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Abstract 
 
Using high-resolution data from Africa over the period 1998-2012, this paper investigates the 
hypothesis that a higher exposure to malaria increases the incidence of civil violence. The 
analysis uses panel data at the 1o grid cell level at monthly frequency. The econometric 
identification exploits exogenous monthly within-grid-cell variation in weather conditions that 
are particularly suitable for malaria transmission. The analysis compares the effect across cells 
with different malaria exposure, which affects the resistance and immunity of the population to 
malaria outbreaks. The results document a robust effect of the occurrence of suitable conditions 
for malaria on civil violence. The effect is highest in areas with low levels of immunities to 
malaria. Malaria shocks mostly affect unorganized violence in terms of riots, protests, and 
confrontations between militias and civilians, rather than geo-strategic violence, and the effect 
spikes during short, labor-intensive harvesting periods of staple crops that are particularly 
important for the subsistence of the population. The paper ends with an evaluation of anti-
malaria interventions. 

JEL-Codes: D740, J100. 
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2 Data

2.1 Data on Violent Events and Covariates

Violent Events. The data for violent events is from the Armed Conflict Location and Event Data

Project, the ACLED Dataset (version 4, 2014). The data cover all African countries over the period

1997-2013 at daily frequency and contain event types classified into the type of conflicts like riots and

protests or violence against civilians, and the type of actors involved, including militaries, militias,

civilians, among others. The analysis focuses on the period 1998-2012 to have a homogeneous sample,

as the analysis controls for past realizations of conflict and uses weather data available until 2012.

Details on the construction of the gridded data are provided in Appendix A. As baseline indicator

of civil violence we consider a dummy equal to one if at least one event of any type occurred in a

given cell in a given year or month, respectively.12

Figure 1 displays the fraction of years with at least one violent event for each grid cell in Africa

over the observation period 1998-2012. Approximately 60% of all cells experienced a violent event

at least once during the observation period. There appears to be no clear difference in the incidence

of violence depending on the location of the cell relative to the equator.13

Figure 1: Spatial distribution of violent events.

Baseline Time Invariant and Time Varying Covariates. The analysis controls for a large set of

12To our knowledge, there is no other comparable data set combining high temporal frequency and detailed infor-

mation on aspects of conflicts such as involved actors. Alternative data, like the UCDP Georeferenced Event Dataset

are only available at annual frequency and therefore not suited for the analysis at monthly resolution.
13See Figure A4 in the Appendix.
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time varying and time invariant covariates as potentially relevant determinants of violence. The

time-invariant characteristics at the grid-cell level are grouped under various headings. “Geographic

Controls” include absolute latitude, mean elevation, average terrain ruggedness, total cell area, and

total area of the cell occupied by water, as well as, in some specifications, average weather conditions

in terms of precipitation, temperature, and the Standardized Precipitation and Evapotranspiration

Index (SPEI) described below. “Location and Distances” controls include the natural logarithm of

the distance to the country capital, to the coast, to the country border, to the closest river and

to Addis Ababa. The “Natural Resources” controls include average land suitability for agriculture,

the presence of diamond mines, and the presence of petrol fields. The ”Ethnic Diversity” control

measures the number of ethnic groups in the cell. In some specifications we also exploit information

on population density and average night light intensity in the cell, as well as information on growing

and harvesting seasons for staple crops from Harvestchoice and FAO crop calendars.

Time varying controls include information at yearly and monthly frequencies on precipitation

(in mm per m2) and temperature (in degrees centigrade). These weather data are taken from the

European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim dataset, which

offers the advantage of being not based on gauge data but on data re-analysis.14 In addition, we

make use of the Standardized Precipitation and Evapotransipration Index (SPEI).15

Detailed information about the construction, coding and data sources for each of the time invari-

ant and time varying variables is provided in the Appendix in Tables D1, D2 and D3. Table D4 and

Table D5 presents the descriptive statistics of the time invariant and time varying variables (at both

yearly and monthly frequencies), respectively.

2.2 Patterns of Malaria Incidence and Conflicts

Malaria is a serious and potentially deadly infectious disease that is endemic in 109 countries around

the world. About 3.4 billion people (almost half of the world population) live in areas with a risk of

malaria contraction. According to WHO estimates, in 2013, 198 million clinical cases of malaria were

recorded worldwide, causing an estimated number of 584,000 deaths (with an uncertainty range of

up to 755,000). About 90% of malaria-related deaths occur south of the Sahara in Africa.16 Malaria

14Re-analysis involves model simulations of past events that include the incorporation of historical observations

taken form various sources, such as weather stations, satellites, and sensors. To our knowledge, these are the highest

quality weather data available. They have previously been used by Kudamatsu, Persson, and Strömberg (2012) and

Harari and La Ferrara (2013).
15The SPEI index is a combination of the Palmer Drought Severity Indix (PDSI) which is based on supply and

demand of water, and of the Standardized Precipitation Index (SPI); the SPEI measures drought severity, intensity

and duration, but also allows for comparisons of drought severity through space and time, including different drought

types, see Vicente-Serrano et al. (2010).
16See www.who.int/mediacentre/factsheets/fs094/en and www.cdc.gov/malaria/about/facts.html (ac-

cessed 21.2.2017).
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comes in different variants but almost all deaths worldwide occur in sub-saharan Africa due to the

tropica variant that is caused by the plasmodium falciparum parasite.17

As discussed in more detail in Section 3, the specific features of the malaria epidemiology imply

temporary spikes in malaria transmission risk that are related to weather conditions and confined

in time and space. Large investments have been undertaken recently to assemble a comprehensive

and reliable database on the dynamics of malaria infections in the adult population in Africa. While

substantial progress has been made, serious data limitations have severely hampered the construction

of database at high levels of spatial and temporal disaggregation. The best time-varying disaggre-

gate data on malaria incidence currently available are the back-projections of clinical incidence of

plasmodium falciparum malaria assembled by Bhatt et al. (2015). These projections are based on

available survey data on malaria prevalence drawn from various sites in Sub-Saharan African coun-

tries. To project malaria incidence in locations and at times for which no survey data are available,

geo-statistical models that employ a large number of environmental and socio-demographic covariates

are used.18 The resulting database provides novel estimates of malaria incidence in about 35 African

countries for the years 2000 to 2015, which, to our knowledge, has not been used in the context of

conflicts. Figure 2 illustrates the cross-sectional variability of (average) projected malaria incidence

across the respective grid cells in Africa for the year 2000, which is the first year for which the data

are available.

As preliminary step towards establishing the potential role of malaria risk for civil violence, we

explore the effect of projected clinical incidence on violent events, both measured at the cell-year-level.

Table 1 reports estimation results that are based on within-cell variation over time (by including cell

and year fixed effects) and that control for weather conditions (and their lags) and lagged incidence of

violence. The findings provide a first piece of evidence for the existence of a positive and statistically

significant relationship between malaria incidence and violent events within cells over time.

The results obtained from these back-projected and spatially interpolated data for malaria inci-

dence should be taken as purely suggestive, however. For several reasons, the back-projected malaria

17Other variants are tertiana, and quartana which are caused by different species of the plasmodium parasite

(vivax/ovale, and malariae, respectively).
18Overall, 27,573 spatially and temporally distinct Plasmodium falciparum parasite rate (Pf PR) prevalence data,

mostly for children, were used for the mapping. Available Pf PR were adjusted for the age of the respondent, season

and type of diagnostic used. Then, time-varying continuous surfaces of Pf PR were obtained through a spatiotemporal

Bayesian geostatistical model that exploits a host of dynamic covariates for projection. These covariates included a

long list of environmental variables (including temperature, precipitation, and evapotranspiration, among others) and

socio-demographic variables (including population measures, night lights and accessibility to urban centers). Out of

a total of 55,000 potential covariates, 20 were condensed by selecting the subset that maximized predictive strength.

Projected population-weighted clinical incidence was then constructed based on mathematical malaria transmission

models as a function of Pf PR for children and these time-varying predicted Pf PR surfaces. For the prediction of

clinical incidence, the model accounted for seasonality, level of treatment, and probable immune status of populations

at each location. See Bhatt et al. (2015) for details.

10



Figure 2: Clinical Incidence of Malaria for the Year 2000

Note: Projected incidence of plasmodium falciparum parasite prevalence from Bhatt et al. (2015), see Table D1

in the Appendix for details.

Table 1: Malaria Incidence and Violent Events

Dep. Variable Violent Events - ACLED Yearly Data

(1) (2) (3) (4)

Clinical Incidence of Malaria 0.189*** 0.184*** 0.183*** 0.167***
(0.046) (0.046) (0.046) (0.043)

Weather No Yes Yes Yes
Weather Lag No No Yes Yes

Cell FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes

Violence Lag No No No Yes

Observations 21,853 21,853 21,853 21,853
R-squared 0.702 0.702 0.705 0.706

OLS estimates (linear probability model). The dependent variable is a binary indicator variable taking value 1 if at least one
conflict event (ACLED dataset) was registered in the given cell in the given year. “Clinical Incidence of Malaria” is a projection
of clinical incidence of Plasmodium falciparum malaria (per 1000) obtained by interpolating across space and over time available
malaria prevalence data retrieved from surveys using a a large number of dynamic environmental and socio-demographic covariates,
see Bhatt et al. (2015) for details. The “Weather” controls include average annual temperature, average annual precipitation and
average level of the Standard Precipitation and Evapotranspiration Index (SPEI); “Weather Lags” include weather controls for the
previous two years. Standard errors clustered at the cell level are reported in parentheses. The unit of observation is a 1 x 1 degree
cell. Panel data from 1998 to 2012 at yearly frequency. ***, **, * indicate significance at 1-, 5-, and 10-% level, respectively.

incidence data are not suited for the purpose of establishing an effect of malaria risk on civil violence.

The database has been assembled with the goal of tracking the medium run evolution of malaria

incidence across different regions in Africa at yearly frequencies. Although the data is available at the

disaggregate level and can be mapped into 1×1 degree grid-cells, the data is based on scattered survey

information about clinical cases, mostly for children and obtained from various surveys at different

locations with different levels of immunity. Consequently, the information on clinical Plasmodium

falciparum cases is likely subject to substantial reporting error and might be affected, among others,

by the occurrence of civil conflicts and their timing. To fill the gaps between survey sites, the avail-
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able malaria incidence data have been projected across space and time using Bayesian geo-statistical

models that employ a large number of environmental and socio-demographic covariates. Moreover,

the information has been harmonized using epidemiological models to obtain estimates of incidence

for the overall population using population-weighted mathematical malaria transmission models. As

mentioned above, these covariates include an extensive list of environmental variables (like precipi-

tation, temperature, and evapotranspiration, among others) and socio-demographic variables. Given

the existing literature, many of these variables are expected to be directly related to civil violence.

As a result, projected incidence data are problematic when trying to isolate the role of malaria risk

from other potential determinants of civil violence that have been used in the literature.

To make progress in the exploration of the role of variation in malaria risk for civil violence, the

next section develops an alternative identification strategy that makes use of specific features of the

malaria epidemiology to construct measures of latent malaria risk and to isolate exogenous variation

in short-term weather conditions that are particularly suitable for malaria transmission across time

and cells. This strategy uses data at a high spatial and temporal level of disaggregation and exploits

exogenous variation in weather conditions without relying on projections.

3 Empirical Strategy

3.1 Epidemiological Background

Before discussing the measurement of malaria risk and the identification strategy, this section provides

a brief summary of the relevant background regarding the epidemiology of malaria.

Plasmodium falciparum parasites are heat sensitive and require a sufficiently warm environment.

The life cycle of the parasite is complex and involves a mosquito vector and a vertebrate host, such

as humans. Upon infection of the host through an injection of the parasites (in sporozoite form),

the parasites develop and multiply asexually, first in human liver cells, later in the red blood cells,

where they cause the typical symptoms of remittent fevers, head and body aches, vomiting and

diarrhea. The transmission occurs exclusively through a vector, the female Anopheles mosquito,

which requires blood meals from vertebrate animals for ovary development. There are more than

20 species of anopheles mosquitos that differ regarding to the preferred vertebrate animals, their

frequency of biting and their life span. Among these, Anopheles gambiae, arabiensis and funestus

are the most efficient vectors of malaria for humans in Africa because they mainly target humans

for their blood meals.19 Biting an infected human and absorbing the parasite as gametocytes (i.e.,

in sexual forms) from the human blood, starts a cycle of growth and sexual multiplication of the

parasite inside the mosquito.

19Anopheles gambiae and funestus are reported to take more than 90% of their blood meals from humans, see Scott

and Takken (2012).
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Anopheles reproduction requires lentic water reservoirs, where the eggs are laid by the female

mosquito. After the eclosion, the larvae continue to develop in water, metamorphose into pupae, and

eventually the adult mosquito emerges. The development from egg to adult crucially depends on the

temperature and takes approximately 10-14 days, but can be as short as 5 days under very suitable

conditions.20 The ambient conditions in terms of average temperature and temperature variability

also affect the parasite development within the mosquito.21 Finally, also the transmission rate is

temperature dependent, with the frequency of blood meals of Anopheles gambiae ranging between

every 4 days at 17oC and every 2 days at 25oC. Adult anopheles mosquitoes live for approximately

1-2 weeks, and can act as a vector for malaria transmission only during this stage of life. The

transmission involves an injection of the plasmodium parasite (in the form of sporozoites from the

salivary glands of the mosquito) into the bitten human.22

Taken together, this implies that the possibility of malaria transmission is closely related to

external conditions in terms of temperature and precipitation. Specifically, the transmission of

malaria is limited to areas that exhibit climatic conditions that are suitable for the parasite as well

as the vector. Sufficiently high levels of temperature and humidity are required for the vector to

survive and develop and hence for the plasmodium parasite to survive. In terms of transmission,

the parasites first must develop within the vector before becoming a risk for infecting humans. This

extrinsic incubation period lasts from 10 to 21 days, depending on the temperature. Death of the

mosquito before the end of this period prevents transmission. The intrinsic incubation time after

infection through a mosquito bite varies from 7 to 30 days, with infections by plasmodium falciparum

exhibiting the shortest incubation periods of all cases.23 For the present analysis, this implies that

malaria outbreaks can be observed within relatively short periods of particularly suitable weather

conditions. This has the advantage that malaria outbreaks can be identified at a high geographical

and temporal resolution.

The conditions of malaria infection range from asymptomatic or very mild cases to severe cases

(including anemia, or cerebral malaria caused by plasmodium falciparum) and even death. First

exposure to the parasite is typically associated with a febrile illness, which may become severe and

even fatal. When diagnosed and treated promptly and correctly, malaria is in principle curable.24

20The first three stages of life (egg, larvae, pupae) are aquatic and during this period, the anopheles are very sensitive

to outside conditions. A desiccation of the water reservoir during these phases implies death of the anopheles. At

temperatures around 28oC, the development during the aquatic stages is fastest, below 16oC the development of larvae

stops, and at temperatures below 14oC the larvae die (Bayoh and Lindsay, 2003, Christiansen-Jucht et al., 2014). The

emergence of adult anopheles peaks around 24oC, where the development is favored by stable temperatures in contrast

to temperature fluctuations (Lyons et al., 2013).
21Blanford et al. (2013) point at the importance of variation in temperature in addition to average temperature.
22See www.cdc.gov/malaria/about/biology/Parasites.html, www.cdc.gov/malaria/about/biology, and

http://malaria.jhsph.edu/about malaria, accessed 21.2.2017.
23See http://www.cdc.gov/malaria/about/disease, accessed 21.2.2017.
24After recovery, patients that have been infected sometimes experience relapses (in particular after infections with

13



Upon recovery, most individuals develop resistance or even protective immunity against the disease, in

particular after infections with plasmodium falciparum. Even though the precise mechanisms are still

not well understood, the existing evidence suggests that immunity to febrile infection with malaria

is slow to develop and incomplete, while immunity to a lethal infection is acquired more quickly.

Acquired immunity appears to reduce the growth of parasites in the blood cells and typically emerges

in regions with high exposure to malaria infections (in areas of hyperendemicity and holoendemicity),

where acquired immunity leads to a very high protection of surviving adults against severe symptoms

and death (see, e.g., Langhorne et. al., 2008, Doolan et al., 2009).25

Recent evidence suggests that the acquisition of immunity is closely related to the latent exposure

to infection, with protective immunity being prevalent only in regions with sufficiently high exposure

(Stanisic et al., 2015). In areas with lower exposure and less frequent infections, a larger proportion

of children and adults do not exhibit acquired resistance. In evolutionary genetics, malaria is also

regarded as the strongest known selective pressure of the human genome, see Kwiatkowski (2005).

The persistent exposure to malaria across generations for long periods of time favored the diffusion

of several Mendelian genetic diseases that are protective against malaria. Among the most effective

genetic factors are the prevalence of the so-called sickle cell trait, reflecting an abnormal hemoglobin

gene (HbS) that provides highly effective protection against plasmodium falciparum (Ferreira et al.,

2011), with a sizable reduction in the risk of developing cerebral malaria.26 As consequence of an

evolutionary advantage of these phenotypes, sickle cell traits are more frequent in populations in

Africa or with African ancestry.27 The role of genetic and acquired immunities in areas with high

malaria stability is consistent with subjective perceptions of individuals regarding the duration and

severity of fevers and cost burdens across regions with different levels of long term exposure to

malaria.28

3.2 Malaria Risk: Data and Measurement

The identification strategy exploits specificities of the epidemiology of malaria discussed above that

allow isolating temporary increases in the exposure to malaria transmission at high levels of temporal

plasmodium vivax or ovale).
25This is reflected in Figure A1 in the Appendix, which reproduces an illustration from (Langhorne et. al. 2008)

and shows that the severity of infections declines with age, due to a combination of acquired immunity and selection.
26Other well-studied genetic factors include the absence of the Duffy blood group antigen, which acts as a receptor

for plasmodium vivax parasites (Langhi et al.,. 2006), and G-6-PD (Glucose-6-Phosphate Dehydrogenase) Deficiency

(leading to favism), a genetic deficiency of the G-6-PD enzyme that reduces the life span of red blood cells and provokes

sudden destruction of red blood cells, but grants protection against malaria for males (Guindo et al., 2007).
27Other, less prevalent and effective genetic factors of immunity include the occurence particular combinations in

the HLA complex. See also http://www.cdc.gov/malaria/about/biology/human factors, accessed 21.2.2017.
28Chuma et al. (2010) report that fever episodes among adults and children (over five years) lasted significantly

longer in districts with low transmission stability (low acute transmission districts in the highlands of Kenya) than in

high transmission stability districts (Kenyan districts with high and intense perennial transmission).
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and spatial disaggregation. The identification approach combines two aspects of malaria exposure.

The first aspect is related to the peculiarities of the process of reproduction of the plasmodium parasite

and the transmission vector. Given the sensitivity of the anopheles mosquito to temperature and

precipitation, the risk of malaria infections in a given region at a particular point in time is closely

related to the short term weather conditions in that region at that time. The second aspect is

related to the susceptibility of the adult population. In areas with high transmission levels and

little inter-annual variation, malaria transmission is stable (malaria is typically hyperendemic or

holoendemic). In these areas, individuals of all ages are exposed to frequent infections which favor

the development of acquired immunities, in particular among the adults who survived infections

during younger ages. The higher evolutionary pressure also leads to the development of genetic

immunities that are transmitted across generations. In contrast, in areas where malaria is less

stable, and transmission levels vary substantially from year to year, the adult population exhibits

lower levels of acquired and genetic immunities, and therefore faces a higher risk of serious illness

once exposed to the pathogen. As consequence, areas with low to intermediate long-term exposure to

malaria in terms of transmission stability are the ones that entail the highest risk of severe infections

for adults.

The identification strategy combines these two aspects and exploits the differential effect of ex-

ogenous short term variation in malaria suitable conditions in areas with low and with high malaria

risk for adults. In the following, we describe the construction of an indicator of months with partic-

ularly suitable conditions for malaria transmission and the classification of areas in terms of malaria

exposure for adults.

3.2.1 Malaria Suitable Months

Particular combinations of temperature and precipitation result in favorable conditions for the spread

of malaria. The 20th Report of the WHO Expert Committee on Malaria called for the need of reliable

indicators based on highly disaggregated meteorological information to be used to prevent malaria

epidemics.29 Tanser et. al. (2003) constructed a weather-based index for Africa that represents

conditions particularly suitable for malaria. The resulting binary indicator variable, labelled “Malaria

Suitable Month” (or simply MSM) in the following, is constructed as follows. For grid cell i for month

t, the binary indicator MSMi,t takes value 1 if, and only if, all of the following four conditions are

satisfied:

1. Average monthly rainfall during the past 3 months (t− 2, t− 1, t) is at least 60mm/m2.

2. Rainfall in at least one of the past 3 months is at least 80 mm/m2.

3. No month in the past 12 months has an average temperature below 5oC.
29The report states “An increasing number of malaria epidemics have been recently documented throughout the

world, particularly in Africa. Areas become epidemic when conditions that normally limit transmission change radically

as a result of abnormally heavy rains, long periods of increased humidity and temperature.” (WHO, 2000, p. 6).
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4. The average temperature in the past 3 months exceeds 19.5oC+Standard Deviation of monthly

temperature in the past 12 months.

Based on these conditions, the variable Malaria-Suitable Month, MSM, takes value 1 if the conditions

are particularly suitable for malaria transmission in the given cell and month, and 0 otherwise. This

index can be seen as capturing the necessary conditions for elevated malaria transmission, rather

than as providing sufficient conditions.30 For use with yearly data frequency, the variable Malaria

Suitable Months is constructed as the yearly aggregate of monthly suitability conditions, and thus

ranges from 0 to 12.

Weather data used for the construction of MSM, and also as covariates included in the regressions,

are taken from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim

dataset, which offers the advantage of being not based on gauge data but on data re-analysis.31

3.2.2 Areas with High Malaria Risk for Adults

As discussed above, the emergence of suitable weather conditions for malaria transmission increases

the risk of malaria outbreaks in the population at large, and in particular among adults, especially

in areas with traditionally low to intermediate long term exposure to the pathogen.

To locate such “high risk” areas we exploit the Malaria Stability Index, an ecology-based spatial

index of stability and force of malaria transmission devised by Kiszewski et al. (2004). Based on the

distribution of the dominant species of Anopheles mosquitos and their specificities, they constructed

an index of transmission force and stability as a function of several characteristics of the mosquito: i)

share of blood meals taken by the mosquito, ii) the daily survival rate, and iii) location specific bio-

climatological conditions that affect the extrinsic incubation period.32 The resulting time-invariant

30According to Tanser et. al. (2003), the index has high predictive power for the absence of malaria outbreaks, but

less predictive power for actual outbreaks. For the purpose of this paper, this implies an interpretation of the effects

of MSM along the lines of an intention to treat analysis. The same index has been used by Kudamatsu, Persson, and

Strömberg (2012).
31Re-analysis involves model simulations of past events that include the incorporation of historical observations

taken form various sources, such as weather stations, satellites, and sensors. These are the best available weather data

for the purpose of this study.
32These climate variables include a temperature threshold of 15oC of mean monthly temperature below which

anopheline vectors are assumed to remain inactive. Climate variables are measured as the average over the period

1901 to 1990. The index does not consider recovery rates from infections. The resulting index was constructed for

each calender month on a grid of 0.5o cells and then aggregated into a cross-sectional index of malaria stability. In

particular, the index is computed as
12∑

m=1

a2imp
E
im

− ln pim

where m is calender month (1-12), i is the identity of the dominant anopheles vector, a is the proportion of this

dominant vector that bites humans, p is the daily survival rate (ranging from 0 to 1), and E is the extrinsic incubation
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malaria stability index is a real number ranging from 0 to approximately 38. On the level of 1×1

degree cells, the index ranges from 0 to 34.

The malaria stability index is indirectly informative about the degree of (acquired and genetic)

immunity, which tends to increase with the level of stability of malaria exposure. Conversely, this

implies that the index is informative about the susceptibility of the adult population in a region with

respect to malaria outbreaks. The lower the stability, the less frequent are infections, and the lower

the resistance (the higher the susceptibility) of the adult population. In other words, this implies that

the relationship between the malaria stability and transmission index and the actual risk of malaria

infections, in particular among the adult population, is low for cells with very low malaria stability,

increasing with higher malaria transmission, but ultimately declining due to greater resistance and

immunity.

As benchmark for the empirical analysis we construct a binary indicator for areas with high

malaria risk for adults, labelled HR. To code grid-cells with HR = 1 in a systematic way, we regress

malaria incidence estimated by Bhatt et al. (2015) (presented in Section 2.2) on malaria suitable

months, MSM (constructed as described in Section 3.2.1) at yearly frequency and investigate the

sensitivity of the effect of MSM for cells characterized by different levels of the malaria stability

index. Concretely, for each level of the malaria stability index, we run local regressions that give

large weight to cells characterized by this focal index level and symmetrically decreasing weights for

cells with lower or larger malaria stability indices than the focal level.33

Figure 3, plots the respective coefficient estimates of the effect of MSM on malaria incidence for

each of 34 local regressions against the respective level of the stability index that serves as center

for the weighting function. Each of the regressions exploits within cell variation over time and

includes controls for average temperature, the average precipitation and the effective rainfall (the

Standard Precipitation and Evapotranspiration Index -SPEI) registered in the respective year, year

fixed effects and cell fixed effects. The estimates document that the effect of malaria suitable months

on projected malaria incidence is highest for cells characterized by low to intermediate levels of the

index of stability and force of malaria transmission. The effect is largest for the center of the weighting

function around 7. The effect is monotonically smaller for regressions that give greater weight to

period in days (E = 111/(T − 16) for falciparum and E = 105/(T − 14.5) for vivax with T being the temperature

in degrees centigrade). In order to obtain a finer data resolution, a minimum threshold of precipitation (10 mm) was

imposed as necessary precondition for subsequent malaria transmission.
33In particular, we conduct 34 local regressions using a weighting function that applies weights that are monotonically

decreasing to zero for values more distant from the respective center value. The weighting function used for the

estimation has a symmetric logistic shape: 1 − [(m · (|Center − x|)k)/(1 + m · (|Center − x|)k)] with k = 6 and

m = 10−6. This function implies that in local regressions considerable weight is given to observations within windows

of about +/- 8 index points around the respective center of the malaria stability index, Center. The estimation

is repeated iteratively using a moving window that varies systematically the center of the weighting function for

Center = 1, 2, ..., 34. The results are qualitatively insensitive to the particular weighting function used.
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cells with higher levels of malaria stability, and becomes statistically insignificant for windows with

a center of the weight function at values of malaria stability index larger than around 12.

In light of these results, we therefore construct the binary indicator HR as taking value 1 if the

malaria stability index in a cell is in the interval (0,15), and value 0 for a stability index of 0 or

in the interval [15, ·] as a baseline.34 Consistent with the results of the local regressions depicted in

Figure 3, the occurrence of predicted malaria suitable months significantly increase malaria incidence

in high risk HR areas.35 This coding of high malaria risk cells, HR roughly corresponds also to

the ranges of malaria transmission typically associated to epidemic, rather than endemic, areas.

This preliminary analysis also confirms that malaria incidence is not increased significantly by the

occurrence of suitable conditions that favor the reproduction of the anopheles mosquitos or the

plasmodium parasite in areas characterized by high long run malaria force and stability, which are

correspondingly coded HR = 0. Taken together, this implies that the weather-based index of Malaria

Suitable Months, MSM , provides a measure of short-run infection risk, which translates into different

exposure to malaria depending on the susceptibility of the population (in terms of cells with HR = 0

or HR = 1).
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Figure 3: Effect of Malaria Suitable Months (MSM) on Clinical Incidence of Malaria

Note: Coefficients from local (weighted) regressions of the projected clinical incidence of Plasmodium falciparum

malaria constructed by Bhatt et al. (2015), on the occurrence of Malaria Suitable Months, MSM , for increasing

levels of the malaria stability index constructed by Kiszewski et al. (2004) as the center of the weighting function;

see text for details.

Figure 4 (a) provides a graphical illustration of the spatial distribution of the original malaria

34Notice that with a maximum of the effect for a center of the weighting function at 7 and a window that gives

considerable weight to cells in the perimeter of +/-8 of the index, this implies a threshold of 15 of the stability index

for the construction of the binary measure HR.
35See the results in Table A1 in the Appendix.
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stability index that is used as information to construct the baseline indicator of high malaria risk

areas.36 Figure 4(b) illustrates the variability of short term conditions suitable for malaria within

cells by depicting the standard deviation of malaria suitable months in each cell. In the same Figure

the high risk cells are visualized with a light shadow.

Legend
Malaria Ecology

0,00 - 1,41
1,42 - 4,08
4,09 - 6,60
6,61 - 9,28
9,29 - 12,47
12,48 - 15,83
15,84 - 19,03
19,04 - 22,73
22,74 - 27,88
27,89 - 36,42

(a) Malaria Stability Index

Legend
MSM sd

0,00 - 0,26
0,27 - 0,64
0,65 - 0,86
0,87 - 1,08
1,09 - 1,31
1,32 - 1,60
1,61 - 1,93
1,94 - 2,35
2,36 - 3,00
3,01 - 4,45

(b) MSM and High Risk Cells

Figure 4: Malaria Stability, Malaria Suitable Months (MSM) and High Malaria Risk cells, (HR)

Note: Panel (a) reports the spatial distribution of the malaria stability index (from Kiszewski et al. (2004)). Panel

(b) depicts the standard deviation of Malaria Suitable Months, MSM built following Tanser et. al. (2003) (see

text for details) in high risk cells (HR = 1, light shadow), and low risk cells, (HR = 0, dark shadow).

In additional analyses discussed below, we also consider alternative definitions of cells with high

malaria risk regarding the malaria stability index and make use of non parametric techniques. More-

over, we also explore more explicitly the role of genetic immunities in the population measured by

the diffusion of the Sickle Cell trait using disaggregate data from Piel et al. (2013).

3.3 Empirical Strategy

Following the insights from epidemiology discussed in Section 3.1, favorable short term conditions

for malaria transmission imply an elevated risk of malaria infection in high risk cells, i.e., in areas

with low latent malaria exposure where the population largely lacks acquired and genetic immunity

36See Figure A2 in the Appendix for a histogram of the distribution of the stability index across grid cells.
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to infections from the pathogen. The empirical identification uses this insight and exploits the

differential effect of suitable short term conditions across cells with low and high malaria risk, as

discussed in Section 3.2. Reverse causality is ruled out by the fact that variation in short-run weather

conditions in high and low malaria risk areas is exogenous to civil violence.

The identification strategy exploits the differential effect of exogenous variation in short term

conditions suitable for malaria in high and low malaria risk areas by estimating a linear probability

model of the form:

V iolencei,c,t = αMSM i,c,t + βHRi,c ×MSM i,c,t + ΓX ′i,c,t + ∆Z ′i,c,t−1 + Φi,c,t + ui,c,t (1)

where V iolencei,c,t is a binary indicator of civil violence in cell i in country c in period t.

The latent risk of malaria outbreaks is measured by the binary time-invariant indicator “High

Malaria Risk”, HRi,c, for cell i in country c that is constructed as discussed in Section 3.2.2. The

exogenous short term variation in malaria exposure is measured using the “Malaria Suitable Months”

variable, MSMi,c,t, constructed as discussed in Section 3.2.1. The coefficient of interest is β, which

captures the effect of the occurrence of favorable weather conditions in a given cell i in country c in

period t that exhibits high malaria risk, as compared to the occurrence in a low malaria risk cell.37

In the yearly data, t reflects a year, in the monthly data, t is a month. In the analysis exploiting

yearly variation, MSM represents the number of malaria-suitable months in a year. In the monthly

panel data the variable MSM is a dummy that takes value one if in a given month in a given cell

conditions are suitable for malaria and 0 otherwise.

The vectors X and Z contain additional contemporaneous or lagged covariates. Depending on

the particular specification and the data frequency, the covariates include the main effect of HRi,c,

weather conditions (and their lags) and the lagged dependent variables among others.

The vector Φi,c,t generically indicates the inclusion of different types of fixed effects at the level of

cell i, country c, or period t, and possibly their interaction that can be included in isolation or jointly,

depending on the specification. For instance, the baseline specification at yearly frequency exploits

within cell variation over time with cell and year fixed effects (so that Φi,c,t = φi + φt) along the

lines of a difference-in-differences framework.38 At monthly frequencies, we estimate specifications

equivalent to a two-way (cell and month) fixed effects model; in addition we consider even more

flexible specifications, including cell-year and calender month fixed effects, among others.

The baseline model is estimated as a linear probability model using least squares, with robust

standard errors that allow for arbitrary heteroskedasticity and autocorrelation of the error term

within a given cell, and spatial correlation with neighboring cells (Bester et al., 2011).

37Exploratory regression results presented in Table A1 in the Appendix show that the occurrence of malaria suitable

months in high risk areas robustly correlates with projected malaria incidence when exploiting within-cell variation at

yearly frequency.
38As a preliminary step we also run pooled OLS specifications that allows estimating also the effect of high risk

cells, HRi,c including country and time fixed effects (so that Φi,c,t = φc + φt).
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4 Baseline Results

4.1 Pooled OLS – Yearly Frequency

In light of the existing literature, which mostly uses annual data frequencies, we first explore the role

of malaria risk for civil violence by estimating model (1) by pooled OLS at the cell-year level. The

inclusion of country fixed effects and time fixed effects also allows estimating the coefficient for the

(time-invariant, cell-specific) High Malaria Risk indicator, HR. This coefficient is indicative of the

effect of (time-invariant) conditions that entail high latent malaria risk on the probability of violent

events.

Table 2 presents the results. To account for cell-specific differences in malaria conditions and

focus on unusually suitable conditions for malaria transmission, we compute the number of malaria-

suitable months for each year and cell and subtract from it the cell-specific mean across all years

(Malaria Suitable Months Demeaned). The results in Table 2 Column (1) document that high malaria

risk cells display a significantly higher probability of civil violence. Compared to the unconditional

average of 0.18 violent events in a given year and cell, high malaria risk cells are associated with an

almost 50% higher conflict risk.39 Exogenous variation in weather conditions reflected by Malaria

Suitable Months , MSM henceforth (measured by the number of demeaned malaria suitable months in

a given year and cell) identify short-term variations in malaria risk, but appear to have no significant

effect on violence. Based on the epidemiological aspects discussed above, the actual malaria threat

constituted by suitable weather conditions for malaria transmission should depend on the latent

malaria exposure and the associated level of (acquired or genetic) immunity, however. In cells in

which the population is less frequently exposed to malaria shocks and thus possesses lower levels of

(genetic and acquired) immunities, the health shock is expected to be stronger.

Column (2) shows that the insignificant average effect of malaria suitable weather conditions hides

substantial heterogeneity: the occurrence of a month with suitable conditions for malaria transmis-

sion increases civil violence only in “High Malaria Risk” cells. There, the risk of observing a violent

event increases by 1.7 percentage points (which corresponds to an increase of about 10% compared

to the unconditional mean of 18%) due to the occurrence of a month with suitable conditions for

malaria outbreaks, as compared to cells with low malaria risk, measured by the malaria stability

index. These effects, are conditional on an extensive set of controls for geographic factors, location

distances, resources, ethnic diversity, and weather conditions. Moreover, given that the intention to

treat interpretation of the effects, they correspond to a lower bound of the actual effect of malaria

outbreaks on conflict. The remaining columns show that the results are very similar (both in terms

of statistical significance and magnitude) for extended specifications that also include controls for

population density, income (measured by light night intensity), lags in weather conditions, lagged

39Conflict incidence is fairly similarly distributed, with 71% of all high malaria risk cells and 51% of all low malaria

risk cells experiencing a violent event at least once during the observation period.
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Table 2: Malaria Risk and Violence - Pooled OLS Yearly Data

Dependent Variable Violent Events - ACLED Yearly Data

(1) (2) (3) (4) (5) (6) (7)

High Malaria Risk 0.088*** 0.088*** 0.055** 0.055** 0.035** 0.055** 0.035**
(0.023) (0.023) (0.021) (0.021) (0.013) (0.021) (0.014)
[0.008] [0.009] [0.008] [0.008] [0.007] [0.007] [0.007]

Mal. Suit. Months Demeaned 0.002 -0.009 -0.009 -0.008 -0.008 -0.005 -0.005
(0.004) (0.005) (0.005) (0.005) (0.005) (0.004) (0.004)
[0.004] [0.007] [0.007] [0.007] [0.006] [0.006] [0.005]

MSM D.×High M. Risk 0.017** 0.017** 0.016** 0.014** 0.014* 0.012*
(0.005) (0.005) (0.006) (0.005) (0.005) (0.005)
[0.008] [0.008] [0.008] [0.007] [0.007] [0.006]

Geographic Controls Yes Yes Yes Yes Yes Yes Yes
Location-Distances Yes Yes Yes Yes Yes Yes Yes
Natural Resources Yes Yes Yes Yes Yes Yes Yes
Ethnic Diversity Yes Yes Yes Yes Yes Yes Yes
Pop./Night Lights No No Yes Yes Yes Yes Yes

Weather Yes Yes Yes Yes Yes Yes Yes
Weather Lags No No No Yes Yes Yes Yes
Conflict Lag No No No No Yes No Yes

Country FE Yes Yes Yes Yes Yes No No
Year FE Yes Yes Yes Yes Yes No No
Country-Year FE No No No No No Yes Yes

Observations 38,340 38,340 38,340 38,340 38,340 38,340 38,340
R-squared 0.241 0.241 0.259 0.261 0.350 0.315 0.393
Number of Cells 2,556 2,556 2,556 2,556 2,556 2,556 2,556

OLS estimates (linear probability model). The dependent variable is a binary indicator variable taking value 1 if at least one conflict
event (ACLED dataset) was registered in the given cell in the given year. “High Malaria Risk” is a binary indicator for intermediate
malaria exposure taking value 1 for cells with an average malaria transmission stability index larger than 0 and lower than 15;
“Malaria-Suitable Month” is an index that represents the number of months in the current year that were suitable for malaria
to be transmitted, relative to the cell-specific mean over the observation period; “MSM D.×High M. Risk” is the corresponding
interaction term; see text for details. The “Weather” controls include the average temperature, the average precipitation and the
effective rainfall (the Standard Precipitation and Evapotranspiration Index -SPEI) registered in the respective year (both in levels
and demeaned with respect to the yearly average). The “Weather Lags” include the first two lags of the same variables. The
“Geographic Controls” include absolute latitude, mean elevation, average terrain ruggedness, total cell area, total area of the cell
occupied by water, average precipitation and average temperature. The “Location and Distances” controls includes the natural
logarithm of the distance to the country capital, to the coast, to the country border, to the closest river and to Adis Ababa. The
“natural resources” controls include the average land suitability for agriculture, the presence of diamond mines and the presence
of petrol fields. The ”Ethnic-Diversity” controls for the number of ethnic groups in the cell (GREG). Country-Year fixed effects
are a set of country specific year fixed effects. Panel data from 1998 to 2012 at yearly frequency. The unit of observation is a 1 x 1
degree cell. Standard errors clustered at the country level are reported in parentheses, (·), and Conley standard errors allowing for
spatial and serial autocorrelation up to the threshold of 400 km are reported in square brackets, [·]. ***, **, * indicate significance
at 1-, 5-, and 10-% level computed using the respectively largest standard errors (country clusters or Conley) of each specification.

violence, as well as more flexible panel specifications that include country×year fixed effects.

Interactions with other weather conditions. The indicator of MSM is constructed by exploit-

ing information about the weather conditions over the previous twelve months. According to the

epidemiological literature, particularly suitable conditions for malaria transmission are a non-linear

function of temperature and precipitation. This implies that variation in weather conditions per se,

in terms of linear controls for temperature and precipitation, does not necessarily represent suit-

able conditions for malaria outbreaks. In fact the correlation between malaria suitable months and

weather conditions, in terms of temperature, precipitation and also evapotranspiration, is quite small
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(in the order of -0.10, 0.17 and 0.05, respectively). This is also illustrated in Figure 5.40

Figure 5: Unconditional correlations over time (of demeaned variables) between malaria suitable

months with temperature, precipitations and SPEI at yearly frequencies.

The low correlation with other weather conditions suggests that malaria suitable months do not

generically pick up weather conditions. To explore this issue more formally, Table 3 replicates the

analysis by estimating extended specifications that include interactions between the time-invariant

Malaria Risk indicator and precipitation, temperature, or the SPEI index alone and on top of the

interaction with MSM . The results are almost identical to those shown in Table 2 and the findings

reveal no significant role of interactions between high malaria risk cells and weather conditions besides

the occurrence of conditions corresponding to malaria suitable months.

4.2 Within-Cell Variation – Yearly Panel

We next estimate the baseline empirical model (1) at the cell-year level, but including cell fixed

effects rather than country fixed effects. This specification accounts for observable and unobservable

time-invariant cell-specific characteristics that may affect conflicts. This implies in particular that

time-invariant factors that have been identified as relevant determinants of civil conflict, such as

geographic features favoring conflicts, the persistence of historical events and conflicts, the role of

pre-colonial institutions, the ethnic composition, and the division of ethnic groups across different

countries, among possible other factors, are absorbed by the cell fixed effects. Restricting attention

to within-cell variation over time, including common time fixed effects and discriminating between

high and low risk cells, means that the identification of the effect of short term changes in malaria

risk is along the lines of a difference-in-differences framework.

Table 4 reports the respective results. Since the indicator for high malaria risk, which is based

on the malaria stability index, is time-invariant, the coefficient for this indicator is not identified in

specifications with cell fixed effects. The error structure again allows for spatial correlation across

40The correlation is also small at monthly frequencies as illustrated in Figure A3 in the Appendix.
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Table 3: Malaria Risk and Violence - Pooled OLS Yearly Data With Additional Interactions

Dependent Variable Violent Events - ACLED Yearly Data

(1) (2) (3) (4) (5) (6) (7) (8)

High Malaria Risk 0.107*** 0.107*** 0.107*** 0.107*** 0.107*** 0.107*** 0.106*** 0.106***
(0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027)

Mal. Suit. Months Demeaned 0.003 -0.006 0.003 -0.006 0.002 -0.007 0.003 -0.006
(0.003) (0.004) (0.004) (0.005) (0.003) (0.005) (0.003) (0.004)

MSM D.×H. Mal. Risk 0.014** 0.015** 0.015** 0.013**
(0.005) (0.006) (0.006) (0.005)

Prec. D.×H. Mal. Risk 0.001 0.000 0.000 0.000
(0.001) (0.001) (0.001) (0.001)

Temp. D.×H. Mal. Risk -0.015 -0.011 -0.011 -0.010
(0.023) (0.023) (0.028) (0.028)

SPEI. D.×H. Mal. Risk 0.002 0.001 -0.002 -0.002
(0.015) (0.015) (0.017) (0.017)

Weather Yes Yes Yes Yes Yes Yes Yes Yes
Weather Lags Yes Yes Yes Yes Yes Yes Yes Yes

Country FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes

Observations 38,340 38,340 38,340 38,340 38,340 38,340 38,340 38,340
R-squared 0.227 0.227 0.227 0.227 0.227 0.227 0.227 0.227
Number of Cells 2,556 2,556 2,556 2,556 2,556 2,556 2,556 2,556

OLS estimates (linear probability model). The dependent variable is a binary indicator variable taking value 1 if at least one
conflict event (ACLED dataset) was registered in the given cell in the given year. MSM (“Malaria-Suitable Month”) is an index
that represents the number of months in the current year that were suitable for malaria to be transmitted, relative to the cell-specific
mean over the observation period;“High Malaria Risk” is a binary indicator for intermediate malaria exposure taking value 1 for cells
with an average malaria transmission stability index larger than 0 and lower than 15; “MSM×High M. Risk” is the corresponding
interaction term; see text for details. The “Weather” controls include the average temperature, the average precipitation and the
effective rainfall (the Standard Precipitation and Evapotranspiration Index -SPEI) registered in the respective year. The “Weather
Lags” include the first two lags of the same variables. Standard errors clustered at the country level are reported in parentheses,
(·). The unit of observation is a 1 x 1 degree cell. Panel data from 1998 to 2012 at yearly frequency. ***, **, * indicate significance
at 1-, 5-, and 10-% level, respectively.

contiguous cells. The results confirm that the occurrence of malaria suitable weather conditions

leads to an increase in the incidence of violent events in cells with “High Malaria Risk”. These

results are unaffected by controlling for lags of weather conditions and the occurrence of violence

in the past year. In terms of quantitative importance the effects is very similar to the pooled OLS

results; the occurrence of an additional month with suitable conditions for malaria increases the

risk of violence by almost 10% in cells with high malaria risk compared to cells with low malaria

risk. This also indicates that the effect of malaria risk is essentially unaffected by controlling for

cell-specific characteristics.

4.3 Within-Cell Variation – Monthly Panel

Temporary shocks to malaria risk are, by their nature, closely confined in terms of time and space.

The reason is that, as discussed in Section 3, short term malaria risk depends on local geographic

conditions (reflecting the overall suitability for the multiplication of the vector and thus the trans-

mission of malaria) and temporary fluctuations in weather conditions (that enable or prevent the

reproduction of anopheles mosquitos and of the plasmodium parasite, and thus the multiplication
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Table 4: Malaria Risk and Violence - Within-Cell Variation Yearly Data

Dependent Variable Violent Events - ACLED Yearly Data

(1) (2) (3) (4) (5) (6) (7)

Malaria Suitable Months 0.002 0.002 -0.008 -0.008 -0.005 -0.007 -0.005
(0.003) (0.003) (0.004) (0.004) (0.005)) (0.004) (0.004)
[0.004] [0.003] [0.005] [0.005] [0.005] [0.008] [0.005]

MSM×High Malaria Risk 0.015** 0.017** 0.013** 0.017** 0.013**
(0.005) (0.005) (0.005) (0.005) (0.005)
[0.007] [0.006] [0.006] [0.007] [0.006]

Weather Yes Yes Yes Yes Yes Yes Yes
Weather Lags No Yes Yes Yes Yes Yes Yes
Conflict Lag No No No No No Yes Yes

Cell Fixed Effects Yes Yes Yes Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes No No No No
High M. Risk× Year FE No No No Yes No Yes No
Country × Year FE No No No No Yes No Yes

Observations 38,340 38,340 38,340 38,340 38,340 38,340 38,340
R-squared 0.465 0.467 0.467 0.468 0.521 0.473 0.523
Number of Cells 2,556 2,556 2,556 2,556 2,556 2,556 2,556

OLS estimates (linear probability model). The dependent variable is a binary indicator variable taking value 1 if at least one
conflict event (ACLED dataset) was registered in the given cell in the given year. MSM (“Malaria-Suitable Month”) is an index
that represents the number of months in the current year that were suitable for malaria to be transmitted, relative to the cell-
specific mean over the observation period; “High Malaria Risk” is a binary indicator for intermediate malaria exposure taking value
1 for cells with an average malaria transmission stability index larger than 0 and lower than 15; “MSM×High M. Risk” is the
corresponding interaction term; see text for details. “Weather” controls include the average temperature, the average precipitation
and the effective rainfall (the Standard Precipitation and Evapotranspiration Index -SPEI) registered in the respective year. The
“Weather Lags” variables include the first two lags of the “Weather Time-Varying”. Panel data from 1998 to 2012 at yearly
frequencies. The unit of observation is a 1 x 1 degree cell. Standard errors clustered at the cell level are reported in parentheses,
(·), and Conley standard errors allowing for spatial and serial autocorrelation up to the threshold of 400 km are reported in square
brackets, [·]. ***, **, * indicate significance at 1-, 5-, and 10-% level computed using the largest standard errors (cell clusters or
Conley) of each specification.

and transmission of malaria). The “Malaria-Suitable Month” variable has been designed by epidemi-

ologists for the purpose of predicting the threat of malaria outbreaks at the month level. The high

degree of temporal disaggregation is possible because of the short incubation period of malaria, which

implies that suitable conditions should be expected to translate into elevated malaria risk within the

same month or, if the health shocks peaks in the second part of the month, possibly in the following

month. We continue the analysis by exploiting this specific feature and use the data at the monthly

level. At monthly frequencies the variable “Malaria Suitable Month” is a binary indicator. Again,

the effect of malaria suitable periods is expected to translate into increased malaria transmission

mostly in “High Malaria Risk” cells.

An important advantage of using data at monthly frequencies is that it allows us not only to rely on

within-cell variability over time, but it also provides the possibility to include cell×year fixed effects,

which account for time-varying unobserved heterogeneity. Estimating such a rich specification thus

provides an important advantage for the econometric identification as the estimation model accounts

for all cell-year specific determinants of civil violence. Notice that the specification additionally

accounts for all factors that increase conflict with lags at yearly frequencies. Estimating a model

with cell-year fixed effects therefore accounts for factors like the effect of (lagged) income shocks,
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political instability, natural disasters, or the increase in violence due to variation in the prices of

commodities at yearly frequencies that have been explored in the recent literature using disaggregate

data for Africa. The effects of these, and potentially other, cell-year specific factors are subsumed

in the cell-year fixed effects, implying that the identification of an increased risk of civil violence

due to variation in malaria exposure constitutes an additional factor above and beyond the factors

identified in the literature.

Table 5 reports the main results obtained with data at the monthly level for different specifications.

The specifications in Columns (1) and (2) include cell dummies and month dummies (standard two-

way fixed effects), as well as controls for weather in the past 12 months (in terms of temperature,

precipitation and the SPEI index).41 Column (1) shows that (unusual) malaria suitable months in a

given month do not have any significant effect on violent events on average. The results in column

(2) confirm the earlier findings at yearly frequencies that unusual malaria suitable months have a

positive, and sizable, effect on the likelihood of civil conflicts in “High Malaria Risk” cells. Compared

to an unconditional probability of violence around 4% (0.044), the coefficient estimate of 0.008 in

Column (2) implies an increase in the risk of violence of 18% when suitable weather conditions

for malaria outbreaks occur in areas with a high structural risk of malaria outbreaks. Again, this

corresponds to a lower bound of the actual effect of malaria outbreaks on conflict when considering

that these effects are intention-to-treat.

The results in Columns (3)-(5) include cell×year fixed effects, that account for all observed and

unobserved cell specific determinants of violence in a given year, and calendar month or month fixed

effects, that accounts for specific months involving unusual violence across cells and temporary (e.g.,

seasonal) fluctuations in conflicts, respectively. Finally, Column (6) extends the specification to a

dynamic panel model that accounts for past violent events. The results are essentially unaffected.

We performed several robustness checks to explore the sensitivity of the results. The robustness

checks include estimates of extended models that include separate calender month fixed effects for

cells above and below the equator and for cells in low and high malaria risk areas.42 The baseline

patterns also emerge with non-linear estimators.43 Finally, as with the yearly data, the findings

are robust to the inclusion of additional interactions between the high malaria risk indicator with

41The specification controls for weather conditions in each cell×month (again in terms of temperature, precipita-

tion and SPEI) and the respective lags in the previous twelve months. The results are also confirmed with more

parsimonious specifications that do not include weather controls. Without these controls, the occurrence of malaria

suitable months may pick up unsuitable fighting conditions and/or good conditions for agriculture, see Table A2 in

the Appendix.
42See Table A3 in the Appendix for these robustness checks.
43The baseline analysis has been conducted using a linear probability framework in light of the fact that the

identification approach implies that the coefficient of main interest refers to an interaction term along the lines of

a difference-in-difference framework. Replicating the main results using conditional Logit (fixed effects) estimators

delivers similar results, suggesting that the main findings do not depend on the estimation method. The results are

reported in Table A4 in the Appendix.
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Table 5: Malaria Risk and Violence: Baseline - Monthly Data Panel

Dep. Variable Violent Events - ACLED Monthly Data

(1) (2) (3) (4) (5) (6)

Malaria Suitable Month 0.001 -0.003 0.002 -0.002 -0.002 -0.002
(0.002) (0.002) (0.001) (0.002) (0.002) (0.002)
[0.002] [0.003] [0.002] [0.002] [0.002] [0.002]

MSM×High Malaria Risk 0.008*** 0.007*** 0.007*** 0.007***
(0.003) (0.003) (0.003) (0.003)
[0.003] [0.003] [0.003] [0.003]

Weather Yes Yes Yes Yes Yes Yes
Weather Lags 1-12 Yes Yes Yes Yes Yes Yes

Cell FE Yes Yes No No No No
Month×Year FE Yes Yes No No Yes No
Cell×Year FE No No Yes Yes Yes Yes
Month FE No No Yes Yes No Yes
Violence Lag No No No No No Yes

Observations 457,560 457,560 457,560 457,560 457,560 457,560
R-squared 0.242 0.242 0.413 0.413 0.414 0.413
Number of Cells 2,556 2,556 2,556 2,556 2,556 2,556

OLS estimates (linear probability model). The dependent variable is a binary indicator variable taking value 1 if at least one
conflict event (ACLED dataset) was registered in the given cell in the given month. MSM (“Malaria-Suitable Month”) is a binary
indicator that takes value 1 if the conditions in the given month in the given cell were suitable for malaria to be transmitted, and
0 otherwise; “High Malaria Risk” is a binary indicator for intermediate malaria exposure taking value 1 for cells with an average
malaria transmission stability index larger than 0 and lower than 15; “MSM×High M. Risk” is the corresponding interaction term;
see text for details. “Weather” controls include average temperature, precipitation and effective rainfall (SPEI index) registered in
the current month, the “Weather Lags 1-12” include average temperature, precipitation and effective rainfall (SPEI index) in each
of the 12 months proceeding the current month. Standard errors clustered at the cell level are reported in parentheses, (·), and
Conley standard errors allowing for spatial and serial autocorrelation up to the threshold of 400 km are reported in square brackets,
[·]. The unit of observation is a 1 x 1 degree cell. Panel data from 1998 to 2012 at monthly frequency. “Month FE” correspond to
separate intercepts for each calender month, “Month×Year FE” correspond to separate intercepts for each month in the sample.
***, **, * indicate significance at 1-, 5-, and 10-% level, respectively.

weather conditions in terms of precipitation, temperature, or precipitation and evapotranspiration

(SPEI), respectively.44 The estimation of extended specifications delivers results that are essentially

unchanged.

4.4 Robustness: Coding of Violent Events

The analysis so far has focused on the occurrence of violent events of any type in a given cell in

a given month. One issue that has been raised in the context of ACLED data on violence is the

possibility of selective reports and differential coverage across different locations in Africa. This

might be potentially problematic when exploiting variation across cells. By exploiting variation

within cells and conditioning on cell-year-specific intercepts, our analysis appears to be less affected

by these concerns. Nevertheless, it is difficult to completely rule out selective reporting, for instance

related to the conflict types. Also, the precise geo-localization is more uncertain for some events.

The high concentration of violence in specific regions leads to the question whether the results are

affected by their exclusion. Moreover, instead of considering the incidence of violence, it might also

be interesting to explore the role of malaria risk for the onset and termination of violent events. In

44See Table A5 in the Appendix.

27



the following, we briefly discuss the results of further robustness checks that explore these issues.

The respective results are reported in the Appendix.

Events with uncertain location. The first set of robustness checks refers to the fact that for some

of the conflict events in the ACLED data set the precise location is not identified. Whenever this

is the case, the default in the ACLED data set is that the events are attributed to the respective

capital of the country. However, there is some uncertainty regarding the reliability of this coding.

To check the robustness of the results in this respect, the analysis was repeated by eliminating the

conflicts that are not clearly identified in space and thus attributed to the capital city. The findings

are qualitatively and quantitatively unaffected.45

Neuralgic Conflict Regions. In order to check to what extent the findings are driven by particular

conflict events, or by events of violence that are concentrated in neuralgic regions, for instance the

resurgent conflicts in Rwanda and Burundi, we replicated the analysis on a sample that excludes

such regions. This delivers qualitatively and quantitatively virtually identical results.46

Onset and Termination. When investigating the onset of a violent event in a given cell and

month, the results are qualitatively similar, but quantitatively smaller. In particular, there is a

positive effect of the occurrence of favorable climatic conditions for an outbreak of violence in high

risk cells compared to low risk cells. This is mirrored by a negative effect when looking at the

termination of conflict as dependent variable. A similar pattern is observed also for termination of

violence although the effect is less precisely estimated.47

Casualties. Another robustness check explores the intensive margin of violence. The results

indicate that casualties caused by violent events are on average lower during months with particularly

suitable conditions for malaria outbreaks in low risk areas. However, there is a positive effect of the

advent of malaria suitable months in high risk cells.48

5 Isolating the Effect of Malaria

This section provides a more detailed exploration of further implications from the epidemiology of

malaria. The purpose of the analysis is to obtain additional evidence regarding the robustness of the

baseline findings reported in the previous section and to gain additional insights into the working of

the health channel for civil violence.

45Uncertain events are coded as no conflict incidence, which implies a somewhat lower unconditional probability of

conflict in the estimation sample. Table A6 in the Appendix contains the respective results.
46Table A7 in the Appendix documents this by presenting results for samples that do not include cells with centroids

in Rwanda and Burundi, or that do not contain cells in North Africa (defined as cells with centroid in Morocco, Tunisia,

Algeria, Lybia, or Egypt).
47See Table A8 in the Appendix.
48The results are based on Tobit models and reported in Table A9 in the Appendix.
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5.1 Latent Malaria Risk

The dichotomous representation of latent malaria risk, and the use of a binary indicator of high latent

malaria risk, is convenient since it limits possible concerns about measurement error in the malaria

transmission stability. Moreover, the binary measure allows for a straightforward interpretation of the

estimation results and of the magnitude of the effects in terms of a standard difference-in-differences

setting. From an epidemiological perspective, however, malaria risk should not be interpreted as

being dichotomous, but it should decrease with the intensity of past exposure to malaria. To explore

the latent malaria risk in further detail we report the results of several robustness checks that follow

from the insights of research in epidemiology.

Alternative Coding of High Malaria Risk Cells. The analysis so far has used a binary indicator

for high and low risk of malaria outbreaks, based on wether for a given cell the index of malaria

transmission stability by Kiszewski et al. (2004) takes on values below or above a threshold of 15,

respectively (with zero stability coded as low risk). We investigated the robustness of the results

with respect to this coding of malaria risk in several ways. The results turn out to be robust and

qualitatively as well as quantitatively very similar for alternative thresholds.49

The role of cells with Malaria Stability equal to zero. The empirical analysis so far has employed

a coding of cells with a malaria transmission stability index of 0 and cells with an index above a

certain threshold x (e.g., 15) as low risk cells. Cells with an index in the range (0, x) have been coded

as high risk cells. Since malaria prevalence is effectively ruled out in cells with a malaria transmission

stability index of 0, these cells might alternatively be seen as reflecting no risk instead of low risk.

In view of malaria epidemiology the results should therefore not be driven by the inclusion of these

areas. Specifications that exclude cells with zero malaria stability deliver very similar results.50

Alternatively, estimating the effect of the occurrence of a malaria suitable month on conflict in cells

with a malaria stability index of 0 delivers no evidence for an effect.

Interactions with Geographic Features. The latent malaria risk might be related to other geo-

graphic specific characteristics that are not fully accounted for by the dichotomous coding into high

and low risk areas based on a threshold for the malaria transmission stability index. To explore this

possibility, we estimated models with an extended specification that include additional interactions

between malaria suitable months and land suitability, terrain ruggedness and elevation, respectively.

The results of these estimates could also be informative about the features of the local geography

49Table A10 in the Appendix illustrates this by presenting the estimation results obtained with a high malaria risk

variable that based on alternative upper thresholds of 10 and 20 for the malaria stability index, respectively. Very

similar results are obtained for data with yearly frequencies. Figure A5 in the Appendix plots the corresponding

coefficient estimates when varying the upper thresholds between 5 and 25 on the malaria stability index to code high

risk areas.
50Table A11 in the Appendix.
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