
Drexl, Andreas

Working Paper — Digitized Version

Scheduling of project networks by job assignment

Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 247

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Institute of Business Administration

Suggested Citation: Drexl, Andreas (1990) : Scheduling of project networks by job assignment,
Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 247,
Universität Kiel, Institut für Betriebswirtschaftslehre, Kiel

This Version is available at:
https://hdl.handle.net/10419/161993

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/161993
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Nr. 247

Scheduling of Project Networks

by

Job Assignment

Andreas Drexl

Juni 1990

Andreas Drexl, Institut für Betriebswirtschaftslehre,

Christian-Albrechts-Universität zu Kiel, Olshausenstraße 40, D-2300 Kiel 1

1

A iecuning problem in pioject management involves the allocation of scasce

resources to the individual jobs comprising the project. In many situations such

as audit scheduling, the resources correspond to individuals (skilled labour).

This naturally leads to an assignment type project scheduling problem, i.e. a

project has to be processed by assigning one of several individuals (resources) to

each pb. In this paper we consider the nonpreemptive variant of a resource-

constrained project job-assignment problem, where job durations as well as

costs depend upon the assigned resource. Regarding precedence relations as well

as release dates and deadlines, the question arises, to which jobs resources

should be assigned in order to minimize Overall costs. For solving this

time-resource-cost—tradeoff problem we present a hybrid branch and bound /

dynamic programming algorithm with a (rather efßcient Monte Carlo type)

heuristic upper bounding technique as well as various relaxation procedures for

determining lower bounds. Computational results are presented as well.

(PROJECT MANAGEMENT - RESOURCE CONSTRAINTS; AUDIT

SCHEDULING; GENERALIZED ASSIGNMENT PROBLEM; BRANCH AND

BOUND; DYNAMIC PROGRAMMING; MONTE CARLO HEURISTIC)

1. Introduction

The scheduling problems considered here deal with determining when jobs should be

processed, given limited availabilities of resources as well as a limited number of time

periods. The words job and project will be used throughout the paper to denote two

levels of aggregation. A project consists of a set of jobs, i.e. we only consider the job level

and the project level.

Traditional resource-constrained project scheduling approaches [4], [5], [22], [24] have

been restricted to the case in which each job may be performed in only one predefined

way. More recently efforts have been made to formulate and solve the more general

preemptive project scheduling problem where job durations are functions of consumed

resources [1]. Meanwhile efforts have been documented in [8], [15], [16], [23] regarding

the formulation and Solution of a variety of nonpreemptive project scheduling problems

where job durations are discrete functions of job Performance modes.

In this paper we consider a variant of the discrete nonpreemptive multi—mode

resource-constrained scheduling problem, where the resources are substitutional, i.e.

may be assigned alternatively to the jobs: Each job must be scheduled requiring only one

of the doubly-constrained resources (limited per period and total availability). Job

2

durations as well as costs depend upon the assignment of each resource to a job. Which

Job should be scheduled by which resource at minimum Overall costs regarding

precedence relations as well as release dates and deadlines?

Although a number of different objectives may be incorporated in our model, this paper

focuses on the time-resource-cost tradeoff variant, where job costs (durations) appear in

the objective function (constraints). One of the reasons is, that the resulting model is

highly suitable for dealing with audit scheduling problems [2], [3], [6]. In addition to

audit scheduling, this model is appropriate for other man/machine project scheduling

problems.

2. Model Assumptions

Before giving the mathematical programming formulation, assumptions describing our

model are stated more precisely:

• One project has to be finished within the planning horizon T (deadline), divided into

T periods of equal length (for the generalization to the multi—project case see section

7)-

• The project consists of a set of jobs j = 1,2,...,J and precedence relations between

some of these jobs are specified in advance. The set of immediate predecessors of job

j is denoted by .

• There are K doubly — constrained resources, each resource being available with one

unit per period; total number of periods in which resource k is available is .

• Each job must be scheduled by one resource; each resource can only schedule one job

per period; jobs once initiated cannot be interrupted (preempted) by another job.

• Scheduling job j by resource k requires d., time periods; the corresponding

scheduling costs are c^ units.

The not&tion used in the following sections is summarized in Table 1.

3. Formulation of the Cost Minimization Problem

We get a bound on the maximum time interval, within which job j may be scheduled by

any resource k , by taking <5. := min{d.k | k=l,2,...,K} and performing a traditional

critical path analysis in order to reduce the number of binary variables in the following

formulation.

TABLE 1

DeGnitions and Notation

Alphabetically) Definition / Notation

Cjk Total costs of scheduling job j by resource k

cLk Duration of scheduling job j by resource k

6. min{djk| k = 1,2,...,K}

Dk Total capacity of resource k (in periods)

DLk Left-over capacity of resource k

ESj The critical path earliest start time of job j

EF. The critical path earliest finish time of job j

50 Set of jobs currently unscheduled

51 Set of jobs currently scheduled

SC Set of candidate jobs

j A specific job, j = 1,2,...,J

J Number of jobs

(j,k) Denotes assignment of resource k to job j

k A specific resource, k = 1,2,...,K

K Number of doubly—constrained resources

LF. The critical path latest finish time of job j

LSj The critical path latest Start time of job j

STj Slack time of job j

t A specific period, t = 0,1,...,T

T Flanning horizon (deadline)

V. The set of immediate predecessors of job j

x Job j is assigned to resource k and finished in time period t
J (binary variable)

Z(.) Objective function value

Z* Optimal objective function value

Z , Z Lower, Upper bound

4

More precisely, we determine the critical path earliest Start time ES^ of job j by using &

for all j = 1,2,...,J. Analogously we determine the critical path latest finish time LF. of

each job with res pect to T by using & once more. Thus [ES^ , LF^] represents a bound

on the maximum time intervad, within which job j can be scheduled without violating

deadline. Defining variables

Xjkt :~

1 , execu t ion of job j by resource k is finished in time period t

0 , otherwise

we can formulate a binary program using the general framework given in [17] as follows:

J K LFj
Minimize Z(x) = E E c., E x... (1)

j=l k=l Jk triS.+d. Jkt 1 '
J JK

Subject to

K LFj
E E x., = 1 for all j (2)

k=it=ES.+d., Jt
j jk

K LFh K LFj~ djk
E E t • x,, < E E (t-d.,)x., for all j and h e V. (3)

k=lt=ES,+d,, hkt k=i t=ES. Jk Jkt J
h nk j

J t+djk-1

E E x., < 1 for all k, t (4)
j=i ,=t to - •

J LFi
51 s <i x < D. for all k (5)
j=l t=ES. +d., Jk JJct k

J jk

Xjkt e {0,1} for all j, k, t (6)

In (1) x represents the vector of all binary variables, Z(x) represents the objective

function value for any feasible vector x with respect to (2)—(6). (2) are job completion

constraints. (3) ensures that all precedence relations are maintained. (4) and (5)

represent per period and total availability resource constraints, respectively.

5

4. Historical Treatment of the Problem

First of all, it should be stressed that in the presence of time and resource restrictions

there seems to be no way of successfully using conventional scheduling rules [11], [12],

[20], [21], [25] in order to definitely find a (hopefully good) feasible Solution (see section

7). In fact, we even don't know in advance whether any feasible Solution exists at all.

Furthermore, in our formulation (1)—(6) the number of variables and constraints grows

rapidly with increasing problem size. Thus general 0—1 p rogramming approaches are of

only limited importance.

Up to now three approaches for solving (l)-(6) have been suggested: The first one,

presented in [2], defines in the first phase additional precedence relations which

guarantee, that in no period more than K jobs are competing for scarce resources. In the

second phase a binary program is formulated, which allows for assigning resources and

determining start times of jobs (without overlapping). The main drawbacks of this

approach are the unsystematic way of generating additional precedence relations and the

effort needed to solve the binary program by Standard methods (although the number of

variables is reduced by a factor of 5 to 10, compared with (1)—(6)). The second approach

uses set — pa rtitioning techniques [18]. One determines in the first phase partial feasible

schedules for each of the K resource types. Therefore it is necessary to reduce the feasible

time interval of any job according to the inequality LF^ < ES^ for all h, j with h € . In

phase two, one formulates and solves a set — partitioning problem. The main drawback

of this approach is that the number of variables (columns) of the set — p artitioning

problem is growing exponentially with increasing problem size. Although both

approaches use optimization techniques, they do not guarantee that they will determine

the optimum Solution to a problem even with "infinite time". The third one, presented

in [6], is an enumerative type of optimization algorithm. In section 6 we will outline this

algorithm.

5. Monte Carlo Heuristic

Traditional scheduling rules for heuristically constructing feasible solutions (and thus

determining upper bounds Z for the unknown optimum objective function value Z*)

quite often do not find an (existing) feasible Solution in the presence of time and resource

restrictions (see section 7 below). Therefore a more sophisticated stochastic (Monte

Carlo) scheduling method like the following should be used in this context.

Adopting an operating scheme similar to the one described in [12] for traditional

scheduling rules, jobs currently unscheduled are selected as candidates, if all predecessors

6

have been scheduled, and if the earliest Start time is less than or equal to the time t of

the Simulation clock. Starting with t:=0 the Simulation clock is increased successively.

More formally we obtain the set of candidates SC as follows:

50 := {j | job j currently is unscheduled}

51 := {j | job j currently is scheduled}

SC := {je SO | ES. < t, V.6 Sl}

Denoting with AR the set of resources which are available in t (assigned to a job only

until t—1; enough left-over capacity), the following opportunity costs may be calculated:

a., := max c. — c.. for all j€ SC and ke AR
•* q€AR «)k

ß., compares the costs of scheduling job j by resource k with the worst—case consequence

if k would be unavailable. In this sense it seems to be appropriate to take ß^ in order to

decide which available resource should be assigned to which candidate job.

In the following we will take ß.^ (slightly modified) as stochastic assignment

probabilities. Taking ß^ as defined above all resources with highest scheduling costs

would get an assignment probability of zero - a misleading consequence in the case of

scarce resources and tight times. In order to overcome this deficiency we set

^min := m*n ^jk > ^ | for all j G S C and k 6 AR}

and calculate

<jjk := (/ijk + AJHIH)0 f°r ^ J e SC and k € AR (7)

Taking a_k as stochastic assignment probabilities we get an arbitrarily large ränge of

stochastic scheduling rules for a > 0.

It should be noted that the above choice of ß . is not crucial for the behavior of the min
algorithm. Alternatively we could take (without affecting algorithmic Performance

substantially) a parameter ß > 0 (e.g. ß = 1) which should be "small" compared with

the ß. The adjective "small" is the motivation for taking ßm.^ .

In general, one does not know in advance the tightness of resources and dates; therefore

one should Start with an appropriate high value of a (e.g. a = 2.0) in order to hopefully

get a near-optimum Solution. Some tri als fail in attempting to construct a feasible

Solution OL should then be decreased and the Solution process should be repeated. Table 6

explains more about the sensitivity of the Solution process to the exponential weight a .

7

Many possibilities exist for stochastically assigning resources to jobs. For example a

linear sum assignment problem [10] can be formulated taking o.k as cost coefficients,

starting an optimization algorithm and stopping before reaching optimal!ty. Due to the

nnavailability of appropriate stopping criteria for assignment algorithms, we chose a

pragmatic way of successively assigning resources to jobs: We randomly assign k 6 AR to

j e SC , update both sets and the stochastic assignment probabilities (7), assign

randomly once more etc. as long as either AR or SC is (or both are) empty. Then we

increase t by the minimum number of time periods such that both sets become

nonempty and Start the random assignment process once more.

Formally the stochastic construction method (STOCOM) may be described as follows

using DLk (left-over capacity of resource k) and ADk (availability date of resource k) as

additional symbols:

1. t := 0; DLk := D^V k; ADfe := 0V k; Sl := <p; SO : = {j | V j}.

2. Determine ES^ and LF^ by traditional critical path analysis (using 6.).

3. SC := {j G SO | ES. < t, V. 6 Sl}; if SC = (f> then goto 7;

AR := {k | ADk < t, DLfc > 0 V k}; if AR = (j) then goto 6.

4. Calculate cr.k according to (7) V j € SC, V k 6 AR (if djk > DLk then set := 0); if

cr.k = 0 V j and k then goto 6.

5. Chose je SC and t £ AR randomly with probability proportional to er., ; if t + d JK 7«
> LF^ then STOP (no feasible Solution found); DLfc := DLk - d^ ; SO := SO — %

Sl := Sl U 7; AD := d ; störe the partial feasible schedule; update ES. for all
" 7T 77T J

successors of 7; if all jobs have been scheduled then STOP (feasible Solution found);

goto 3.

6. r := max {0, min {ADk > 0 | V k with DLfc > 0}}; if r = 0 then STOP (no feasible

Solution found); ADk := max {0, ADfc — r} V k; t := t + r; update ESj V j 6 SO; goto

3.

7. T := min {ESj | je SO, 6 Sl}; ADfc := max {0, ADk — (r—t)} V k; t := r ; goto 3.

The procedure either stops with a feasible Solution, if all jobs have been assigned, or at a

point, where no further assignments are possible. In both cases one should make some

restarts at t := 0 (see section 7) in order to hopefully get feasible (near-optimum)

solutions.

8

STOCOM has been implemented rather efficiently (see section 7) using the following

data structures: The precedence relations are stored in a forward manner (successors) as

well as in a backward manner (predecessors), both as node oriented lists. The sets SC as

well as AR are represented by cyclic linked lists. Thus all algorithmic Instructions can be

realized by a few simple Operations.

In some cases it may be interesting to restrict the set of candidate jobs to those elements

of SC with minimum slack time. Denoting with LS^ the latest Start time (calculated

analogously to LF.) and with ST. := LSj - ES^ the corresponding slack time we get an

alternative job candidate set as follows:

STC := {j€ SC | ST. = min {ST^ | 76 SC}

Using STC instead of SC may — in some cases — re veal an algorithmic variant with a

better Performance (see section 7).

Conceptually STOCOM may be interpreted as a stochastic gener alization of Vogel's

method to the transportation problem, which uses "regrets" in a deterministic way.

6. Exact Algorithm

The algorithm is an enumerative type of branch and bound method. It simultaneously

decides about job—sequencing (which job should preceed others?) and resource—

assignment (which resource should be assigned to which job ?). Beginning with all jobs

being unassigned (x^ = 0 for all j, k, t) the algorithm starts by selecting one job as a

candidate for being scheduled as early as possible by one of the resources, setting the

corresponding variable x^ := 1. The algorithm always builds precedence and resource

feasible partial schedules (solutions). "Partial" indicates that not all jobs have currently

been scheduled (corresponds to "< " instead of "=" in (2)). Scheduling jobs is equivalent

to augmenting the partial feasible Solution. Enumeration is done in a LIFO—implicit

way, i.e. partial feasible schedules are augmented as long as neither precedence/resource

infeasibilities occur nor lower bounds exceed the upper bound; in both cases backtracking

occurs.

This enumeration scheme is similar to one proposed by other researchers [15], [16], [23]

for solving discrete multi—mode resource—constrained project scheduling problems.

Preliminary computational experiences with this scheme (without additional features)

have been rather discouraging. So we incorporate particular upper (section 5) and lower

bounding procedures, dynamic programming features as well as preprocessing techniques

in order to accelerate convergence. We now outline all these components; for a detailed

description see [6],

9

6.1 Lower Bounding Procedures

Let us assume that in any stage of the enumeration process a partial feasible schedule,

denoted by the set Sl (and the complementary set SO), is given. In Order to decide

whether this (actual or current) partial schedule may yield a feasible schedule with an

objective function value, which is better than the one known so far Z, we may use one

feasibility lower bound and four ways of calculating lower bounds Z for the (unknown)

optimum objective function value as described in the following.

Feasibility Lower Bound (FLB)

Calculating the actual total resource consumption and adding a lower bound for the

additional resource requirements for scheduling currently unscheduled jobs (sum of

min {djj k=l,2,...,K} for all j € SO) yields a feasibility lower bound.

Optimality Lower Bound 1 (OLB1)

Adding a lower bound for the additional scheduling costs necessary for scheduling

currently unscheduled jobs (sum of min {c^j k=l,2,...,K} for all j e SO) to the objective

function value of the current partial feasible Solution yields a lower bound Z for the

optimum objective function value.

Optimality Lower Bound 2 (OLB2)

OLB2 may be derived by relaxing (omitting) constraints (3) and (4) as well as K-l

constraints in (5). This leads to a (modified) continuous knapsack problem and thus we

get another lower bound Z for the optimum objective function value.

Optimality Lower Bound 3 (OLB3)

OLB3 may be derived by relaxing constraints (4) and (5). The resulting model

determines those additional costs, which are — regarding the Start time t of that job in

the current partial feasible schedule, which has been scheduled as the last one —

necessary for scheduling the current unscheduled jobs without violating project deadline.

OLB3 requires in some cases — compared with OLB1 — "f aster" (and more "expensive")

resources in order to satisfy project deadline. Thus OLB3 is stronger than OLB1.

Computational Experiments were performed by solving the subproblems in an

enumerative way. This indeed reduces the search tree drastically — with little additional

computational effort. So we propose to slightly relax once more in order to get "good"

bounds more quickly. This can be done heuristically by determining a lower bound for

the project crashing costs as follows: Perform a traditional critical path analysis for the

currently unscheduled jobs j 6 SO using job durations corresponding to the least

expensive resource; look whether or not some jobs must be accelerated in order to satisfy

project deadline. If duration reduction is necessary, we determine that critical job j € SO,

10

for which the ratio "cost increase / time saving" regarding the resource with minimum

additional costs is minimal. Job j yields the relative least expensive project crashing

possibility. Thus, conceptually this project crashing procedure may be considered as a

bottleneck heuristic.

Optimality Lower Bound 4 (OLB4)

OLB4 can be derived by relaxing constraints (3) and (4). This leads to a model which is

well—known to be the generalized assignment problem (GAP) [9], [14], [19]. The GAP is

known to be NP—hard [9]. Indeed it would take substantial CPU — time to solve

hundreds or thousands of GAPs even of smaller dimensions to optimality, especially in

the case of scarce resources. So we propose to calculate a lower bound Z for the Optimum

objective function value of the GAP by the multiplier adjustment method of [9] without

incorporating it into a branch and bound scheme.

With res pect to computational effort necessary to obtain these bounds we propose to

calculate them in the order FLB, OLB1, OLB2, OLB3 and OLB4.

6.2 Dynamic Programming Features

Simultaneously enumerating job sequencing and resource assigning decisions as outlined

above has the following disadvantage: If candidate jobs are assigned to distinct resources

at immediate succeeding nodes of the search tree, then they all may start at the same

time period. In other words: None of these assigned jobs causes a delayed start of one of

the other jobs due to resource conflicts. In this Situation it is only necessary to

investigate one of several sequencing decisions. This Situation essentially corresponds to

the "collapsing tree" behaviour of dynamic programming algorithms for the travelling

salesman problem [13].

With res pect to this Observation, it would be desirable to solve (1)—(6) by dynamic

programming. Due to explosive growth of storage requirements, this is impractical even

for very small problems. In order to make this Observation (at least partially) useful

within our branch and bound algorithm, we proceed as follows (without explicitly

formulating a recursive equation for the subproblem under consideration): In any node of

the search tree we identify non-conflicting assignments of resources to candidate jobs

and branch in such a way that only one of these partial feasible schedules will be

examined.

More formally let SK^(m) u= 1,2,... be sets of tupels (j,k) each such that for each pair of

tupels (ß,i) and (£,TT) ßt £ and 7^ 7r. E ach of these sets corresponds to an assignment of

m distinct candidate jobs to distinct resources. We arbitrarily order the tupels in each

set and evaluate only this sequence of job—resource assignments.

11

In order to demonstrate the advantage of this shortcut examine the example of Table 2.

In t = 0 we have SC := {1, 2, 14, 15}. For m = 2 there are 39 distinct sets SK^(2) with

v = 1,2,...,39. For m = 3 there are 51 distinct sets SK^(3) with v = 1,2,...,51. For m = 4

there are 20 distinct sets SK^(4) with v = 1,2,...,20. Obviously only tupels (j,k) with d^

< OD ha ve to be considered (c.k = d^ = m means that job j must not be scheduled by

resource k). Within each of these sets only one of the m! possible job resource assignment

sequences has to be considered, thus saving the Evaluation of m!—1 job resource

assignment sequences within each of these sets.

Conceptually this procedure yields a hybrid branch and bound / dynamic Program

ming algorithm, which combines the advantages of both approaches. It should be noted

that the Implementation of this procedure is computationally highly involved and indeed

requires a lot of "administrative" Instructions — with the reward of reducing the number

of nodes of the search tree explicitly evaluated drastically.

6.3 Preprocessing Techniques

It has been shown by other researchers [23] that the order in which jobs / resources are

considered for augmenting partial feasible schedules, has some influence on algorithmic

Performance. For comparative purposes we will investigate four ways of sorting jobs:

ES Sort all jobs in non—decreasing order of earliest Start times; ties are

broken by mimimum slack.

EF Sort all jobs in non-decreasing order of earliest finish times; ties are

broken by mimimum slack.

LS Sort all jobs in non-decreasing order of latest Start times; ties are

broken by mimimum slack.

LF Sort all jobs in non-decreasing order of latest finish times; ties aie

broken by mimimum slack.

These four criteria used for presorting of jobs are traditional critical path times,

calculated on the basis of & for all j.

With respect to the cost minimization objective function only "cost-sorting" of the

resources is considered in the following way:

Sort all the resources which may be assigned to one job in non-decreasing order of

scheduling costs. Perform this sorting for each job.

Cost-sorting is combined with each of the four job-sorting criteria. Job- and

cost-sorting is done in a preprocessive way before starting the optimization part of the

algorithm.

12

We have compared these preprocessing techniques on small problems and we found that

they performed similarly with a possible small advantage to ES. So the latter will be

used in the following.

7. Computational Results

The algorithms have been coded in FORTRAN 77 and implemented on an IBM

3090-200. Table 2 presents the precedence structure, job durations and job costs of an

audit scheduling test example taken from the literature [2], [18].

This example corresponds to a multi—project generalization of (l)-(6) with project—

specific release dates R- as well as project-specific deadlines T. with Rj = (0, 7, 20, 0,

15) and T. = (20, 30, 30, 20, 30) for project i = 1,2,...,5. In Table 2 the Separation of the

20 jobs to the five projects is indicated by dotted lines. The realease dates and the

deadlines may be represented implicitely through the bounds computed in section 3, to

reduce the number of variables.

Though being relatively small the example requires 497 binary variables and 207

constraints in terms of (1)—(6).

Table 3 presents sample results concerning the example of Table 2 for a wide ränge of

total availability resource restrictions ranging from 12 to 22 (Vk). For > 22 the

Optimum objective function value equals 5065. For = 12 no feasible Solution could be

determined. Thus it is supposed that no feasible Solution exists for < 12.

The procedure of [2] determines solutions with (bad) objective function values 5390, 5225

and 5135 for = 15, 20 and 25 respectively (with corresponding computation times of

175, 31 and 3100 sec on a UNIVAC 1108). The set — partitioning approach [18] produces

5150, 5070 and 5070 for = 15, 20 and 25 respectively (with computation times of

37.6, 41.3 and 47.8 sec on a CDC CYBER 172). Thus for = 25 the set — partitioning

approach could not find and verify the Optimum Solution.

Columns two and three of Table 3 present objective function values of the best feasible

solutions determined with STOCOM using SC and STC, where in both cases for a = 2.0,

a = 1.5, a = 1.0 and a = 0.5 the heuristic has been applied 50 times. STC seems to be

slightly superior as a rule for selecting job candidates due to looking at urgency of jobs.

Regarding computational requirements (constructing 4 • 50 = 200 schedules takes 86

milliseconds on average - which corresponds to 0.43 milliseconds per schedule) as well as

quality of solutions (percentage deviation from Optimum objective function value never

exceeds 3% substantially — whenever a feasible Solution has been found at all), the

heuristic seems to be very effective.

13

TABLE 2

An Example from Literature

j V.
J dik cjt

1 7 OD 6 OD 4 4 280 OD 300 OD 400 380

2 <P DD 6 m 3 00 3 OD 270 OD 270 OD 285

3 {1, 2} OD CD 6 4 OD 3 00 OD 300 360 00 285

4 {1,2} 5 OD 4 00 OD OD 200 OD 200 OD OD OD

5 {3,4} OD 7 7 OD 00 4 OD 315 350 OD OD 380

6 <t> 8 7 00 OD 3 OD 320 315 00 00 300 00

7 <t> OD OD 7 4 OD OD 00 OD 350 360 00 OD

8 {6, 7} 7 7 OD OD 5 3 280 315 00 OD 500 285

9 {6, 7} OD OD 5 3 OD OD OD OD 250 270 OD so

10 {8, 9} 8 8 OD OD 3 OD 320 360 OD OD 300 OD

11 * OD OD 4 2 00 2 CD 00 200 180 00 190

12 <t> 3 OD 3 00 1 00 120 OD 150 OD 100 OD

13 {11,12} OD 5 5 3 OD OD OD 225 250 270 00 OD

14 <t> OD OD OD 5 5 00 00 OD OD 450 500 00

15 <t> 6 OD 5 OD OD OD 240 00 250 00 OD 00

16 {15} OD 4 OD 2 2 00 00 180 00 180 200 00

17 <t> 5 5 4 00 OD OD 200 225 200 OD 00 00

18 {17} OD OD 5 3 00 3 00 00 250 270 00 285

19 {17} 5 5 OD OD 2 3 200 225 OD OD 200 285

20 {18,19} OD 00 4 3 OD OD OD OD 200 270 CD OD

The last five columns of Table 3 give some Information about the relative effectiveness of

the bounding procedures. Each entry represents the ratio "number of times, when the

bounding procedure causes backtracking" divided by the "total number of executions of

the corresponding procedure". The effectiveness of FLB and OLB1 is (not surprisingly)

opposite with respect to a varying degree of capacity scarceness. The other bounding

procedures are relatively (in)effective regarding all capacity restrictions. OLB2 and

OLB4, which were initially thought to be "sensitive" with respect to scarce resources,

14

TABLE 3

Experimental Results for the Example of Table 2

Dk SC
Z

STC Z* CPU-sec FLB OLB1 OLB2 OLB3 OLB4

12 (D OD .(!?) >2500.0 0.33 0.00 0.00 0.00 0.08

13 CO m 5240 937.18 0.16 0.08 0.11 0.00 0.14

14 5310 5310 5150 389.27 0.11 0.03 0.14 0.33 0.14

15 5310 5255 5150 216.01 0.09 0.03 0.14 0.31 0.10

16 5125 5125 5120 157.86 0.03 0.25 0.06 0.30 0.00

17 5165 5115 5100 64.39 0.01 0.25 0.14 0.22 0.01

18 5110 5100 5070 11.74 0.00 0.26 0.18 0.33 0.03

19 5090 5080 5070 32.59 0.00 0.26 0.23 0.38 0.05

20 5080 5090 5070 33.76 0.00 0.27 0.27 0.47 0.06

21 5090 5080 5070 39.23 0.00 0.29 0.32 0.42 0.08

22 5080 5080 5065 43.54 0.00 0.53 0.04 0.26 0.02

are ineffective as well due to not "reaching" Optimum objective function values

increasing with decreasing capacities. It should be mentioned, that these ratios highly

depend on the order in which the bounding procedures are performed. Indeed, the "weak

and fast" bound OLB2 reduces the ratios especially of the "tight and slow" GAP bound

OLB4.

The results of Table 3 demonstrate that even small problems can only be solved to

optimality with the optimization procedure in the case of plentiful resources. With

resources becoming scarce, the required computation time increases drastically even for

problems with slightly more than a dozen jobs: The bounding procedures are not able to

"compensate" for the increase in the Optimum objective function value. Thus, it is quite

clear that the main benefit of the exact approach is to provide benchmark tests for small

problems in order to (hopefully) establish the quality of results obtainable with the

Monte Carlo heuristic STOCOM.

Table 4 compares the quality of solutions of STOCOM with the results obtained by the

following traditional deterministic scheduling rules [12], [23]:

SOF Schedule the job with minimum scheduling costs regarding all

available resources (analogous to shortest Operation first).

15

MAXMIN Schedule the job whose minimal costs of being scheduled by the

least expensive available resource are maximal.

MINSLK Schedule the job whose actual slack time is minimal.

FCFS Schedule the job which arrived first in the set of candidate queue SC

or STC (first come — first served).

In all cases the tie breaker is the (minimum) resource or job number.

Columns 1 and 2 of Table 4 provide the number of jobs J as well as the number of

doubly — constrained resources K. The measure of resource scarcity MRS (column 3) is

defined as follows:

K j
MRS = S D, / E 6.

k=l j=l J

In the example of Table 2 MRS ranges from 1.1 (Dk = 12 V k) to 2.0 (Dfc = 22 V k).

Note that none of the above deterministic scheduling rules is able to find a feasible

Solution for the example of Table 2 for < 15 (Vk) (corresponding to MRS < 1.4). MRS

seems to be an appropriate measure for the evaluation of heuristics.

For each combination of J, K and MRS 5 test problems have been generated randomly

with c.k and d^k being uniformely distributed in [0;100]. The entries #1 / #2 of Table 4

correspond to the number of times, when the appropriate heuristic was able to find a

feasible Solution (#1) and to the number of times when the Solution determined with the

heuristic was equal to the best one found by anyone of the heuristics (#2). Once more

STOCOM has been applied 50 times for a = 2.0, 1.5, 1.0 and 0.5 using SC as well as

STC.

As can be seen the determinsitic rules were not able to find the best known solutions in

the case of MRS <1.5 for anyone of the test examples. Moreover these rules could find a

feasible Solution for MRS < 1.5 in strictly less than 50% of the instances. In the case of

MRS = 2.0 the deterministic rules often produced feasible solutions, but for most

examples they did not succeed in determining the best ones. In contrast to this poor

behavior STOCOM performed very well regardless of using SC or STC especially for

MRS > 1.5; for MRS = 1.0 STOCOM was able to find feasible solutions in more than

50% of the instances. Once more STC seems to be slightly superior.

Of course STOCOM may not be "fairly" compared with the deterministic scheduling

rules, considering 4 • 50 = 200 applications of the former and only one of the latter.

Nevertheless Table 4 drastically shows the following: The deterministic scheduling rules

surprisingly behave rather poor regarding the unability of finding feasible solutions even

in the case of plentiful resources.

16

TABLE 4
Results of STOCOM and the Deterministic Scheduling Rules

J K MRS SOF MAXMIN MINSLK FCFS SC
STOCOM

STC CPU

50 5 1.0
1.5
2.0

0/0
2/0
5/1

1/0
3/0
5/0

0/0

$

0/0
2/0
5/1

3/2
5/3
5/5

2/2
5/5
5/5 5.2

10 1.0
1.5
2.0

18
5/0

0/0

$

0/0
0/0
5/1

0/0
2/0
5/0

2/2
5/5
5/5

2/2
5/4
5/5 7.8

100 5 1.0
1.5
2.0

0/0
0/0
5/2

0/0
0/0
5/1

0/0
1/0
5/0

0/0
1/0
5/0

%\
5/5

1/1
5/5
5/5 49.8

10 1.0
1.5
2.0

0/0
2/0
5/0

0/0
0/0
5/2

0/0

$

0/0

$

2/2
5/5
5/5

3/2
5/4
5/5 77.1

200 5 1.0
1.5
2.0

0/0

tö

0/0
3/0
5/0

$
5/1

0/0
0/0
5/1

4/4
5/4
5/5

4/4
5/5
5/5 286.4

10 1.0
1.5
2.0

0/0
0/0
5/1

0/0
2/0
5/1

0/0
0/0
5/1

0/0
3/0
5/1

3/2
5/4
5/5

3/3
5/5
5/5 470.5

TABLE 5
Comparison of STOCOM with the Optimization Procedure

i v MPC CPU-sec (Opt.) STOCOM (STC)
J K MRb MIN MEAN MAX NOPT DMN% DMX% NOFEAS

1.00 0.06 0.14 0.37 1 0.9 3.7 1
1.25 0.03 0.06 0.18 3 0.4 2.1 0
1.50 0.00 0.01 0.04 7 0.2 1.2 0
1.75 0.01 0.02 0.05 8 0.0 0.3 0
2.00 0.02 0.03 0.08 8 0.0 0.2 0

1.00 0.13 0.37 1.09 2 0.7 3.9 2
1.25 0.08 0.24 0.76 4 0.5 3.4 1
1.50 0.00 0.03 0.08 6 0.3 1.5 0
1.75 0.02 0.06 0.13 9 0.0 0.4 0
2.00 0.05 0.09 0.17 8 0.0 0.1 0

1.00 26.3 213.5 986.5 1 0.6 2.8 0
1.25 12.0 56.2 209.8 2 0.5 3.1 1
1.50 2.1 5.7 51.6 4 0.4 1.7 0
1.75 2.2 8.1 43.1 5 0.4 0.9 0
2.00 3.2 14.9 37.5 8 0.0 0.2 0

1.00 137.0 801.0 >2500 3 0.4 3.2 1
1.25 97.1 217.4 1700 3 0.4 2.9 0
1.50 5.3 13.5 64.9 4 0.3 1.8 0
1.75 6.9 18.7 55.2 8 0.2 0.9 c
2.00 13.7 51.0 87.6 9 0.0 0.1 0

17

The last column of Table 4 reports the average computation times in milliseconds of

STOCOM needed for one execution. As can be seen STOCOM does not require more

than half a second of CPU — tim e per execution even for large problems with 200 jobs

and 10 doubly — constrained resources.

Table 5 compares STOCOM with the optimization algorithm. Columns 1 to 3 describe

problem characteristics. For each combination of J, K and MRS 10 test problems have

been generated randomly as indicated above. Columns 4 to 6 report the minimum

(MIN), the average (MEAN), and the maximum (MAX) CPU — sec required by the

optimization algorithm. As can be seen the behavior of the algorithm shown earlier in

Table 3 is rather typical; e.g. the computation times are increasing rapidly with

decreasing resource availability.

The last four columns of Table 5 provide the number of times, in which STOCOM

(using STC; 200 executions once again) determined optimum solutions (NOPT) in each

problem class, the average (DMN%) and the maximum (DMX%) percentage deviation of

objective function values from the optimum one as well as the number of times in which

STOCOM found no feasible Solution provided one could be determined with the exact

algorithm (NOFEAS). (Percentage deviations have been calculated taking only those

examples for which a feasible Solution could be determined with STOCOM provided a

finite optimum has been found with the exact approach.) STOCOM performs rather

good: Within each category in at least one case the optimum has been determined. The

mean (maximum) deviation does not exceed 1% (4%). Only in the case of scarce

resources (MRS < 1.25) STOCOM did not succeed in finding an existing feasible Solution

for some data.

Table 6 demonstrates the sensitivity of STOCOM to a. A problem with J = 20, K = 5

as well as MRS = 1.5 has been generated randomly and solved repeatedly using STC

until 100 feasible solutions had been found. Using a = 2.0 the number of tri als

(executions of the algorithm) was 119, where 84 (feasible) solutions had a deviation from

the optimum objective function value in the ränge [0%,2%], 11 in the ränge (2%,4%]

and 5 in the ränge (4%,6%].

The results of Table 6 (which are rather typical also for other problem instances treated)

indicate that with increasing a

more tri als are necessary in order to generate a prespecified number of feasible

solutions and

• the percentage deviations of the objective function values from the optimum one are

decreasing.

Thus we observe that the probability of finding a feasible Solution is decreasing with

increasing a but the quality of solutions is increasing with increasing a.

18

TABLE 6

Variation of the parameter et

percentage deviation
a #trials

0-2 2—4 4-6 6-8 8-10 10-12

2.0 119 84 11 5 — — —

1.5 115 53 25 13 9 — —

1.0 111 16 49 21 7 7 —

0.5 105 9 14 19 42 12 4

In summary of these observations a general ad vice for an appropriate choice of a may be

given as follows: For a given data set one should start with a rather high a (say a =

2.0), perform some hundreds of tri als (depending on the problem size and on the amount

of available Computer resources), reduce at as indicated above and so on.

8. Summary and Conclnsions

This paper has presented an assignment—type, resource-constrained, project scheduling

model, which incorporates many of the features being important with respect to project

management in practice. For the Solution of this model, a new type of stochastic

scheduling heuristic as well as a hybrid branch and bound / dynamic programming

algorithm has been presented.

With respect to the computational experience, the stochastic assignment heuristic seems

to be a highly suitable method for approximately solving large time-resource-cost-

tradeoff problems of the type considered in this paper. The fundamental idea of the

heuristic is, to resolve conflicts between jobs (which are competing for scarce resources)

by Monte-Carlo methods on the basis of opportunity costs. This idea is a quite general

one. It should be worthwhile to investigate its usefulness for solving scheduling problems

where a job can use more than one resource [7] and for other hard combinatorial

problems approximately, too.

The exaet algorithm is essentially based on lower bounding procedures corresponding to

several well—known (sub)problems such as the knapsack problem and the generalized

assignment problem. This algorithm enables us to solve smaller problems to optimality

within a reasonable amount of computation time.

19

Acknowledgement

The author is indebted to two anonymous referees for their helpful comments on earlier

versions which improved readibility of the paper substantially.

References

[1] Blazewicz, J.; W. Cellary; R. Slowinski and J. Weglarz, "Scheduling Under
Resource Constraints - Deterministic Models", Basel 1986 (Annais of Operations
Research, Vol. 7).

[2] Bolenz, G. and R. Frank, "Das Zuordnungsproblem von Prüfern zu Prüffeldern
unter Berücksichtigung von Reihenfolgebedingungen — Ein Lösungsansatz der
binären Optimierung", Zeitschrift für betriebswirtschaftliche Forschung, Jg. 29
(1977), pp. 427-447.

[3] Chan, K.H. and B. Dodin, "A Decision Support System for Audit—Staff
Scheduling with Precedence Constraints and Due Dates", The Accounting
Review, Vol. LXI (1986), pp. 726-733.

[4] Christofides, N; R. Alvarez—Valdes and J.M. Tamarit, "Project Scheduling with
Resource Constraints: A Branch and Bound Approach", European Journal of
Operational Research, Vol. 29 (1987), pp. 262-273.

[5] Davis, E.W. and J H. Patterson, "A Comparison of Heuristic and Optimum
Solutions in Resource-Constrained Project Scheduling", Management Science,
Vol. 21 (1975), pp. 944-955.

[6] Drexl, A., "Planung des Ablaufs von Unternehmensprüfungen", Stuttgart 1990.

[7] Drexl, A. and J. Gruenewald, "Nonpreemptive Multi — Mode Resource -
Constrained Project Scheduling", in preparation.

[8] Elmaghraby, S.E., "Activity Networks: Project Planning and Control by Network
Models", New York 1977.

[9] Fisher, M.L.; R. Jaikumar and L.N. Van Wassenhove, "A Multiplier Adjustment
Method for the Generalized Assignment Problem", Management Science, Vol. 32
(1986), pp. 1095-1103.

[10] Jonker, R. and A. Volgenant, "A Shortest Augmenting Path Algorithm for Dense
and Sparse Linear Assignment Problems", Computing, Vol. 38 (1987), pp.
325-340.

[11] Kurtulus, I.S. and E.W. Davis, "Multi—Project Scheduling: Categorization of
Heuristic Rules Performance", Management Science, Vol. 28 (1982), pp. 161—172.

[12] Kurtulus, I.S. and S.C. Narula, "Multi—Project Scheduling: Analysis of Project
Performance", IIE Transactions, Vol. 17 (1985), pp. 58-66.

[13] Lawler, E.L. and D.E. Wood, "Branch - and — Bound Methods: A Survey",
Operations Research, Vol. 14 (1966), pp. 699—719.

[14] Martello, S. and P. Toth, "An Algorithm for the Generalized Assignment
Problem", in: J.P. Brans (Ed.), Operational Research '81, North-Holland,
Amsterdam 1981, pp. 589—609.

[15] Patterson, J.; R. Slowinski; B. Talbot and J. Weglarz, "An Algorithm for a
General Class of Precedence and Resource Constrained Scheduling Problems", in
[21, pp. 3-28].

Patterson, J.; R. Slowinski; B. Talbot and J. Weglarz, "Computational
Experience with a Backtracking Algorithm for Solving a General Class of
Resource Constrained Scheduling Problems", to appear in European Journal of
Operational Research.

Pritsker, A.A.B.; W.D. Watters and P.M. Wolfe, "Multiproject Scheduling With
Limited Resources: A Zero-One Programming Approach", Management Science,
Vol. 16 (1969), pp. 93-108.

Rohde, M., "Das Set-Partitioning-Problem: Wirtschaftliche Anwendungen und
Algorithmen", Diss., FU Berlin, 1978.

Ross, G.T. and R.M. Soland, "A Branch and Bound Algorithm for the
Generalized Assignment Problem", Mathematical Programming, Vol. 8 (1975),
pp. 91-103.

Russell, R.A., "A Comparison of Heuristics for Scheduling Projects with Cash
Flows and Resource Restrictions", Management Science, Vol. 32 (1986), pp.
1291-1300.

Slowinski, R., Wgglarz, J. (Eds.): "Advances in Project Scheduling", Amsterdam
1989.

Stinson, J. P.; E. W. Davis and B. M. Khumawala, "Multiple Resource-
Constrained Scheduling Using Branch and Bound", AHE Transactions, Vol. 10
(1978), pp. 252-259.

Talbot, F.B., "Resource — C onstrained Project Scheduling With Time—Resource
Tradeoffs: The Nonpreemptive Case", Management Science, Vol. 28 (1982), pp.
1197-1210.

Talbot, F. B. and J. H. Patterson, "An Efficient Integer Programming Algorithm
With Network Cuts for Solving Resource-Constrained Scheduling Problems",
Management Science, Vol. 24 (1978), pp. 1163-1174.

Wiest, J.D., "A Heuristic Model for Scheduling Large Projects With Limited
Resources", Management Science, Vol. 13 (1967), pp. B-359 -B-377.

