~ A Service of
’. b Leibniz-Informationszentrum

.j B I l I Wirtschaft
) o o o Leibniz Information Centre
Make YOUT PUbllCCltlonS VZSlble. h for Economics ' '

Schmidt, Reinhart; Ralfs, Dirk

Working Paper — Digitized Version
KPS-Prolog: E. Problemlésungssystem auf Basis von Turbo-
Prolog

Manuskripte aus den Instituten flr Betriebswirtschaftslehre der Universitat Kiel, No. 225

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Institute of Business Administration

Suggested Citation: Schmidt, Reinhart; Ralfs, Dirk (1988) : KPS-Prolog: E. Problem|dsungssystem auf
Basis von Turbo-Prolog, Manuskripte aus den Instituten fir Betriebswirtschaftslehre der Universitat
Kiel, No. 225, Universitat Kiel, Institut fiir Betriebswirtschaftslehre, Kiel

This Version is available at:
https://hdl.handle.net/10419/161975

Standard-Nutzungsbedingungen: Terms of use:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your personal
Zwecken und zum Privatgebrauch gespeichert und kopiert werden. and scholarly purposes.

Sie durfen die Dokumente nicht fiir 6ffentliche oder kommerzielle You are not to copy documents for public or commercial purposes, to
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich exhibit the documents publicly, to make them publicly available on the
machen, vertreiben oder anderweitig nutzen. internet, or to distribute or otherwise use the documents in public.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen If the documents have been made available under an Open Content
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten, Licence (especially Creative Commons Licences), you may exercise
gelten abweichend von diesen Nutzungsbedingungen die in der dort further usage rights as specified in the indicated licence.

genannten Lizenz gewahrten Nutzungsrechte.

Mitglied der

WWW.ECONSTOR.EU é@“}

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/161975
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Nr. 225

KPS/Prolog
- Ein Problemldsungssystem
auf Basis von Turbo Prolog -

Reinhart(;;hmidt
Dirk R&lfs

Dezember 1988

Prof. Dr. Reinhart Schmidt
cand. rer.nat. Dirk Ralfs

Institut fiir Betriebswirtschaftslehre
der Christian-Albrechts-Universitét
zu Kiel

Copyright Reinhart Schmidt / Dirk Ralfs 1988

C1558663

Inhaltsverzeichnis

1. Einleitung ...cveeveess Cesseeenen Ceteretesanas e 1
2. Aufbau von Expertensystemen e eeaan 2
2.1. Elemente eines Expertensystems 2
2.2. Formen der Wissensreprdsentation 3

2.3. Turbo Prolog als Implementierungssprache .. 4

3. Aufbau des Systems KPS/Prologciieeeeneeecncs 6
3.1. Die Struktur des deklarativen Wissens 6
3.2. Die Struktur des prozeduralen Wissens 10
3.3. Die Gestaltung der Schnittstellen 12

3.3.1. Wissensdarstellungcceeeeeeeeen 13
3.3.2. Wissensakquisitioncoeeeveecnn 19
3.3.3. Befragung der Wissensbasis 20
3.3.4. Parametereinstellungencceeeee. 28

4. Einsatz als Problemldsungssysteme.... 30

4.1. Ausgewdhlte betriebswirtschaftliche
ANWEeNAUNGEN .. vitveeeesesccessssssssssascasns 30

4.2. Erweiterungsméglichkeiten cessecees 31

Literaturverzeichnis e et e e eceececeeenecennene 33

1. Einleitung

Die Entwicklung wissensbasierter Systeme befindet sich
in einem stiirmischen Aufschwung. Dies betrifft zundchst
das Anwachsen der Shells (Programmierumgebungen), die
eine benutzerfreundliche Erstellung und Nutzung eines
Expertensystems erméglichen (vgl. Uberblicke in [4]
[15] [25]. Es betrifft weiterhin Anwendungen in den
verschiedensten Bereichen - vom Prototyp bis zum voll
einsatzfidhigen System (vgl. die Darstellungen bei
Mertens et al. [13].

Die Leistungsfahigkeit von Shells ist im Hinblick auf
die Erfiillung einzelner Anforderungen recht unter-
schiedlich. Es kommt also entscheidend darauf an, ob
das Anforderungsprofil des Anwendungsgebietes mit dem
entsprechenden Profil der Shell in Ubereinstimmung
gebracht werden kann. Unter dem Gesichtspunkt der
Anpassungsfahigkeit an neue Aufgabenstellungen, vor
allem im Bereich der Forschung iber neue Anwendungen
wissensbasierter Systeme, ist es zweckmdfig, wenn
Entwickler und Wissensingenieure die Mdglichkeit haben,
in einer Programmiersprache Systemkomponenten zu ver-

dandern oder neue zu schaffen.

Am Institut fir Betriebswirtschaftslehre der Universi-
tadt Kiel wurde deshalb nach Sichtung der Eigenschaften
vorhandener Shells ein eigenes System konzipiert und
implementiert. Das entstandene System KPS/Prolog
zeichnet sich durch eine besondere Erweiterungsfahig-
keit seiner Komponenten seitens des Wissenschaftlers
wie auch durch seine Benutzerfreundlichkeit flir den

Wissensingenieur aus.

Im folgenden wird dazu zundchst auf den Aufbau von
Expertensystemen eingegangen. Es wird sodann der Aufbau
des entwickelten Systems beschrieben. SchlieBlich wird
der Einsatz als Problemldsungssystem diskutiert.

2. Aufbau von Expertensystemen

2.1. Elemente eines Expertensystems

Die Elemente eines Expertensystems sind in Abb. 1
dargestellt.

Benutzer

:

Benutzer-Schnittsteile

Wissens- SchiuB- Erklarungs- ‘___’ Konventionelle
Wwissens- erwerbs- folgerungs- komponente Datenverarbeitung
basis komponente komponente

Entwickler-Schmittsteile

! {

Wissens- ‘.———— Experte(n)

Ingenieur

Quelle: IBM Deutschland GmbH.

Abb. 1: Bestandteile eines wissensbasierten

Systems

Den Kern bildet die Wissensbasis, die das dem System
angepaBte Expertenwissen enthdlt. Die Wissenserwerbs-
komponente ermdéglicht die Zufihrung von neuem Wissen.
Die SchluBffolgerungskomponente (Inferenzkomponente)
erlaubt es, Schliisse zu ziehen und nach L&sungen zu
suchen. Die Erklarungskomponente dient der Erl&duterung
von Fragestellungen und Fragefolgen sowie der Begrin-
dung von Antworten. Zum Umsystem sollten drei Schnitt-

stellen vorhanden sein:

1. Die Entwickler-Schnittstelle erlaubt es dem Wissens-
ingenieur in mehr oder weniger benutzerfreundlicher

Weise, die Wissensbasis zu fillen und die genannten

Komponenten zu &ndern bzw. zu ergdnzen. Dazu gehlrt
auch, daB die Wissenseingabe so weit méglich - auf

Konsistenz geprift wird.

2. Die Benutzer-Schnittstelle gestattet es, daB ein in
dem Problemkreis mehr oder weniger sachverstédndiger
Benutzer, der obendrein iiber keinerlei Programmier-
kenntnisse verfiigt, von dem System bei Problemldsun-

gen unterstutzt werden kann.

3. Die Schnittstelle zur konventionellen Datenverarbei-
tung erméglicht die Nutzung vorhandener Programm-
und Datenbestdnde. Diese Schnittstelle hat eine sehr
grofe Bedeutung, weil sich in den Anwendungsberei-
chen umfangreiche Daten- und Programmbest&dnde ge-
bildet haben, die prinzipiell integriert werden

kénnen und sollten.

Die Entwicklung von KPS/Prolog wurde von der Forderung
veranlaft, die Entwickler-Schnittstelle sowie die
Schnittstelle zur konventionellen Datenverarbeitung
nach eigenen Vorstellungen und damit sehr flexibel ge-
stalten zu kénnen. AuBerdem sollte bei der Benutzer-
Schnittstelle Flexibilitdt dahingehend geschaffen wer-
den, daB® von einer stirker formatierten Artikulations-
form des Benutzers tendenziell auf einen Dialog in
natiirlicher Sprache iibergegangen werden kann.

2.2. Formen der Wissensreprdsentation

Die Literatur unterscheidet vor allem drei Ansatze, wie
das Wissen in wissensbasierten Systemen reprédsentiert
werden kann [6] [25]:

1. Der Frame-Ansatz ist durch die inklusive Unterord-
nung von Objekten, die bestimmte Attribute (Merkma-
le) mit bestimmten Werten (Merkmalsausprdgungen)
aufweisen, gekennzeichnet. Dabei kdnnen Eigenschaf-

ten iibergeordneter Objekte ganz oder teilweise nach

unten vererbt werden.

2. Semantische Netzwerke bilden das Wissen in Form von
Knoten, die iiber Kanten miteinander verbunden sind,
ab. Die wesentlichen Verkniipfungen sind dabei die
Zugehdrigkeit eines Objektes zu einer Objektklasse
("ist ein") und die Eigenschaft eines Objektes ("hat

ein").

3. Der regelbasierte Ansatz beschreibt das Wissen in
Form einer Auflistung von Bedingungen und Konsequen-

Zzen.

Es erscheint wiinschenswert, verschiedene Formen der
Wissensreprdsentation miteinander zu verbinden, um die
Vorteile der jeweiligen Darstellung auszunutzen. Dies
ist in KPS/Prolog versucht worden.

2.3. Turbo Prolog als Implementierungssprache

Prolog (Programming in Logic) ist keine prozedurale,
sondern eine deskriptive Programmiersprache (vgl. zu
Prolog vor allem [2] [18] [21] [24]). Es wird nicht der
Ldsungsweg angegeben, sondern die Ldsungseigenschaften
werden mittels Fakten und Regeln beschrieben. Dies
stellt einen groRen Vorteil bei der Erstellung von
Expertensystemens dar, weil der Programmierer sich -
mit Ausnahme des reinen Dialogablaufes - tatsachlich
auf die Beschreibung des zu l6senden Problems be-
schrédnken kann. Die Ldsungssuche ibernimmt Prolog im
Wege der Rickwartsverkettung (Back Tracking). SchluB-
folgerungen werden dabei aufgrund von Regeln gezogen,
die einerseits gespeichertes Wissen, andererseits for-
muliertes Problem beinhalten.

Einen grofen Vorteil von Prolog stellt die Eigenschaft
dar, dal eine Verarbeitung von Listen (z. B. Listen von
Attributen und entsprechenden Werten) unterstiutzt wird.

Der Vorteil einer Programmierung in Prolog liegt nicht
nur in der theoretischen Eleganz, der Mdchtigkeit von
Pradikaten und der damit verbundenen Ubersichtlichkeit,
sondern auch in dem standigen Zugang zu dem Inneren des
Systems {iber die darunterliegende Programmiersprache
Prolog selbst.

Turbo Prolog (vgl. dazu [3] [5] [8]-[12] ([14] (17] (19]
(22] [23]) als eine PC-Version erlaubt eine weitgehende
Modularisierung des Programmsystems. Es ist offen
gegeniiber Anderungen, was den Vorteil hat, daB die
Wissensbasis dynamisch erweitert werden kann. Auferdem
kann auf externe Dateien zugegriffen werden, und andere
Programme - auch in anderen Programmiersprachen -
konnen eingebettet werden. Damit kann Turbo Prolog
zugleich einen umfassenden Rahmen fiir die Ver- waltung
und Nutzung unterschiedlicher Programmbestande bilden.

Um zu einer L&sung eines Problems in Turbo Prolog zu
kommen, gibt es zwei Mdglichkeiten:

1. Das Beweisziel ("Goal") kann vom Benutzer direkt im
Dialog eingegeben werden. Dies hat den Vorteil héch-
ster Flexibilitat des zu beweisenden Sachverhalts
(zu losenden Problems), hat aber den Nachteil, daf
der Benutzer die Prolog-Syntax beherrschen und die
speziellen Namensgebungen des Programms kennen mub.

2. Die Schaffung eines programminternen Abschnitts
"Goal" vermeidet die genannten Nachteile. Dabei kann
die Spezifikation des zu fiihrenden Beweises liber ein
oder mehrere Menilis abgefragt werden, oder der Be-
nutzer kann die Zielanforderungen verbal artikulie-
ren. Im letzteren Fall kdénnen Kommandos oder Komman-
dofolgen gegeben werden, oder es kann je nach Lei-
stungsfdhigkeit des Systems versucht werden, eine
Interpretation von fast natiirlicher Sprache zuzulas-

sen.

Die Machtigkeit von Prolog verbunden mit der Flexibili-
tdt durch den Einsatz der speziellen Sprache Turbo
Prolog hat es erlaubt, KPS/Prolog im Wege eines Proto-
typing kontinuierlich und relativ schnell zu erstellen.
Auch kann auf vorhandene Elemente von Entscheidungs-
unterstiitzungssystemen (DSS) oder auf komplette Proto-
typen, die am Institut fiir Betriebswirtschaftslehre
vorhanden sind, im Wege einer Integration zuriickge-
griffen werden, so daf der Funktionsumfang im Sinne
eines betriebswirtschaftlichen Problemldsungssystems

schnell ansteigen kann.

3. Aufbau des Systems KPS/Prolog

Wissensreprasentation, Wissenserwerb und Erklarungen
von Lésungen sind in KPS/Prolog aufgrund eigener Vor-
stellungen gestaltet worden. Es ist versucht worden,
den Frame-Ansatz mit dem regelbasierten Ansatz zu ver-
binden und gleichzeitig Elemente eines semantischen

Netzwerkes zu beriicksichtigen.

3.1. Die Struktur des deklarativen Wissens

Die Reprédsentation des deklarativen Wissens in KPS/
Prolog wird anhand von Abb. 2 veranschaulicht.

Das gesamte Wissen einer Domdne wird als in Bereiche
gegliedert unterstellt. Diese Bereiche kénnen sich auf
mehr oder weniger umfangreiche Wissenskomplexe - je
nach Entscheidung des Benutzers - beziehen. Die Be-
reiche kénnen einen Bereichsnamen tragen. Das Wissen

einzelner oder ggf. mehrerer Bereiche wird in externen
Dateien gespeichert und je nach Wahl des bei der
Problembeschreibung angesprochenen Bereichskomplexes in
den Kernspeicher eingelesen. Bereiche kdnnen hierar-
chisch gegliedert sein, wodurcH klassische Formen der
Wissensreprédsentation - man denke an die Biologie oder
an die Gliederung von Lehrbiichern - gut abgebildet
werden koénnen.

Bereich 1 Bereich 2 o !Bmekh&
< > <Bersichsname 2>) < >
N
NN N
AR PN S
Liste Objekt 2.1.X Liste der lf Liste der
| synonymer "Name 2.1.X" i Attribute | Werte
Klgssen— Klasse
namen

|

|
Werte— | ' f !

I

sy iopD, | | b h ec&ri?!;eete
155 m o t | -

g S i
' es ! i P

Bereichs 4 : | |1 TP | atiributs

|
‘ !
I

(fakultativ)

Objekt 2.2.Y
=1 "Name 2.2.Y" }— -
(Klasse 2. Ordnung

Abb. 2: Struktur des deklarativen Wissens
in KPS/Prolog

Das Wissen eines Bereichs besteht aus Objekten und
ihren Eigenschaften sowie eventuell einer hierarchi-
schen Bereichsuntergliederung. Die Objekte weisen einen
Objektnamen auf. Damit der Benutzer seine eigene Aus-

drucksweise fiur Objekte verwenden kann, kann es fiir
jedes Objekt eine Liste synonymer Namen geben. Dies ist

besonders wichtig, wenn das wissensbasierte System den
Benutzer ohne viele Riickfragen verstehen kdnnen soll.

Das Konzept synonymer Bezeichnungen erlaubt zugleich
die Ubersetzung in eine andere natiirliche Sprache,
allerdings mit der Einschréankung, daB es sich hier nur
um Bezeichnungen handelt.

Jedem Objekt kann eine Liste von Attributen (Merkmalen)
zugeordnet werden. Zu jedem Attribut einer solchen
Liste kann es eine Liste synonymer Attribute - bezogen

auf den speziellen Bereich - geben. Dadurch wird es
méglich, dal der Benutzer bereichsspezifische Sprech-
weisen fir Attribute benutzen kann, ohne daf die
Funktion von Attributen als Schnittstelle zwischen
unterschiedlichen Wissensbereichen ausgeschlossen wird.

Jedem Attribut eines Objekts ist ein Wert zugewiesen.
Die Wertangabe richtet sich dabei nach dem Wertebereich
des zugehérigen Attributs, es kann sich um nichtnumeri-
sche oder numerische Werte handeln. Numerische Werte

sind in einer natirlichen Ordnung; flir nichtnumerische

Werte kann angegeben werden, ob sie ungeordnet oder

geordnet sein sollen. Uber eine Liste von Werten kann
flir Attribute mit nichtnumerischem Wertebereich eine
Ordnung definiert werden. Dadurch wird ein Vergleich
von qualitativen Auspridgungen erméglicht.

Undefinierte Werte kénnten grundsdtzlich dadurch zuge-
lassen werden, daB Objekte mit undefinierten Werten bei
der Lésungssuche iibergangen werden. Auch kdénnte an-
stelle einer Ausprédgung "undefiniert" ein Programmname
stehen, der es erlaubt, den Wert {iber ein separates

Programm zu ermitteln.

Ein Objekt kann im Sinne einer Unterordnung Element

eines anderen Objekts sein. Dabei sind innerhalb eines

Bereichs auch mehrfache Unterordnungen méglich, so daB

"Kind" Element von "Mutter" und "Vater" sein kann. Die

(automatische) Vererbung von Eigenschaften auf unterge-
ordnete Elemente ist in dem System bisher nicht reali-

siert, weil sich bei einer Mehrfachunterordnung Verer-

bungsprobleme ergeben kénnen. Diese Probleme kdnnten

allerdings {iber Prioritdtsregeln geldst werden oder zu
dem Wert "undefiniert" fiihren.

Die Wiedergabe des deklarativen Wissens in Prolog-
Syntax ist Abb. 3 zu entnehmen. Fir die Bereiche
<Person>, <Verkehrsmittel> und <Reisezweck> werden
Attribute definiert. Anhand des Pradikates "attribut"
kann man dort erkennen, welche Attributnamen in jedem
der drei Bereiche vorkommen. Fiir Verkniipfungen zwischen
Bereichen ist von Bedeutung, daB ein bestimmter ‘
Attributname in mindestens zwei Bereichen vorkommt. Die
Objekte der drei Bereiche sind unter dem Prddikat
"objekt™ mit ihren Namen verzeichnet. AuBerdem finden
sich in der dem Objektnamen folgenden Liste die Werte
der Attribute des Objekts; dabei muB die Reihenfolge in
der Liste der Reihenfolge in dem entsprechenden

Praddikat "attribut" entsprechen.

ebenezahl (1)
bereichzahl (3)

ebenetext (1,"-")
bereichtext (1, "Person")
bereichtext (2, "Verkehrsmittel")
bereichtext (3, "Reisezweck")

attr@but(l,l,("Status","Alter","Geld"])
attr}but(l,Z,["Geld","Alter",”Entfernung","Tempo"])
attribut (1, 3, ["Entfernung", "Tempo”, "Status"])

objekt (1,1, "Inge", ["Schiiler","12", "wenig"})

objekt (1,1, "Hans", ["Student","22", "mittel"])
objekt(1,1,"0tto", ["Rentner™,"62", "viel"])
objekt(l,l,"Anna",["Kind","oa","wenig”])

objekt (1,1, "Lisa", {"Angestellte"™, "40", "viel"])

objekt (1,1, "Paul™, ["Arbeiter”,"51","mittel"))

objekt (1,2, "Fahrrad", ["wenig","06","klein", "schnell"})
objekt (1,2, "Auto"”, ["viel","18", "mittel™, "schnell"])
objekt (1,2, "Bahn", ["mittel","00", "gro8", "langsam”])
objekt (1,2, "Bus", ["mittel","00", "mittel™, "mittel"])
objekt (1,2, "Flugzeug", {"viel", "00","groB", "schnell”])
objekt (1,3, "Kurzurlaub”, ["klein", "langsam”, "Student"])
objekt (1,3, "Fernreise", ["grof", "schnell™, "Angestellte"})
objekt (1,3, "Arbeit™, ["mittel”, "mittel”, "Arbeiter"))
objekt(1,3,“Einkauf",['klein”,"1angsam",”Rentner“])
objekt (1,3, "Schule”, ["klein", "schnell"”, "Schiiler"])
objekt (1,3,"Uni", {"mittel”, "mittel™, "Student"])

wertebereich("Status”, "nichtnumerisch", "ungeordnet")
wertebereich("Alter", "numerisch", "geordnet™)
wertebereich("Geld", "nichtnumerisch", "geordnet")
wertebereich ("Entfernung”, "nichtnumerisch", "geordnet™)
wertebereich ("Tempo”, "nichtnumerisch®, "geordnet")

ordnung ("Ent fernung", ["klein”, "mittel", "grof"})
ordnung("Tempo",["langsam","mittel","schnell"])
ordnung ("Geld"”, ["wenig", "mittel", "viel™])

synonym (1, "Geld", ("Einkommen"]))

synonym (2, "Geld"”, ["Kosten"})
synonym(1l, "Alter", ["Lebensalter"))
synonym(2,"Alter", {"Mindestalter"])

synonym (2, "Bahn", ["Eisenbahn", "Bundesbahn"})
synonym(3,"Uni", {"Universitat"])

Abb. 3: Speicherung von Fakten als in Turbo Prolog
eingebettete Daten

.10

Die Wertebereiche fiir jedes Attribut werden in dem
Prddikat "wertebereich" spezifiziert. Durch das
Prddikat "ordnung" wird fiir die Attribute, die nicht-
numerisch und geordnet sind, eine Liste der geordneten
Werte angegeben.

Unter dem Prédikat "synonym" wird in dem Beispiel fir
das Attribut "Alter" fiir den Bereich 1 das Synonym
"Lebensalter", fiir den Bereich 2 das Synonym "Mindest-
alter" eingefiihrt. Die Liste der synonymen Attribut-
namen besteht in diesem Fall nur aus einem Element, bei
dem Pr&ddikat "synonym" fiir das Objekt "Bahn" weist die
Liste jedoch beispielhaft zwei Elemente auf.

KPS/Prolog geht davon aus, daB ein Name eindeutig zu-
zuordnen ist. Polysemantische Worter missen also zu
eindeutigen Namen gemacht werden. Dies ist grundsatz-
lich méglich, indem benutzerspezifische oder be-
nutzergruppenspezifische Wissensbasen geschaffen
werden. Voraussetzung dafiir ist die vorherige Iden-
tifikation des Benutzertyps durch das System.

3.2. Die Struktur des prozeduralen Wissens

Unter prozeduralem Wissen wird in KPS/Prolog das Wissen
verstanden, das uUber Regeln zusammengefalt der Problem-
16sung dient. Zu l&6sende Probleme sind also durch Re-
geln in Prolog-Syntax zu repridsentieren. Der Wissens-
ingenieur braucht jedoch diese Syntax nicht zu be-
herrschen, weil in dem System die Regeln als Daten
verwaltet werden und so mit Hilfe der Wissenserwerbs-
komponente Regeln hinzugefiigt oder abgedndert werden

kdénnen.

In allen Regeln dieser Art werden Beziehungen zwischen
verschiedenen Bereichen des Wissens hergestellt. Uber
Operatoren werden Werte entsprechender Attribute von
Objekten aus verschiedenen Bereichen verglichen. Daraus
folgt ein Ergebnis "wahr" oder "falsch".

- 11 -

Eine zweistellige Regel REGELNAME zwischen zwei
Bereichen BEREICH1 und BEREICH2 wird definiert durch
eine Liste von Attributen ATTR1,...,ATTRn und eine
Liste von Operatoren OP1l,...,0Pn.

Ein Objekt X aus BEREICH1 und ein Objekt Y aus
BEREICH2 erfiillen die zweistellige Regel REGELNAME,
wenn fur alle i=l,...,n
fiir den Wert XWERTi des Attributs ATTRi von Objekt X
und den Wert YWERTi des Attributs ATTRi von Objekt Y
gilt:

XWERTi OPi YWERTi.

Bei nichtnumerischen Wertebereichen wird bei diesem
Vergleich auf die in der Wissensbasis definierte

Ordnung zuriickgegriffen,

Mehrstellige Regeln werden unter Zuhilfenahme von
bereits definierten zweistelligen Regeln definiert.
Damit sind beliebig komplizierte Verkniipfungen zwischen
Objektbereichen darstellbar.

Eine n-stellige Regel REGELNAME betrifft eine Liste von
Bereichen BEREICH1,...,BEREICHn und wird definiert
durch eine Liste NR1l,...,NRm von Nummern zweistelliger

Regeln.

Eine Liste von Objekten X1l,...,Xn, wobei fir alle
i=1l,...,n Objekt Xi aus Bereich BEREICHi stammt,
erfillt die n-stellige Regel REGELNAME, wenn fiir

alle j=1,...,m die betreffenden Objekte aus den in der
zweistelligen Regel mit der Nummer NRJj angesprochenen
Bereichen diese zweistellige Regel erfiillen.

Sowohl fir die zweistelligen wie auch fiir die mehrstel-
ligen Regeln gilt, daB das prozedurale Wissen nicht
Uber zwei- oder mehrdimensionale Faktentabellen abge-
bildet wird, sondern daB eine Schreibweise gefunden
wird, bei der die konkrete Ausgestaltung von in Frage

12.

kommenden Objekten, Attributen und Werten dem deklara-
tiven Teil der Datenbasis entnommen und mit der
abstrakten Regel verbunden wird. Abb. 4 zeigt den
Aufbau von Regeln in KPS/Prolog in Prolog-Syntax.

zweibezzahl (4)
mehrbezzahl (1)

zweibeztext (1, "ist fur","alt genug")

zweibeztext (2, "kann sich","leisten™)
zweibeztext (3, "ist", "angemessen"™)

zweibeztext (4, "ist fir", "geeignet")

mehrbeztext (1, "sollte benutzen fiir", {"sollte", "benutzen®,"fir"])

zwei(1,1,2, ("Alter"], (">="])

zwei(2,1,2, ["Geld"], ["ist mindestens”™])

zwei (3,2,1, ("Geld"], ["ist gleich"))

zwei(4,2,3, ["Entfernung", "Tempo™], ["ist gleich","ist mindestens"])
mehr(1,{1,2,31, [1,2,4])

Abb. 4: Speicherung von Regeln als in Turbo Prolog
eingebettete Daten

3.3. Die Gestaltung der Schnittstellen

GemdR Abb. 1 sind drei Schnittstellen zu schaffen. Fir
den Benutzer wie fir den Wissensingenieur ist die
Prisentation des Wissens am Bildschirm gleichermafien
relevant. Also muB die Méglichkeit zur Wissensdarstel-
lung in beiden Schnittstellen gegeben sein. Die
Wissensakquisition ist fir den Wissensingenieur oder
auch fliir den Experten zu gestalten. Bei entsprechender
Zugangsberechtigung kann es auch dem Benutzer ermég-
licht werden, dem System bestimmtes Wissen mitzuteilen,
etwa eigene Bezeichnungen zu vergeben. Dies wird unum-
gédnglich, wenn man ein lernendes System etablieren
will.

Die Befragung der Wissensbasis muf primdr im Hinblick
auf Benutzerbedliirfnisse ausgerichtet sein, jedoch wird
auch der Wissensingenieur von Zeit zu Zeit eine Be-
fragung vornehmen, um bei dem Systementwickler ggf.
Anderungen des Systems zu veranlassen oder Fehler in
der Konstruktion von Wissensbasen zu entdecken. Dies
gilt in gleicher Weise fir den Experten, der anhand
bestimmter ermittelter L&sungen vielleicht zu dem

- 13 -

Ergebnis kommt, daB die Wissensbasis zu veradndern ist,

weil Probleme unvollstdndig formuliert sind.

In KPS/Prolog existiert eine einheitliche Benutzerober-
flache. Es ist leicht méglich, Zugangsberechtigungen
und Benutzeridentifikationen vorzusehen, so daB eine
individuelle Schnittstelle entsteht. Die dritte
Schnittstelle gemdBR Abb. 1, ndmlich die Schnittstelle
zur konventionellen Datenverarbeitung, ist in KPS/
Prolog systemintern vorhanden. Benutzer, Wissens-
ingenieur und Experte haben die Méglichkeit, an dafir
vorgesehenen Stellen Programmnamen oder Datenfile-Namen

anzugeben, wodurch entsprechende externe Programme
ausgefiihrt oder Datenbestdnde aktiviert werden.

Im folgenden werden Wissensdarstellung, Wissensakquisi-
tion und die Befragung der Wissensbasis (Probleml&sung)
anhand von Abbildungen generierter Bildschirme be-

schrieben.

3.3.1. Wissensdarstellung

Die Benutzung von KPS/Prolog beginnt mit der Auswahl
einer Wissensbasis (vgl. Abb. 5), die iliber einen
systeminternen Befehl "consult" eingelesen werden soll.

KPS/Prolog

Wahl der Wissensbasis

Folgende Wissensbasen stehen bereit:

: Bereiche <Person><Verkehrsmittel)><Reisezweck>
Bereiche <Problem><Methode><Daten> (ohne Semantik)
Bereiche <Unternehmen><Diagnose><(Therapie>
Bereiche <Ziel><Aktion><Ressource>...

oW

Bitte wahlen Sie :1

Abb. 5: Auswahl der zu bearbeitenden Wissensbasis

- 14 -

Dabei sind im vorliegenden Beispiel vier Wissensbasen
(Domd@nen) ansprechbar, wobei jede Wissensbasis in
diesen Fdllen aus drei Bereichen besteht.

KPS/Prolog bietet dem Benutzer eine menligesteuerte
Auswahl unter einer Vielzahl mdéglicher Ausfihrungspukte
(siehe unten). Zur Implementierung der hierarchisch
gegliederten Menlis bietet sich in Turbo Prolog die
folgende Vorgehensweise an:

Uberschriften und mégliche Alternativen in Meniis ké&nnen
als Daten betrachtet werden. Deshalb sind sie zweck-
mdBigerweise aus dem eigentlichen Programm auszulagern.
Bei geeigneter Verwaltung und Definition von Datenbank-
préddikaten in Turbo Prolog-Syntax werden dann beim
Start von KPS/Prolog die Menlidaten "konsultiert". Mit
Hilfe des im Programm verbliebenen Rumpfes zur Meni-
gestaltung wird unter Ubergabe der Meniinummer, die
eventuell von der vorherigen Wahl auf héherer Ebene
abhangt, das gewlinschte Menii mit Uberschrift und durch-~
numerierten Alternativen dargeboten, und es wird die
aktuelle Wahl des Benutzers als Ausgabeparameter ab-

geliefert.

Als vorteilhaft erweist sich dabei neben der erheb-
lichen Verkiirzung des Programmcodes die Méglichkeit,
weitere Meniis oder Meniipunkte zu integrieren, ohne das
Programm neu iibersetzen zu miissen. Auflerdem steigt die
Ubersichtlichkeit bei hierarchischer Meniiunterglie-
derung, da samtliche Texte in einem File zusammengefaBt
und von anderen Programmbestandteilen getrennt sind.
Die hier benutzte Form der Menilidarbietung ist natiirlich
nicht auf diesen Zusammenhang und eine Gliederungstiefe
von drei Ebenen beschrdnkt.

Die Vorgehensweise bei der Meniibehandlung ist in Abb. 6
verdeutlicht.

REGEL ZUR MENUGESTALTUNG IN KPS/PROLOG
(Inputparameter 21,22,23, Qutputparameter Z4)

menu(21,22,23,24) if
Ubertext (21,22,23,0text),
nl,write(Utext),nl,nl,
menutext (21,22,23,1, Itext),
write(I,": ",Itext),nl,
fail;
nl,write("Bitte wdhlen Sie: "),
readint (24).

AUFRUF VON MENU 311

menu(3,1,1,24)

- e wm o e e e v e e am e e am e e e o e e e e -

AUSSCHNITT AUS MENUDATEN BETREFFEND MENU 311
(Menit auf Ebene 3 bei Wahl von 1 auf Ebene 1, von 1 auf Ebene 2)

Ubertext (3,1,1, "Welche Bezeichnungen méchten Sie gezeigt bekommen?")
menutext (3,1,1,1,"Bezeichnungen fiir Ebenen")
menutext (3,1,1, 2, "Bezeichnungen fiir Bereiche")
menutext (3,1,1, 3, "Bezeichnungen fiir zweistellige Regeln")

menutext (3,1,1,4, "Bezeichnungen fiir mehrstellige Regeln")

Abb. 6: Menligestaltung in KPS/Prolog

In Abb. 7 wird der hierarchische Men(iaufbau durch die
Fenstertechnik deutlich; auBerdem wird die jeweilige
Tiefe des Menils am oberen Fensterrahmen angezeigt.

KPS/Prolog
—— 0: zu Menu 1 ---- Tiefe 1 ---- 9: ein Menu hoch
~—— 0: 2Zu Menu 1 ---- Tiefe 2 ---- 9: ein Menu hoch
~—— 0: zu Menu 1 --~- Tiefe 3 =---- 9: ein Menu hoch
Welche Bezeichnungen mdéchten Sie gezeigt bekommen ?
: Bezeichnungen fir Ebenen

Bezeichnungen fir Bereiche
Bezeichnungen fiir zweistellige Regeln
: Bezeichnungen fir mehrstellige Regeln

S WP
e or e

Bitte wadhlen Sie :3

Abb. 7: Menlidarbietung in KPS/Prolog

Zum besseren Verstdndnis kennzeichnet KPS/Prolog bei
sédmtlichen Bildschirmausgaben Bezeichnungen fiir Ebenen,
Bereiche und Regeln mit spitzen Klammern (<.>), wahrend
Wissensinhalte wie Objekte, Attribute und Werte sowie
Operatoren durch Hochkommata (’.’) hervorgehoben

16

werden. Dadurch wird sehr deutlich, daBl der Anteil an
in KPS/Prolog fest programmierten Ausgabetexten gering
ist und der Benutzer fast nur mit den fir das bear-
beitete Wissensgebiet festgelegten Begriffen ange-
sprochen wird.

Ein einfaches Beispiel soll zur Veranschaulichung der
Benutzung von KPS/Prolog dienen. Es beschidftigt sich
mit dem Wissensgebiet <Person> <Verkehrsmittel>
<Reisezweck>. '

Abb. 8 zeigt einen Ausschnitt aus dem hierarchischen
Meniiaufbau, soweit die Anzeige der Wissensbasis

betroffen ist.

1 Wissensbasis 1 Bezeichnungen 1 Ebenen
zeigen 2 Bereiche
3 Zweistellige Regeln
4 Mehrstellige Regeln

2 Definitionen 1 Objekte eines Bereichs
2 Unterordnungen zwischen
Objekten eines Bereichs
Zweistellige Regeln
Mehrstellige Regeln

3 Eigenschaften 1 Synonyme fir Objekte
2 Attribute und Werte von
Objekten
3 Synonyme fir Attribute
4 Wertebereiche (Ordnungen)
von Attributen

Abb. 8: Hierarchische Gliederung im Meniizweig
"l: Wissensbasis zeigen"

KPS/Prolog

Merkmale von Objekt zeigen

Merkmale von 'Auto’':

Attribut Wert
‘Geld’ ‘viel’
'Alter’ HERS §- 0
'‘Entfernung’' : 'mittel’
'Tempo’ : 'schnell’

Return dridcken

Abb. 9: Eigenschaften eines Objekts

Abb. 9 zeigt die Auflistung von Attributen und Werten
des Objekts ’'Auto’.

17
Abb. 10 zeigt fir das Attribut ’'Tempo’ die Eigen-
schaften des Wertebereichs und die vorgesehene Ordnung

auf dem Wertebereich.

RKPS/Prolog

Wertebereich fir Attribut zeigen

Attribut: 'Tempo’

Eigenschaften des Wertebereichs:
‘nichtnumerisch’ ’'geordnet’

Ordnung auf dem Wertebereich:
'langsam' 'mittel’' 'schnell’

Return dricken

Abb. 10: Wertebereich eines Attributs

Der Shell-Charakter von KPS/Prolog tritt besonders an-
hand von Abb. 11 hervor, in der Bezeichnungen fir
vorhandene zweistellige Regeln angegeben sind.

Zur Anndherung an natiirliche Sprache ist die Regel-

bezeichnung bei zweistelligen Regeln in zwei Teile auf-
gespalten: <Person><kann sich leisten><Verkehrsmittel>
wird zu <Person><kann sich><Verkehrsmittel><leisten>.

KPS/Prolog

Bezeichnungen fir zweistellige Regeln zeigen

Die Anzahl von 2weistelligen Regeln ist: 4
Die Bezeichnungen sind:

(Person> <ist fir> <(Verkehrsmittel> <alt genug>
<Person> <kann sich> <(Verkehrsmittel> <leisten>
(Verkehrsmittel> <ist> <(Person> <angemessen>
(Verkehrsmittel> <ist fir> <(Reisezweck> <(geeignet>

- W

Return dricken

Abb. 11: Bezeichnungen zweistelliger Regeln

In Abb. 12 wird die Struktur des prozeduralen Wissens
fir den Benutzer offengelegt. Die Regel <ist fiir><alt
genug> stellt eine Verknipfung zwischen den Bereichen
<Person> und <Verkehrsmittel> her. Sie verlangt einen
Vergleich der Werte des Attributs ’‘Alter’ unter Ver-
wendung des fir numerische Wertebereiche zulidssigen

Operators ’'>=',

RKPS/Prolog

Definitionen fiir zweistellige Regeln zeigen

Zweistellige Regel 1

<Person) <ist flir> <Verkehrsmittel> <alt genug>
falls

'Alter’' von <Person> '>=' 'Alter' von <(Verkehrsmittel>

Return dricken

Abb. 12: Definition einer zweistelligen Regel

Abb. 13 zeigt die Definition einer dreistelligen Regel,
wobei die Glltigkeit der genannten zweistelligen Regeln
zwischen entsprechenden Objekten zu analysieren ist.
Entsprechend der oben geschilderten Aufspaltung einer
Regelbezeichnung sind bei n-stelligen Regeln n Bezeich-

nungsteile vorgesehen, in Abb. 13: <sollte><benutzen>
<fir>.

KPS/Prolog

Definitionen fir mehrstellige Regeln zeigen

Mehrstellige Regel 1

(Person> <(sollte> <Verkehrsmittel> <f{ir> <Reisezweck> <benutzen)
falls

<Person> <ist fir> <Verkehrsmittel> <alt genug>

(Person> <kann sich> <Verkehrsmittel> <(leisten>

<Verkehrsmittel> <ist fiir> <Reisezweck> <(geeignet>

Return dricken

Abb. 13: Definition einer mehrstelligen Regel

3.3.2. Wissensakquisition

Fir die Wissensakquisition wird die in KPS/Prolog vor-
handene Wissenserwerbskomponente benutzt. Die Editor-
funktion wird also von der Benutzeroberfldche iibernom-
men, obwohl systemintern die Eingaben in eine Daten-
struktur Uberfiihrt werden, die in Prolog-Syntax
gehalten ist.

Abb. 14 zeigt die méglichen Verdnderungen bzw. Ergdn-
zungen der Wissensbasis. Es kdnnen Bezeichnungen fiir
Ebenen, Bereiche und Regeln gedndert werden. Definitio-
nen kénnen fiir Objekte, Unterordnungen und Regeln edi-
tiert werden. Eigenschaften von Objekten kénnen iiber
Synonyme, Attribute und Werte sowie i{iber Synonyme von
Attributen, Wertebereiche von Attributen und Ordnungen

auf Wertebereichen eingegeben werden.

2 Wissensbasis 1 Bezeichnungen 1 Ebenen
verdndern 2 Bereiche
3 Zweistellige Regeln
4 Mehrstellige Regeln

2 Definitionen 1 Objekt eintragen

2 Objekt streichen

3 Unterordnungen zwischen
Objekten einrichten

4 Unterordnungen zwischen
Objekten aufheben

5 Zweistellige Regeln
umdefinieren

6 Mehrstellige Regeln
umdefinieren

3 Eigenschaften 1 Synonyme fir Objekte

2 Attributm oder Werte
von Objekten
Synonyme far Attribute
Wertebereiche von
Attributen '
5 Ordnungen auf Werte-

bereiche

> W

Abb. 14: Hierarchische Gliederung im Menilizweig
"2: Wissensbasis verdndern"

Abb. 15 zeigt, wie der Regeltext <ist fir><alt genug>
durch <darf><benutzen> ersetzt und damit dem Sprachge-
brauch des Benutzers angepafBt wird. Dadurch kdénnen
benutzerspezifische Versionen derselben Wissensbasis
geschaffen werden.

- 20 -

KPS/Prolog

Bezeichnung einer zweistelligen Regel verandern

Vorher:

<(Person> <ist fir> <Verkehrsmittel> <alt genug>
Neue Bezeichnung der zweistelligen Regel eingeben:
{Person> <TEXT1l> <Verkehrsmittel> <TEXT2>

TEXT1 ? darf

TEXT2 ? benutzen

Jetzt:

<Person> <darf> <Verkehrsmittel> <benutzen>

Return driicken

Abb. 15: Anderung der Bezeichnung
fiir eine zweistellige Regel

3.3.3. Befragung der Wissensbasis

Die Befragung der Wissensbasis geschieht in der derzei-
tigen Version von KPS/Prolog auch iber hierarchische

Meniis (vgl. Abb. 16). Diese Meniis sind von den Meniiin-
halten her zunichst abstrakt und damit allgemeingiiltig

gehalten.
3 Wissensbasis 1 Einzelne 1 Objekte mit bestimmten
befragen Bereiche Eigenschaften
2 Untergeordnete Objekte
3 Obergeordnete Objekte
4 Attribute eines Bereichs
5 Werte eines Attributs
2 Zweistellige 1 1. Regel
Regeln 2 2. Regel
3 3. Regel
3 Mehrstellige 1 1. Regel
Regeln 2 2. Regel
3 3. Regel
4 Liste von 1 Zweistellige Regeln zu
Objekten Liste von Objekten
2 Mehrstellige Regeln zu
Liste von Objekten
5 Liste von 1 Zweistellige Regeln zu
Bereichen Liste von Bereichen
2 Mehrstellige Regeln zu
Liste von Bereichen :

Abb. 16: Hierarchische Gliederung im Menilizweig
"3: Wissensbasis befragen"

- 21 -

Die Bezeichnungen der einzelnen Meniipunkte kdnnen aber
ohne weiteres anwendungsspezifisch durch fir den Benut-
zer verstdndlichere Bezeichnungen ersetzt werden.Der
Benutzer muf zur Zeit u.a. noch die Begriffe "Ebene",
"Bereich", "Objekt", "Eigenschaft", "Attribut", "Wert",
"Operator", "Regel" in ihrer Bedeutung einordnen kdénnen.
Hilfsfunktionen kénnen hier Benutzerdngste abbauen.

Abb. 17 zeigt nun zunidchst eine Anfrage, die sich auf
einen bestimmten Bereich beschrédnkt, nicht aber auf die
Verknlipfung von Bereichen bezieht. Es geht also um eine
herkdmmliche Aufgabe des Retrieval, wie sie schon seit
langem in Management-Informationssystemen wahrgenommen
wird. Ein wissensbasiertes System muf natiirlich auch
solche Anfragen gestatten.

KPS/Prolog

—Objekte mit bestimmten Eigenschaften gesucht

Eingabe

Attribut{e) von <(Person> eingeben:
(durch BLANK trennen, mit RETURN abschlieBen)

Alter Geld

Hilfe

Mdgliche Attribute:

‘Status' 'Alter' 'Geld’

Abb., 17: Vergabe von Attributen zur Selektion
von Objekten

In Abb. 17 wird deshalb gezeigt, wie Objekte mit be-
stimmten Merkmalen gesucht werden kénnen. Der Benutzer
stellt Anforderungen an die Werte der Attribute ’Alter’
und ’‘Geld’, um dadurch bestimmte Personen zu ermitteln.
Das System bietet ihm im unteren Teil des Bildschirms
eine Hilfestellung, indem es aufzeigt, welche Attribute
gemal dem augenblicklichen Systemzustand vorhanden
sind.

- 22 -

In Abb. 18 wird der Benutzer dann gebeten, zum Attribut
'Alter’ einen Operator und einen Wert anzugeben. Auch
hier wird ihm wieder geholfen, indem ihm bei jeder
Eingabe, also in Abb. 18 zweimal, ein Hilfsfenster
geboten wird. Dieses Hilfsfenster enthdlt bei der
ersten Eingabe die fiir den Wertebereich des Attributs
"Alter’ zulédssigen Operatoren und bei der zweiten |
Eingabe die Art des Wertebereichs, so daB der Benutzer
in diesem Falle einen numerischen Wert einzugeben hat.

RKPS/Prolog

Objekte mit bestimmten Merkmalen gesucht

Eingabe

Operator zu Attribut ‘'Alter' eingeben:
(=

Wert zu Attribut ‘Alter’ eingeben:
50

Hilfe

Art des Wertebereichs

‘numerisch’ ‘geordnet’

Abb. 18: Vorgabe von Operator und Wert
zum Attribut ‘Alter’

In Abb. 19 dagegen hat der Benutzer eine Eingabe fir
ein nichtnumerisches Attribut zu tatigen. Bei der
Behandlung von Attributen mit nichtnumerischem
Wertebereich zeigt sich der Vorteil einer logik-

orientierten Programmiersprache.

KPS/Prolog

— Objekte mit bestimmten Merkmalen gesucht

Eingabe

Operator zu Attribut 'Geld' eingeben:
ist gleich

Wert zu Attribut 'Geld' eingeben:
viel

Hilfe

Art des Wertebereichs

‘nichtnumerisch' 'geordnet’

Abb. 19: Vorgabe von Operator und Wert
zum Attribut ’‘Geld’

- 23 -

Die Antwort des Systems ergibt sich aus Abb. 20. Es
wurde das Objekt ‘Lisa’ gefunden. Der Benutzer erhdlt
eine entsprechende Begriindung. In Form dieser Begriin-
dung zeigt sich erneut der Vorteil eines wissensbasier-
ten und in einer logikorientierten Programmiersprache
implementierten Systems gegeniiber einem herkémmlichen
Management-Informationssystem, das eine so ausformu-
lierte Begriindung schwer geben kann.

KPS/Prolog

~-Objekte mit bestimmten Eigenschaften gesucht

LOSUNG

BEGRONDUNG

'Alter' von '‘Lisa’ ist '40'.
'Geld' von 'Lisa' ist ‘viel'.

Geforderte Eigenschaften:
'Alter' '<=' '50'
‘Geld' 'ist gleich' ‘viel’

Return dricken

Abb. 20: Ldésung einer Anfrage im Hinblick auf
ein Objekt mit bestimmten Eigenschaften

Das eigentlich Interessante bei Anfragen an wissensba-
sierte Systeme sind aber die Anfragen an definierte
Regeln. Solche Anfragen beinhalten das Ziel einer
Problemldsung, weshalb flir wissensbasierte Systeme hier

der Begriff "Problemldsungssystem" synonym verwendet
wird. Problemldsung ist also gleichzusetzen mit der
Suche nach Objekten, die Regeldefinitionen erfiillen.

Abb. 21 zeigt die Namen der gespeicherten zweistelligen
Regeln, die natiirlich auch in einer den Benutzer noch
verstédndlicheren Weise als "Probleme" hitten bezeichnet
werden koénnen. Die Verbindung zur Logik der Regeldefi-
niton kommt jedoch iber die in Abb. 21 enthaltene Be-
zeichnungsform besser zum Ausdruck.

KPS/Prolog
—— 0: 2u Menu 1 ---- Tiefe 1 =~--- 9: ein Menu hoch
—— 0: zu Menu 1 ---- Tiefe 2 ---- 9: ein Menu hoch
—— 0: zu Menu 1 ---- Tiefe 3 ---- 9: ein Menu hoch
2u welcher zweistelligen Regel mdchten Sie fragen ?
<ist fdr alt genug>

(kann sich leisten>
¢ist angemessen>
¢ist flr geeignet>

oW

Bitte wahlen Sie :2

Abb. 21: Anfrage an eine zweistellige Regel

Hat der Benutzer sich fliir eine Fragestellung im Hin-
blick auf <kann sich><leisten> entschieden, so zeigt
ihm das System gemd&f Abb. 22 die méglichen Fragestel-
lungen, wobei deutlich wird, daB Objekte jeweils be-

kannt oder unbekannt sein kénnen. Dies bedeutet, daB in

Prolog die Variablen entweder gebunden oder frei sind.

Hier liegt die eigentliche St&drke einer Programmierung
des Systems in Prolog, da keine Unterscheidung dieser
Fille vorgenommen werden muf. Die L&sungsuche hangt
nicht davon ab, welche Variablen frei und welche
gebunden sind. '

KPS/Prolog

Anfrage an zweistellige Regel

Fragen an zweistellige Regeln haben eine der nachfolgenden Strukturen:

Welche (Person> <kann sich> welche <Verkehrsmittel> <(leisten>
Welche (Person> <kann sich) bestimmte <(Verkehrsmittel> <leisten>
Bestimmte <Person> <kann sich> welche <Verkehrsmittel> <(leisten>
Bestimmte <(Person> <kann sich> bestimmte <(Verkehrsmittel> <leisten>

Lt L IV)

Return dricken

Abb. 22: Mdgliche Anfragestrukturen
bei zweistelligen Regeln

- 25 -

In Abb. 23 wird nunmehr im Wege einer sequentiellen
Eingabe von dem Benutzer die weitere Problemstruktu-
rierung erfragt. Er entscheidet sich dafilir, den Per-
sonennamen vorzugeben und nach Verkehrsmitteln zu
suchen, die sich diese bestimmte Person leisten kann.

KPS/Prolog

Anfrage an zweistellige Regel

1 : <Person> gegeben , Name bekannt
2 : <(Person> gegeben , Name unbekannt
3 : <Person> nicht gegeben

Bitte wahlen Sie: 1

1 : <Verkehrsmittel> gegeben , Name bekannt
2 : <Verkehrsmittel> gegeben , Name unbekannt
3 : <Verkehrsmittel> nicht gegeben

Bitte wahlen Sie: 3

Abb. 23: Auswahl einer Anfragestruktur
bei einer zweistelligen Regel

In Abb. 24 wird die Person benannt, wobei das System
dem Benutzer in einem Hilfsfenster wieder anzeigt,
welche Objekte in diesem Bereich iberhaupt gespeichert

sind.
KPS/Prolog
Anfrage an zweistellige Regel
1 Eingabe
2
3 <Person> eingeben: Otto
Bitt
Hilfe
Gespeicherte <(Person>
'Inge' 'Hans' 'Otto' 'Anna’ 'Lisa' 'Paul’

Abb. 24: Spezifikation einer Person

- 26 -

In Abb. 25 ist dann eine L&sung des Problems mit ent-
sprechender Begriindung wiedergegeben. In KPS/Prolog
wird die Begriindung dabei so gegeben, daf auch der
unerfahrene Benutzer diese Begriindung versteht.

KPS/Prolog

Anfrage an zweistellige Regel

LOSUNG

'Otto' <kann sich> 'Bahn' <leisten>

BEGRUNDUNG

'Geld' von 'Otto' ist 'wviel’',
'Geld’' von 'Bahn' ist 'mittel’.

und:

<Person> <kann sich> <(Verkehrsmittel> <leisten>, falls
'Geld' von <(Person> 'ist mindestens' ‘Geld' von <(Verkehrsmittel)

Return driicken

Abb. 25: Lésung einschlieBflich einer Begriindung
mit Eigenschaften und mit Definition
der angesprochenen zweistelligen Regel

Die Voreinstellung des Systems kann so erfolgen, daB
solche Objekte angelistet werden, die keine L&sung des
Problems darstellen (vgl. Abb. 26). Dies hat den Vor-
teil, daB der Benutzer den Wissensingenieur oder
Experten im Hinblick auf die Qualitit der Wissensbasis

ansprechen kann.

KPS/Prolog

Anfrage an zweistellige Regel

FALSCH IST:

'Geld' von 'Anna’ 'ist mindestens' 'Geld' von ‘'Auto’

BEGRUNDUNG

'Geld' von 'Anna’ ist 'wenig’',
‘Geld' von 'Auto’ ist 'viel'.

Return dricken

Abb. 26: Begriindung einer Nicht-L&sung mit Eigen-
schaften bei Anfrage an zweistellige Regel

- 27 -

In KPS/Prolog werden alle Objektpaare geliefert, die
nach Einsetzen in die Regel zu der Aussage "wahr"
fihren. Es kénnen also mehrere L&sungen auftreten.

Eine besondere Variante der Begriindung durch KPS/Prolog
ist in Abb. 27 enthalten. Damit filir die Fédlle vorge-
sorgt wird, in denen der Benutzer mit der erhaltenen
Lésung unzufrieden ist, kann auch von dem System ver-
langt werden, daB es angibt, welche Attribute der
beteiligten Objekte fiir die Problemldsung nicht heran-
gezogen wurden. Dies kann den Benutzer zu anderen
Fragestellungen oder den Wissensingenieur bzw. Experten
zur Neuformulierung des Regelwerks veranlassen.

RPS/Prolog

Anfrage an zweistellige Regel

LOSUNG

'Hans' <ist fir> 'Auteo' <alt genug>

BEGRUNDUNG

‘Alter' von 'Hans' ist '22',
‘Alter' wvon 'Auto' ist '18'.

Irrelevante Attribute von 'Hans' sind:
'‘Status’' ‘'Geld’

Irrelevante Attribute von 'Auto' sind:
'Geld' 'Entfernung' 'Tempo’

Return driicken

Abb. 27: Ldsung und Begrindung mit Eigenschaften
sowie irrelevanten Attributen zur Anfrage

an eine zweistellige Regel

In Abb. 28 wird eine Anfrage an eine dreistellige Regel
wiedergegeben. Dabei wird allerdings nicht erkennbar,
daB im Falle einer Eingabe "gegeben" sofort {iber ein
dann erscheinendes Fenster die Spezifikation erfragt
wird. Im Falle der Abb. 28 hat der Benutzer ’‘Hans’ als
<Person> und ’'Einkauf’ als <Reisezweck> festgelegt. Die
dadurch reprédsentierte Problemstellung lautet: "Welches
Verkehrsmittel sollte Hans fir den Einkauf benutzen ?"

RPS/Prolog

Anfrage an mehrstellige Regel
1l : <Person> gegeben , Name bekannt

2 : <Person> gegeben , Name unbekannt

3 <Person> nicht gegeben

Bitte wadhlen Sie: 1

1 : <Verkehrsmittel> gegeben , Name bekannt

2 : <«Verkehrsmittel> gegeben , Name unbekannt

3 : <Verkehrsmittel> nicht gegeben

Bitte wdhlen Sie: 3

1 : <Reisezweck> gegeben , Name bekannt
2 : <Reisezweck> gegeben , Name unbekannt
3 : <Reisezweck> nicht gegeben

Bitte wahlen Sie: 1

Abb. 28: Auswahl einer Anfragestruktur
bei einer mehrstelligen Regel

In Abb. 29 antwortet das System mit einer Ld&sung und
der laut Parametereinstellung gewinschten Begriindung.

RPS/Prolog

Anfrage an mehrstellige Regel

LOSUNG

‘Hans' <sollte> 'Fahrrad' <fdr> 'Einkauf' <benutzen>

BEGRUONDUNG

<Person> <sollte> <Verkehrsmittel> <fir> <Reisezweck> <(benutzen>

falls
<Person> <ist flr> <(Verkehrsmittel> <alt genug>
<Person> <kann sich> <Verkehrsmittel> <(leisten>
<Verkehrsmittel> <ist fir> <(Reisezweck> <(geeignet>

Return dricken

Abb. 29: L6sung und Begriindung mit Definition
zur Anfrage an eine mehrstellige Regel

3.3.4. Parametereinstellungen

Bei fortgesetzter oder wiederholter Benutzung des
Systems durch denselben Benutzer ist es zweckmédBig,
wenn bestimmte Eingaben nicht jeweils neu getéatigt

- 29 -

werden miissen. Deshalb enthdlt KPS/Prolog eine ganze
Reihe von Méglichkeiten, solche Voreinstellungen
vorzunehmen (vgl. Abb. 30). Grundsdtzlich ist es
méglich, diese Parametereinstellungen benutzerfreund-
lich fiir jeden Benutzer abzuspeichern, so daB eine
komfortable, individuelle Benutzerfihrung und -bedie-

nung erreicht werden kann.

3 Begrindung far
Lésungen mehr-
stelliger Regeln

4 Begrindung fir
Nicht-L&sungen

w N -

4 Parameter- 1 Zu bearbeitende 1 1. Wissensbasis
einstellung Wissensbasis 2 2. Wissensbasis
verdandern 3 3. Wissensbasis
2 Begrindung fir 1 keine Begriindung
Lésungen zwei- 2 Begrindung mit Eigenschaften
stelliger Regeln 3 Begrindung mit Definition

und Eigenschaften
Begriindung mit Eigenschaften
und irrelevanten Attributen

keine Begrindung
Begriindung mit Definition
Begrindung mit Definition
und Eigenschaften

keine Begrindung
Begrindung mit Eigenschaften

5 Erliuterung von 1 Erléduterung erwinscht
Anfrage- 2 Erlauterung nicht
strukturen erwlinscht

Abb. 30: Hierarchische Gliederung im Meniizweig
"4: Parametereinstellung verédndern"

Jederzeit kann sich der Benutzer auf der obersten
Meniiebene die gegenwdrtigen Parametereinstellungen
anzeigen lassen (Abb. 31).

RKPS/Prolog

Einstellung von Parametern

1 : Zu bearbeitende Wissensbasis
Bereiche (Person><(Verkehrsmittel><Reisezweck>

2 : Begrindung fir Losungen zweistelliger Regeln
Begriindung mit Eigenschaften

3 : Begrindung fir Ldosungen mehrstelliger Regeln
Begriindung mit Definition

4 : Begrindung fir Nicht-Ldsungen
keine Begriindung

5 : Erlauterung von Aniragestrukturen
Erlauterung nicht erwinscht

Return dricken

Abb. 31: Einstellung von Parametern

- 30 -

4. Einsatz als Problemldsungssystem

4.1. Ausgewdhlte betriebswirtschaftliche Anwendungen

In Abb. 32 ist zundchst grundsdtzlich gezeigt, wie ein
Ablauf des Problemlésungsprozesses strukturiert werden

kann.

| START |

i

r—Fr Benutzer ortikuli!ert sein Problem |

System bietet Liste [(chnlfcher) Prob!em?lj
|

|

[Benutzer wehit Problemtyp] | Brae vtanins
T

H
|
| A

! r Benutzer erzwingt die Aufnahme seiner
| Problembeschrsibung in das System

[
Y
System bietet Lésungsvorschlag |
[r

[system prote Au-fuhrur»sasmagm:nﬁl——1 [STOP: Expertise fenlt =

oy

I [- System fohrt aus } [F STOP: Software fehit J-——‘*-—D

\-——{'System praft Ergebnis/Abweichungen J

v—{iaenutzer praft Ergebnis/Abweichungeﬂ

‘= STOP |

Abb. 32: Ablauf des Problemldsungsprozesses

- 31 -

Das Neue gegeniiber vielen anderen Systemen ist, daB das
System KPS/Prolog nicht nur L&sungsvorschlage bieten
kann, sondern daf auch entsprechende Programme ausge-
fihrt werden kénnen, die iiber die Schnittstelle zur
konventionellen Datenverarbeitung angestofen werden
(vgl. [20]). Nach Ausfilhrung dieser Programme wird
wiederum KPS/Prolog aktiviert, so daf auch ein mehr-
stufiger Probleml&sungsprozef mit einer sehr unter-
schiedlichen Folge von Teilproblemen unterstiitzt werden

kann.

Weil das System am Institut fir Betriebswirtschafts-

lehre der Universitat Kiel entstanden ist, stehen zu-
nachst betriebswirtschaftliche Anwendungen im Vorder-
grund, obwohl das System Anwendungen aller Art zul&Bt.

Bisherige Anwendungen betreffen den Bereich der wis-
sensbasierten Modellierung (vgl. [20]). Dabei wird

eine wissensbasierte Modellierung mit der Ausfihrung von
auf diese Weise generierten Unternehmensplanungsmodellen

verbunden.

AuBerdem sind Anwendungen im Bereich der strategischen
Unternehmensplanung, der Unternehmensanalyse und der

Auswahl von Finanzinnovationen geplant.

SchlieBlich sei erwahnt, daB sich KPS/Prolog gut eignet,
um heterogene Programm- und Datenbestdnde zu verwalten

(vgl. dazu auch [16]).

4.2. Erweiterungsméglichkeiten

Erweiterungsméglichkeiten bieten sich zundchst im Hin-
blick auf Konsistenzpriifungen bei Ergédnzungen der Wis-
sensbasis. AuBerdem sind Anleitungen zur Konstruktion
neuer Wissensbasen wiinschenswert. Denn im Falle einer
Neukonstruktion ist der Ablauf der erforderlichen

Wissenseingabe durch die Struktur der Wissensreprasen-

tation in KPS/Prolog vorgegeben, so daB keine Edi-
tierungen iiber Anderungsmeniis erforderlich sind.

- 32 -

Weiterhin ist es im Hinblick auf gréRere Anwendungen
zweckmdBig, Segmentierungen der Wissensbasis vornehmen
zu kénnen, so daB Kernspeicherbeschrdnkungen eingehalten

werden konnen.

Besonders gewinnen diirfte der Einsatz von KPS/Prolog
durch den Datenimport aus Lexika, insbesondere aus
Fachlexika. AuBerdem bietet die Mehrsprachigkeit unter
Benutzung des Synonymansatzes interessante Systemaus-
gestaltungen. Dies betrifft nicht nur Fremdsprachen,
sondern auch die Verbindung zwischen unterschiedlichen

Konversationsniveaus, z.B. zwischen Umgangs- und
Fachsprache. Mehr Natiirlichsprachlichkeit stellt daher
eine groBe Herausforderung filir die weitere Entwicklung

des Systems dar.

- 33 -

Literaturverzeichnis

(1]

(2]

(3]

(4]

[3]

(6]

(7]

(8]

[9]

(10]

[11]

(12]

[13]

[14]

(15]

(16]

[17]
(18]

Béhringer, B., Chiopris, C., Futo, I.: Wissensba-
sierte Systeme mit Prolog. Bonn 1988.

Clocksin, W.F., Mellish, C.S.: Programming in
Prolog. 3. Aufl., Berlin, Heidelberg 1987.

Dieterich, G.: Kompaktfihrer Turbo~Prolog. Bonn
1987.

Electronic Trend Publications (Hrsg.): PC-Driven
Expert Systems. Saratoga o. J.

Grothaus, M., Gust, H.: Turbo Prolog. Wirzburg
1987.

Harmon, P., Kjng, D.: Expertensysteme in der
Praxis. 2 Aufl., Miinchen, Wien 1987.

Haugg, F., Omlor, S.: Expertensysteme auf PCs:
Entwicklung von Expertensystemen mit Turbo PROLOG.
Minchen, Wien 1987.

Heimsoeth & Borland (Hrsg.): Turbo Prolog. Minchen
1987.

Heimsoceth & Borland (Hrsg.): Turbo Prolog Toolbox.
Minchen 1987.

Herrmann, D.: Probleme und L&sungen mit Turbo-
Prolog. Braunschweig 1988.

Kinnebrock, W.: Turbo Prolog. Miinchen, Wien 1988.
Knauss, W.: Turbo-Prolog. Miinchen, Wien 1987.
Mertens, P., Borkowski, V., Geis, W.: Betriebliche
Expertensystem-Anwendungen - Eine Materialsamm-

lung. Berlin-Heidelberg-New York 1988.

Nath, S.: Turbo Prolog: Features for Programmers.
Portland 1986.

0.V.: Expertensystem-shells fiir den PC. In: PC
Magazin 1987, Nr. 30, S. 40-41.

Reusch, P.: Modellverwaltung und Expertensystem-
komponenten flir betriebliche Informationssysteme.
Mannheim, Wien, Zirich 1988.

Robinson, P.R.: Using Turbo Prolog. Berkeley 1987.

Savory, S.: Grundlagen von Expertensystemen.
Minchen, Wien 1988,

[19]

[20]

[21]
[22]

(23]

[24)]

[25]

- 34 -

Schildt, H.: Professionelles Turbo Prolog. Ham-
burg, New York 1987.

Schmidt, R.: 2Zur Verbindung von wissensbasierter
Modellierung und What-if-Planung. In: Operations
Research Proceedings 1988, Berlin-Heidelberg-New
York 1989 (in Druck).

Schnupp, P.: Prolog. Minchen 1986.

Smith P.: Expert System Development in Prolog and
Turbo-Prolog. Wilmslow 1988.

Townsend, C.: Einfiihrung in Turbo Prolog. Diissel-
dorf 1987.

Walker, A. (Hrsg.), McCord, M., Sowa, J.F.,
Wilson, W.: Knowledge Systems and Prolog. Reading

1987.

Wolfgram, D.D., Dear, T.J., Galbraith, C.S.:
Expert Systems for the Technical Professional.
New York et al. 1987,

