:
⌘ = �

0

+ f

1

(alt) + f

2

(day) + f

3

(lon, lat) + f

4

(day, lon, lat),

here function f

1

is an altitude e↵ect, f
2

the cyclic seasonal variation, f
3

a spatially correlated
e↵ect of longitude and latitude coordinates and f

4

a spatially-varying seasonal e↵ect. Hence,
the overall seasonal e↵ect is constructed by the main e↵ect f

2

and the interaction e↵ect f

4

,

http://www.zamg.ac.at/cms/de/forschung/klima/datensaetze/homstart/
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where the deviations from the main e↵ect are modeled to sum to zero for each day of the
year, i.e., this can be viewed as a functional ANOVA decomposition.

For full Bayesian estimation with Algorithm A1, A2a and A2b, we construct updating func-
tions Ujk(·) based on IWLS structures. Hence, as shown in Section 4 this only requires the
following “Lego bricks” to be implemented:

B1. The density function of a left censored Gaussian distribution with the threshold at zero
is given by

f(y; µ = ⌘µ, log(�) = ⌘�) =

(
1

��
�y�µ

�

�
y > 0

�
��µ

�

�
else,

(18)

where � is the probability density and � the cumulative distribution function of the stan-
dard normal distribution.

B6b. Score vectors uk = @`(�;y,X)/@⌘k are computed with

@`(�; y,x)

@⌘µ
=

8
<

:

y�µ
�2 y > 0

� 1

�

�(�µ
� )

�(�µ
� )

else,

and

@`(�; y,x)

@⌘�
=

8
<

:
�1 + (y�µ)2

�2 y > 0

��µ
�

�(�µ
� )

�(�µ
� )

else.

B7b. The diagonal elements of the weight matrix Wkk = �diag(@2

`(�;y,X)/@⌘k@⌘
>
k ) are

derived using

@

2

`(�; y,x)

@⌘

2

µ
=

8
<

:

� 1

�2 y > 0

��µ
�3

�(�µ
� )

�(�µ
� )
� 1

�2

�(�µ
� )2

�(�µ
� )2

else,

and

@

2

`(�; y,x)

@⌘

2

�
=

8
<

:

�2 (y�µ)2

�2 y > 0

��µ
�

�(�µ
� )

�(�µ
� )
� (�µ)3

�3

�(�µ
� )

�(�µ
� )
� (�µ)2

�2

�(�µ
� )2

�(�µ
� )2

else.

The first and second derivative functions have been implemented in the bamlss family
cnorm_bamlss().

Since the HOMSTART data set has over 1.2 million observations, the full storage of the re-
sulting design matrices would lead to excessive demands concerning both computer storage
as well as CPU power. In order to prevent computational problems associated with very
large data sets like HOMSTART, we make use of the fact that the number of unique re-
gressor observations is much smaller, e.g., only 365 for the day-of-year e↵ect. This is much
smaller than the total number of observations of the data set and duplicated rows in the cor-
responding design matrix can be avoided within the model fitting algorithms. Therefore, we
implemented updating functions Ujk(·) that support shrinkage of the design matrices based
on unique covariate observations, using the highly-e�cient algorithm of Lang et al. (2014).
This essentially employs a reduced form of the diagonal weight matrix Wkk in the IWLS

algorithm and computes the reduced partial residual vector from zk � ⌘

(t)
k,�j separately. For
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Figure 2: Distribution of available meteorological stations and daily precipitation values.

usage within bamlss see also the documentation of estimation engines bfit() and GMCMC()

and the corresponding updating functions bfit_iwls() and GMCMC_iwls().

With a total of 4000 iterations of the MCMC sampler, on a Linux system with 8 Intel i7-2600
3.40GHz processors running the model takes approximately 17 hours. For computing the final
model output the first 2000 samples of every core are withdrawn and only every 10th sample
is saved.

The plots of the estimated e↵ects are shown in Figure 3. The top row illustrates the spatial
variation of the seasonal e↵ect (solid lines) together with the mean e↵ect (dashed lines) for
parameters µ and �. The estimates indicate that during June to August precipitation is
highest in the mean e↵ect for µ. However, there is some clear spatial variation, especially
di↵erences between the regions north and south of the Alps. This is highlighted by the red,
gray and blue lines and show that the southern stations have a clear annual peak while for the
northern stations the semiannual pattern is more pronounced. Similarly, the seasonal e↵ect
for parameter � has considerable variation between north and south. The uncertainty peak
is shifting from the middle of summer to fall when going from north to south.

The second row of Figure 3 shows the resulting spatial trends. The spatial e↵ect for parameter
µ indicates that regions with positive e↵ect accumulate in the north-west part of Austria. The
overall importance of the spatial e↵ect is somewhat smaller compared to the seasonal e↵ects,
which is highlighted by using the same range for y-axes in the first row and the color legends
in the second row. The spatial e↵ect for parameter � shows that model uncertainty is the
highest within the southern regions (especially the province of Carinthia) and in the most
western province (Vorarlberg).

The bottom plot in Figure 3 is an example of the resulting precipitation climatology for
January 10th. The predicted average precipitation is quite low all over Austria, ranging from
0 to 1.1mm. The map indicates that more precipitation can be expected in the northern
parts of the Alps, especially in the west (Vorarlberg) and in the center (Salzburg). The e↵ect
of elevation is also visible since the valleys exhibit less precipitation than the alpine regions,
however, the e↵ect is not as pronounced as, e.g., the seasonal e↵ect(s), most probably because
the variation of elevation of the meteorological stations used in this data set is relatively small.
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Figure 3: Estimated e↵ects of the precipitation model, 1st and 2nd row, predicted average
precipitation of the censored mean computed using sampling from the fitted distribution for
January 10th, bottom row.
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6.2. Complex space-time interactions in a Cox model

This analysis is based on the article of Taylor (2017) and contributes to the developed model
by inclusion of complex space-time interactions using the BAMLSS framework.

The London Fire Brigade (LFB, http://www.london-fire.gov.uk/) is one of the largest in
the world. Each year, the LFB is called thousands of times, in most cases due to dwelling
fires. To prevent further damage or fatal casualties, a short arrival time is important, i.e.,
the time it takes until a fire engine arrives at the scene after an emergency call has been
received. The LFB’s annual performance target is an average fire engine arrival time of six
minutes at maximum. Clearly, this mostly depends on the distance between the site and the
responsible fire station but it may also depend on the number of fire stations in the area
because fire engines may already be in use at another nearby fire scenery. Therefore, Taylor
(2017) analyzes the e↵ect of fire station closures in 2014 using a parametric proportional
hazards model to identify regions of possible concern about the number of available fire
stations. To contribute to the topic, we apply an extended complex Cox model to the 2015
dwelling fire response time data and illustrate how the generic BAMLSS framework can be
utilized to set up new estimation algorithms for this type of model.

The data is freely available from the London DataStore (http://data.london.gov.uk/) un-
der the UK Open Government Licence (OGL v2). It can be downloaded from
http://data.london.gov.uk/dataset/london-fire-brigade-incident-records which
also contains previous year.

The dwelling fire data for 2015 consists of 5838 fire events that have been recorded at the 103
fire stations. The distribution of dwelling fires and fire stations is shown in Figure 4. The top
left panel indicates that both, fire stations and fire events, are spread all over London with
a higher density in the city center which is brought out more clearly by the heatmap in the
bottom left panel. The panels on the right-hand side pertain to the arrival time and show
that overall about 30% of these were greater than six minutes (bottom right) with most of
these occuring at the borders of London (top right).

Taylor (2017) analyzes the response times within a survival context where the hazard of an
event (fire engine arriving) at time t with a relative risk model of the form

�(t) = exp (⌘(t)) = exp (⌘�(t) + ⌘�) ,

i.e., a model for the instantaneous arrival rate conditional on the engine not having arrived
before time t. Here, the hazard function is assumed to depend on a time-varying predictor
⌘�(t) and a time-constant predictor ⌘� . In most survival models, the time-varying part ⌘�(t)
represents the so-called baseline hazard and is a univariate function of time t. Compared to
Taylor (2017), we set up a similar model but with the extended time-constant predictor

⌘� = �

0

+ f

1

(fsintens) + f

2

(daytime) + f

3

(lon, lat) + f

4

(daytime, lon, lat),

where �

0

is an intercept and function f

1

is the e↵ect of fire station intensity (fsintens,
computed with a kernel density estimate of all fire stations in London). Thus, this variable is
a proxy for the distance to the next fire station(s), especially suited for situations when the
responsible fire station already send out all fire engines such that help needs to arrive from
another station. Function f

2

accounts for the e↵ect that it is more di�cult for a fire engine to
arrive at the scene in rush hours, i.e., the risk of waiting longer than six minutes is expected

http://www.london-fire.gov.uk/
http://data.london.gov.uk/
http://data.london.gov.uk/dataset/london-fire-brigade-incident-records
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Figure 4: Distribution of dwelling fires, fire stations, and arrival times in London, 2015.

to depend on the time of the day, variable daytime. To treat the question of structured
spatially driven hazards, a spatial e↵ect f

3

of longitude and latitude coordinates is included
in the model. Moreover, we also treat the daytime e↵ect in a spatially correlated context,
function f

4

. For example, we assume that rush hour peaks may have local hot spots that can
be captured by this three-dimensional e↵ect. Again, all functions f

1

, . . . , f

4

are assumed to
be possibly nonlinear and are modeled using penalized splines.

Moreover, we also relax the time-varying predictor ⌘�(t) to

⌘�(t) = f

0

(t) +
J�X

j=1

fj(t,x).

Here, the baseline hazard is represented by f

0

(t) and all functions fj(t,x) are time-varying
possibly nonlinear functions of covariates. Hence, our model is a complex Cox-type additive
model as introduced by Kneib and Fahrmeir (2007). To further investigate if there is a space-
time varying e↵ect, i.e., if the shape of the baseline hazard is dependent on the location we
use the following time-varying additive predictor

⌘�(arrivaltime) = f

0

(arrivaltime) + f

1

(arrivaltime, lon, lat),

where f

0

is the baseline hazard for variable arrivaltime, the waiting time until the first
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fire engine arrives after the received emergency call. Function f

1

(arrivaltime, lon, lat) is a
space-time varying e↵ect modeling the deviations from the baseline which can capture whether
the risk of waiting longer than six minutes is driven by other factors that are not available in
this analysis. Both functions are modeled using penalized splines.

The probability that the engine will arrive on the scene after time t is described by the survival
function

S(t) = Prob(T > t) = exp

✓
�
Z t

0

�(u)du

◆
, (19)

which is of prime interest in this analysis. Based on (19), for full Bayesian inference the
following“Lego bricks”need to be implemented for updating functions Ujk(·) using algorithms
A1, A2a and A2b:

B1. The log-likelihood function of the continuous time Cox model is given by

`(�;y,X) =
nX

i=1

✓
�i⌘i� �

Z ti

0

exp(⌘i�(u)du)

◆
.

where �i is the usual censoring indicator, which equals to �i = 1 in this example, because
we focus on real fire events.

B6a. For derivative-based estimation using Algorithm A2a and for MCMC simulation with
Algorithm A2b, the score vectors and Hessian need to be computed. Assuming a basis
function approach, the score vector of the regression coe�cients for the time-varying part
⌘�(t) is

s (��) = �

>X�(t)�
nX

i=1

exp(⌘i�)

✓Z ti

0

exp(⌘i�(u))xi(u)du

◆
.

B7a. The elements of the Hessian w.r.t. �� are

H (��) = �
nX

i=1

exp (⌘i�)

Z ti

0

exp(⌘i�(u))xi�(u)x
>
i�(u)du.

Note that the Hessian cannot be fragmented further to obtain building block B7b and
IWLS updating functions. The reason is that the diagonal weight matrix based on
@

2

`(�;y,X)/@⌘�(t)@⌘�(t)
> requires a functional derivative like the Hadamard derivative

since the predictor depends on time t. However, it turns out that this derivative forms
martingale residuals in the IWLS step (see, e.g., Barlow 1988) which are incapable of
estimating time-varying e↵ects, see also Hofner (2008, Section 5.2) for a detailed discus-
sion. Therefore updating functions Ujk(·) for the time-varying predictor ⌘�(t) are based
on updating Equation (17) within Algorithm A2a and A2b.

B6b & B7b. Constructing updating functions for the time-constant part ⌘� again yields an
IWLS updating scheme, see Section 4, with working observations given by

z = ⌘� +W�1u,

with the weight matrix
W = diag(P exp(⌘�)),
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where P is a diagonal matrix with elements pii =
R ti
0

exp(⌘i�(u)du). The score vector is

u = � �P exp(⌘�).

(Hennerfeind, Brezger, and Fahrmeir 2006)

As a result, applying the generic algorithm presented in Algorithm A1 to this type of prob-
lem two specific di�culties need to be considered. First, the updating functions Ujk(·) for
the time-varying predictor ⌘�(t) are di↵erent from the time-constant updating functions for
⌘� . Secondly, a specific hurdle of the continuous-time Cox model is the computation of the
integrals, because these do not have a closed form solution and need to be approximated
numerically, e.g., by the trapezoidal rule or Gaussian quadrature (Hofner 2008; Waldmann,
Taylor-Robinson, Klein, Kneib, Pressler, Schmid, and Mayr 2016). Moreover, it is ine�cient
to compute the integrals anew for every updating step, since for the time-constant part the
integrals given in P do not change anymore.

In order to reduce computing time we account for the idiosyncrasy of the Cox model and
implement an optimizer function cox.mode() for posterior mode estimation as well as the
sampler function cox.mcmc() for MCMC simulation. The amount of work to implement
this model using the bamlss infrastructures is moderate, because most of the code of the
default estimation engines can be reused and only need slight adaption. In this example,
the the optimizer and sampler function are part of the corresponding bamlss family object
cox_bamlss(). On a Linux system with 8 Intel i7-2600 3.40GHz processors estimation takes
approximately 1.2 days. Note that function cox.mode() also applies an automated procedure
for smoothing variances selection using information criteria, see also Algorithm A2a.

The estimated e↵ects are shown in Figure 5. The upper left panel shows that the average
“risk” that a fire engine arrives increases steeply until the target time of six minutes. The
space-time varying e↵ect is relatively small compared to the overall size of the e↵ect, especially
until the six minutes target time it seems that the location does not have a great influence on
the relative risk. Only for waiting times above ⇠15 minutes, the space-time varying e↵ect is
more pronounced. The e↵ect for fire station intensity is quite large and bounded, i.e., there
is a natural limit for the benefit from opening new fire stations in the area. The e↵ect of the
time of the day then indicates that in the morning hours around 4–5 am, as well as in the
afternoon around 2–4 pm, the risk of waiting longer for the fire engine to arrive is only slightly
increasing. In addition, the spatial deviations from the mean time of day e↵ect are modest,
similar in magnitude as the spatial varying baseline e↵ects. The largest deviation seems to
be at around 10 am. In Figure 6 the spatial varying e↵ect is illustrated on 9 time points. The
maps indicate possible hot-spots of this e↵ect, however, as mentioned above the overall e↵ect
size from �0.4 to 0.4 is not very large (see also Figure 5 bottom left) such that di↵erences
in risk probabilities are almost negligible. In contrast, the time-constant spatial e↵ect clearly
shows that the average risk of increased waiting times are higher in the city center and some
smaller area in southern London. However, the estimated probabilities of waiting longer than
six minutes around the center show moderate variation, while the borders of London indicate
higher probabilities as well as in the western parts, most probably because of the lower fire
station density in these areas. In summary, next to the baseline e↵ect, the most important
e↵ects on the log risk are the fire station intensity and the time-constant spatial e↵ect which
have an absolute range of about 4 on the log-scale.

To conclude, the proposed model including complex model terms beyond “classical” struc-
tures, like space-time interactions in both the time-constant and the time-varying part, is a
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Figure 5: Estimated e↵ects of the fire emergency response times survival model. Top left
panel shows the mean baseline e↵ect, red line, together with the spatially-varying e↵ects,
black lines. The six minutes target waiting time is represented by the blue dashed vertical
line. The upper right panel shows the estimated probability of waiting longer than six minutes
until the first engine arrives at 8:30 am. The space-time varying e↵ect is illustrated at six
minutes waiting time in the second row, right panel. The time of day e↵ect again shows the
mean e↵ect as red lines and spatial deviations by black lines.
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Figure 6: Estimated spatial varying time-of-the-day e↵ect.

considerable extension of this type of model and can gain more insight into potential risk
factors that are probably not obvious. The presented modular framework facilitates the de-
velopment of such complex algorithms essentially, e.g., Köhler, Umlauf, Beyerlein, Winkler,
Ziegler, and Greven (2016) develop flexible joint models for longitudinal and time-to-event
data using the modular BAMLSS framework.

7. Summary

This paper combines frequently-used algorithms for the estimation of additive Bayesian mod-
els in a flexible framework for distributional regression, also termed Bayesian additive models
for location, scale and shape (BAMLSS), and beyond. We highlight the similarities between
optimization and sampling concepts and coalesce these in a generic toolbox of modular “Lego
bricks”. Two case studies illustrate how the framework can be leveraged to establish complex
and di�cult-to-estimate models based on the accompanying implementation in the R package
bamlss (Umlauf et al. 2017).
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A. Posterior mode updating based on IWLS

The following shows the steps needed to derive the iterative updating scheme based on IWLS
in Section 4.2. Focusing on the j-th row of (14) gives
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This yields the updating function Ujk(·) shown in (16).
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B. Approximate full conditionals for derivative-based MCMC

The following shows the steps to derive a multivariate normal jumping distribution based on
a second order Taylor series expansion of the log-posterior centered at the last state of �jk.
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with weights Wkk = �diag(@2
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BAMLSS: Bayesian additive models for location, scale and shape (and beyond)

Abstract
Bayesian analysis provides a convenient setting for the estimation of complex ge-
neralized additive regression models (GAMs). Since computational power has tre-
mendously increased in the past decade it is now possible to tackle complicated
inferential problems, e.g., with Markov chain Monte Carlo simulation, on virtually
any modern computer. This is one of the reasons why Bayesian methods have be-
come increasingly popular, leading to a number of highly specialized and optimized
estimation engines and with attention shifting from conditional mean models to pro-
babilistic distributional models capturing location, scale, shape (and other aspects)
of the response distribution. In order to embed many di↵erent approaches suggested
in literature and software, a unified modeling architecture for distributional GAMs
is established that exploits the general structure of these models and encompasses
many di↵erent response distributions, estimation techniques (posterior mode or pos-
terior mean), and model terms (fixed, random, smooth, spatial, ...). It is shown that
within this framework implementing algorithms for complex regression problems,
as well as the integration of already existing software, is relatively straightforward.
The usefulness is emphasized with two complex and computationally demanding
application case studies: a large daily precipitation climatology based on more than
1.2 million observations from more than 50 meteorological stations, as well as a Cox
model for continuous time with space-time interactions on a data set with over five
thousand ’individuals’.
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