
Schmidt, Reinhart; Ralfs, Dirk

Working Paper  —  Digitized Version

KPS-Prolog: E. Problemlösungssystem auf Basis von Turbo-
Prolog

Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 225

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Institute of Business Administration

Suggested Citation: Schmidt, Reinhart; Ralfs, Dirk (1988) : KPS-Prolog: E. Problemlösungssystem auf
Basis von Turbo-Prolog, Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität
Kiel, No. 225, Universität Kiel, Institut für Betriebswirtschaftslehre, Kiel

This Version is available at:
https://hdl.handle.net/10419/161975

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/161975
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Nr. 225 

KPS/Prolog 
Ein Problemlösungssystem 
auf Basis von Turbo Prolog 

Reinhart (Schmidt 
Dirk Ralfs 

Dezember 1988 

Prof. Dr. Reinhart Schmidt 
cand. rer.nat. Dirk Ralfs 

Institut für Betriebswirtschaftslehre 
der Christian-Albrechts-Universität 
zu Kiel 

Copyright Reinhart Schmidt / Dirk Ralfs 1988 

C158663 



Inhaltsverzeichnis 

1. Einleitung 1 

2. Aufbau von Expertensystemen 2 

2.1. Elemente eines Expertensystems 2 

2.2. Formen der Wissensrepräsentation 3 

2.3. Turbo Prolog als Implementierungssprache .. 4 

3. Aufbau des Systems KPS/Prolog 6 

3.1. Die Struktur des deklarativen Wissens 6 

3.2. Die Struktur des prozeduralen Wissens 10 

3.3. Die Gestaltung der Schnittstellen 12 

3.3.1. Wissensdarstellung 13 

3.3.2. Wissensakquisition 19 

3.3.3. Befragung der Wissensbasis 20 

3.3.4. Parametereinstellungen 28 

4. Einsatz als Problemlösungssystem 30 

4.1. Ausgewählte betriebswirtschaftliche 
Anwendungen 30 

4.2. Erweiterungsmöglichkeiten 31 

Literaturverzeichnis 33 



- 1 -

1. Einleitung 

Die Entwicklung wissensbasierter Systeme befindet sich 

in einem stürmischen Aufschwung. Dies betrifft zunächst 

das Anwachsen der Shells (Programmierumgebungen), die 

eine benutzerfreundliche Erstellung und Nutzung eines 

Expertensystems ermöglichen (vgl. Überblicke in [4] 

[15] [25]. Es betrifft weiterhin Anwendungen in den 

verschiedensten Bereichen - vom Prototyp bis zum voll 

einsatzfähigen System (vgl. die Darstellungen bei 

Mertens et al. [13]. 

Die Leistungsfähigkeit von Shells ist im Hinblick auf 

die Erfüllung einzelner Anforderungen recht unter­

schiedlich. Es kommt also entscheidend darauf an, ob 

das Anforderungsprofil des Anwendungsgebietes mit dem 

entsprechenden Profil der Shell in Übereinstimmung 

gebracht werden kann. Unter dem Gesichtspunkt der 

Anpassungsfähigkeit an neue Aufgabenstellungen, vor 

allem im Bereich der Forschung über neue Anwendungen 

wissensbasierter Systeme, ist es zweckmäßig, wenn 

Entwickler und Wissensingenieure die Möglichkeit haben, 

in einer Programmiersprache Systemkomponenten zu ver­

ändern oder neue zu schaffen. 

Am Institut für Betriebswirtschaftslehre der Universi­

tät Kiel wurde deshalb nach Sichtung der Eigenschaften 

vorhandener Shells ein eigenes System konzipiert und 

implementiert. Das entstandene System KPS/Prolog 

zeichnet sich durch eine besondere Erweiterungsfähig­

keit seiner Komponenten seitens des Wissenschaftlers 

wie auch durch seine Benutzerfreundlichkeit für den 

Wissensingenieur aus. 

Im folgenden wird dazu zunächst auf den Aufbau von 

Expertensystemen eingegangen. Es wird sodann der Aufbau 

des entwickelten Systems beschrieben. Schließlich wird 

der Einsatz als Problemlösungssystem diskutiert. 



- 2 -

2. Aufbau von Expertensystemen 

2.1. Elemente eines Expertensystems 

Die Elemente eines Expertensystems sind in Abb. 1 

dargestellt. 

Benutzer-Schnittstelle 

Wissens­basis 
Wissens­ Schluß­erwerbs- folgerungs­
komponente komponente 

Erklärungs­komponente 

Entwickler-Schnittstelle 

71 

V 

Konventionelle Datenverarbeitung 

/ y / > 
Experte(n) Ingenieur 

/ 
% Experte(n) 

/ 

Quelle: IBM Deutschland GmbH. 

Abb. 1: Bestandteile eines wissensbasierten 

Systems 

Den Kern bildet die Wissensbasis, die das dem System 

angepaßte Expertenwissen enthält. Die Wissenserwerbs­

komponente ermöglicht die Zuführung von neuem Wissen. 

Die Schlußfolgerungskomponente (Inferenzkomponente) 

erlaubt es, Schlüsse zu ziehen und nach Lösungen zu 

suchen. Die Erklärungskomponente dient der Erläuterung 

von Fragestellungen und Fragefolgen sowie der Begrün­

dung von Antworten. Zum Umsystem sollten drei Schnitt­

stellen vorhanden sein: 

1. Die Entwickler-Schnittstelle erlaubt es dem Wissens­

ingenieur in mehr oder weniger benutzerfreundlicher 

Weise, die Wissensbasis zu füllen und die genannten 



- 3 -

Komponenten zu ändern bzw. zu ergänzen. Dazu gehört 

auch, daß die Wissenseingabe so weit möglich - auf 

Konsistenz, geprüft wird. 

2. Die Benutzer-Schnittstelle gestattet es, daß ein in 

dem Problemkreis mehr oder weniger sachverständiger 

Benutzer, der obendrein über keinerlei Programmier­

kenntnisse verfügt, von dem System bei Problemlösun­

gen unterstützt werden kann. 

3. Die Schnittstelle zur konventionellen Datenverarbei­

tung ermöglicht die Nutzung vorhandener Programm­

und Datenbestände. Diese Schnittstelle hat eine sehr 

große Bedeutung, weil sich in den Anwendungsberei­

chen umfangreiche Daten- und Programmbestände ge­

bildet haben, die prinzipiell integriert werden 

können und sollten. 

Die Entwicklung von KPS/Prolog wurde von der Forderung 

veranlaßt, die Entwickler-Schnittstelle sowie die 

Schnittstelle zur konventionellen Datenverarbeitung 

nach eigenen Vorstellungen und damit sehr flexibel ge­

stalten zu können. Außerdem sollte bei der Benutzer-

Schnittstelle Flexibilität dahingehend geschaffen wer­

den, daß von einer stärker formatierten Artikulations­

form des Benutzers tendenziell auf einen Dialog in 

natürlicher Sprache übergegangen werden kann. 

2.2. Formen der Wissensrepräsentation 

Die Literatur unterscheidet vor allem drei Ansätze, wie 

das Wissen in wissensbasierten Systemen repräsentiert 

werden kann [6] [25]: 

1. Der Frame-Ansatz ist durch die inklusive Unterord­

nung von Objekten, die bestimmte Attribute (Merkma­

le) mit bestimmten Werten (Merkmalsausprägungen) 

aufweisen, gekennzeichnet. Dabei können Eigenschaf-



— 4 — 

ten übergeordneter Objekte ganz oder teilweise nach 

unten vererbt werden. 

2. Semantische Netzwerke bilden das Wissen in Form von 

Knoten, die über Kanten miteinander verbunden sind, 

ab. Die wesentlichen Verknüpfungen sind dabei die 

Zugehörigkeit eines Objektes zu einer Objektklasse 

("ist ein") und die Eigenschaft eines Objektes ("hat 

ein"). 

3. Der regelbasierte Ansatz beschreibt das Wissen in 

Form einer Auflistung von Bedingungen und Konsequen­

zen. 

Es erscheint wünschenswert, verschiedene Formen der 

Wissensrepräsentation miteinander zu verbinden, um die 

Vorteile der jeweiligen Darstellung auszunutzen. Dies 

ist in KPS/Prolog versucht worden. 

2.3. Turbo Prolog als Implementierungssprache 

Prolog (Programming in Logic) ist keine prozedurale, 

sondern eine deskriptive Programmiersprache (vgl. zu 

Prolog vor allem [2] [18] [21] [24]). Es wird nicht der 

Lösungsweg angegeben, sondern die Lösungseigenschaften 

werden mittels Fakten und Regeln beschrieben. Dies 

stellt einen großen Vorteil bei der Erstellung von 

Expertensystemens dar, weil der Programmierer sich -

mit Ausnahme des reinen Dialogablaufes - tatsächlich 

auf die Beschreibung des zu lösenden Problems be­

schränken kann. Die Lösungssuche übernimmt Prolog im 

Wege der Rückwärtsverkettung (Back Tracking). Schluß­

folgerungen werden dabei aufgrund von Regeln gezogen, 

die einerseits gespeichertes Wissen, andererseits for­

muliertes Problem beinhalten. 

Einen großen Vorteil von Prolog stellt die Eigenschaft 

dar, daß eine Verarbeitung von Listen (z. B. Listen von 

Attributen und entsprechenden Werten) unterstützt wird. 



- 5 -

Der Vorteil einer Programmierung in Prolog liegt nicht 

nur in der theoretischen Eleganz, der Mächtigkeit von 

Prädikaten und der damit verbundenen Übersichtlichkeit, 

sondern auch in dem ständigen Zugang zu dem Inneren des 

Systems über die darunterliegende Programmiersprache 

Prolog selbst. 

Turbo Prolog (vgl. dazu [3] [5] [8]-[12] [14] [17] [19] 

[22] [23]) als eine PC-Version erlaubt eine weitgehende 

Modularisierung des Programmsystems. Es ist offen 

gegenüber Änderungen, was den Vorteil hat, daß die 

Wissensbasis dynamisch erweitert werden kann. Außerdem 

kann auf externe Dateien zugegriffen werden, und andere 

Programme - auch in anderen Programmiersprachen -

können eingebettet werden. Damit kann Turbo Prolog 

zugleich einen umfassenden Rahmen für die Ver- waltung 

und Nutzung unterschiedlicher Programmbestände bilden. 

Um zu einer Lösung eines Problems in Turbo Prolog zu 

kommen, gibt es zwei Möglichkeiten: 

1. Das Beweisziel ("Goal") kann vom Benutzer direkt im 

Dialog eingegeben werden. Dies hat den Vorteil höch­

ster Flexibilität des zu beweisenden Sachverhalts 

(zu lösenden Problems), hat aber den Nachteil, daß 

der Benutzer die Prolog-Syntax beherrschen und die 

speziellen Namensgebungen des Programms kennen muß. 

2. Die Schaffung eines programminternen Abschnitts 

"Goal" vermeidet die genannten Nachteile. Dabei kann 

die Spezifikation des zu führenden Beweises über ein 

oder mehrere Menüs abgefragt werden, oder der Be­

nutzer kann die Zielanforderungen verbal artikulie­

ren. Im letzteren Fall können Kommandos oder Komman­

dofolgen gegeben werden, oder es kann je nach Lei­

stungsfähigkeit des Systems versucht werden, eine 

Interpretation von fast natürlicher Sprache zuzulas­

sen . 



- 6 -

Die Mächtigkeit von Prolog verbunden mit der Flexibili­

tät durch den Einsatz der speziellen Sprache Turbo 

Prolog hat es erlaubt, KPS/Prolog im Wege eines Proto-

typing kontinuierlich und relativ schnell zu erstellen. 

Auch kann auf vorhandene Elemente von Entscheidungs-

unterstützungssystemen (DSS) oder auf komplette Proto­

typen, die am Institut für Betriebswirtschaftslehre 

vorhanden sind, im Wege einer Integration zurückge­

griffen werden, so daß der Funktionsumfang im Sinne 

eines betriebswirtschaftlichen Problemlösungssystems 

schnell ansteigen kann. 

3. Aufbau des Systems KPS/Prolog 

Wissensrepräsentation, Wissenserwerb und Erklärungen 

von Lösungen sind in KPS/Prolog aufgrund eigener Vor­

stellungen gestaltet worden. Es ist versucht worden, 

den Frame-Ansatz mit dem regelbasierten Ansatz zu ver­

binden und gleichzeitig Elemente eines semantischen 

Netzwerkes zu berücksichtigen. 

3.1. Die Struktur des deklarativen Wissens 

Die Repräsentation des deklarativen Wissens in KPS/ 

Prolog wird anhand von Abb. 2 veranschaulicht. 

Das gesamte Wissen einer Domäne wird als in Bereiche 

gegliedert unterstellt. Diese Bereiche können sich auf 

mehr oder weniger umfangreiche Wissenskomplexe - je 

nach Entscheidung des Benutzers - beziehen. Die Be­

reiche können einen Bereichsnamen tragen. Das Wissen 

einzelner oder ggf. mehrerer Bereiche wird in externen 

Dateien gespeichert und je nach Wahl des bei der 

Problembeschreibung angesprochenen Bereichskomplexes in 

den Kernspeicher eingelesen. Bereiche können hierar­

chisch gegliedert sein, wodurch klassische Formen der 

Wissensrepräsentation - man denke an die Biologie oder 

an die Gliederung von Lehrbüchern - gut abgebildet 

werden können. 



- 7 

Bereich 1 Bereich 2 
< > 2> 

/I 
/ 

/ 

\ 

... \ 

Liste Objekt 2.1.X 
synonymer "Name 2.1.X' 
Klassen­ 'Klasse 

namen 1. Ordnung' 

Liste 

des 
Bereichs 

Objekt 2.2.Y 
"Name 2.2.Y" 

(Klosse 2. Ordnung) 

I Bereich B 
< > 

Liste der 
Attribute 

Liste der 
Werte 

\ 
A. 

Werte— 
bereich 

des 
Attributs 

Liste 
geordneter 

Werte 
des 

Attributs 

LP 

(fakultativ) 

Abb. 2: Struktur des deklarativen Wissens 

in KPS/Prolog 

Das Wissen eines Bereichs besteht aus Objekten und 

ihren Eigenschaften sowie eventuell einer hierarchi­

schen Bereichsuntergliederung. Die Objekte weisen einen 

Objektnamen auf. Damit der Benutzer seine eigene Aus­

drucksweise für Objekte verwenden kann, kann es für 

jedes Objekt eine Liste synonymer Namen geben. Dies ist 

besonders wichtig, wenn das wissensbasierte System den 

Benutzer ohne viele Rückfragen verstehen können soll. 



- 8 -

Das Konzept synonymer Bezeichnungen erlaubt zugleich 

die Übersetzung in eine andere natürliche Sprache, 

allerdings mit der Einschränkung, daß es sich hier nur 

um Bezeichnungen handelt. 

Jedem Objekt kann eine Liste von Attributen (Merkmalen) 

zugeordnet werden. Zu jedem Attribut einer solchen 

Liste kann es eine Liste synonymer Attribute - bezogen 

auf den speziellen Bereich - geben. Dadurch wird es 

möglich, daß der Benutzer bereichsspezifische Sprech­

weisen für Attribute benutzen kann, ohne daß die 

Funktion von Attributen als Schnittstelle zwischen 

unterschiedlichen Wissensbereichen ausgeschlossen wird. 

Jedem Attribut eines Objekts ist ein Wert zugewiesen. 

Die Wertangabe richtet sich dabei nach dem Wertebereich 

des zugehörigen Attributs, es kann sich um nichtnumeri­

sche oder numerische Werte handeln. Numerische Werte 

sind in einer natürlichen Ordnung; für nichtnumerische 

Werte kann angegeben werden, ob sie ungeordnet oder 

geordnet sein sollen. Über eine Liste von Werten kann 

für Attribute mit nichtnumerischem Wertebereich eine 

Ordnung definiert werden. Dadurch wird ein Vergleich 

von qualitativen Ausprägungen ermöglicht. 

Undefinierte Werte könnten grundsätzlich dadurch zuge­

lassen werden, daß Objekte mit Undefinierten Werten bei 

der Lösungssuche übergangen werden. Auch könnte an­

stelle einer Ausprägung "Undefiniert" ein Programmname 

stehen, der es erlaubt, den Wert über ein separates 

Programm zu ermitteln. 

Ein Objekt kann im Sinne einer Unterordnung Element 

eines anderen Objekts sein. Dabei sind innerhalb eines 

Bereichs auch mehrfache Unterordnungen möglich, so daß 

"Kind" Element von "Mutter" und "Vater" sein kann. Die 

(automatische) Vererbung von Eigenschaften auf unterge­

ordnete Elemente ist in dem System bisher nicht reali­

siert, weil sich bei einer Mehrfachunterordnung Verer­

bungsprobleme ergeben können. Diese Probleme könnten 



- 9 -

allerdings über Prioritätsregeln gelöst werden oder zu 

dem Wert "Undefiniert" führen. 

Die Wiedergabe des deklarativen Wissens in Prolog-

Syntax ist Abb. 3 zu entnehmen. Für die Bereiche 

<Person>, <Verkehrsmittel> und <Reisezweck> werden 

Attribute definiert. Anhand des Prädikates "attribut" 

kann man dort erkennen, welche Attributnamen in jedem 

der drei Bereiche vorkommen. Für Verknüpfungen zwischen 

Bereichen ist von Bedeutung, daß ein bestimmter 

Attributname in mindestens zwei Bereichen vorkommt. Die 

Objekte der drei Bereiche sind unter dem Prädikat 

"objekt" mit ihren Namen verzeichnet. Außerdem finden 

sich in der dem Objektnamen folgenden Liste die Werte 

der Attribute des Objekts; dabei muß die Reihenfolge in 

der Liste der Reihenfolge in dem entsprechenden 

Prädikat "attribut" entsprechen. 

ebenezahl(1) 
bereichzahl(3) 
ebenetext(1, 
bereichtext(1,"Person") 
bereichtext(2,"Verkehrsmittel") 
bereichtext(3, "Reisezweck") 
attribut(1,1,["Status","Alter","Geld")) 
attribut(1,2,["Geld","Alter", "Entfernung","Tempo"]) 
attribut(1,3,["Entfernung", "Tempo","Status"]) 
Objekt(1,1, "Inge",["Schüler", "12", "wenig"]) 
Objekt(1,1, "Hans",["Student", "22","mittel"]) 
Objekt(1,1,"Otto",["Rentner","62","viel"]) 
Objekt(1,1, "Anna",["Kind","08", "wenig"]) 
Objekt (1,1, "Lisa",["Angestellte", "40","viel"]) 
Objekt(1,1,"Paul",["Arbeiter", "51","mittel"]) 
Objekt (1,2,"Fahrrad",["wenig", "06","klein","schnell"]) 
Objekt(1,2, "Auto",["viel", "18", "mittel","schnell"]) 
Objekt(1,2,"Bahn",["mittel", "00", "groß","langsam"]) 
Objekt(1,2, "Bus",["mittel", "00", "mittel","mittel"]) 
Objekt(1,2, "Flugzeug",["viel", "00","groß","schnell"]) 
Objekt(1,3,"Kurzurlaub", ["klein", "langsam","Student"]) 
Objekt(1,3,"Fernreise",["groß", "schnell","Angestellte"]) 
Objekt(1,3,"Arbeit",["mittel", "mittel","Arbeiter"]) 
Objekt (1,3,"Einkauf",["klein","langsam","Rentner"]) 
Objekt(1,3,"Schule",["klein", "schnell","Schüler"]) 
Objekt(1,3, "Uni",["mittel", "mittel","Student"]) 
wertebereich("Status","nichtnumerisch","ungeordnet") 
wertebereich("Alter","numerisch", "geordnet") 
wertebereich("Geld","nichtnumerisch","geordnet") 
wertebereich("Entfernung","nichtnumerisch","geordnet") 
wertebereich("Tempo","nichtnumerisch","geordnet") 
Ordnung("Entfernung",["klein", "mittel","groß"]) 
Ordnung("Tempo",["langsam", "mittel","schnell"]) 
Ordnung("Geld",["wenig","mittel", "viel"]) 
synonym(1,"Geld",["Einkommen"]) 
synonym(2,"Geld",["Kosten"]) 
synonym(1,"Alter",["Lebensalter"]) 
synonym(2,"Alter",["Mindestalter"]) 
synonym(2, "Bahn",["Eisenbahn", "Bundesbahn"]) 
synonym(3,"Uni",["Universität"]) 

Abb. 3: Speicherung von Fakten als in Turbo Prolog 

eingebettete Daten 



- 10 -

Die Wertebereiche für jedes Attribut werden in dem 

Prädikat "wertebereich" spezifiziert. Durch das 

Prädikat "Ordnung" wird für die Attribute, die nicht­

numerisch und geordnet sind, eine Liste der geordneten 

Werte angegeben. 

Unter dem Prädikat "synonym" wird in dem Beispiel für 

das Attribut "Alter" für den Bereich 1 das Synonym 

"Lebensalter", für den Bereich 2 das Synonym "Mindest­

alter" eingeführt. Die Liste der synonymen Attribut­

namen besteht in diesem Fall nur aus einem Element, bei 

dem Prädikat "synonym" für das Objekt "Bahn" weist die 

Liste jedoch beispielhaft zwei Elemente auf. 

KPS/Prolog geht davon aus, daß ein Name eindeutig zu­

zuordnen ist. Polysemantische Wörter müssen also zu 

eindeutigen Namen gemacht werden. Dies ist grundsätz­

lich möglich, indem benutzerspezifische oder be-

nutzergruppenspezifische Wissensbasen geschaffen 

werden. Voraussetzung dafür ist die vorherige Iden­

tifikation des Benutzertyps durch das System. 

3.2. Die Struktur des prozeduralen Wissens 

Unter prozeduralem Wissen wird in KPS/Prolog das Wissen 

verstanden, das über Regeln zusammengefaßt der Problem­

lösung dient. Zu lösende Probleme sind also durch Re­

geln in Prolog-Syntax zu repräsentieren. Der Wissens­

ingenieur braucht jedoch diese Syntax nicht zu be­

herrschen, weil in dem System die Regeln als Daten 

verwaltet werden und so mit Hilfe der Wissenserwerbs­

komponente Regeln hinzugefügt oder abgeändert werden 

können. 

In allen Regeln dieser Art werden Beziehungen zwischen 

verschiedenen Bereichen des Wissens hergestellt. Über 

Operatoren werden Werte entsprechender Attribute von 

Objekten aus verschiedenen Bereichen verglichen. Daraus 

folgt ein Ergebnis "wahr" oder "falsch". 



— 1 1 — 

Eine zweistellige Regel REGELNAME zwischen zwei 

Bereichen BEREICH1 und BEREICH2 wird definiert durch 

eine Liste von Attributen ATTRI,...,ATTRn und eine 

Liste von Operatoren OPl,...,OPn. 

Ein Objekt X aus BEREICH1 und ein Objekt Y aus 

BEREICH2 erfüllen die zweistellige Regel REGELNAME, 

wenn für alle i=l,...,n 

für den Wert XWERTi des Attributs ATTRi von Objekt X 

und den Wert YWERTi des Attributs ATTRi von Objekt Y 

gilt: 

XWERTi OPi YWERTi. 

Bei nichtnumerischen Wertebereichen wird bei diesem 

Vergleich auf die in der Wissensbasis definierte 

Ordnung zurückgegriffen. 

Mehrstellige Regeln werden unter Zuhilfenahme von 

bereits definierten zweistelligen Regeln definiert. 

Damit sind beliebig komplizierte Verknüpfungen zwischen 

Objektbereichen darstellbar. 

Eine n-stellige Regel REGELNAME betrifft eine Liste von 

Bereichen BEREICH1,,BEREICHn und wird definiert 

durch eine Liste NRl,...,NRm von Nummern zweistelliger 

Regeln. 

Eine Liste von Objekten XI,...,Xn, wobei für alle 

i=l,...,n Objekt Xi aus Bereich BEREICHi stammt, 

erfüllt die n-stellige Regel REGELNAME, wenn für 

alle j=l,...,m die betreffenden Objekte aus den in der 

zweistelligen Regel mit der Nummer NRj angesprochenen 

Bereichen diese zweistellige Regel erfüllen. 

Sowohl für die zweistelligen wie auch für die mehrstel­

ligen Regeln gilt, daß das prozedurale Wissen nicht 

über zwei- oder mehrdimensionale Faktentabellen abge­

bildet wird, sondern daß eine Schreibweise gefunden 

wird, bei der die konkrete Ausgestaltung von in Frage 



- 12 -

kommenden Objekten, Attributen und Werten dem deklara­

tiven Teil der Datenbasis entnommen und mit der 

abstrakten Regel verbunden wird. Abb. 4 zeigt den 

Aufbau von Regeln in KPS/Prolog in Prolog-Syntax. 

zweibezzahl(4) 
mehrbezzahl(1) 

zweibeztext(1,"ist für","alt genug") 
zweibeztext(2,"kann sich","leisten") 
zweibeztext(3,"ist","angemessen") 
zweibeztext(4,"ist für","geeignet") 
mehrbeztext(1,"sollte benutzen für",("sollte","benutzen","für"]) 

zwei(1,1,2, ["Alter"],[">="]) 
zwei(2,1,2, ["Geld"],["ist mindestens"]) 
zwei(3,2,1, ["Geld"],["ist gleich"]) 
zwei (4,2,3,["Entfernung","Tempo"],["ist gleich","ist mindestens"]) 
mehr(1,[1,2,3], [1,2,4]) 

Abb. 4: Speicherung von Regeln als in Turbo Prolog 

eingebettete Daten 

3.3. Die Gestaltung der Schnittstellen 

Gemäß Abb. 1 sind drei Schnittstellen zu schaffen. Für 

den Benutzer wie für den Wissensingenieur ist die 

Präsentation des Wissens am Bildschirm gleichermaßen 

relevant. Also muß die Möglichkeit zur Wissensdarstel­

lung in beiden Schnittstellen gegeben sein. Die 

Wissensakquisition ist für den Wissensingenieur oder 

auch für den Experten zu gestalten. Bei entsprechender 

Zugangsberechtigung kann es auch dem Benutzer ermög­

licht werden, dem System bestimmtes Wissen mitzuteilen, 

etwa eigene Bezeichnungen zu vergeben. Dies wird unum­

gänglich, wenn man ein lernendes System etablieren 

will. 

Die Befragung der Wissensbasis muß primär im Hinblick 

auf Benutzerbedürfnisse ausgerichtet sein, jedoch wird 

auch der Wissensingenieur von Zeit zu Zeit eine Be­

fragung vornehmen, um bei dem Systementwickler ggf. 

Änderungen des Systems zu veranlassen oder Fehler in 

der Konstruktion von Wissensbasen zu entdecken. Dies 

gilt in gleicher Weise für den Experten, der anhand 

bestimmter ermittelter Lösungen vielleicht zu dem 



- 13 -

Ergebnis kommt/ daß die Wissensbasis zu verändern ist, 

weil Probleme unvollständig formuliert sind. 

In KPS/Prolog existiert eine einheitliche Benutzerober­

fläche . Es ist leicht möglich, Zugangsberechtigungen 

und Benutzeridentifikationen vorzusehen, so daß eine 

individuelle Schnittstelle entsteht. Die dritte 

Schnittstelle gemäß Abb. 1, nämlich die Schnittstelle 

zur konventionellen Datenverarbeitung, ist in KPS/ 

Prolog systemintern vorhanden. Benutzer, Wissens­

ingenieur und Experte haben die Möglichkeit, an dafür 

vorgesehenen Stellen Programmnamen oder Datenfile-Namen 

anzugeben, wodurch entsprechende externe Programme 

ausgeführt oder Datenbestände aktiviert werden. 

Im folgenden werden Wissensdarstellung, Wissensakquisi-

tion und die Befragung der Wissensbasis (Problemlösung) 

anhand von Abbildungen generierter Bildschirme be­

schrieben. 

3.3.1. Wissensdarstellung 

Die Benutzung von KPS/Prolog beginnt mit der Auswahl 

einer Wissensbasis (vgl. Abb. 5), die über einen 

systeminternen Befehl "consult" eingelesen werden soll. 

KPS/Prolog 

Wahl der Wissensbasis 

Folgende Wissensbasen stehen bereit: 

1: Bereiche <Person)(Verkehrsmittel)<Reisezweck) 
2: Bereiche (Problem)(Methode)(Daten) (ohne Semantik) 
3: Bereiche (Unternehmen)(Diagnose>(Therapie) 
4: Bereiche (Ziel>(Aktion)(Ressource)... 

Bitte wählen Sie :1 

Abb. 5: Auswahl der zu bearbeitenden Wissensbasis 



- 14 -

Dabei sind im vorliegenden Beispiel vier Wissensbasen 

(Domänen) ansprechbar, wobei jede Wissensbasis in 

diesen Fällen aus drei Bereichen besteht. 

KPS/Prolog bietet dem Benutzer eine menügesteuerte 

Auswahl unter einer Vielzahl möglicher Ausführungspukte 

(siehe unten). Zur Implementierung der hierarchisch 

gegliederten Menüs bietet sich in Turbo Prolog die 

folgende Vorgehensweise an: 

Überschriften und mögliche Alternativen in Menüs können 

als Daten betrachtet werden. Deshalb sind sie zweck­

mäßigerweise aus dem eigentlichen Programm auszulagern. 

Bei geeigneter Verwaltung und Definition von Datenbank­

prädikaten in Turbo Prolog-Syntax werden dann beim 

Start von KPS/Prolog die Menüdaten "konsultiert". Mit 

Hilfe des im Programm verbliebenen Rumpfes zur Menü­

gestaltung wird unter Übergabe der Menünummer, die 

eventuell von der vorherigen Wahl auf höherer Ebene 

abhängt, das gewünschte Menü mit Überschrift und durch­

numerierten Alternativen dargeboten, und es wird die 

aktuelle Wahl des Benutzers als Ausgabeparameter ab­

geliefert . 

Als vorteilhaft erweist sich dabei neben der erheb­

lichen Verkürzung des Programmcodes die Möglichkeit, 

weitere Menüs oder Menüpunkte zu integrieren, ohne das 

Programm neu übersetzen zu müssen. Außerdem steigt die 

Übersichtlichkeit bei hierarchischer Menüunterglie­

derung, da sämtliche Texte in einem File zusammengefaßt 

und von anderen Programmbestandteilen getrennt sind. 

Die hier benutzte Form der Menüdarbietung ist natürlich 

nicht auf diesen Zusammenhang und eine Gliederungstiefe 

von drei Ebenen beschränkt. 

Die Vorgehensweise bei der Menübehandlung ist in Abb. 6 

verdeutlicht. 



- 15 -

REGEL ZUR M ENÜGESTALTUNG IN KPS/PROLOG 
(Xnputparameter Z1,Z2,Z3, Outputparameter ZA) 
menu(ZI,Z2,Z3,24) if 

Übertext (ZI, Z2,Z3,Ütext), 
nl,write (Ütext) ,nl,nl, 
menutext (21,Z2,Z3,1,Itext), 
write(I,": Itext), nl, 
fall; 
nl,write("Bitte wählen Sie: "), 
readint(Z4) . 

AUFRUF V ON M ENÜ 311 
menu(3,l,l,Z4) 

AUSSCHNITT A US M ENÜDATEN B ETREFFEND M ENÜ 311 
(Menü auf Ebene 3 bei Wahl von 1 auf Ebene 1, von 1 auf Ebene 2) 
Übertext(3,1,1,"Welche Bezeichnungen möchten Sie gezeigt bekommen?") 
menutext(3,1,1,1,"Bezeichnungen für Ebenen") 
menutext (3,1,1,2,"Bezeichnungen für Bereiche") 
menutext (3,1,1,3,"Bezeichnungen für zweistellige Regeln") 
menutext(3,1,1,4,"Bezeichnungen für mehrstellige Regeln") 

Abb. 6: Menügestaltung in KPS/Prolog 

In Abb. 7 wird der hierarchische Menüaufbau durch die 

Fenstertechnik deutlich; außerdem wird die jeweilige 

Tiefe des Menüs am oberen Fensterrahmen angezeigt. 

KPS/Prolog 

0: zu Menu 1 Tiefe 1 9: ein Menu hoch 

0: zu Menu 1 Tiefe 2 9: ein Menu hoch 

0: zu Menu 1 Tiefe 3 9: ein Menu hoch 

Welche Bezeichnungen möchten Sie gezeigt bekommen ? 

1: Bezeichnungen für Ebenen 
2: Bezeichnungen für Bereiche 
3: Bezeichnungen für zweistellige Regeln 
4: Bezeichnungen für mehrstellige Regeln 

Bitte wählen Sie :3 

Abb. 7: Menüdarbietung in KPS/Prolog 

Zum besseren Verständnis kennzeichnet KPS/Prolog bei 

sämtlichen Bildschirmausgaben Bezeichnungen für Ebenen, 

Bereiche und Regeln mit spitzen Klammern (<.>), während 

Wissensinhalte wie Objekte, Attribute und Werte sowie 

Operatoren durch Hochkommata ('.') hervorgehoben 



-16-

werden. Dadurch wird sehr deutlich, daß der Anteil an 

in KPS/Prolog fest programmierten Ausgabetexten gering 

ist und der Benutzer fast nur mit den für das bear­

beitete Wissensgebiet festgelegten Begriffen ange­

sprochen wird. 

Ein einfaches Beispiel soll zur Veranschaulichung der 

Benutzung von KPS/Prolog dienen. Es beschäftigt sich 

mit dem Wissensgebiet <Person> <Verkehrsmittel> 

<Reisezweck>. 

Abb. 8 zeigt einen Ausschnitt aus dem hierarchischen 

Menüaufbau, soweit die Anzeige der Wissensbasis 

betroffen ist. 

1 Wissensbasis 1 Bezeichnungen 
zeigen 

2 Definitionen 

3 Eigenschaften 

1 Ebenen 
2 Bereiche 
3 Zweistellige Regeln 
4 Mehrstellige Regeln 

1 Objekte eines Bereichs 
2 Unterordnungen zwischen 

Objekten eines Bereichs 
3 Zweistellige Regeln 
4 Mehrstellige Regeln 

1 Synonyme für Objekte 
2 Attribute und Werte von 

Objekten 
3 Synonyme für Attribute 
4 Wertebereiche (Ordnungen) 

von Attributen 

Abb. 8: Hierarchische Gliederung im Menüzweig 

"1: Wissensbasis zeigen" 

-KPS/Prolog-
-Merkmale von Objekt zeigen-

Merkmale von 'Auto': 
Attribut Wert 
'Geld' 
•Alter' 
'Entfernung' 
'Tempo' 

Return drücken 

'viel' 
' 18' 
'mittel' 
'schnell' 

Abb. 9: Eigenschaften eines Objekts 

Abb. 9 zeigt die Auflistung von Attributen und Werten 

des Objekts 'Auto'. 



— 1 7 — 

Abb. 10 zeigt für das Attribut 'Tempo' die Eigen­

schaften des Wertebereichs und die vorgesehene Ordnung 

auf dem Wertebereich. 

KPS/Prolog 
Wertebereich für Attribut zeigen 

Attribut: 'Tempo' 
Eigenschaften des Wertebereichs: 
'nichtnumerisch' 'geordnet' 
Ordnung auf dem Wert ebereich: 
'langsam' 'mittel' 'schnell' 

Return drücken 

Abb. 10: Wertebereich eines Attributs 

Der Shell-Charakter von KPS/Prolog tritt besonders an­

hand von Abb. 11 hervor, in der Bezeichnungen für 

vorhandene zweistellige Regeln angegeben sind. 

Zur Annäherung an natürliche Sprache ist die Regel­

bezeichnung bei zweistelligen Regeln in zwei Teile auf­

gespalten: <Person><kann sich leisten><Verkehrsmittel> 

wird zu <Person><kann sich><Verkehrsmittelxleisten>. 

KPS/Prolog 
Bezeichnungen für zweistellige Regeln zeigen 

Die Anzahl von zweistelligen Regeln ist: 4 
Die Bezeichnungen sind: 
1: (Person) (ist für) (Verkehrsmittel) (alt genug) 
2: (Person) (kann sich) (Verkehrsmittel) (leisten) 
3: (Verkehrsmittel) (ist) (Person) (angemessen) 
4: (Verkehrsmittel) (ist für) (Reisezweck) (geeignet) 
Return drücken 

Abb. 11: Bezeichnungen zweistelliger Regeln 

In Abb. 12 wird die Struktur des prozeduralen Wissens 

für den Benutzer offengelegt. Die Regel eist fürxalt 

genug> stellt eine Verknüpfung zwischen den Bereichen 

<Person> und <Verkehrsmittel> her. Sie verlangt einen 

Vergleich der Werte des Attributs 'Alter' unter Ver­

wendung des für numerische Wertebereiche zulässigen 

Operators '>=' . 



- 18 -

— KPS/Prolog 

Definitionen für zweistellige Regeln zeigen 

Zweistellige Regel 1 

(Person) (ist für> (Verkehrsmittel) (alt genug) 

falls 

'Alter' von (Person) ')=' 'Alter' von (Verkehrsmittel) 

Return drücken 

Abb. 12: Definition einer zweistelligen Regel 

Abb. 13 zeigt die Definition einer dreistelligen Regel, 

wobei die Gültigkeit der genannten zweistelligen Regeln 

zwischen entsprechenden Objekten zu analysieren ist. 

Entsprechend der oben geschilderten Aufspaltung einer 

Regelbezeichnung sind bei n-stelligen Regeln n Bezeich­

nungsteile vorgesehen, in Abb. 13: <sollte><benutzen> 

<für>. 

KPS/Prolog 

Definitionen für mehrstellige Regeln zeigen 

Mehrstellige Regel 1 

(Person) (sollte) (Verkehrsmittel) (für) (Reisezweck) (benutzen) 

falls 

(Person) (ist für) (Verkehrsmittel) (alt genug) 

(Person) (kann sich) (Verkehrsmittel) (leisten) 

(Verkehrsmittel) (ist für) (Reisezweck) (geeignet) 

Return drücken 

Abb. 13: Definition einer mehrstelligen Regel 



- 19 -

3.3.2. Wissensakquisition 

Für die Wissensakquisition wird die in KPS/Prolog vor­

handene Wissenserwerbskomponente benutzt. Die Editor­

funktion wird also von der Benutzeroberfläche übernom­

men, obwohl systemintern die Eingaben in eine Daten­

struktur überführt werden, die in Prolog-Syntax 

gehalten ist. 

Abb. 14 zeigt die möglichen Veränderungen bzw. Ergän­

zungen der Wissensbasis. Es können Bezeichnungen für 

Ebenen, Bereiche und Regeln geändert werden. Definitio­

nen können für Objekte, Unterordnungen und Regeln edi­

tiert werden. Eigenschaften von Objekten können über 

Synonyme, Attribute und Werte sowie über Synonyme von 

Attributen, Wertebereiche von Attributen und Ordnungen 

auf Wertebereichen eingegeben werden. 

2 Wissensbasis 
verändern 

1 Bezeichnungen 

2 Definitionen 

3 Eigenschaften 

1 Ebenen 
2 Bereiche 
3 Zweistellige Regeln 
4 Mehrstellige Regeln 

1 Objekt eintragen 
2 Objekt streichen 
3 Unterordnungen zwischen 

Objekten einrichten 
4 Unterordnungen zwischen 

Objekten aufheben 
5 Zweistellige Regeln 

umdefinieren 
6 Mehrstellige Regeln 

umdefinieren 

1 Synonyme für Objekte 
2 Attribut"; oder Werte 

von Objekten 
3 Synonyme für Attribute 
4 Wertebereiche von 

Attributen 
5 Ordnungen auf Werte­

bereiche 

Abb. 14: Hierarchische Gliederung im Menüzweig 

"2: Wissensbasis verändern" 

Abb. 15 zeigt, wie der Regeltext eist fürxalt genug> 

durch <darfxbenutzen> ersetzt und damit dem Sprachge­

brauch des Benutzers angepaßt wird. Dadurch können 

benutzerspezifische Versionen derselben Wissensbasis 

geschaffen werden. 



— 20 — 

KPS/Prolog 

•Bezeichnung einer zweistelligen Regel verändern 

Vorher: 

(Person) (ist für) (Verkehrsmittel) (alt genug) 

Neue Bezeichnung der zweistelligen Regel eingeben: 

(Person) (TEXTl) (Verkehrsmittel) (TEXT2) 

TEXT1 ? darf 
TEXT2 ? benutzen 

Jetzt: 

(Person) (darf) (Verkehrsmittel) (benutzen) 

Return drücken 

Abb. 15: Änderung der Bezeichnung 

für eine zweistellige Regel 

3.3.3. Befragung der Wissensbasis 

Die Befragung der Wissensbasis geschieht in der derzei­

tigen Version von KPS/Prolog auch über hierarchische 

Menüs (vgl. Abb. 16). Diese Menüs sind von den Menüin­

halten her zunächst abstrakt und damit allgemeingültig 

gehalten. 

3 Wissensbasis 
befragen 

1 Einzelne 
Bereiche 

1 Objekte mit bestimmten 
Eigenschaften 

2 Untergeordnete Objekte 
3 Obergeordnete Objekte 
4 Attribute eines Bereichs 
5 Werte eines Attributs 

2 Zweistellige 
Regeln 

1 1. Regel 
2 2. Regel 
3 3. Regel 

3 Mehrstellige 
Regeln 

1 1. Regel 
2 2. Regel 
3 3. Regel 

4 Liste von 
Objekten 

1 Zweistellige Regeln zu 
Liste von Objekten 

2 Mehrstellige Regeln zu 
Liste von Objekten 

5 Liste von 
Bereichen 

1 Zweistellige Regeln zu 
Liste von Bereichen 

2 Mehrstellige Regeln zu 
Liste von Bereichen 

Abb. 16: Hierarchische Gliederung im Menüzweig 

"3: Wissensbasis befragen" 



- 21 -

Die Bezeichnungen der einzelnen Menüpunkte können aber 

ohne weiteres anwendungsspezifisch durch für den Benut­

zer verständlichere Bezeichnungen ersetzt werden.Der 

Benutzer muß zur Zeit u.a. noch die Begriffe "Ebene", 

"Bereich", "Objekt", "Eigenschaft", "Attribut", "Wert", 

"Operator", "Regel" in ihrer Bedeutung einordnen können. 

Hilfsfunktionen können hier Benutzerängste abbauen. 

Abb. 17 zeigt nun zunächst eine Anfrage, die sich auf 

einen bestimmten Bereich beschränkt, nicht aber auf die 

Verknüpfung von Bereichen bezieht. Es geht also um eine 

herkömmliche Aufgabe des Retrieval, wie sie schon seit 

langem in Management-Informationssystemen wahrgenommen 

wird. Ein wissensbasiertes System muß natürlich auch 

solche Anfragen gestatten. 

KPS/Prolog 

Objekte mit bestimmten Eigenschaften gesucht 

Eingabe 

Attribut(e) von <Person> eingeben: 

(durch BLANK trennen, mit RETURN abschließen) 

Alter Geld 

Hilfe 
Mögliche Attribute: 

'Status' 'Alter' 'Geld' 

Abb. 17: Vergabe von Attributen zur Selektion 

von Objekten 

In Abb. 17 wird deshalb gezeigt, wie Objekte mit be­

stimmten Merkmalen gesucht werden können. Der Benutzer 

stellt Anforderungen an die Werte der Attribute 'Alter' 

und 'Geld', um dadurch bestimmte Personen zu ermitteln. 

Das System bietet ihm im unteren Teil des Bildschirms 

eine Hilfestellung, indem es aufzeigt, welche Attribute 

gemäß dem augenblicklichen Systemzustand vorhanden 

sind. 



- 22 -

In Abb. 18 wird der Benutzer dann gebeten, zum Attribut 

'Alter' einen Operator und einen Wert anzugeben. Auch 

hier wird ihm wieder geholfen, indem ihm bei jeder 

Eingabe, also in Abb. 18 zweimal, ein Hilfsfenster 

geboten wird. Dieses Hilfsfenster enthält bei der 

ersten Eingabe die für den Wertebereich des Attributs 

'Alter' zulässigen Operatoren und bei der zweiten 

Eingabe die Art des Wertebereichs, so daß der Benutzer 

in diesem Falle einen numerischen Wert einzugeben hat. 

KPS/Prolog 
Objekte mit bestimmten Merkmalen gesucht 

Eingabe 
Operator zu Attribut 'Alter' eingeben: 
<-

Wert zu Attribut Alter' eingeben: 
50 

Hilfe 
Art des Wertebereichs 
'numerisch' 'geordnet' 

Abb. 18: Vorgabe von Operator und Wert 

zum Attribut 'Alter' 

In Abb. 19 dagegen hat der Benutzer eine Eingabe für 

ein nichtnumerisches Attribut zu tätigen. Bei der 

Behandlung von Attributen mit nichtnumerischem 

Wertebereich zeigt sich der Vorteil einer logik­

orientierten Programmiersprache. 

KPS/Prolog 
Objekte mit bestimmten Merkmalen gesucht 

— Eingabe 
Operator zu Attribut 'Geld' eingeben: 
ist gleich 
Wert zu Attribut 'Geld' eingeben: 
viel 

Hilfe 
Art des Wertebereichs 
'nichtnumerisch' 'geordnet' 

Abb. 19: Vorgabe von Operator und Wert 

zum Attribut 'Geld' 



- 23 -

Die Antwort des Systems ergibt sich aus Abb. 20. Es 

wurde das Objekt 'Lisa' gefunden. Der Benutzer erhält 

eine entsprechende Begründung. In Form dieser Begrün­

dung zeigt sich erneut der Vorteil eines wissensbasier­

ten und in einer logikorientierten Programmiersprache 

implementierten Systems gegenüber einem herkömmlichen 

Management-Informationssystem, das eine so ausformu­

lierte Begründung schwer geben kann. 

, KPS/Prolog — 

Objekte mit bestimmten Eigenschaften gesucht 

LÖSUNG 

'Lisa' 

B EGRÜNDUNG 
denn: 

'Alter' von 'Lisa' ist '40'. 
'Geld' von 'Lisa' ist 'viel'. 

Geforderte Eigenschaften: 

'Alter' '<=' '50' 
'Geld' 'ist gleich' 'viel' 

Return drücken 

Abb. 20: Lösung einer Anfrage im Hinblick auf 

ein Objekt mit bestimmten Eigenschaften 

Das eigentlich Interessante bei Anfragen an wissensba­

sierte Systeme sind aber die Anfragen an definierte 

Regeln. Solche Anfragen beinhalten das Ziel einer 

Problemlösung, weshalb für wissensbasierte Systeme hier 

der Begriff "Problemlösungssystem" synonym verwendet 

wird. Problemlösung ist also gleichzusetzen mit der 

Suche nach Objekten, die Regeldefinitionen erfüllen. 

Abb. 21 zeigt die Namen der gespeicherten zweistelligen 

Regeln, die natürlich auch in einer den Benutzer noch 

verständlicheren Weise als "Probleme" hätten bezeichnet 

werden können. Die Verbindung zur Logik der Regeldefi-

niton kommt jedoch über die in Abb. 21 enthaltene Be­

zeichnungsform besser zum Ausdruck. 



— 24 — 

•KPS/Prolog. 
0: zu Menu 1 Tiefe 1 9: ein Menu hoch 

0: zu Menu 1 Tiefe 2 9: ein Menu hoch 

0: zu Menu 1 Tiefe 3 9: ein Menu hoch 

Zu welcher zweistelligen Regel möchten Sie fragen ? 

1: (ist für alt genug) 
2: (kann sich leisten) 
3: (ist angemessen) 
4: (ist für geeignet) 

Bitte wählen Sie :2 

Abb. 21: Anfrage an eine zweistellige Regel 

Hat der Benutzer sich für eine Fragestellung im Hin­

blick auf <kann sichxleisten> entschieden, so zeigt 

ihm das System gemäß Abb. 22 die möglichen Fragestel­

lungen, wobei deutlich wird, daß Objekte jeweils be­

kannt oder unbekannt sein können. Dies bedeutet, daß in 

Prolog die Variablen entweder gebunden oder frei sind. 

Hier liegt die eigentliche Stärke einer Programmierung 

des Systems in Prolog, da keine Unterscheidung dieser 

Fälle vorgenommen werden muß. Die Lösungsuche hängt 

nicht davon ab, welche Variablen frei und welche 

gebunden sind. 

Fragen an zweistellige Regeln haben eine der nachfolgenden Strukturen: 

•KPS/Prolog. 

-Anfrage an zweistellige Regel 

Welche (Person) (kann sich) welche (Verkehrsmittel) (leisten) ? 
Welche (Person) (kann sich) bestimmte (Verkehrsmittel) (leisten) ? 
Bestimmte (Person) (kann sich) welche (Verkehrsmittel) (leisten) ? 
Bestimmte (Person) (kann sich) bestimmte (Verkehrsmittel) (leisten) ? 

Return drücken 

Abb. 22: Mögliche Anfragestrukturen 

bei zweistelligen Regeln 



- 25 -

In Abb. 23 wird nunmehr im Wege einer sequentiellen 

Eingabe von dem Benutzer die weitere Problemstruktu-

rierung erfragt. Er entscheidet sich dafür, den Per­

sonennamen vorzugeben und nach Verkehrsmitteln zu 

suchen, die sich diese bestimmte Person leisten kann. 

KPS/Prolog 

Anfrage an zweistellige Regel 

1 : (Person) gegeben , Name bekannt 
2 : (Person) gegeben , Name unbekannt 
3 : (Person) nicht gegeben 

Bitte wählen Sie: 1 

1 : (Verkehrsmittel) gegeben , Harne bekannt 
2 : (Verkehrsmittel) gegeben , Name unbekannt 
3 : (Verkehrsmittel) nicht gegeben 

Bitte wählen Sie: 3 

Abb. 23: Auswahl einer Anfragestruktur 

bei einer zweistelligen Regel 

In Abb. 24 wird die Person benannt, wobei das System 

dem Benutzer in einem Hilfsfenster wieder anzeigt, 

welche Objekte in diesem Bereich überhaupt gespeichert 

sind. 

-KPS/Prolog-

Bitt 

-Anfrage an zweistellige Regel-

-Eingabe 

-Hilfe-
Gespeicherte (Person) 

'Inge' 'Hans' 'Otto' 'Anna' 'Lisa' 'Paul' 

Abb. 24: Spezifikation einer Person 



- 26 -

In Abb. 25 ist dann eine Lösung des Problems mit ent­

sprechender Begründung wiedergegeben. In KPS/Prolog 

wird die Begründung dabei so gegeben, daß auch der 

unerfahrene Benutzer diese Begründung versteht. 

KPS/Prolog 

Anfrage an zweistellige Regel 

LÖSUNG 
'Otto' (kann sich> 'Bahn' (leisten) 

•BEGRÜNDUNG. 
denn: 

'Geld' von 'Otto' ist 'viel', 
'Geld' von 'Bahn' ist 'mittel'. 

und: 

(Person) (kann sich) (Verkehrsmittel) (leisten) 
'Geld' von (Person) 'ist mindestens' 'Geld' von 

falls 
(Verkehrsmittel) 

Return drücken 

Abb. 25: Lösung einschließlich einer Begründung 

mit Eigenschaften und mit Definition 

der angesprochenen zweistelligen Regel 

Die Voreinstellung des Systems kann so erfolgen, daß 

solche Objekte angelistet werden, die keine Lösung des 

Problems darstellen (vgl. Abb. 26). Dies hat den Vor­

teil, daß der Benutzer den Wissensingenieur oder 

Experten im Hinblick auf die Qualität der Wissensbasis 

ansprechen kann. 

KPS/Prolog— 

Anfrage an zweistellige Regel 

FALSCH IST: — 

'Geld' von 'Anna' 'ist mindestens' 'Geld' von 'Auto' 

BEGRÜNDUNG-
denn: 

'Geld' von 'Anna' ist 'wenig', 
'Geld' von 'Auto' ist 'viel'. 

Return drücken 

Abb. 26: Begründung einer Nicht-Lösung mit Eigen­

schaften bei Anfrage an zweistellige Regel 



- 27 -

In KPS/Prolog werden alle Objektpaare geliefert, die 

nach Einsetzen in die Regel zu der Aussage "wahr" 

führen. Es können also mehrere Lösungen auftreten. 

Eine besondere Variante der Begründung durch KPS/Prolog 

ist in Abb. 27 enthalten. Damit für die Fälle vorge­

sorgt wird, in denen der Benutzer mit der erhaltenen 

Lösung unzufrieden ist, kann auch von dem System ver­

langt werden, daß es angibt, welche Attribute der 

beteiligten Objekte für die Problemlösung nicht heran­

gezogen wurden. Dies kann den Benutzer zu anderen 

Fragestellungen oder den Wissensingenieur bzw. Experten 

zur Neuformulierung des Regelwerks veranlassen. 

KPS/Prolog 

Anfrage an zweistellige Regel 

LOSUNG 

'Hans' (ist für> 'Auto' (alt genug) 

BEGRÜNDUNG 
denn: 

'Alter' von 'Hans' ist '22', 
'Alter' von 'Auto' ist '18'. 

Irrelevante Attribute von 'Hans' sind: 
•Status' 'Geld' 

Irrelevante Attribute von 'Auto' sind: 
'Geld' 'Entfernung' 'Tempo' 

Return drücken 

Abb. 27: Lösung und Begründung mit Eigenschaften 

sowie irrelevanten Attributen zur Anfrage 

an eine zweistellige Regel 

In Abb. 28 wird eine Anfrage an eine dreistellige Regel 

wiedergegeben. Dabei wird allerdings nicht erkennbar, 

daß im Falle einer Eingabe "gegeben" sofort über ein 

dann erscheinendes Fenster die Spezifikation erfragt 

wird. Im Falle der Abb. 28 hat der Benutzer 'Hans' als 

<Person> und 'Einkauf' als <Reisezweck> festgelegt. Die 

dadurch repräsentierte Problemstellung lautet: "Welches 

Verkehrsmittel sollte Hans für den Einkauf benutzen ?" 



- 28 -

——KPS/Prolog 

-Anfrage an mehrstellige Regel 
1 : <Person> gegeben , Name bekannt 
2 : <Person> gegeben , Name unbekannt 
3 : (Person) nicht gegeben 

Bitte wählen Sie: 1 

1 : (Verkehrsmittel) gegeben , Name bekannt 
2 : (Verkehrsmittel) gegeben , Name unbekannt 
3 : (Verkehrsmittel) nicht gegeben 

Bitte wählen Sie: 3 

1 : (Reisezweck) gegeben , Name bekannt 
2 : (Reisezweck) gegeben , Name unbekannt 
3 : (Reisezweck) nicht gegeben 

Bitte wählen Sie: 1 

Abb. 28: Auswahl einer Anfragestruktur 

bei einer mehrstelligen Regel 

In Abb. 29 antwortet das System mit einer Lösung und 

der laut Parametereinstellung gewünschten Begründung. 

KPS/Prolog 

Anfrage an mehrstellige Regel 

LÖS UNG 
'Hans' (sollte) 'Fahrrad' (für) 'Einkauf' (benutzen) 

BEGRÜNDUNG 
denn: 

(Person) (sollte) (Verkehrsmittel) (für) (Reisezweck) (benutzen) 

falls 

(Person) (ist für) (Verkehrsmittel) (alt genug) 
(Person) (kann sich) (Verkehrsmittel) (leisten) 
(Verkehrsmittel) (ist für) (Reisezweck) (geeignet) 

Return drücken 

Abb. 29: Lösung und Begründung mit Definition 

zur Anfrage an eine mehrstellige Regel 

3.3.4. Parametereinstellungen 

Bei fortgesetzter oder wiederholter Benutzung des 

Systems durch denselben Benutzer ist es zweckmäßig, 

wenn bestimmte Eingaben nicht jeweils neu getätigt 



- 29 -

werden müssen. Deshalb enthält KPS/Prolog eine ganze 

Reihe von Möglichkeiten, solche Voreinstellungen 

vorzunehmen (vgl. Abb. 30). Grundsätzlich ist es 

möglich, diese Parametereinstellungen benutzerfreund­

lich für jeden Benutzer abzuspeichern, so daß eine 

komfortable, individuelle Benutzerführung und -bedie-

nung erreicht werden kann. 

4 Parameter­ 1 Zu bearbeitende 1 1. Wissensbasis 
einstellung Wissensbasis 2 2. Wissensbasis 
verändern 3 3. Wissensbasis 

2 Begründung für 1 keine Begründung 
Lösungen zwei­ 2 Begründung mit Eigenschaften 
stelliger Regeln 3 Begründung mit Definition 

und Eigenschaften 
4 Begründung mit Eigenschaften 

und irrelevanten Attributen 

3 Begründung für 1 keine Begründung 
Lösungen mehr­ 2 Begründung mit Definition 
stelliger Regeln 3 Begründung mit Definition 

und Eigenschaften 

4 Begründung für 1 keine Begründung 
Nicht-Lösungen 2 Begründung mit Eigenschaften 

5 Erläuterung von 1 Erläuterung erwünscht 
Anfrage­ 2 Erläuterung nicht 
strukturen erwünscht 

Abb. 30: Hierarchische Gliederung im Menüzweig 

"4: Parametereinstellung verändern" 

Jederzeit kann sich der Benutzer auf der obersten 

Menüebene die gegenwärtigen Parametereinstellungen 

anzeigen lassen (Abb. 31). 
KPS/Prolog 

Einstellung von Parametern 

1 : Zu bearbeitende Wissensbasis 
Bereiche (Person)(Verkehrsmittel)(Reisezweck> 

2 : Begründung für Lösungen zweistelliger Regeln 
Begründung mit Eigenschaften 

3 : Begründung für Lösungen mehrstelliger Regeln 
Begründung mit Definition 

4 : Begründung für Nicht-Lösungen 
keine Begründung 

5 : Erläuterung von Anfragestrukturen 
Erläuterung nicht erwünscht 

Return drücken 

Abb. 31: Einstellung von Parametern 



- 30 -

4. Einsatz als Problemlösungssystem 

4.1. Ausgewählte betriebswirtschaftliche Anwendungen 

In Abb. 32 ist zunächst grundsätzlich gezeigt, wie ein 

Ablauf des Problemlösungsprozesses strukturiert werden 

kann. 

Abb. 32: Ablauf des Problemlösungsprozesses 



- 31 -

Das Neue gegenüber vielen anderen Systemen ist, daß das 

System KPS/Prolog nicht nur Lösungsvorschläge bieten 

kann, sondern daß auch entsprechende Programme ausge­

führt werden können, die über die Schnittstelle zur 

konventionellen Datenverarbeitung angestoßen werden 

(vgl. [20]). Nach Ausführung dieser Programme wird 

wiederum KPS/Prolog aktiviert, so daß auch ein mehr­

stufiger Problemlösungsprozeß mit einer sehr unter­

schiedlichen Folge von Teilproblemen unterstützt werden 

kann. 

Weil das System am Institut für Betriebswirtschafts­

lehre der Universität Kiel entstanden ist, stehen zu­

nächst betriebswirtschaftliche Anwendungen im Vorder­

grund, obwohl das System Anwendungen aller Art zuläßt. 

Bisherige Anwendungen betreffen den Bereich der wis­

sensbasierten Modellierung (vgl. [20]). Dabei wird 

eine wissensbasierte Modellierung mit der Ausführung von 

auf diese Weise generierten Unternehmensplanungsmodellen 

verbunden. 

Außerdem sind Anwendungen im Bereich der strategischen 

Unternehmensplanung, der Unternehmensanalyse und der 

Auswahl von Finanzinnovationen geplant. 

Schließlich sei erwähnt, daß sich KPS/Prolog gut eignet, 

um heterogene Programm- und Datenbestände zu verwalten 

(vgl. dazu auch [16]). 

4.2. Erweiterungsmöglichkeiten 

Erweiterungsmöglichkeiten bieten sich zunächst im Hin­

blick auf Konsistenzprüfungen bei Ergänzungen der Wis­

sensbasis. Außerdem sind Anleitungen zur Konstruktion 

neuer Wissensbasen wünschenswert. Denn im Falle einer 

Neukonstruktion ist der Ablauf der erforderlichen 

Wissenseingabe durch die Struktur der Wissensrepräsen­

tation in KPS/Prolog vorgegeben, so daß keine Edi­

tierungen über Änderungsmenüs erforderlich sind. 



— 32 — 

Weiterhin ist es im Hinblick auf größere Anwendungen 

zweckmäßig, Segmentierungen der Wissensbasis vornehmen 

zu können, so daß Kernspeicherbeschränkungen eingehalten 

werden können. 

Besonders gewinnen dürfte der Einsatz von KPS/Prolog 

durch den Datenimport aus Lexika, insbesondere aus 

Fachlexika. Außerdem bietet die Mehrsprachigkeit unter 

Benutzung des Synonymansatzes interessante Systemaus­

gestaltungen. Dies betrifft nicht nur Fremdsprachen, 

sondern auch die Verbindung zwischen unterschiedlichen 

Konversationsniveaus, z.B. zwischen Umgangs- und 

Fachsprache. Mehr Natürlichsprachlichkeit stellt daher 

eine große Herausforderung für die weitere Entwicklung 

des Systems dar. 



- 33 -

Literaturverzeichnis 

[1] Böhringer, B., Chiopris, C., Futo, I.: Wissensba­
sierte Systeme mit Prolog. Bonn 1988. 

[2] Clocksin, W.F., Mellish, C.S.: Programming in 
Prolog. 3. Aufl., Berlin, Heidelberg 1987. 

[3] Dieterich, G.: Kompaktführer Turbo-Prolog. Bonn 
1987. 

[4] Electronic Trend Publications (Hrsg.): PC-Driven 
Expert Systems. Saratoga o. J. 

[5] Grothaus, M., Gust, H.: Turbo Prolog. Würzburg 
1987. 

[6] Harmon, P., Kjng, D.: Expertensysteme in der 
Praxis. 2 Aufl., München, Wien 1987. 

[7] Haugg, F., Omlor, S.: Expertensysteme auf PCs: 
Entwicklung von Expertensystemen mit Turbo PROLOG. 
München, Wien 1987. 

[8] Heimsoeth & Borland (Hrsg.): Turbo Prolog. München 
1987. 

[9] Heimsoeth & Borland (Hrsg.): Turbo Prolog Toolbox. 
München 1987. 

[10] Herrmann, D.: Probleme und Lösungen mit Turbo-
Prolog. Braunschweig 1988. 

[11] Kinnebrock, W.: Turbo Prolog. München, Wien 1988. 

[12] Knauss, W.: Turbo-Prolog. München, Wien 1987. 

[13] Mertens, P., Borkowski, V., Geis, W.: Betriebliche 
Expertensystem-Anwendungen - Eine Materialsamm­
lung. Berlin-Heidelberg-New York 1988. 

[14] Nath, S.: Turbo Prolog: Features for Programmers. 
Portland 1986. 

[15] o.V.: Expertensystem-shells für den PC. In: PC 
Magazin 1987, Nr. 30, S. 40-41. 

[16] Reusch, P.: Modellverwaltung und Expertensystem-
komponenten für betriebliche Informationssysteme. 
Mannheim, Wien, Zürich 1988. 

[17] Robinson, P.R.: Using Turbo Prolog. Berkeley 1987. 

[18] Savory, S.: Grundlagen von Expertensystemen. 
München, Wien 1988. 



- 34 -

[19] Schildt, H.: Professionelles Turbo Prolog. Ham­
burg, New York 1987. 

[20] Schmidt, R.: Zur Verbindung von wissensbasierter 
Modellierung und What-if-Planung. In: Operations 
Research Proceedings 1988, Berlin-Heidelberg-New 
York 1989 (in Druck). 

[21] Schnupp, P.: Prolog. München 1986. 

[22] Smith P.: Expert System Development in Prolog and 
Turbo-Prolog. Wilmslow 1988. 

[23] Townsend, C.: Einführung in Turbo Prolog. Düssel­
dorf 1987. 

[24] Walker, A. (Hrsg.), McCord, M., Sowa, J.F., 
Wilson, W.: Knowledge Systems and Prolog. Reading 
1987. 

[25] Wolfgram, D.D., Dear, T.J., Galbraith, C.S.: 
Expert Systems for the Technical Professional. 
New York et al. 1987. 


