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Technology lock-in with horizontal and vertical

innovations through limited R&D spending

Anton Bondarev∗ Alfred Greiner†

Abstract

In this paper we analyze an inter-temporal optimization problem of a repre-
sentative firm that invests in horizontal and vertical innovations and that faces a
constraint with respect to total R&D spending. We find that there can exist two
different steady-states of the economy when the amount of research spending falls
short of an endogenously determined threshold: one with higher productivities and
less new technologies being developed, and the other with more technologies being
created and lower productivities. But, for a higher amount of R&D spending the
steady-state becomes unique and the firm produces the whole spectrum of available
technologies. Thus, a lock-in effect may arise that, however, can be overcome by
raising R&D spending sufficiently.
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1 Introduction

It is widely known that in the framework with co-existing vertical and horizontal innova-

tions firms tend to invest more into the development of existing products rather than into

the creation of new products. This is a typical situation in industries where large firms are

multi-product monopolists due to patent regimes, with the pharmaceutical and packaging

industries as good examples. At the same time, the technology lock-in phenomenon has

been recently shown to occur in some endogenous growth models, in which the introduc-

tion of newer technologies is postponed because they are more risky/underdeveloped, as

in the models by (Zeppini and van den Bergh 2013) and by (Acemoglu, Aghion, Bursztyn,

and Hemous 2012) for example.

In this paper we obtain the technology lock-in result for a single multi-product firm

under conditions of scarce R&D funding. This funding may reflect the research subsidy

from the government devoted to fostering new innovations or it may be determined as a

fixed fraction of the firm’s profit. It is argued that, if multiple steady-states exist in such

a setup, the appropriate way to overcome the technology lock-in lies at the microeconomic

level of firms’ constraints, rather than at the level of market regulations.

The problem of multi-product innovations has received attention in the industrial

organization literature starting with (Lambertini 2003). In that paper the optimal be-

haviour of a multi-product R&D firms is analysed. However, it is assumed that there are

no restrictions with respect to R&D spending. The motivation for this paper, therefore,

is to consider whether a constraint on R&D can lead to multiple steady-states for a single

firm. This multiplicity involves different levels of diversity of technologies as in (van den

Bergh 2008) and of their productivities. The difference to the aforementioned model is

that we allow for the expansion of the range of technologies through the creation of new

ones.

We employ the same methodology to the R&D problem as it has been done for drug

markets regulation in (Baveja, Feichtinger, Hartl, Haunschmied, and Kort 2000), where

it has been demonstrated that the multiplicity of steady-states may arise from perimeter-

type constraints on optimal dynamics. The formulation of the problem itself follows the
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setup with linear profits and cost reduction from innovations as in (Dawid, Greiner, and

Zou 2010), allowing us to neglect supply and demand effects.

Our proposed model accounts for the role of heterogeneity of new products, as in

(Hopenhayn and Mitchell 2001). The multi-product monopolist is modelled as a single

agent in the industry (market). The process of innovative activity follows the ideas of

(Romer 1990) as concerns horizontal innovations and of (Schumpeter 1942; Aghion and

Howitt 1992) with respect to vertical innovations, thus, trying to unify these approaches

in a partial equilibrium context.

The description of multi-product innovations follows the ideas of papers (Lambertini

and Orsini 2001; Lin 2004; Belyakov, Tsachev, and Veliov 2011) and more closely (Bon-

darev 2012), where the single-agent dynamic optimization problem with infinite life cycles

of technologies has been analysed. The formal analysis is based on general results of the

Maximum Principle on an endogenously defined domain of (Skritek, Stachev, and Veliov

2014).

The main contribution of the paper is the analysis of the conditions under which the

multiplicity of steady-states in the R&D investment problem may arise. We find that

one of these states corresponds to the situation of a lower range of technologies with a

high development of existing products, while the second one describes the situation with

a higher range of technologies, with all of them being less developed. This technology

lock-in may be overcome if the research spending is sufficiently increased and the two

steady-states collapse into one single steady-state. The key role as regards the existence

of such a lock-in is played by the amount of R&D spending available for the expansion

of the range of technologies and available for investments into quality improvements of

existing technologies.

The rest of the paper is organized as follows. The next section presents the structure

of our model. Section 3 derives the optimal solution and section 4 analyzes the question

of whether the steady-state is unique or whether multiple steady-states can exist. Section

5, finally, concludes the paper.
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2 The inter-temporal optimization problem with hori-

zonal and vertical innovations

We assume a representative firm that maximizes the discounted stream of profits, given

by the productivities of all new technologies minus the cost from investments in horizon-

tal and vertical innovations, and that faces a resource constraint with respect to R&D

spending.

In the objective (1) it is assumed that the profit of the monopolist only results from

quality improvements of the technologies. This is equivalent to assuming constant prices1

and a linear profit function for all already introduced technologies (products). Then, the

only additional profit the monopolist can make is by improving the quality of the existing

technologies (products) such that they become more attractive for consumers. Linearity

of the profit function and the assumption of constant prices are standard for this type

of models, see for example (Dawid, Greiner, and Zou 2010). Thus, profits from the

introduction of new technologies (products) are proportional to their quality and prices

for them are just functions of the quality levels.

Denoting the discount rate of the firm by r > 0, the objective functional to be maxi-

mized can be written as:

J
def
= max

u(·),g(·)

∫ ∞
0

e−rt

(∫ n(t)

0

[
q(i, t)− 1

2
g(i, t)2

]
di− 1

2
u(t)2

)
dt. (1)

with:

• u(t): investments into variety expansion;

• g(i, t): investments into the productivity growth of technology i at time t;

• q(i, t): level of development (quality) of technology i at time t;

• n(t): variety of technologies already invented (introduced into the market) at time

t.

1or assuming revenue function to be linear in the state of quality with prices being linear functions of

quality
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The firm continuously develops new technologies, i ∈ I, from their potential spectrum.

The process of acquiring new technologies follows a simple linear process. At the same

time, the firm develops the productivity of all these new technologies. The dynamics for

the variety of technologies, n(t), and for the productivities of technologies, q(i, t), are

given by:

ṅ(t) = ξu(t),

q̇(i, t) = ψ(i)g(i, t)− βq(i, t), ∀i ∈ [0; 1] = I ⊂ R, (2)

with:

• ξ > 0: efficiency of investments in the expansion of variety of technologies;

• ψ(i) > 0: efficiency of investments in the productivity growth of technology i;

• β > 0: rate of decay of productivity of technology i, identical across technologies.

By assuming this form of dynamics for new technologies we assume every next technol-

ogy requires more time and effort to develop and obtain then previous ones and is based

on successful innovation of preceding products. Thus it is not the case that technologies

are obtained immediately (except for the initially available stock): time to completion of

each technology i is defined from actual state of variety n and the higher is i, the more

time is required to obtain this technology.

In addition, there is a constraint on the total amount of R&D spending given by,

u(t) +

∫ n(t)

0

g(i, t)di ≤ R, (3)

stating that total R&D spending2 cannot exceed the exogenously determined value R.

The dynamic problem is then of the perimeter-type constrained one. We use the

standard technique of the augmented Hamiltonian function to obtain a characterization

of the solution, see (Fattorini 1999) for general method and (Baveja, Feichtinger, Hartl,

2the budget on R&D could be set endogenously by a specific firm’s R&D policy. It could positively

depend on total profits, but, this is difficult to model. Pure exogenous dynamics will not change the

qualitative results: the constraint is either binding or not.
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Haunschmied, and Kort 2000) for example of resource-constrained application with such

a treatment.

One also has a number of static constraints on controls and states:

q(i, t)|i=n(t) = 0, 0 ≤ n(t) ≤ n̄ ≡ 1, q(i, t) ≥ 0, u(t) ≥ 0, g(i, t) ≥ 0. (4)

From (2), (4) it can be seen, that the productivity of each technology can decline over

time (q(i, t) may decrease), but the technology itself, once invented, cannot be forgotten

(n(t) cannot decrease). The spectrum of technologies is bounded by some positive value

n̄ which is normalized to one3. In such a framework, the number of technologies grows

over time, but there is no structural change since older ones do not disappear from the

system. It should be noted that each new technology has zero productivity at the time it

is invented,

q(i, ti(0)) = 0, (5)

which makes sense from an economic point of view and where ti(0) denotes the time of

invention of the technology i4. The time of invention of the technology, ti(0), is the inverse

function of the process of variety expansion, n(t):

ti(0) = f−1(n(t))|n(t)=i. (6)

It should be noted that the efficiency of investments, ψ(i), plays a crucial role in the

determination of the dynamics of productivities. If this is an increasing function of i,

every next technology eventually becomes more productive than all the preceding ones,

if this is a decreasing function, new technologies are harder to develop and have lower

productivity in the end. If the efficiency is the same for all technologies, ψ(i) = ψc, all

technologies evolve in the same fashion and the optimal control problem (1) subject to

(2), (4) is equivalent to a problem with two states and without a resource constraint.

3it is fairly straightforward to relax this assumption by allowing decreasing efficiency of investment

in new technologies, ξ(n) : ∂ξ(n)
∂n < 0. Qualitative results of the paper will continue to hold, but the

dynamics is more elaborated. We assume a bounded state space to keep the analysis simple and clear.
4Condition (5) points to the fact that it requires efforts g(i, t) and time to develop a new technology

up to the level that it becomes productive, q(i, t) > 0.
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To make the problem interesting and manageable, we assume the following properties

with respect to the efficiency function:

• The function ψ(i) is continuous;

• It is invertible;

• It is decreasing in i.

The first two properties are necessary for the problem to have a tractable solution and

the last one is added in order to include the trade-off between staying within the existing

products range and expanding it further.5 The intuition behind this property is that

newer technologies (higher i) are more complicated and thus it is harder to develop their

productivity.

For the control problem to make sense we also require compactness of the state space

and this requires function ψ(i) to be bounded. We choose the following specific form for

this efficiency function, allowing it to vary across technologies:

ψ(i) = ψc
√

1− i, ψc > 0. (7)

Such a function permits a closed-form solution of the variety expansion problem, while

assuming that it is more complicate to raise the efficiency of new technologies than that

of older ones6. A different function that is also decreasing in i would be ψc/i. However,

we choose the specification ψc
√

1− i in order to assure the boundedness of the potential

technologies space and in order to get the closed-form solution of the model. But, the

qualitative analysis would be the same for any monotonic and decreasing function.

5For an increasing ψ(i) function there would be no trade-off between expanding the range of technolo-

gies and improving the existing ones and, thus, a lock-in could not arise.
6Since horizontal and vertical innovations are interrelated, it also leads to an increased complexity of

invention of new products.
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3 Solution of the optimization problem

To solve the dynamic optimization problem given by (1) subject to (2) and (3), we con-

struct the augmented Hamiltonian:

H =

∫ n(t)

0

[
q(i, t)− 1

2
g(i, t)2

]
di− 1

2
u(t)2 + λn(t) · (ξu(t))+

+

∫ n(t)

0

λq(i, t) · (ψ(i)g(i, t)− βq(i, t))di+ l(t) ·
(
R− u(t)−

n(t)∫
0

g(i, t)di
)
, (8)

where λn, λq are the shadow prices or co-state variables of the variety expansion and

of the productivities of technologies, respectively, and l(t) is the time-varying Lagrange

multiplier for the resource constraint.

The first order conditions for this problem are given by,

u(t) = ξλn(t)− l(t); (9)

g(i, t) = ψ(i)λq(i, t)− l(t); (10)

plus complementary slackness condition:

l(t)

R− u(t)−
n(t)∫
0

g(i, t)di

 = 0, (11)

which always yields l(t) ≥ 0, since the unused budget cannot be carried over to future

periods (hence it is optimal to spend all of it unless it is not binding).

The differential equation system for the co-state variables is:

λ̇n(t) = rλn(t)− ∂H
∂n

=

= rλn(t) +
1

2
g2(n(t), t)− λq(n(t), t)ψ(n(t)) g(n(t), t) + l(t) g(n(t), t), (12)

∀i ≤ n(t) : λ̇q(i, t) = rλq(t)−
∂H
∂q

= (r + β)λq(i, t)− 1. (13)

In deriving that system, we made use of the following:

• in the first equation we make use of the condition q(i, t)|i=n(t) = 0,
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• g(n(t), t) = g(i, t)|i=n(t) is the value of investments into the productivity of the next

technology to be invented,

• λq(n(t), t) = λq(i, t)|i=n(t) is the shadow price of investments into the boundary

technology productivity,

• ψ(n(t)) = ψ(i)|i=n(t) is the value of the efficiency function at the boundary of variety

expansion at the moment t.

We can summarize our results as concerns the optimality conditions in the following

Proposition 1. The transversality conditions we employ in our problem follow the version

of the Maximum principle established in (Belyakov, Tsachev, and Veliov 2011) and more

recent (Skritek, Stachev, and Veliov 2014) for T → ∞ and current-value Hamiltonian

formulation, for details see (Seierstad and Sydsaeter 1999) for example.

Proposition 1 (Characterization of the optimality conditions)

For the inter-temporal optimization problem of the firm, given by the maximization of (1)

subject to (2) and (3), the optimal solution is characterized as follows:

1. The optimal controls for the problem are given by (9), (10) and (11);

2. The dynamics of the shadow prices for the variety expansion and for the productiv-

ities of technologies are given by (12) and by (13), respectively.

In addition, the limiting transversality conditions

lim
t→∞

e−rtλn(t) = 0, lim
t→∞

e−rtλq(i, t) = 0, ∀i ≤ n(t), (14)

must hold.

4 Uniqueness and multiplicity of steady-states

The closer analysis of the dynamic system describing the optimal R&D investment reveals

that the presence of the constraint on R&D spending leads to the possibility of multiplicity

of steady-states for this system. Before we present the analysis in detail, we first define a
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steady-state for our model and then analyze the conditions for existence and multiplicity

of these states.

Definition 1 (Steady-state)

The steady-state of the model is characterized by the following conditions:

∀i ∈ [0, 1] : q̇(i, t) = 0, λ̇q(i, t) = 0, ṅ(t) = 0, λ̇n(t) = 0. (15)

Due to the form of the dynamic constraints, given by (2), the levels of productivities

of all existing technologies reach their respective steady-state values, too, as long as the

system giving the evolution of the variety is in steady-state. The steady-state levels of

productivities depend on the level of the variety at the steady-state, ñ, and on the value

of the shadow prices, λ̃n, for every given level of the research budget R, with the tilde˜

denoting steady-state values. Since λ̇n and ṅ only depend on λn and on n (see Appendix

A), the overall steady-state of the model depends on the steady-state of the dynamic

system (A.6), (A.7), given in Appendix A.

The inspection of the equation (A.6) shows that the steady-state condition for the

shadow price λn from (15) is a polynomial of second order in this variable. From funda-

mental algebra we know that such a polynomial has exactly two roots7. Thus, for every

value of n(t) there are two steady-state values of the shadow price. At the same time, the

equation (A.7) is linear in the shadow price so that there is only one steady-state of n(t)

for every value of λn. These considerations demonstrate that the system (A.6), (A.7) can

have at most two different steady-states. The isocline λ̇n = 0 generates two lines with

one origin at n ≤ 1, and the isocline ṅ(t) = 0 is an initially rising concave function that

becomes vertical at n = 1. Two steady-states arise when the ṅ(t) = 0 isocline intersects

the λ̇n = 0 isocline for values of n < 1 and a unique steady-state is obtained when the

isoclines intersect at n = 1.

Figure 1 illustrates the case of a unique steady-state and of two steady-states for this

system depending on the level of R. To draw Figure 1 we resorted to the parameter values

given in table 1. The research budget is set to R = 0.9 for the multiple steady-states case

7we do not distinguish between complex and real roots, since this affects only stability and not the

existence of steady states
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Table 1: Parameters values used in Figures 1 and 2.

Parameter Value

n0 0

r 0.05

ψc 0.9

ξ 0.8

β 0.1

and to R = 4 for the unique steady-state case. It should be noted that for values of R > 4,

the isocline ṅ(t) = 0 shifts downward and the kink of that isocline occurs for values of

λn < 0 and not exactly at λn = 0, as it is the case for R = 4. Of course, the steady-state

is also unique for all R > 4.8

0.2 0.4 0.6 0.8 1.0
n

-10

-5

5

10

λn

λ̇n = 0

λ̇n = 0

ṅ= 0

ṅ= 0

+
+

-+-

-

(a) Unique steady-state, R = 4

0.2 0.4 0.6 0.8 1.0
n

-10

-5

5

10

λ̇n = 0

λ̇n = 0

λn

ṅ= 0
ṅ= 0

ṅ= 0

+
-

-
+

+

-

(b) Multiple steady-states, R = 0.9

Figure 1: Uniqueness and multiplicity of R&D steady-states

The lower the level of the R&D budget is, the higher is the chance for a multiplicity

of steady-states where one of the steady-states corresponds to a lower level of variety

of technologies and higher shadow prices of investments than the other. That holds

8For R = 4, the lower λ̇n = 0 isocline starts at n = 1, λn = 0, the upper λ̇n = 0 isocline starts at

n = 1, λn > 0. For R > 4, the lower λ̇n = 0 isocline also starts at a value λn > 0 and n = 1.
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because a decline in R&D shifts the ṅ(t) = 0 isocline upwards. The following proposition

summarizes the result.

Proposition 2 (Uniqueness and multiplicity of steady-states)

The dynamic system λ̇n, ṅ, given by (A.6), (A.7), has at most two steady-states. Other

things equal the R&D budget R defines the number of steady-states of the system. With

R < R? there exist two steady-states with a low and a high level of variety of technologies.

With R ≥ R? there exists only one steady-state with ñ = 1.

The proof of proposition 2 amounts to the calculation of the derivatives of (A.6) and

(A.7) with respect to R and taking into consideration the discussion above.

As regards the stability of the steady-states, we can make a statement for the general

model for the case of a unique steady-state, i.e. in the case of R ≥ R?. For R < R?,

however, we cannot determine stability properties for the analytical model, but only for

numerical examples. The following proposition that is proven in Appendix B summarizes

results with respect to stability.

Proposition 3 (Stability of steady-states)

In the case of a unique steady-state, i.e. for R ≥ R?, the steady-state is asymptotically

stable. In the case of two steady-states, i.e. for R < R?, numerical examples show that

the steady-state with the lower ñ is a saddle point and the steady-state with the higher ñ

is unstable with complex conjugate eigenvalues with a positive real part.

Now, it should be noted that to each of the steady-states of the system (A.6), (A.7)

corresponds a steady-state level of productivity for each of the developed technologies

q(i)|i≤ñ. Since the research budget is limited by R, one can realize from system (2) that

this leads to a stop of the development of productivities due to increasing support costs

for each technology (given by βq(i) term).9 The steady-state level of productivity for

technology i is given by,

q̃(i) =
ψ2
c (1− i)
β(r + β)

+
2

3
ψ2
c

√
1− i(1− ñ)3/2

(1 + ñ)
+ ψc

√
1− i

(1 + ñ)
(R(r + β)− 2

3
ψc − ξ(r + β)λ̃n).

(16)

9Formally, this is seen from (A.5) as follows: ṅ = 0 implies u = 0 leading to l = ξλ̃n, giving

q̇ = ψc
√

1− i
(
ψc

√
1−i

r+β − ξλ̃n
)
−βq. Since the first term is constant, q converges to its steady-state value.
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Solving ṅ(t) = 0 with respect to λ and substituting the result for λ̃n in (16), q̃(i) becomes

a function of n and of other parameters. The derivative of the steady-state productivity

with respect to the variety level n is always negative:

∂q̃(i)

∂n
= −1

3

ψc
√

1− i√
1− nn2

·
(
ψc
(
2(1−

√
1− n)− n(n− 1)

)
+ (3
√

1− n(r + β)R)
)
< 0.

(17)

Thus, we have the following straightforward implication:

Corollary 1 (Productivities with multiple steady-states)

With a constraint on R&D spending giving rise to multiple steady-states for the dynamic

system λ̇n, ṅ, given by (A.6), (A.7), there also exist two steady-states for the productivities

of all technologies. They are characterized by,

q̃H(i) < q̃L(i), (18)

where H (L) denotes the steady-state with the higher (lower) number of variety. At the

same time, each newer technology has a lower steady-state level:

q̃H(i+ δ) < q̃H(i), q̃L(i+ δ) < q̃L(i), δ → 0. (19)

The last result follows from the assumed form for the efficiency function, (7). Observe

that result of Eq. (18) is just a consequence of limited spending with growing mass of

technologies, but Eq. (19) is a consequence of heterogeneity and is not standard.

Corollary 1 shows that in the case of two steady-states, the one with the higher

variety of technologies implies a lower productivity of these technologies. Hence, there

is a trade-off between variety and productivity in case of two steady-states. But it must

be underlined that this trade-off only exists for a given level of R&D in the situation

of two steady-states. Thus, raising R&D may lead to a unique steady-state and to a

situation with a higher variety and a higher productivity, compared to the case with two

steady-states as our considerations below will show.

Figure 2 illustrates the difference between the average productivities of three technolo-

gies at the steady-state for the cases of a unique steady-state and for multiple steady-states
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with the parameters set to the values given in Table 1. In the case of multiple steady-

states we have taken the one with the higher productivity of technologies. It can be

realized that in the unique steady-state case each technology has a higher productivity.

That is due to the higher amount of R&D spending in the case of a unique steady-state

compared to the case of two steady-states.

(a) Unique steady-state, R = 4 (b) Multiple steady-states, R = 0.9

Figure 2: Average productivities of technologies in steady-states

Finally, we analyse the effect of changes in the R&D budget on the number of steady-

states in general and we determine the threshold level R∗. First, note that a higher R

leads to the collapse of the two steady-states into a unique one for the system (A.6), (A.7).

The unique steady-state implies ñ = 1 and λ̃n = 0. Using this, one can easily compute

the threshold level of the research budget, R∗, from ṅ(t) = 0 as:

R∗ =
2

3

ψc
r + β

. (20)

With the parameters given in table 1 one obtains R∗ = 4. It should be pointed out that the

quantity ψc/(r+β) gives the optimal investments into overall productivity growth. Thus,
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a unique steady-state can be obtained only if the research budget is at least 2/3 of optimal

investments into the growth of productivites of existing technologies. It should also be

pointed out that in the case of multiple steady-states both steady-states are inefficient in

the sense that they do not allow for the introduction of all potential technologies into the

economy, i.e. ñ < 1 holds for both steady-states. Assuming that welfare or production

possibilities positively depend on the spectrum n, this implies that the economy is in an

inefficient situation.

Further, setting R > R? also implies a unique steady-state. However, that would

be inefficient since the same result can be obtained for R = R? because this also gives

the maximum value ñ = 1 so that any additional R&D spending would be a waste of

resources.10 We state our result in the following proposition:

Proposition 4 (Technology lock-in with a constraint on R&D) In the R&D sec-

tor described by the dynamic system q̇, λ̇n, ṅ, given by (A.5), (A.6), (A.7), the resource

constraint R is crucial as concerns the emergence of a technology lock-in.

1. For R < 2
3
ψc

r+β
, the economy is characterized by a technology lock-in with two ineffi-

cient steady-states;

2. For R ≥ 2
3
ψc

r+β
, no lock-in effect arises and the variety of technologies reaches its

maximum steady-state level ñ = 1;

3. Optimal level of R&D expenditures are given by R? = 2
3
ψc

r+β
.

Under optimal level we understand the necessary and sufficient level of (static, exogenous)

R&D budget constraint to reach to higher steady state and avoid technology lock-in.

Increase in R would not generate faster convergence to the desired steady state since this

is exactly the level when constraint is not binding, thus relaxing it further does not make

the firm better off even before the steady state is reached.

It is important to observe that the existence of multiplicity of steady-states relies

heavily on the heterogeneity of the technological space being represented by the efficiency

10Further, there is no way to usefully spend the additional R&D on quality improvement because all

invented technologies have already reached their maximal quality levels in the steady-state.
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function ψ(i). If the efficiency of investments is the same for all the technologies, no

technology lock-in will arise. To see that just consider the underlying control problem

with ψ(i) = ψc. It follows that there will be no interplay between vertical and horizontal

innovations and thus no multiplicity of steady-states may arise.

5 Conclusion

In this paper we have analyzed the inter-temporal optimization problem of a firm that

invests in R&D to generate both horizontal and vertical innovations and that faces a

constraint with respect to total R&D spending. We have found that the model may be

characterized by an uneven distribution of investments between the introduction of new

technologies and the development of older ones. With limited research expenditures it is

likely that the majority of resources will be spent on the development of existing technolo-

gies, rather than on the introduction of new ones. This will lead to the technology lock-in

phenomenon, as described in the literature, when newer technologies are underdeveloped

or even non-existent. However, due to the structure of the R&D process considered in our

model, this lock-in can be overcome by an increase in research spending above a certain

threshold that depends on the structural parameters determining the R&D process and

on the discount rate of the firm.

The technology lock-in found in our model is different from those being discussed in

the Introduction. First, it does not rely on general equilibrium effects which occur in

endogenous growth models where lock-ins have been found. Rather, the existence of the

lock-in stems from the differences between the technologies to be developed. The harder

it is to develop newer technologies in comparison to older ones, the more likely such a

lock-in would appear for a given R&D budget level. With technologies being homogeneous

in this respect, no lock-in would be observed for any budget level.

Second, in the existing literature the discussion of the lock-in phenomena boils down

to the choice of the policy to push the economy from one steady-state to the other in case

of two steady-states. In our model the logic is different. Depending on the funding level,

two or one steady-states may exist and a lock-in is described in terms of the number of
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technologies produced. In the situation with two steady-states it is not the case that one

of them is unambiguously better than the other. Rather, they are both inefficient from

the point of view of maximizing the range of technologies. The way out of this lock-in

is the transition to yet another efficient steady-state which appears as the result of a

bifurcation when both inefficient steady-states collapse into the efficient one.

Thus, the policy implication of our result is as follows. The policy maker should

subsidize R&D spending in those industries where the technologies are sufficiently different

and where each next technology is harder to develop (provided costs of subsidizing are

not exceeding the benefits). In the industries where technologies are similar to each other

concerning their investment characteristics no subsidies are necessary (even if costs of

those are low), since the only equilibrium dynamics is the optimal one. The level of this

R&D subsidy should be carefully balanced because after reaching the efficient steady-state

any additional subsidies (increases of the R&D budget) are excessive and do not generate

any additional technology. Thus, there are two crucial points for the development of

an industry-specific economic policy. First, the differentiation of products should be

measured, giving a proxy for the level of heterogeneity of technologies. Only in case such

a heterogeneity exists and new products are characterized by higher complexity, an R&D

subsidy should be considered. Second, the subsidy should be only granted if there is a

significant potential for the generation of new technologies (products).

Appendices

A Derivation of the dynamic system

In (14) we posit that the standard transversality conditions for the finite time horizon T

also holds for the infinite time horizon, with lim
t→∞

replacing lim
t→T

. For λq this implies:

∀i ≤ n(t) : lim
t→∞

e−rtλq(i, t) = 0. (A.1)
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Then, the co-state for each technology productivity can be obtained from (13) as:

∀i ≤ n(t) : λq(i, t) =
1− e(r+β)(t−T )

(r + β)
, (A.2)

which yields a constant shadow price in time for each technology for the infinite horizon

case, i.e. for T →∞,

∀i ≤ n(t) : λq(i, t)|T→∞ =
1

(r + β)
. (A.3)

The form of l(t) results from substituting (9), (10) into (11) taking into account

specification (7) and the form of the co-state variable λq(i, t) = 1/(r + β):

l(t) =
2ψc − 2ψc(1− n(t))3/2 + 3(r + β)(ξλn(t)−R)

3 (r + β)(1 + n(t))
, (A.4)

which is a function of the variety expansion and of its co-state variable. The differential

equations for all system variables, then, are obtained by substituting the controls in

(9), (10) with l(t) defined in (A.4). The resulting productivities, q(i, t), are functions of

the variety of technologies, n(t), and of the resource constraint R which enters optimal

investments through the Lagrange multiplier:

q̇(i, t) = ψc
√

1− i
(
ψc
√

1− i
r + β

− 2ψc − 2ψc(1− n(t))3/2 + 3(r + β)(ξλn(t)−R)

3 (r + β)(1 + n(t))

)
− βq(i, t)

(A.5)

Using the expressions for the controls, (9), (10), the Lagrange multiplier, (A.4), and

the efficiency of investments into the boundary technology, ψ(n) = ψc
√

1− n(t), one can

obtain the explicit expression for the change of the co-state variable as a function of n(t)
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and of the budget constraint R:

λ̇n(t) =

(
− β ξ2r

(n (t) + 1)2 (r + β)2
− 1/2

r2ξ2

(n (t) + 1)2 (r + β)2
− 1/2

β2ξ2

(n (t) + 1)2 (r + β)2

)
·

· (λn (t))2 +
r2ξ R− 2/3ψc rξ + β2ξ R + 2 β ξ rR− 2/3ψc β ξ + 2/3ψc (1− n (t))3/2 β ξ

(n (t) + 1)2 (r + β)2
·

· λn(t) +

(
ψc
√

1− n (t)β ξ + ψc
√

1− n (t)rξ

(r + β)2 (n (t) + 1)
+ r + 2/3

ψc (1− n (t))3/2 rξ

(n (t) + 1)2 (r + β)2

)
λn (t)−

− 7/6
ψc

2 (n (t))2

(n (t) + 1)2 (r + β)2
− 5

18

ψc
2 (n (t))3

(n (t) + 1)2 (r + β)2
− 2/3

ψc (1− n (t))3/2 β R

(n (t) + 1)2 (r + β)2
−

− 2/3
ψc (1− n (t))3/2 rR

(n (t) + 1)2 (r + β)2
+ 1/3

ψc
2 (n (t))2

(r + β)2 (n (t) + 1)
+ 2/3

ψc
2
√

1− n (t)

(r + β)2 (n (t) + 1)
−

− 1/2
R2β2

(n (t) + 1)2 (r + β)2
−

ψc
√

1− n (t)β R

(r + β)2 (n (t) + 1)
−

ψc
√

1− n (t)rR

(r + β)2 (n (t) + 1)
+

+ 2/3
ψcRr

(n (t) + 1)2 (r + β)2
− R2β r

(n (t) + 1)2 (r + β)2
− 1/2

R2r2

(n (t) + 1)2 (r + β)2
+

+ 7/6
ψc

2n (t)

(n (t) + 1)2 (r + β)2
− 5/3

ψc
2

(r + β)2 (n (t) + 1)
+ 4/9

ψc
2 (1− n (t))3/2

(n (t) + 1)2 (r + β)2
+

+ 4/3
ψc

2n (t)

(r + β)2 (n (t) + 1)
+ 2/3

ψcRβ

(n (t) + 1)2 (r + β)2
+ 1/18

ψc
2

(n (t) + 1)2 (r + β)2
(A.6)

Substitution of (9) with l(t), given by (A.4), into the dynamics of variety expansion from

(2), yields the following differential equation for n(t):

ṅ(t) = ξ2λn(t)
n(t)

1 + n(t)
−
ξ
(
2ψc − 2ψc(1− n(t)3/2 − 3R(r + β)

)
3 (r + β)(1 + n(t))

(A.7)

B Proof of proposition 3

To prove the first part, we first note that the inital value of n, n(0) = n0 < 1, is given

whereas the initial value for λ, λ(0), can be chosen freely by the optimizing firm. Then,

we see from figure 1(a) that starting above the lower λ̇n = 0 isocline implies that n(t)

rises and λ(t) rises (declines) if the initial λ(0) is chosen below (above) the upper λ̇n = 0

isocline. Since n(t) cannot decline, limit cycles are excluded. Therefore, and since this is a
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two dimensional system in the plane, the only feasible solution in that case is convergence

to the steady-state (ñ = 1, λ̃n > 0).

In the case of two steady-states, the eigenvalues of the Jacobian matrix evaluated at

the steady-state are symmetric around r/2. For the parameter values in table 1, the

steady-state with the lower ñ is a saddle point, with the eigenvalues given by 0.9424 and

−0.8924 and the steady-state with the higher ñ is an unstable focus, with the eigenvalues

given by 0.025 ± 1.02576 i, where i =
√
−1. The same qualitative result is obtained

for R = 0.1 and all other parameter values unchanged. Qualitatively, the result also

remains unchanged when setting r = 0.05, ψc = 1, ξ = 1, β = 0.1, R = 0.9 and for

r = 0.02, ψc = 1, ξ = 1, β = 0.1, R = 2.5.
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