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Improving Value-at-Risk Estimation from
the Normal EGARCH Model

Mahsa Goriji', Rasoul Sajjad?

ABSTRACT

KEY WORDS:

JEL Classification:

Returns in financial assets display consistent excess kurtosis and skewness, implying the presence of
large fluctuations not forecasted by Gaussian models. This paper applies a resampling method based
on the bootstrap and a bias-correction step to improve Value-at-Risk (VaR) forecasting ability of the
n-EGARCH (normal EGARCH) model and correct the VaR for both long and short positions. Our aim is
to utilize the advantages of this model, but still use the bootstrap resampling method to accurate for
the tendency of the model tomiscalculate the VaR. Empirical results indicate that the bias-correction
method can improve the n-GARCH and n-EGARCH VaR forecasts so much that the acquired VaR pre-
dictions are different from the proposed probability. Additionally, allowing asymmetry in the condi-
tional variance using the EGARCH model with normal distribution instead of GARCH improves the
performance of the bias-correction method in forecasting the VaR for almost all considered indices.
Moreover, the bias-corrected n-EGARCH model performs better than the simple t-EGARCH model.
Thus, it seems that this model can take account of both the asymmetry in the conditional variance
and leptokurtosis in returns distribution. However, we find that the superiority of the bias-corrected
n-EGARCH model over the t-EGARCH model is not completely confirmed for short positions based on
the censored likelihood scoring rule.

Bootstrap; EGARCH; GARCH; Value-at-Risk

(C58,G32,C15
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1. Introduction

Since the Basle Committee (1995; 1996) began allow-
ing banks to implement internal VaR models for cal-
culating capital requirements, various methods have
been proposed to achieve this purpose. However, the
theoretical and computational complexity of these
methods has also been raised. Furthermore, various
methods have been suggested for modeling condition-
al variance, and a large number of candidate distribu-
tions have been considered for modeling empirical
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features of the returns (Alexander, 2001; Bao, Lee, &
Saltoglu, 2007). Although more complex shapes of the
tails have the potential preference of increased abilities
to describe the VaR, they may lead to more uncertainty
in the parameters and hence in the VaR estimate itself
(Bams, Lehnert, & Wolft, 2005).

The simple method that can consider two charac-
teristics of financial asset returns, namely time-varying
volatility and excess kurtosis, is the GARCH model by
Engle (1982) and Bollerslev (1986). Researchers begin-
ning with Black (1976) have demonstrated that stock
returns are negatively correlated with changes in re-
turn volatility. Nevertheless, symmetric models such
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as the GARCH model have difficulties in correctly
modeling the tails of the returns distribution (Giot &
Laurent, 2003) due to leverage effects. To overcome
this shortcoming, various studies have proposed the
inclusion different asymmetric terms in the condition-
al variance equation (Ding, Granger, & Engle, 1993;
Engle & Ng, 1993; Glosten, Jagannathan, & Runkle,
1993). Nelson (1991) also proposed the exponential
GARCH model, which was re-expressed by Bollerslev
and Mikkelsen (1996).

Hartz, Mittnik and Paolella (2006) have developed
a resampling method based on the bootstrap and bi-
as-correction for improving the VaR forecasting abil-
ity of the n-GARCH (normal GARCH) model. Their
proposed method has improved the VaR forecasts of
the n-GARCH model. Our main objective is to extend
their study by allowing asymmetry in conditional vari-
ance. To this end, we apply the n-EGARCH in addition
to the n-GARCH model to consider certain theoretical
advantages of this model over the n-GARCH. How-
ever, Fama (1965) has demonstrated that return distri-
butions of financial instruments are more leptokurtic
than normal distributions and tend to be exhibit “fat
tails”. In addition, empirical studies of high-frequency
financial time series demonstrate that the tail behavior
of GARCH models remains too short even with stan-
dardized Student’s t innovations (Tsay, 2005). There-
fore, we implement the bias-correction procedure
based on the bootstrap method to remove the deficien-
cies of the n-GARCH and n-EGARCH models with re-
spect to appropriate VaR forecasts. We try to conserve
the simplicity of these methods, but still use the boot-
strap resampling method to accurate for the tendency
of these models to miscalculate the VaR. While Hartz
etal. (2006), model the long VaR only, we try to extend
their analysis by correcting the VaR for both long and
short positions based on the aforementioned GARCH
models (n-GARCH and n-EGARCH). Additionally,
we evaluate models based on the censored likelihood
(csl) scoring rule proposed by Diks, Panchenko, and
Van Dijk (2011) in addition to the well-known Christ-
offersen’s LR test. Empirical validation shows that con-
sidering asymmetry in conditional variance generally
leads to improvements in accurately forecasting one-
day-ahead VaR based on the bias-correction method
for long and short positions, which is somewhat con-
firmed by the csl scoring rule.
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The rest of the paper is organized as follows. Sec-
tion 2 explains the methodology for estimating the
distribution of the VaR point forecast and how it can
be used to improve its accuracy. The empirical analysis
and evaluation the performance of competing models
in forecasting VaR are presented in Section 3. Finally,
Section 4 concludes the paper.

2. Forecasting VaR

In general, for the set of equally spaced asset returns,
r,t=1,..., T, the class of ARMA(p, 9-EGARCH
(1, s) models is given by

P q

n=a,+Yan +&+ybe,

i=1 J=1

v s
2 2
Ino, =c,+ E clno + E djl:‘z,_/‘—E
i=1 =

£ =20, (1)

e :|+Z:'6jz"-f 2)

=
where d; represents the magnitude effect that indi-
cates how much volatility increases autonomously of
the direction of the shock. The 6, is the sign effect.
Both z and |z|-E|z| are zero-mean iid sequences
with continuous distributions. E|z| depends on
the assumption made on the unconditional density
of z,. For the standard Gaussian random variable
t, E|z|=~2/7 . The log of the conditional variance
guarantees that forecasts of the conditional variance
are non-negative (Nelson, 1991). Some additional
properties of the EGARCH model can be found in
Nelson (1991).

For a given return series and a chosen mod-
el from the n-ARMA-EGARCH class in (1) and
(2), the usual conditional VaR forecast is acquired
by estimating the unknown parameter vector
0=(ay,..,a,,b,,....b,,¢y,....C,,dy,....d,6,...,0)  Via
conditional maximum likelihood.

We also define the set of estimated standardized re-

siduals {Z,},as Z, =¢,/&,, with

P q
6“,:}';—[1’\0—( &i’}_i)_(z jgt_j), (3)
i=1 Jj=1
G} =é,+Yems?, +Yd, [ |-E [+ X0z, @
i=1 Jj=1 Jj=1

then the h-step-ahead (time horizon, 4 €Z) VaR fore-
cast is obtained by

9, =0, (B T) =" (A fir,»67.0)s ®)
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where ®'(4;1,67), indicates the inverse cdf of the
standard normal distribution with mean ¢ variance

o’ and 4, a given probability level, and

» g .
Hroy =4y +Zaer+h—I +Zb/'6T+h—j > (6)
izl =]
, r , s . s
Iné7., =¢, +chl”0-r+h4 +Zdj [ zT+h7j‘_E Z ) ]"z 1) (7)
=

=] =

The VaR for a short position is similarly computed
where the same definition is used for the right tail of
the distribution function, i.e., 1- 4 substitutes for 1.

2.1. VaR forecast distribution

For implementing the bias-correction method we need
to estimate VaR forecast distribution in addition to a
VaR point estimator (v,). Therefore, as Hartz et al.
(2006) proposed, we apply the bootstrap method to
this end. This method coincides with that described
in Pascual, Romo and Ruiz (2006), Reeves (2005) and
Trucios and Hotta (2016). It is connected to the filtered
historical simulation method proposed by Barone-
Adesi, Giannopoulos and Vosper (1999; 2002) and the
bootstrap methodology described by Dowd (2005).

Despite that the sampling distribution of the VaR
point forecast is unknown and intangible, the boot-
strap method provides the possibility for its approxi-
mation. Because, assuming the true data generating
process is constant over time, the bias caused by the
use of the inappropriate but simple n-GARCH model
will display certain regularities and thus can be cor-
rected based on a set of past VaR bootstrap distribu-
tions (Hartz et al., 2006). This is the assumption used
in the bias-correction method described in Section 2.2.

For implementing B bootstrap iterations, the bth
replication, b = 1, . . ., B, we should consider the fol-
lowing steps as Hartz et al. (2006) suggested:

Step 0: For a chosen set of values p, g, ; s (for which
p=r=s=1andg =0 is most common), obtain QML
parameter vector estimate @, estimated standardized
residuals {Z}, then forecast VaR for a certain h (we
consider h=1) by (5).

Step 1: Simulate the (b)th of B, n-ARMA(p, q)-
EGARCH(r, s) time series, {r®’}, of length T, using
the estimated parameter vector § and bootstrapped
standardized residuals sequence {Z*’}. To eliminate
the effect of initial values, we simulate T+ ¢ series and
then discard first ¢ observations (¢=T).

www.ce.vizja.pl
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Step 2: Obtain the QML parameter vector estimate
6® based on n-ARMA (p, q)-EGARCH(j; s) using the
simulated time series {r*'}.

Step 3: Estimate a resampled VaR estimate, W (h, Ty,
using the original series {r,}, and the bootstrap param-
()

eter vector estimate 6’ , via

P 9 .
&0 =r—al - X" )-QBVE"y, t=1,...T,
i=1 =

v s
52(0) _ Ab) £(0) ]y 52(0) jo [| 50
Ing"” =¢)” + Ec,. g, + E d; I:zH 7E‘ZHH+
i=1 J=1

£SO
j=1
and to calculate bootstrapped VaR forecast
A(b - A(b ~2(b
0 (hT) =07 (1.40).6%).
where
P q .
LB AB) 5(0) H®) a0

Moy =Qy + 24 Try T2 078 »
= =

5(b)
Zrh-j ‘ -E

2|+

- s
52(0) _ (h) Ab) g A2(0) S10)
Ing;\) =¢ + Ec, Iné;., ., + Edj [
i=1 =]

Y

=
are calculated using conditional expectations for un-
observed values.

The primary VaR prediction, #”, and the B boot-
strapped VaR predictions, #{"), b=1,..., B, can be used
to construct an empirical distribution function of VaR
estimation. This function is given by

e 13 o(5)
Iﬁg(a,ﬂ.,h,T):ﬁbzz(;y/(m’a)(vl (h,T)), (8)

where w(.) is the indicator function. This function
could be used to construct a bootstrap confidence
interval for the VaR; for instance Christoffersen and
Goncalves (2005) propose to use the bootstrap for con-
structing confidence intervals of a conditional VaR es-
timator. Nieto and Ruiz (2010) suggest a new bootstrap
procedure to obtain prediction intervals of future VaR
and Expected Shortfall (ES), as well. We use the boot-
strap method as described in the previous section to
obtain a more accurate VaR based on n-GARCH mod-
els (n-GARCH and n-EGARCH) as much as possible.
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2.2. Bias-correcting VaR forecasts

The corrective method uses the VaR distributions
(approximated based on the illustrated bootstrapped
method) and an objective function, which is described
by definition of the VaR. The VaR is defined to be the
worst possible loss from an investment over a target
horizon and for a given probability level (Crouhy, Ga-
lai, & Mark, 2001). Therefore, the evident criterion to
construct this function is the observed frequency of
exceptions, or past realized returns that are less (high-
er) than or equal to the predicted VaR for long (short)
positions.

For a given probability level 1, the observed fre-
quency of exceptions, denoted f, for a set of succes-
sive VaR predictions for long positions obtained from
the usual n-GARCH models between times, say, 7, and
7,, and the equivalent realized returns is given by

Syl =) ©

t=n,

7, —rl+1

The observed frequency of exceptions for a short posi-
tion is similarly computed where the same definition is
used for the right tail of the distribution function, i.e.,
Wis(0)y SUDSstitutes for Y (os]-

The observed frequency of exceptions is less (high-
er) than the real risk level 4, if the VaR forecasts cal-
culated by the n-GARCH models tend to overestimate
(underestimate) the risk. Therefore, the logic behind
the bias-correction method is to find the quantile of
past VaR distributions which causes observed fre-
quency of exceptions conforms to (as close as possible)
a given risk level.

Let {3 (h,)},2, be the sorted VaR predictions, with
length (B+1) produced by the resampling algorithm
with the original n-GARCH models forecast, 3" (h,¢),
added, i, % (h,1)<¥*(hs) forb=0,...,B~ 1.
Calculating the correct quantile of the VaR distribu-
tion Ii is equivalent to find the largest index b for the
long VaR (the smallest for the short VaR), denoted &",
such that for the conforming series {13?.1 (h)), - .
the observed frequency of exceptions is less than or
equal to the given risk level. Therefore, we need a cer-
tain number of past VaR distribution predictions that
precede the actual VaR prediction of interest. As Hartz
et al. (2006) have described, we consider a moving
window procedure for finding the proper quantile of
the VaR distribution produced by the resampling al-
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gorithm. Common to all models is the construction of
a moving window in which the model is recalculated
for each window period, removing the first observa-
tions and adding new ones as the window advances.
L is the fixed number of preceding VaR forecast distri-
butions that we consider for finding the proper quan-
tile for the h-step-ahead prediction for the downfall
risk made at time T. Accordingly, the optimal quantile
is described as

T-h

Z (wv[”]hl
L-i

h+1

b=max{b:be{0,l,..., B} s. % LS4 (10)

=T~
where b° denotes the greatest quantile of the last L
feasible VaR distributions for which the conforming
series of VaR predictions, Ogb'}(h,t) , leads to an ob-
served frequency of VaR exceptions that is equal to
(or just smaller) than the given risk level. The b" for
a short position is similarly computed where it deter-
mines the smallest quantile of the VaR distributions

and the substitutes for

()0 (o0, il (ht)) *

As the data generating process is not constant over
time, calculating an optimal L would be reliable only
for particular segment of a particular data set (Hartz et
al., 2006). Thus, following the suggestion of Hartz et al.
(2006) concerning the choice of L, we assume two sizes
of the moving window (L) to examine whether this cri-
terion could affect the results of our study.

We consider two values, L=250 and 500, (one and
two years of trading data, respectively) to perform the
bias-correction method.

3. Empirical analysis

We consider the daily percentage log-return series,
defined by 7, =(Inp,—Inp,_)x100, where p, is the
closing price index on day t. The data set analyzed in
this paper comprises daily observations on three major
stock market indices” returns; namely, the FTSE Com-
posite, NIKKEI 225 and CAC (hereafter the FTSE,
NIKKEI and CAC). The starting date for the series are
August 27, 1999 for the FTSE; April 09, 1999 for the
NIKKEL and November 05, 1999 for the CAC.

The usual descriptive statistics of the data are given
in Table 1. The moments of the stock index returns are
shown along with the results of an aggregate autocor-
relation (Ljung-Box) test for returns and their squares.
As seen, for the FTSE and NIKKEI the skewness is
significant and negative, indicating a possible leverage

DOI: 10.5709/ce.1897-9254.230
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Table 1. Moments of the FTSE, NIKKEI and CAC returns along with aggregate autocorrelation test results.

FTSE NIKKEI CAC
Mean 0.0008 -0.004 -0.007
Minimum -9.26 -12.11 -947
Maximum 9.38 13.23 1059
Std. Dev. 1276 1.565 1.550
Skewness -0.126 -0419 0.028
Kurtosis 8715 9.361 7.540
Ljung-Box test for returns
Q-stat(12) 7881 13.85 56.95
{0} {031} {0
Q-stat(24) 102.2 4434 71.28
{0} {0.007} {0}
Q-stat(36) 153.52 61.00 120.97
{0} {0.006} {0}
Ljung-Box test for squared returns
Q-stat(12) 2797 3051 1988
{0} {0} {0}
Q-stat(24) 4340 3860 3138
{0} {0} {0}
Q-stat(36) 5351 4114 3907
{0} {0} {0}
Note:

p-values in curly braces.
Q-stat (g) denotes a modified Ljung-Box type statistic.

effect in data, but for the CAC the skewness is posi-
tive, and the kurtosis is significantly higher than that
of a Gaussian distribution (excess kurtosis), indicating
fat-tailed returns for all series. This suggests the need
for a fat-tailed distribution, for example Students t, to
describe the returns’ conditional distribution. Further-
more, imposing an asymmetric parameter in the con-
ditional variance equation enables us to capture pos-
sible leverage effects in the data. In addition, the large
Q-statistics up to 12, 24 and 36 orders strongly reject

www.ce.vizja.pl
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the null hypothesis of no serial correlation in both re-
turns and squared returns for the FTSE and CAC but
only in returns for the NIKKEI index.

The estimation period is set to T' = 1000, which cor-
responds to about four years of daily returns data for
estimating the parameters of models. B = 1000 boot-
strap replications are used for calculating the VaR fore-
cast distributions.

For each series, we use p =2000 out-of-sample val-
ues, and the last forecast is made for July 16, 2013 for
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each series. The models are used to estimate one-day-
ahead VaR (h=1) of both long and short trading posi-
tions (left and right tails of returns distribution) with
different probabilities (at different tail quantiles): 0.5%,
1%, 5%, 95%, 99% and 99.5%.

For implementing the bias-correction method, we
use the two values L = 250 and 500. So, an additional
number of L=500 VaR forecast distributions resulting
in a total of P +L=2500 VaR forecast distributions are
considered.

In addition to the n-AR(1)-GARCH(1,1) and
n-AR(1)-EGARCH(1,1) models, we consider the
AR(1)-EGARCH(1,1) with the Generalized Error Dis-
tribution (GED) and t-AR(1)-EGARCH(1,1) (with
Student’s t innovations) to assess the performance of
the bias-correction method.' The original form of this
model is used for the comparison due to its ability to
consider the asymmetry in the conditional variance
and the excess kurtosis relative to the normal distribu-
tion. In this model, the conditional variance obtained
is similar to the n-EGARCH model (i.e., Equation (2)),
while the E|z,| for a Student’s t distribution with v > 2
degrees of freedom is given by

£(=) - 2Jo—2T((v+1)/2)

(o-Drw/2r (1)

where I'(x) is the usual gamma function.
The corresponding VaR prediction for the t-AR(1)-
EGARCH(1,1) model is given by

B, =9, (hT)= ity + 64, F 7 (A:D), (12)

where F'(%; v) is the inverse of the cumulative distri-
bution function of the ¢-distribution with v degrees of
freedom and a standardized variance of one.

In the remainder of the paper, we first examine the
VaR forecast distributions generated by the bootstrap
algorithm. Then, we compare the VaR estimations of
the competing models.

3.1. VaR forecast distribution

Figures 1-3 present the first VaR forecast distribu-
tions included in our analysis for the FTSE, NIKKEI
and CAC for both long and short trading positions.
The upper part of the figures refers to the VaR fore-
cast distribution for the n-GARCH model, while the
lower part of the figures refers to the VaR forecast
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distribution for the n-EGARCH model. Additionally,
the vertical lines exhibit the usual n-GARCH and n-
EGARCH VaR predictions, 7.

As seen from figures 1, 2 and 3, the risk in VaR fore-
casts for both long and short trading positions increas-
es for smaller probability levels. The usual VaR predic-
tions do not exactly coincide with the mode of the VaR
forecast distributions. For instance, for the first VaR
forecasts made for all series, the usual n-EGARCH
VaR forecasts are smaller than the mode of the VaR
forecast distributions for both long and short trading
positions. On the other hand, the first VaR forecasts
for all series from the usual n-GARCH model for short
trading position are greater than the mode of the cor-
responding VaR forecast distributions.

3.2. Performance of Models in Forecasting VaR
For assessing the accuracy of competing methods, we
define the Boolean sequence as

I, = V/(wa,f/)(l,t)) (rHl) 4 (13)

where ¥, (1,¢) is one-step-ahead VaR predictions for
2, a given probability level, and 7, is the observed
return. Christoffersen (1998) showed that evaluat-
ing interval forecasts can be reduced to examining
whether the Boolean sequence, {I,}!_, satisfies the un-
conditional coverage (UC) and independence (IND)
properties. .

Let T,=Y1,,, the number of violations, and the

t=1

n T
failure rate be expressed as f=T ’IZIM =T,/T. For
t=1
testing the UC, the proper likelihood ratio statistic,
also called the Kupiec (1995) LR unconditional test,
(under the null hypothesis that, 7 =2) is

LR, =2In[ (1= /Y ()Y -2 -2 () ]~ 22,

B,=1-F, (LR,), (14)
For P, below the desired significance level, the null
hypothesis is rejected.

The LR, test adapted from Christoffersen (1998) is
used to test the conditional coverage.

We compare models based on the p-values, and
models with higher p-values are preferred.

DOI: 10.5709/ce.1897-9254.230
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VaR-densities for FTSE based on n-GARCH, t=1
8

8

0

alpha=.05

alpha=.01 alpha=.005 \

Figure 1. Vertical lines refer to the usual n-GARCH and n-EGARCH VaR predictions, $°. VaR forecast distributions for the
first forecast - FTSE.

VaR-densities for Nikkei based on n-GARCH, t=1

4

alpha=.05 alpha=.01 alpha=.005 ‘

Figure 2. Vertical lines refer to the usual n-GARCH and n-EGARCH VaR predictions, $°. VaR forecast distributions for the
first forecast - NIKKEI.
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VaR-densities for CAC based on n-GARCH, t=1
4

alpha=.05

alpha=.01

alpha=.005 ‘

In addition to unconditional and conditional tests
we consider a csl scoring rule suggested by Diks et al.
(2011) to assess the performance of the bias-correc-
tion method. They have shown that this scoring rule
is handy as the main interest lies in comparing the ac-
curacy of density forecasts for a specific region, such as
the left tail in financial risk management. While they
have considered long VaR only, we also evaluate our
models for both long and short positions. The cen-
sored likelihood (csl) score function is given by

$% (&m0 ) = W, (v ) logd, (1) +

+(1—wt (rm))log(l—jw[ (s)a,(s)ds), (15)
A2 =8 (8,n.,) =S (Bt ),

where 4, and b, are two competing density forecasts and
w,(r) is a threshold weight function w, (r)=1I(r<¥%).
Additionally, corresponding realizations of the variable
1., are accessible for t=n, n+1,..., T-1. Then, 4,

and b, are comparable based on their average scores

CONTEMPORARY ECONOMICS

Figure 3. Vertical lines refer to the usual n-GARCH and n-EGARCH VaR predictions, . VaR forecast distributions for the
first forecast - CAC.

difference d, by testing if their difference is statistically
significant?.

In the following, we first concentrate on the mea-
sures LR, LR,, and LR, . The results for the seven
competing models are given in Tables 2-4 for the
FTSE, NIKKEI and CAC.

We first examine the capability of the bias-correc-
tion procedure to improve the VaR forecasts of the
usual n-GARCH and n-EGARCH models. Compar-
ing the forecasts from the usual models with the bias-
corrected forecasts, we find that the P, -values for at
least five out of the 6 specified probabilities for L = 500
are superior (larger) to those for the usual n-GARCH
model, while for the n-EGARCH model the p-values
for at least four out of the 6 cases for both window
lengths are superior to those for the usual n-EGARCH
model.

We found no P, -values below the 5% significance
level for the bias-corrected VaR predictions of the n-
EGARCH model with L = 500 for all series except the
NIKKEI at 99%, while for the usual VaR forecasts, we

DOI: 10.5709/ce.1897-9254.230



Improving Value-at-Risk Estimation from the Normal EGARCH Model | 99

Table 2. Unconditional coverage, independence, conditional coverage—FTSE.

VaR R p-values R p-values

models ! P, B B, ! P, P F, e
VaR 5% VaR 95%

Fu 0.0645 00133 04802 0.0043 0.0420 0.0600 0.0952 00918 5/3/3

Frsoo 0.0545 04343 0.3598 03624 0.0495 0.07%4 0.0245 09182 2/1/0

Froancn 0.0605 0.1052 0.7070 0.0367 0.0435 0.0803 0.0742 0.1730 4/4/2

Froarc-so 00505 0.6627 0.3674 09184 0.0520 0.1870 00742 06834 0/0/0

- 0.0650 00120 0.6866 0.0032 0.0450 0.0951 0.0572 0.2970 5/5/4
VaR 1% VaR 99%

Fu 00210  <0.0001 0.2852  <0.0001 0.0070 0.3258 06456 0.1541

Fsoo 00145 0.0321 0.0699 0.0581 00130 0.3054 0.3990 0.1974

Froanen 0.0205 0.0001 0.7898  <0.0001 0.0075 04440 06229 0.2397

Froaen-so 00135 0.2235 0.3813 0.1353 00120 0.5049 04357 03835

Fr-scancn 00210  <0.0001 0.8094  <0.0001 0.0050 0.0429 0.7395 00129
VaR 0.5% VaR 99.5%

Fu 00155 <0.0001 04905 <0.0001 0.0025 02111 0.8623 0.0792

Fosoo 0.0095 0.0331 0.5356 00112 0.0070 04403 0.6456 02319

Froanen 00115 0.0015 04548 0.0004 0.0020 0.0950 0.8874 0.0304

Froacn-sm 00060 0.7654 0.6920 05388 0.0045 0.9074 0.7636 0.7471

- seancn 00120 0.0006 04357 0.0001 0.0010 0.0082 09382 0.0020

Note: f,: observed downfall probability for n-AR(1)-GARCH(1,1) model: £,z : Observed downfall probability for n-AR(1)-
EGARCH(1,1) model: f._ye.iues - Observed downfall probability for t-AR(1)-EGARCH(1,1) model: fr s ( s inen—so0 ) Observed down-
fall probability for calibrated n-AR(1)-GARCH(1,1) (n-AR(1)-EGARCH(1,1)) model with L=500; P,, (B,,, B.): probability of observing
asample with higher unconditional coverage test statistic (independence test statistic, conditional coverage test statistic). The results
for both long and short positions are reported in the left and right panel of the table, respectively. */**/***: Number of p-values for
unconditional coverage are smaller than 0.10/0.05/0.01.

have at least 2 p-values below the 1% level and one p-
value below the 0.01%.

The results show that the usual VaR models based
on normal innovations have difficulties with modeling
large returns. In particular, the usual normal GARCH
models consistently underestimate the return (risk)
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for all series for long positions. In other words, fail-
ure numbers are much greater than expected at a given
quantile in the case of normal innovations.

Regarding independence of the VaR exceptions over
time, for both the usual n-GARCH and n-EGARCH
VaR forecast violations or those from the bias-correc-
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Table 3. Unconditional coverage, independence, conditional coverage—NIKKEL.

VaR . p-values . p-values
models ! R, P R, ! R, P B, weaps
VaR 5% VaR 95%
I 0.0605 01024 06599 0.0367 00430 02589 04619 0.1415 5/5/3
Frzso 00540 04759 03629 04175 00570 02923 04874 0.159% 0/0/0
Frcancu 0.0595 0.1415 05720 0.0581 00550 02789 02157 03123 4/2/2
Frcarciso 00555 03158 03001 0.2671 0.0595 00537 01329 0.0581 2/1/0
—— 0.0620 0.0552 07064 00174 0.0555 0.1617 01204  0.2671 4/3/1
VaR 1% VaR 99%
I 00160 00123 0.1036 00131 0.0045 0.0205 0.7636 0.0056
Frzso 00125 03355 03138 0.2794 00130 03054 03990 0.1974
Fecancu 00220  <00001 03342  <0.0001 00070 03258  0.6456 0.1541
Froamciso 00130 02771 03413 0.1974 00150 00242 0.0801 0.0364
—— 00180 00049 06493 00012 0.0055 0.0812 0.7156 0.0270
VaR 0.5% VaR 99.5%
I 00100 00087  0.1918 0.0053 00010 00082 09382 0.0020
Frzso 00060  0.1392 0.0590 0.5388 0.0065 06037 06686 03634
Fecancu 00110 00023 02373 0.0010 0.0025 02111 08623 00792
Froamcuso 00050 01172 0.0384 1.0000 00070 04403 06456 02319
A— 0.0075 00866 00993 0.1401 0.0025 02111 08623 00792

Note: See the legend of Table 2 for explanations.

tion method, independence cannot be rejected; in oth-
er words, the occurrence of violations for VaR forecasts
have no systematic pattern.

Considering the conditional coverage test statistic,
we see that, for all series, the p-values for at least five
out of the six specified probabilities for L = 500 are su-
perior to those for the usual n-GARCH model, while
for the n-EGARCH model the p-values for at least four
out of the six cases for both window lengths are supe-

CONTEMPORARY ECONOMICS

rior to those for the usual n-EGARCH model. Sum-
marizing the results for the conditional coverage, the
bias-correction method can improve the n-GARCH
and n-EGARCH VaR forecasts so much that the VaR
predictions acquired are different from the proposed
probability.

Comparing the unconditional coverage results for
the bias-correction method based on the n-EGARCH
model with those based on the n-GARCH model, we
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Table 4. Unconditional coverage, independence, conditional coverage—CAC.

VaR R p-values R p-values

models ! P, P B, ! P, P F, e
VaR 5% VaR 95%

Fu 00760  <00001 05474  <0.0001 0.0400 00335 0.1306 00338 4/4/3

Frsoo 0.0575 02389 04389 0.1324 0.0520 0.0469 00147 06834 1/0/0

Frcanen 00715 0.0001 04849 <0.0001 0.0450 0.0951 0.0572 02970 3/3/3

Froaren-sm 00520 04741 0.2495 06834 0.0485 03093 0.1335 0.7571 0/0/0

- 00750 <00001 03454  <0.0001 0.0455 0.0981 0.0523 03487 3/3/3
VaR 1% VaR 99%

Fu 0.0200 0.0001 0.1957  <0.0001 0.0095 0.8045 05356 08207

Frsoo 0.0095 0.8045 05356 08207 0.0145 0.1067 03474 0.0581

Frcancn 00215  <00001 01643  <0.0001 00115 04289 02617 05102

Froaen-so 00135 02235 03813 0.1353 00120 03883 02873 03835

- 0.0185 00014 02313 0.0006 0.0080 0.1875 0.1153 03517
VaR 0.5% VaR 99.5%

Fu 0.0100 00166 05148 0.0053 0.0060 0.7654 06920 05388

Frsoo 0.0055 08913 07156 0.7551 0.0060 0.7654 06920 05388

Froanen 00145  <00001 03474  <0.0001 0.0055 08913 07156 0.7551

Froanen-so 00065 06037 06686 03634 0.0050 09462 0.7395 1.0000

Fr-scancn 00110 0.0036 04744 0.0010 0.0050 09462 07395 1.0000

Note: See the legend of Table 2 for explanations.

conclude that the n-EGARCH model outperforms the
n-GARCH model as for all but the NIKKEI index: the
p-values for at least four out of the six specified prob-
abilities are superior to those for the n-GARCH model
with L = 500. Similar results hold for the conditional
coverage test statistic for all series. Additionally, the bi-
as-correction method based on the n-EGARCH model
is the only model never rejected by any of the three
performance tests of Christoffersen (1998) for all the
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specified probabilities (even at 99.5% and 0.5% tails)
and considered indices.

Consequently, the bias-correction method based
on the n-EGARCH model leads to an acceptable per-
formance for out-of-sample VaR prediction. In other
words, it seems that allowing for an asymmetric re-
sponse of the conditional variance to positive and neg-
ative shocks generally yields improvement in the VaR
performance of the bias-correction method. Therefore,
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Table 5. Average score differences and tests of equal predictive accuracy for the censored likelihood (csl).

FTSE NIKKEI CAC FTSE NIKKEI CAC
VaR 5% VaR 95%

dy 500 -0.0507 -0.0401 -0.0720 -0.1252 -0.2692 -0.1791

Test stat. -5.8568 -44134 -0.0001 -0.0023 -0.0004 -0.0018
dy6arcu 500 -0.0569 -0.0181 -0.0793 -0.0179 -0.1373 -0.0395
Test stat. -6.4187 -4.6009 -0.0001 -4.2077 -0.0002 -0.0002
dy rGarci-so -0.0007 0.0204 -0.0059 -0.0539 -0.0976 -0.1273
Test stat. -8.2003 26194 -8.8945 -6.0130 -5.2386 -8.6942
dGarc 50 -0.0259 0.0283 -0.0540 0.0519 -0.1897 -0.0572
Test stat. -23995 1.8529 -6.6502 87729 -0.0001 -2.6532

VaR 1% VaR 99%
dy s -0.0478 -0.0268 -0.0521 -0.4432 -0.6463 -0.3534
Test stat. -57177 -5.3513 -0.0001 -0.0010 -0.0005 -0.0004
gGarcr 500 -0.0572 -0.0057 -0.0392 -0.2748 -0.5455 -0.1229
Test stat. -3.9568 -3.9915 -0.0001 -0.0007 -0.0002 -0.0002
dy reancir-sm -0.0100 0.0031 0.0270 -0.0688 -02125 -0.2187
Test stat. -1.3473 1.5694 7.7423 -20162 -2.6433 -4.2149
dicarc_sm -0.0272 -0.0002 -0.0046 04595 -0.1076 03828
Test stat. -5.9952 -3.5245 -1.2083 2.7004 -2.0393 5.2561
VaR 0.5% VaR 99.5%

dy s -0.0358 -0.0386 -0.0269 -0.5041 -0.7674 -0.1196
Test stat. -0.0002 -7.3189 -0.0002 -0.0005 -0.0004 -4.7315
dy6arci sm0 -0.0446 -0.0066 -0.0457 -0.3150 -0.5415 04784
Test stat. -6.0635 -4.0795 -0.0001 -0.0004 -0.0003 0.0001

dy rGarci-so -0.0244 0.0019 0.0079 -0.0574 -0.1053 0.0808
Test stat. -34634 1.6062 52479 -1.3984 -2.5569 8.9946
dycarci_i5m0 -0.0249 0.0062 -0.0116 0.7539 0.1648 12717
Test stat. -8.1588 1.0638 -2.7084 29685 1.3557 55332

Note: dy o0 (dpgarersoo) : @VErage score difference based on n-AR(1)-GARCH(1,1) (n-AR(1)-EGARCH(1,1)) model relative to cali-
brated n-AR(1)-GARCH(1,1) (n-AR(1)-EGARCH(1,1)) model with L=500; d,; ;gcx_soo: average score difference for calibrated n-
AR(T)-GARCH(1,1) relative to calibrated n-AR(1)-EGARCH(1,1) model with L=500; d e 500 @VErage score difference for t-
AR(1)-EGARCH(1,1) model relative to calibrated n-AR(1)-EGARCH(1,1) model with L=500. Additionally, the corresponding test
statistics are shown. The results for both long and short positions are reported in the left and right panel of the table, respectively.
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this probably tells us that considering asymmetry in
conditional variance is crucial in determining a proper
value of VaR.

The results slightly prefer the longer window of
length L = 500, with a higher number of greater
p-values and a smaller number of significant test statis-
tics. Because the results hold for all series, we can say
that the method is not openly sensitive to the choice of
L. However, Hartz et al. (2006) found that the results
slightly prefer the shorter window of length L = 250.

With respect to the results of the t-EGARCH model
for the LR, test, we see that the t-EGARCH VaR fore-
casts for only one specified probability for the NIKKEI
index are superior to the bias-corrected n-EGARCH
VaR forecasts, while they are never better for the FTSE
and CAC. Similar results hold for the conditional cov-
erage test statistic for all series while the independence
test statistics indicate no systematic problems. Accord-
ing to empirical results, the bias-correction method
based on the n-EGARCH model performs better than
the t-EGARCH model. Therefore, it seems that there is
no need to consider a fat-tailed distribution to describe
the returns’ conditional distribution.

Table 5 presents the average score differences d with
the accompanying tests of equal predictive accuracy for
models relative to the bias-corrected n-GARCH and
n-EGARCH models. The score difference d is com-
puted by subtracting the score of the bias-corrected
n-EGARCH from the score of n-EGARCH, bias-cor-
rected n-GARCH, and t-EGARCH models, such that
negative values of d indicate better predictive ability of
the bias-corrected n-EGARCH model. Additionally, the
score difference d for the n-GARCH and bias-corrected
n-GARCH models is calculated and interpreted in a
similar way. For all series, the csl scoring rule suggests
superior or equal predictive ability of the bias-correc-
tion method in comparison with usual n-GARCH
models. Comparing the results for the bias-correction
method based on the n-EGARCH model with those
based on the n-GARCH model, we conclude that the n-
EGARCH model outperforms the n-GARCH model for
both the FTSE and NIKKEI indexes (except the NIK-
KEI at 99%), but evidence is weaker when we consider
the CAC index. On the other hand, the bias-correction
method based on the n-EGARCH model performs bet-
ter than the t-EGARCH model for the NIKKEI, while
this is not true for short FTSE and CAC positions.
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4. Conclusions
In this paper, we extend the study by Hartz et al. (2006)
to take account of asymmetry in conditional variance
and correct the VaR for both long and short positions.
We focus on three extreme percentiles o = 0.5%, 1%
and 5% in the empirical study. Our results are robust
to the chosen bias-correction window length, with
a slight preference for the longer window length of
L=500 for the three real return series investigated.
Our findings support those found in the study by
Hartz et al. (2006). They obtain similar results with the
other data, finding that the bias-correction method
based on the n-GARCH model performs better than
the usual n-GARCH model. This is also confirmed by
the csl scoring rule for both GARCH models which
has not been considered by Hartz et al. (2006). Our
empirical study shows that the bias-correction method
based on the n-EGARCH model instead of n-GARCH
leads to improvements in correctly forecasting one-
day-ahead VaR for long and short positions of almost
all real return series investigated based on the three
performance tests of Christoffersen (1998), while
the independence of the VaR violations is unaffected
by this method. We found that the bias-corrected
n-EGARCH model is the only model never rejected by
any of the three performance tests for all the specified
probabilities and real return series investigated. Over-
all, it seems that allowing for an asymmetric response
of the conditional variance to positive and negative
shocks yields an improvement in the VaR performance
based on the bias-correction method in terms of the
three performance tests, but the improvement is not
highly confirmed based on the csl scoring rule.
Moreover, the bias-correction method based on
the n-EGARCH model performs better than the
t-EGARCH model based on three performance tests.
This is also true even for the NIKKEI with the most
skewness and kurtosis in our data investigated. Thus,
it seems that the bias-corrected n-EGARCH model
can take account of both the asymmetry in the con-
ditional variance and leptokurtosis in return distribu-
tion. However, we observe that the superiority of this
model is not maintained in terms of predictive power
according to the csl scoring rule for short positions.
Thus, further research is advisable to adjust the stan-
dard VaR predictions of the n-GARCH models based
on csl scoring rule rather than the observed frequency
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of violations. Additionally, future work could extend
the methodology to other types of GARCH models
such as the power (G)ARCH models of Brooks, Faff,
McKenzie and Mitchell (2000) or several GARCH
models considered by Loudon, Watt and Yadav (2000).
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Endnotes

1 For the sake of brevity, only the results for Student’s
t distribution are presented in this paper. The results
for the GED, which are very similar to those for the
Student’s t distribution, are available from the au-
thors upon request.

2 For a more technical definition of the method,
please refer to Diks et al. (2011).
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