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This paper attempts to describe the graphical behavior of the distributed lag model in an infi-
nite coordinate space. The “mega distributed lag model” (MDL) is a mathematical framework that 
can examine the simultaneous interrelationships between all involved variables. The multidimen-
sional graphical setting simultaneously reveals all non-linear exposure—response dependencies 
and delayed effects between lagged and dependent variables—which two-dimensional figures 
overwhelmingly fail to capture. Under the Omnia Mobilis assumption, each distribution lag func-
tion is indexed with respect to time and space. The Mega distributed lag model observes multiple 
trends in full motion, the final output (determinant) of which is called “the JIM-coefficient”. Hence, 
this paper tries to analyze different approaches of lag distribution models that can help in the 
construction of our new model. The mega distributed lag model” (MDL) is moving from the uses of 
the classic 2-dimensional and 3-dimensional graphical modeling to a multidimensional graphical 
modeling in Econometrics. Finally, this model is an extension of those explored earlier in the field 
of econographicology.

1. Introduction
Dynamic specification attempts to capture the hidden 
dynamics derived by the observed time-series data in 
a postulate theoretical model (Hendry, Pagan, & Sar-
gan, 1984). The general approach in a trend stationary 
process has been to de-trend the series and to model 
the de-trended series as distributed lag or autoregres-
sive distributed lag (ADL) models. A lag distribu-
tion function gives a magnitude of the coefficient of 
a lagged explanatory variable, expressed as a function 
of the lag, and extra information is injected into the 

estimation procedure. Estimation and inference con-
cerning the long-run properties of the model are then 
carried out using standard asymptotic normal theory. 
A wide variety of specifications has been suggested for 
this purpose, including arithmetic, inverted V, Almon, 
Shiller, harmonic geometric, Pascal, rational, gamma, 
and exponential (Kennedy, 1998). A distributed-lag 
model is a dynamic model in which the effect of a re-
gressor x on y occurs over time rather than all at once. 
Based on a Hendry-style (Hendry et al., 1984) autore-
gressive distributed lag equation (see Appendix A), 
considered the general form of one dependent variable 
and one explanatory variable, the model takes the form

= + + = + +( )t t t s t s t

s 0

y α β L x u α β x u                                                                                   (1)−
=
∑
∞

 (1)
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where tx  is exogenous for t= 1,…,T, and tu  is the 
stationary error term, i.i.d. ( )20,       σ . This form is very 
similar to the infinite-moving-average representation 
of an ARMA process, except that the lag polynomial 
on the right-hand side is applied to the explanatory 
variable x rather than to a white-noise process ε. The 
individual coefficients βs are called lag weights and col-
lectively comprise the lag distribution. They define the 
pattern of how x affects y over time. 

The distributed lag concept was known among 
economists through the pioneering work of Ir-
ving Fisher (1930) on the relationship between the 
nominal interest rate and the expected inflation 
rate. However, its application in econometrics was 
launched by Koyck’s (1954) geometric distributed 
lag model in a study of investment. The geometric 
distributed lag model was based on the notion of 
adaptive expectations hypothesis. It could estimate 
the autoregressive model with an auto-correlated 
error. One disadvantage of this lag structure is that 
coefficients of the lagged explanatory variables 
continually decline; they cannot first rise and then 
decline, a pattern thought by many to be a priori 
attractive and one that should not be ruled out of 
consideration. One way of addressing this problem 
is to allow unrestricted coefficients on the first few 
lagged variables and then impose a geometric pat-
tern (Kennedy, 1998). The above mechanism was 
extensively applied in numerous empirical studies: 
Cagan’s (1956) study of monetary aspects of hyper-
inflation; Friedman’s (1957) study of consumption 
behavior; Nerlove’s (1958a) study of supply and 
demand decisions (cobweb model); Solow’s (1960) 
study of consumption behavior; and Jorgenson’s 
(1966) study of investment.

At about the same time, Almon (1965) provided 
a polynomial generalization of Fisher’s (1937) arith-
metic lag distribution. In this technique, the n coef-
ficients of the lagged explanatory variables are as-
sumed to lie on a polynomial of order r. This allows 
for a flexible lag structure reduction in the number of 
the parameters that require estimation if r+1 is less 
than n. It can be viewed as imposing a specific set of 
linear constraints on OLS estimation. Several studies 
have investigated the effects of misspecifying the lag 
length or polynomial degree in the Almon lag model 
(Frost, 1975; Harper, 1977; Schmidt & Sickles, 1975; 

Schmidt & Waud, 1973; Terasvirta, 1976; Thomas, 
1977; Trivedi, 1970; Trivedi & Pagan, 1979). 

Almon polynomial lag distribution was later ex-
tended further by Shiller (1973). Shiller’s distributed 
lag is a variant of this in which these restrictions are 
stochastic, incorporated via the mixed estimation 
technique; the coefficients of the lagged explanatory 
variable lie close to, rather than on, a polynomial. The 
main problem with the Almon lag is determining n 
and r; pretesting is usually employed for this purpose, 
resulting in estimators with unknown properties. 

Mitchel and Speaker (1986) introduced a reduced 
form of the model via a linear transformation of the 
polynomial lag model, estimated the reduced-form 
parameters, and recovered estimates of the structural 
parameters via an inverse linear transformation of 
the reduced-form parameter estimates. The so-called 
polynomial inverse lag model has flexible shape and 
can be easily estimated linearly as long as the lag oper-
ator is invertible (the polynomial roots inside/outside 
the unit root circle) (Kasparis, 2008). Other forms of 
dynamic specification considered in the literature in-
cluded the partial adjustment model (Eisner & Strotz, 
1963; Nerlove, 1958b) and the multivariate flexible ac-
celerator model (Treadway, 1971) and Sargan’s (1964) 
work on econometric time series.

The most known parameterization of the (ADL) 
model is the error-correction model (EC). The use 
of an error correction mechanism for non-stationary 
variables is equivalent of performing co-integration 
(Dickey & Fuller, 1981). By differencing and form-
ing a linear combination of the non-stationary data, 
all variables are transformed equivalently into an EC 
model with stationary series only (Hassler & Wolters, 
2006). Phillips (1954; 1957) introduced EC models 
to economics. Sargan (1964) used them to estimate 
structural equations with auto correlated residuals, 
and Hendry popularized their use in econometrics in 
a  series of papers. A survey on specification, estima-
tion and testing of EC models is given by Alogoskoufis 
and Smith (1995).

Current literature, however, has identified three 
major shortcomings (Kim, Fraser, & Hyndman, 
2010). First, point estimates of the long-run response 
are often extremely disparate (Askari & Cummings, 
1977; Marquez & McNeilly, 1988). Second, the sam-
pling variability of the long-run response estimator is 
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difficult to estimate accurately (Li & Maddala, 1999). 
Third, the long-run response estimator can be se-
verely biased, especially in small samples (Focareli, 
2005; Pesaran & Zhao, 1999). Among the alternative 
distributed lag models is a particularly interesting pa-
per published by Grace Wahba (1969), with a chap-
ter entitled “The estimation of the coefficients in 
a multidimensional distributed lag model”. In it, she 
proposes a multi-dimensional theoretical framework 
scheme for the general distributed lag model. It is 
based on the use of matrices and vectors to trace the 
multi-dimensional effects of the various lags, so the 
idea of a multi-dimensional focus for the distributed 
lag model is nothing new. However, the multi-di-
mensional distributed lag model proposed by Wahba 
lacks a  multi-dimensional visualization to illustrate 
the behavior of which it speaks. Instead, Wahba’s pa-
per utilizes the same 2-dimensional graphical model 
as its predecessors, and, in doing so, fails to incorpo-
rate the dynamic behavior of multidimensional vari-
ables as a whole. 

2. The Mega Distributed Lag Model
The mega distributed lag model function is formed 
by a combination of variables, each classified into 
four levels. Each classification level may contain infi-
nitely–many variables. From largest to smallest, these 
classifications are: general-variables (GV), sub-vari-
ables (SV), micro-variables (MV) and JI-variables 
(JIV) (see expression 2.5). Each classification varies 
constantly at different rates. From a graphical per-
spective, the drawback of a typical distributed lag 
model is that a researcher can visualize it only in 
a two-dimensional coordinate space. While this gives 
a simple representation of the relationship between 
two variables, the visualization is too restricted to be 
of use. Namely, the two-dimensional representation 
ignores the simultaneous interrelationships between 
all variables, which could adversely affect the analy-
sis. Visualization of the mega distributed lag model 
function requires the use of a multi-dimensional co-
ordinate space. The most suitable multi-dimensional 
coordinate space is called the mega distributed lag 
model, which is alternately called “the infinity coor-
dinates space (specific approach)” (See Figure 1). The 
application of the infinity coordinates space (specific 
approach) can help to visualize a large number of 

distributed lag functions simultaneously in a single 
image.

Using a large number of distributed lag functions 
in different spaces in the infinity coordinates space 
(specific approach) comes with some prerequisite 
conditions: first of all, we refer to a single point plot-
ted on an infinite dimensional coordinates space 
(specific approach) as a “T-dot”. Second, two T-dots 
cannot occupy the same space at the same time. 
Third, each T-dot refers into its general-space, sub-
space and micro-space, respectively. Fourth, different 
T-dots can represent different intervals or units of 
time. These times are followed by partial times and 
constant times, with the type of time being related by 
the plot of the T-dot to its micro-space. For example, 
the moment in which the T-dot is initially plotted 
can be considered partial time, but after plotting the 
second T-dot, the first T-dot then reverts to constant 
time. The fifth and final condition is that each micro-
space keeps its specific distributed lag function (see 
Figure 2) according to the general-space and sub-
space (see Expression 2.5).

Each distributed lag function in the mega dis-
tributed lag model is indexed by time, starting from 
general-space “0”, sub-space “0” and micro-space 
“0”. From there it increases by one unit until we 
arrive to the general-space “∞”, sub-space “∞” and 
micro-space “∞” (see Figure 2). All lag distributed 
functions in different micro-spaces under differ-
ent general-space and sub-space levels apply the 
Omnia Mobilis, “Everything is moving”, assumption 
(Ruiz Estrada, 2011a; 2011b). This assumption al-
lows a large number of variables to be simultane-
ously observed in our multi-dimensional analysis, 
as opposed to the ceteris paribus assumption, which 
keeps variables constant. Recall that each general-
space is formed by an infinite number of sub-spaces, 
and each sub-space is formed by an infinite number 
of micro-spaces, and finally each micro-space has 
an infinite number of T-dots (see Figures 1 and 2). 
Usually, the T-dots originate from the JI-variables. 
If we join each individual T-dot by a straight line 
into each one’s respective micro-space, this creates 
a scatter graph that shows the trend of any distrib-
uted lag function. Additionally, recall that the mega 
distributed lag model consists of infinitely many 
micro-spaces, each of which shows different distrib-
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uted lag functions to simultaneously observe mul-
tiple trends in full motion (see Figure 2).

The final output of the mega distributed lag 
model is based on the result of a single determi-
nant (∆) from a matrix with m rows and n columns 
(see Expression 2.6). This matrix accounts for the 

final results of all distributed lag functions from 
different micro-spaces under different general 
levels and sub-levels of analysis. The final output 
(determinant) is labelled “the JIM-coefficient”. This 
JIM-coefficient is a measure encompassing all of 
the information from the analysis, and so can be 

Figure 1. The Infinity Coordinate Space (Specific Approach)

<<<Figure 1>>> 
 

  
Source: (Ruiz Estrada, 2011b) 
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considered the final result from the mega distribu-
tion lag model.

General-Space “n”

Yn
tp(GV:SV:MV:JIV)=α(GV:SV:MV:JIV)+βL0

(GV:SV:MV:JIV)X
tp/0

(GV:SV:MV:JIV)+ 
+βL1

(GV:SV:MV:JIV)X
tp/1

(GV:SV:MV:JIV)-1+…+ 
+βL∞

(GV:SV:MV:JIV)X
tp/∞

(GV:SV:MV:JIV)-n+utk
(GV:SV:MV:JIV) (2.1)

Where
JIV = {0, 1, 2 . . . ∞}
n = {0, 1, 2 . . . ∞}

Therefore,
E /Utk/ = Ko (2.2)
Var (Utk) = σi

(GV:SV:MV:JIV) (2.3)
Cov(Utk, Utk

s) = σi
(GV:SV:MV:JIV) (2.4)

Figure 2. The Mega Distributed Lag Model

<<<Figure 2>>> 
 

 
Source: (Ruiz Estrada, 2011b) 
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General model
General-Space 0
Sub-Space 0:
SV0=Y0

tp(0:0:0)=α(0:0:0)+βL0
(0:0:0:0)X

tp/0
(0:0:0:0)+βL1

(0:0:0:1)X
tp/1

(0:0:0:1)-1+ 
+…+βL∞

(0:0:0:∞)X
tp/∞

(0:0:0:0:∞)-n+utk
(0:0:0) ® … ®

Y0
tp(0:0:1)=α(0:0:1)+βL0

(0:0:1:0)X
tp/0

(0:0:1:0)+βL1
(0:0:1:1)X

tp/1
(0:0:1:1)-1+ 

+…+βL∞
(0:0:1:∞)Xtp/∞(0:0:1:∞)-n+utk

(0:0:1) ®… ® 

Y∞
tp(0:0:∞)=α(0:0:∞)+βL0

(0:0:∞:0)X
tp/0

(0:0:∞:0)+βL1
(0:0:∞:1)X

tp/1
(0:0:∞:1)-1+ 

+…+βL∞
(0:0:∞:∞)X

tp/∞
(0:0:∞:∞)-n + u

tk
(0:0:∞). . .

.

.
Sub-Space ∞:
SV∞=Y*tp(0:∞:0)=α(0:∞:0)+βL0

(0:∞:0:0)X
tp/0

(0:∞:0:0)+βL1
(0:∞:0:1)X

tp/1
(0:∞:0:1)-1+ 

+.+βL∞
(0:∞:0:∞)X

tp/∞
(0:∞:0:∞)-n+utk

(0:∞:0) ® … ®

Y0
tp(0:∞:1)=α(0:∞:1)+βL0

(0:∞:1:0)X
tp/0

(0:∞:1:0)+βL1
(0:∞:1:1)X

tp/1
(0:∞:1:1)-1+ 

+…+βL∞
(0:∞:1:∞)X

 tp/∞
 (0:∞:1:∞)-n+utk

(0:∞:1) ®... ® 

Y∞
tp(0:∞:∞)=α(0:∞:∞)+βL0

(0:∞:∞:0)X
tp/0

(0:∞:∞:0)+βL1
(0:∞:∞:1)X

tp/1
(0:∞:∞:1)-1+ 

+…+βL∞
(0:∞:∞:∞)X

 tp/∞
 (0:∞:∞:∞)-n+utk

(0:∞:∞)

.

.
General-Space ∞
Sub-Space 0:
SV0=Y*

tp(∞:0:0)=α(∞:0:0)+βL0
(∞:0:0:0)X

tp/0
(∞:0:0:0)+βL1

(∞:0:0:1)X
tp/1

(∞:0:0:1)-1+ 
+.+βL∞

(∞:0:0:∞)X
tp/∞

(∞:0:0:0:∞)-n+utk
(∞:0:0) ®… ®   

Y0
tp(∞:1:1)=α(∞:1:1)+βL0

(∞:1:1:0)X
tp/0

(∞:1:1:0)+βL1
(∞:1:1:1)X

tp/1
(∞:1:1:1)-1+ 

+…+βL∞
(∞:1:1:∞)X

tp/∞
(∞:1:1:∞)-n+utk

(∞:1:1) ® … ® 

Y∞
tp(∞:∞:∞)=α(∞:∞:∞)+βL0

(∞:∞:∞:0)X
tp/0

(∞:∞:∞:0)+βL1
(∞:∞:∞:1)X

tp/1
(∞:∞:∞:1)-1+ 

+.+βL∞
(∞:∞:∞:∞)X

tp/∞
(∞:∞:∞:∞)-n + u

tk
(∞:∞:∞). . .

.

.
Sub-Space ∞:
SV∞=Y*tp(∞:∞:0)=α(∞:∞:0)+βL0

(∞:∞:0:0)X
tp/0

(∞:∞:0:0)+βL1
(∞:∞:0:1)X

tp/1
(∞:∞:0:1)-1+ 

+.+βL∞
(∞:∞:0:∞)X

tp/∞
(∞:∞:0:∞)-n+utk

(∞:∞:0) ® … ®

 
Y0

tp(∞:∞:1)=α(∞:∞:1)+βL0
(∞:∞:1:0)X

tp/0
(∞:∞:1:0)+βL1

(∞:∞:1:1)X
tp/1

(∞:∞:1:1)-1+ 
+.+βL∞

(∞:∞:1:∞)X
 tp/∞

 (∞:∞:1:∞)-n+utk
(∞:∞:1)®….® 

 
Y∞

tp(∞:∞:∞)=α(∞:∞:∞)+βL0
(∞:∞:∞:0)X

tp/0
(∞:∞:∞:0)+βL1

(∞:∞:∞:1)X
tp/1

(∞:∞:∞:1)-1+ 
+.+βL∞

(∞:∞:∞:∞)X
 tp/∞

 (∞:∞:∞:∞)-n+utk
(∞:∞:∞) (2.5.) 

     GV0 = SV0 ® SV1 ® . . . ® SV∞…

      .                                       .
∆ =  .                                       .            

      .                                       .
     GV∞ = SV0 ® SV1 ® . . . ® SV∞… (2.6.)

Variables:
GV = General variable, SV = Sub-variable, MS = Mi-
cro-variable, JIV= JI-variable, tp = Partial Time, tk = 
Constant Time, ® = Window refraction

3. Concluding Remarks
In conclusion, previous attempts at graphing multi-di-
mensional behavior in the distributed lag model have 
stopped at two dimensions. Because of this, we advo-
cate the use of an alternative general distributed lag 
model, which we call “the mega distributed lag model”. 
This paper has developed the framework for extending 
those representations of distributed lag models to an 
arbitrarily large number of dimensions. The advantage 
of doing so is to aid in the identification of abnormally 
strong relationships between the lagged variables and 
the dependent variable, which two-dimensional fig-
ures overwhelmingly fail to capture. Multi-Dimen-
sional Coordinate Space framework treats each di-
mension uniformly at the cost of coarse representation 
(Ruiz Estrada, 2011b), enabling us to delve deeper into 
understanding the behavior of an infinite distributed 
lag model. Hence, the 2-dimensional Cartesian coor-
dinate plane and the 3-dimensional coordinate space 
are limited in their ability to visualize a large number 
of variables simultaneously in the same graphical space 
and time framework. 
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Appendix A
Consider the autoregressive distributed lag model of 
order p and q, ADL (p, q), defined for a scalar vari-
able yt as

p q

t i t i i t i t

i 1 i 0

y                                                                 A1− −
= =

= + + +∑ ∑α γ y β x η                                  (A1)

where ηt is a scalar independent white noise and xt is 
a  K-dimensional column stationary variable vector 
process. The sequence { }tη  is a white-noise process if 
for each period t,

( ) ( )t t 1E E η 0η −= =…=

( ) ( )2 2 2
t t 1E η E η σ−= =…=

( ) ( )t t s t j t j sE − − − −= =η η E η η 0 for all η

As long as the error term ηt is a white noise process, the 
ADL model can be estimated consistently by ordinary 
least squares. Using the lag operator L applied to each 
component of a vector, k

t t kL x x −=  (lag of a constant:
 Lα α= ), it is convenient to define the lag polynomial 
γ(L)  and the vector polynomial β(L)

( )a L αa =

( ) ( )2 p

1 2γ L 1 γ L γ L γL= + + +…+

( ) ( )2 q

0 1 2 q= + + +…+β L β β L β L β L

Rearranging the lag polynomial tγ(L)y , equation (A1) 
takes the straightforward form

( ) ( )t t t                                                                                   (A2)= + +γ L y a β L x η                                 (A2)

Equation (A2) implies that the current value of y de-
pends on all previous values of a, x, and η. The dynam-
ic effects correspond to the lag weights of the infinite 
moving average representation

t i t
i

t t i

y y β                                                                                                                              (A3)
x x
+

−

∂ ∂
= =

∂ ∂
 (A3)

Note that the first equation in (A3) requires that 
the time-series relationship between y and x be sta-
tionary, so we can think of βi either as the effect of 
current xt on future yt+i or as the effect of past xt–i 

on current yt. In order to obtain stability, it is main-
tained that

( )                                                                        ( 4)= > ∀ ∈Ν   Α⟹γ φ 0      φ 1                              ϕ  (A4)

Under this condition there exists an absolutely sum-
mable infinite expansion of the inverted polynomial 
γ-1 (L):

j j= = < ∞γ L γ L ,   γ                                ∑ ∑( ) ( )
1 * j *

j 0 j 0

1
                                               ( 5)

γ L
A−

= =

∞ ∞
      j j= = < ∞γ L γ L ,   γ                                ∑ ∑( ) ( )

1 * j *

j 0 j 0

1
                                               ( 5)

γ L
A−

= =

∞ ∞
 (A5)

Invertibility of γ(L) hence yields the following 
representation:

( )
( ) ( )t t t t t

β L
y x ψ ,                         γ L ψ η                                                                                (A6)

γ L
= + =     ( )

( ) ( )t t t t t
β L

y x ψ ,                         γ L ψ η                                                                                (A6)
γ L

= + =  (A6)

where tη  has a stable autoregressive structure of order 
p. Expanding ( )1γ L−  provides an infinite distributed 
lag representation,

'q
* j * j '

t j j t t j t j t
j 0 j 0 j 0

y                              (A7)−
= = =

  
= + = +    
  
∑ ∑ ∑γ L β L x ψ ω x ψ                              
∞ ∞

 (A7)

where jω  are the vectors of dynamic multipliers de-
rived by the method of indetermined coefficients. The 
vector of long-run multipliers of the ADL (p, n) model 
may therefore be easily computed from:

( )
( ) j

j 0

β 1
ξ ω                                                                                                                               (A8)

γ 1 =

= =∑
∞

 (A8)

By re-arranging the x’s one obtains with ∆ = 1 − L:

( )
'p q 1 q

'
t i t i t j t i t

i 1 i 0 j i 1
y                                (A9)

−

− −
= = = +

 
= + − +  

 
∑ ∑ ∑γ y γ 1 ξ x β Δx ψ                              (A9)

where ty  is related to its own past, to contemporane-
ous tx  and differences t iΔx − . This is called the error 
correction model (ECM).
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