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1 Introduction 

Mineral wealth extraction and its impacts on development outcomes, especially in the developing 
world, have received considerable attention in the economic development literature. Recent 
studies have shown the impacts of mineral wealth extraction on economic growth and 
development (Beny and Cook 2009; Papyrakis and Gerlagh 2004; Van der Ploeg 2011; Venables 
2016), conflict and civil unrest (Collier and Hoeffler 1998, 2002, 2005; Lujala 2009; Van der Ploeg 
2011), agricultural growth (Chuhan-Pole et al. 2015), women’s employment (Kotsadam and 
Tolonen 2015), income and prices of goods (Aragón and Rud 2013), and revenues, public 
spending, and living standards (Caselli and Michaels 2013). Yet little is known about the 
relationship between mineral wealth and spatial inequality in resource-rich countries in general, or 
in producing regions in particular (see e.g., Ross 2007),1 despite a widely-held view that mineral-
rich countries often exhibit large inequalities, both vertical and horizontal (see e.g., Auty 2001; 
Ross 2007).2  

This paper fills this gap in the literature by examining whether the presence of mineral deposits 
and mining activities affects spatial inequality. Our main focus is on Africa, a continent endowed 
with minerals and with recently growing mining activities (Beny and Cook 2009), and where the 
lack of empirical evidence is persistent and somewhat rooted in the legacy of unreliable and 
inconsistent data, especially at the local scale (Kim 2008). The analysis builds on two important 
tenets: first, the theoretical explanations of the causes of spatial inequalities that identify natural 
geographical advantages (including the presence of mineral wealth) as one key candidate among 
others (see Kim 2008; Venables 2005); second, a unilateral causation between mining and spatial 
inequality—the presence of mining deposits and activities influences spatial inequality, and not 
vice versa—as an identification strategy. With the aid of night-time lights data to measure 
inequality across space and time, and geocoded mine-level data, we confine our analysis at the 
district level, effectively allowing us to investigate the within-district inequality effects of mining 
activities across countries over time.  

There were several reasons for our choice of districts as units of analysis. First, by focusing on 
districts we systematically examined the nexus between mining and spatial inequality in proximity 
to mines and over time. This is useful for untying the effects of mining on spatial inequality at the 
subnational level: understanding how mining affects economic activities at local scales, and 
identifying the drivers of spatial differences between mineral-rich and mineral-poor countries—a 
needed ingredient for eliciting appropriate policy responses. Second, the use of lower-level 
geographical administrative units allowed us to control for unobserved country and regional 
differences, which naturally cannot be handled in a setting where analysis is focused at the country 
level. In the context of our data, controlling for country and regional fixed effects is important if 
we are to understand the dynamic effects of mining activities on spatial inequality net of other 

                                                 

1 Producing regions can typically face forced displacement, population pressure due to in-migration, or environmental 
pollution and degradation (Akabzaa et al. 2007; Salami 2001), with little or no positive return in terms of higher 
incomes or better living standards. 

2 Vertical inequality refers to inequality amongst individuals within countries or regions, while horizontal inequality 
refers to inequality between countries or regions. These inequalities can create frustrations and grievances in producing 
regions, leading to the so-called resource curse. In a worst-case scenario, attempts to gain more control over natural 
resource wealth can degenerate into violent regional conflicts or secessionist movements, as in the Democratic 
Republic of Congo, Indonesia, Myanmar, Nigeria, Sudan, or Yemen. For more detail, see e.g., Bannon and Collier 
(2003), or Ross et al. (2012).  
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confounding and unobserved country- and region-specific characteristics, such as institutional 
structures and the quality of governance across countries. 

The empirical analysis is divided into two main parts. In the first part, we estimate the effects of 
mining across the different minerals available in districts across countries over time. The main goal 
here is to understand the overall impact of mining activities—regardless of the individual 
minerals—on district inequality. The second part takes into account the individual minerals 
available across districts. This approach allows us to disentangle the effects of individual mineral 
commodities on district inequality. We argue that by separating the effects of individual minerals, 
our study is able to precisely identify what types of minerals affect spatial inequality, and by 
extension how they do so. To strengthen our empirical analysis, in both cases we identified and 
exploited the different sources of exogenous variation (i.e. mining status, mining scale, mining 
value, and the nature of mining activities) in mining activities at the district level.  

We document two key findings. First, when we aggregate the different minerals, mining increased 
district inequality during 2001–2012. In fact, when we control for constant mineral prices, the 
regression estimates show that district inequality (measured using lights-based Gini) on average 
increases by 0.180 and 0.090 Gini points in districts with mineral deposits and mining sites 
respectively, relative to those with none. The results remain robust even when we use minerals’ 
annual average prices, with an average increase of 0.166 and 0.083 Gini points for districts with 
mineral deposits and mining sites respectively.  

Second, when we analyse individual minerals, the findings show that mining affected district 
inequality both positively and negatively. On the one hand, the findings show significant positive 
effects of mining on inequality for districts producing helium, garnet, diatomite, and gold. Since 
gold is a high-value metal and its prices were steadily on the rise during 2001–12 (see Figure 1), 
the positive effect can be explained along the lines of Boschini et al. (2007). However, the positive 
result for helium, garnet, and diatomite can be explained by the effect of steady declines in the 
prices of these commodities during 2011–12 (see Figure 1), with the underlying assumption that, 
ceteris paribus, price declines potentially led to an overall reduction in income of mineral-rich districts 
(relative to districts with none), resulting in increased inequality. On the other hand, the findings 
also show significant negative effects on inequality for districts producing iron ore and nickel, 
whose prices were on a steady rise during 2001–12 (see Figure 2), suggesting that increases in 
district incomes potentially led to a negative effect on overall district inequalities.  

The findings are even more nuanced when we analyse the previously mentioned sources of 
exogenous variations. This analysis revealed that in addition to the price effect described above, 
the effects of mining on district inequality largely depended on whether mines were active or 
closed, the scale of mining operations, the value of the minerals extracted, and the nature of mining 
activities. For example, on the one hand, the results show statistically significant increases in 
inequality in districts with active mines and engaged in the production of low-value, large-scale, 
and transformational mining activities. On the other hand, the findings depict a negative and 
statistically significant effect in districts with closed mines or engaged in mineral extraction.  

The findings on individual minerals are equally revealing in terms of the effects of the interaction 
between individual minerals’ prices and the mentioned sources of exogenous variation. For 
example, our findings suggest that inequality increased significantly in districts with active mines 
producing helium, garnet, tin, and gold, and decreased in districts with active mines producing iron 
ore. For districts with closed mines, the results show that inequality declined where, amongst 
others, diamond, cement, platinum, nickel, and tin were produced. Also, the results indicate that 
inequality increased significantly in districts with low-value minerals (i.e. helium and garnet) and 
high-value minerals (i.e. gold), and declined in districts producing iron ore and nickel. Further, the 
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positive effect remained for districts producing, among others, helium, garnet, gold, lithium, and 
manganese at a large scale, while districts engaged in the small-scale production of, for example, 
barite, bentonite, salt, and graphite experienced declines in the levels of inequality. Finally, results 
based on the nature of mining activities show closely similar findings.  

In general, all the above results are robust both to different model specifications and to the 
inclusion of various controls such as district, regional, and country fixed effects (which also 
account for the differences in institutional structures, policies, and quality of governance), rainfall, 
proxies for agricultural productivity, and districts’ spatial locations. Obviously, these nuanced 
findings are uniquely interesting and can elicit different policy prescriptions. In particular, for 
example, our finding that precious metals such as gold had statistically positive effects on district 
inequality resonate with the predictions and findings of Boschini et al. (2007) on the impacts of 
types of minerals and their appropriability for economic development outcomes. Overall, the main 
conclusion we draw from these results, also echoing Van der Ploeg (2011), is that mineral wealth 
and thus mining can indeed be both a curse and a blessing. But whether it is a curse or a blessing 
largely depends on the types and values of the minerals, and on a number of such important and 
interrelated factors as status of the mines, scale of operations, nature of mining activities, and 
values of minerals extracted. 

Our paper makes several contributions to the existing literature. We first respond to Ross’s (2007: 
238) call for additional research on the relationship between natural resources and income 
inequality, an issue about which ‘surprisingly little is known’. As far as the mining-spatial inequality 
nexus is concerned, our study is the first to our knowledge to offer an extensive empirical 
investigation across a panel of countries and at lower-level geographical administrative units in 
Africa. Further, our study contributes to a broader and controversial literature on the causes of 
spatial inequality, particularly in developing countries. As Kim (2008) and Venables (2005) assert, 
understanding how natural advantages (e.g., mineral wealth) affect spatial inequality is important 
for explaining the spatial differences that emerge as countries experience positive economic 
growth and development, as is the case in Africa. In the same vein, our study resonates with 
ongoing policy discussions on understanding the link between subnational regional development, 
spatial inclusion, and structural transformation in Africa (AfDB et al. 2015). Finally, our analysis 
encompasses a wider geographical coverage—2,182 districts across 653 regions in 38 African 
countries—thus providing evidence that is more representative and useful for policy than studies 
with more restricted coverage.  

The remainder of this paper proceeds as follows. Section 2 briefly reviews the existing literature 
on the link between natural resources and socio-economic outcomes. Section 3 presents the data, 
a brief description of inequality estimation, and the summary statistics. Section 4 presents our 
empirical model. Section 5 discusses the main results. Section 6 concludes. 

2 Related literature  

The resource curse relates to the observation that natural-resource-rich countries tend to grow less 
rapidly than natural-resource-poor countries; or more broadly, that resource-rich countries tend 
to have worse development outcomes compared with resource-poor countries. This finding is 
documented in Sachs and Warner’s (1995) seminal paper, as well as in a number of subsequent 
studies (e.g., Arezki and Van der Ploeg 2011; Gylfason et al. 1999; Mehlum et al. 2006; Sachs and 
Warner 1997, 2001). Sachs and Warner (1995) use growth in per-capita GDP as the dependent 
variable, and measure natural resource abundance using the share of primary-product exports in 
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GDP. They find that economies with a high ratio of natural resource exports to GDP (in the base 
year, 1970) tended to grow slowly during the subsequent 20 years.  

Ding and Field (2005) suggest a distinction between resource dependence and resource 
abundance.3 Exports of primary resources as a share of GDP or of total exports—used in Sachs 
and Warner (1995) and other studies—is viewed as measuring resource dependence rather than 
resource abundance. Using the World Bank’s estimates of natural resource capital, Ding and Field 
measure resource dependence as the share of natural resource capital in total capital, and resource 
abundance as natural resource capital per capita. Their results indicate that resource endowment 
has a positive impact on economic growth, whereas resource dependence has a negative impact. 
Similarly, Brunnschweiler and Bulte (2008) find that resource dependence does not affect growth, 
while resource abundance positively affects growth.  

The previous two studies suggest that the direct impact of resource wealth on growth is not a 
robust and generalizable phenomenon. However, there exist various ‘indirect’ channels through 
which natural resource wealth can affect development outcomes. A first negative impact of natural 
resource wealth relates to the so-called Dutch disease.4 While earlier studies found no evidence of 
the Dutch disease in the manufacturing sector (see e.g., Gelb 1988; Spatafora and Warner 1999), 
more recent empirical evidence has become available. Harding and Venables (2016), using data on 
41 resource exporters for 1970–2006, show that a dollar of resource revenue leads to a decrease 
in non-resource exports by approximately 75 cents and an increase in imports by 25 cents, with 
the manufacturing sector experiencing the largest crowding-out effect. Similarly, Ismail (2010) 
finds results indicating that, in oil exporting countries, a 10 per cent oil windfall is on average 
associated with a 3.4 per cent fall in value added across manufacturing. Evidence of the Dutch 
disease is also found in Brazil, where oil discoveries and exploitation led to service expansion and 
industry shrinkage (Caselli and Michaels 2013).  

A concentrated distribution of natural resource rents can increase inequality (between rich and 
poor, or across regions of a country). For example, resource dependence is found to be correlated 
with a larger Gini index of inequality (Gylfason and Zoega 2003), while Fum and Hodler (2010) 
suggest that natural resources increase income inequality in ethnically divided societies but not in 
ethnically homogenous societies. Increased inequality can lead to frustration and social unrest, due 
for example to differences between actual and expected benefits (Ross 2007), particularly in 
producing regions. In this regard, Collier and Hoeffler (1998, 2002, 2005) show that natural 
resources significantly increase the chances of civil conflict in a country. Diamonds (Lujala 2009), 
oil (Fearon 2005; Fearon and Laitin 2003; Humphreys 2005; Ross 2004), and narcotics (Angrist 
and Kugler 2008) also pose the highest risks of war.  

Mehlum et al. (2006) find that the resource curse applies typically in countries with rent-seeker-
friendly institutions, but not in countries with producer-friendly institutions. Likewise, Boschini et 
al. (2007) find evidence suggesting that resource-rich countries experience a curse only when 
institutions are poor; in contrast, sufficiently good institutions can turn resource abundance into a 
blessing. Papyrakis and Gerlagh (2004) also show that natural resource wealth has a negative 

                                                 

3 They point out that a resource-abundant country such as the United States is not resource-dependent (i.e. has a small 
primary sector), while a resource-scarce country such as Burundi can be heavily dependent on primary resources. 

4 Natural resource exports generate significant foreign reserves, resulting in exchange rate appreciation. Such currency 
appreciation affects the international competitiveness of the traditional export sectors (agriculture or manufacturing), 
potentially leading to their shrinking in favour of the natural resource sector and non-tradable sector. This 
phenomenon is called the ‘Dutch disease’, as the discovery of natural gas in the North Sea caused the manufacturing 
sector in the Netherlands to decline (see e.g., Ellman 1981). 
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impact on growth, but does so through transmission channels such as investment, corruption, 
openness, terms of trade, and schooling. 

Finally, the literature suggests that the impact of resources differs according to their type. Boschini 
et al. (2007) find results indicating that when countries are rich in diamonds and precious metals, 
both the positive and negative effects of natural resources are larger. This result can be explained 
by ‘appropriability’ characteristics (i.e. high value, easy storage, easy transportation or smuggling, 
and quick sale), which make these types of natural resources more prone to rent-seeking behaviour, 
corruption, and conflict. Easily appropriable point-source resources, such as oil, diamonds, and 
minerals, are more likely to be harmful to institutional quality and growth than diffuse resources 
such as agriculture (rice, wheat, and animals), whose rents are spread throughout the economy 
(Auty 1997; Isham et al. 2005; Mavrotas et al. 2011; Woolcook et al. 2001).  

Most of the previous studies are cross-country analyses. A distinctive feature of our paper is that 
we use panel data on mineral deposits to estimate inequality at district level during 2001–2012, a 
period also characterized by relatively high growth in Africa. Gennaioli et al. (2014) argue that 
there are large regional differences within countries that need to be understood; the use of 
subnational panel data therefore accounts for intra- and inter-regional differences that can 
confound estimates. From an estimation standpoint, our study is also free from omitted variable 
bias emanating from the large unobservable differences that are usually present in cross-country 
studies.5  

3 Data and district inequality estimation 

3.1 Data 

We combine an array of data sources to construct a data set with the relevant important variables 
for estimating the effects of mining activities on district inequality: the National Oceanic and 
Atmospheric Administration, National Geophysical Data Center (NOAA-NGDC)6 for data on 
night-time lights intensity; the United States Geological Survey (USGS)7 for data on the spatial 
location of mineral deposits and mining activities in Africa and historical US mineral prices; the 
United States Global Land Cover Facility (GLCF)8 for the Normalized Difference Vegetation 
Index (NDVI)—a proxy for agricultural productivity. We also use Tropical Applications of 
Meteorology using Satellite Data (TAMSAT)9 to extract data on rainfall—a proxy for climatic 
shocks. Finally, we extract population data from the Gridded Population of the World (GPW v4).10 
Since our units of analysis are districts, the combined data set constitutes three clustered levels—
districts, regions, and countries.  

                                                 

5 Lederman and Maloney (2008) consider cross-country heterogeneity a key reason for the elusiveness of empirical 
evidence on the resource curse. 

6 The data are available at: www.ngdc.noaa.gov/eog/dmsp/downloadV4composites.html (accessed 16 June 2014). 

7 The data are available at: minerals.usgs.gov/minerals/pubs/country/africa.html (accessed 5 July 2015). 

8 Sponsored by the University of Maryland, NASA, and Global Observation Forest and Land Cover Dynamics. 
Available at: glcf.umd.edu/data/lc/ (accessed 30 December 2016). 

9 The data are available at: www.met.reading.ac.uk/~tamsat/cgi-bin/data/rfe.cgi (accessed 5 July 2015). 

10 Available at: beta.sedac.ciesin.columbia.edu/data/collection/gpw-v4 (accessed 23 August 2015). 

http://www.ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
http://minerals.usgs.gov/minerals/pubs/country/africa.html
http://glcf.umd.edu/data/lc/
http://www.met.reading.ac.uk/~tamsat/cgi-bin/data/rfe.cgi
http://beta.sedac.ciesin.columbia.edu/data/collection/gpw-v4
http://beta.sedac.ciesin.columbia.edu/data/collection/gpw-v4
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NOAA-NGDC data include annual time-series night-time lights intensity data, which are globally 
recorded across countries daily from 20:30 to 22:00 local time by a satellite orbiting the earth. The 
use of this data set follows recent literature that attempts to circumvent the absence of reliable and 
consistent subnational data, particularly in Africa.11 These data come in three main formats: cloud-
free, average visible, and stable light composites. We use the stable light composites, which are 
clear of ephemeral events, background noise, summer light, and auroral activities. Moreover, we 
remove gas flares and water bodies to eliminate potential bias in our estimates. 

3.2 District inequality estimation and trends 

To estimate district inequality using night-time lights data, we followed Mveyange (2015) to 
calculate inequality indices for 2,182 districts in 653 regions across 38 countries in Africa. We 
computed several measures of district inequality as outcome variables: Gini and the entropy 
measures (mean logarithmic deviation (MLD) and Theil)). These measures have several desirable 
properties, e.g., symmetry, mean independence, Pigou-Dalton transfer sensitivity, and population 
size independence (Haughton and Khandker 2009). However, our main results are based on 
Gini—a commonly and widely used measure of inequality.  

To calculate Gini at the district level, we identified (based on geographical administrative units’ 
data from the Global Administrative Areas database12) and cut countries’ districts into 0.01 square 
decimal degree grid cells (about 1.1 km2 at the equator—an equivalent to the size of a town or 
village). We then exploited the spatial and temporal variation of light intensity across these grid 
cells to estimate average inequality at the district level across countries for all the years between 
2001 and 2012. We calculate Gini13 as follows: 

𝐺𝑖𝑛𝑖 =
𝑛

𝑛−1
∗ (

∑ (2𝑖−𝑛−1)𝑛
𝑖=1 ∗𝑦𝑖

𝑛2𝑃
)  [1] 

where i is grid cell rank order, n is total number of grid cells, yi is grid cell value light intensity per 

capita, and P is grid cell population count. For the robustness checks we use the entropy14 measures 
of inequality and a measure of spatial inequality proposed by Bonet (2006).15  

                                                 

11 For example, Elvidge et al. (2009) use night light data to construct a global poverty map, while Elvidge et al. (2012) 
develop a ‘night light development index’ to measure human development and track the distribution of wealth and 
income across countries. Other studies have used light data to measure economic growth (Henderson et al. 2012), 
income per capita (Alesina et al. 2015; Chen and Nordhaus 2011; Gennaioli et al. 2014; Henderson et al. 2012; Hodler 
and Raschky 2014; Michalopoulos and Papaioannou 2013), and more recently regional income inequality (Mveyange 
2015).  

12 Available at: www.gadm.org/ (accessed 16 July 2014). 

13 Similar to Damgaard and Weiner (2000). 

14 MLD is calculated using the following formula: 𝑀𝐿𝐷 =
1

𝑁
∑ 𝑙𝑛 (

𝑦𝑖

𝑦̅
)𝑁

𝑖=1  and 𝑇ℎ𝑒𝑖𝑙 =
1

𝑁
∑

𝑦𝑖

𝑦̅
𝑙𝑛 (

𝑦𝑖

𝑦̅
)𝑁

𝑖=1 , where 𝑦𝑖  is 

grid cell value (i.e. light intensity per capita), 𝑦̅  is the average grid cell lights, and 𝑁is the population size within the 
grid cells.   

15 Defined as |
𝐿𝑃𝐶𝑑,𝑡

𝐿𝑃𝐶𝑐,𝑡
− 1| where, 𝑐 is country,  𝑑 is district, 𝑡 is year, 𝐿𝑃𝐶𝑑,𝑡 is an average lights per capita at the district 

level, and 𝐿𝑃𝐶𝑛,𝑡 is average lights per capita at the country level. Bonet (2006: 668) asserts that this measure of spatial 

inequality is based on the concept of relative lights per capita, with perfect equality achieved with the equality of district 
and national average lights per capita. 

 

http://www.gadm.org/
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3.3 District inequality trends and summary statistics 

Figure 3 plots the average trends of district light intensity Gini between 2001 and 2012. The figure 
shows the variation across districts with no mining activities, with active mines, and with closed 
mines. The figure suggests that overall there was a modest decline in spatial inequality in Africa 
between 2001 and 2012. The figure also reveals a clear difference in spatial inequality between 
districts with mining activities and those with none, inequality in the former being higher by a 
considerable margin. When districts with mining activities are divided into active mines and closed 
mines, the figure suggests that districts with closed mines experienced relative higher inequality 
than districts with active mines. 

Turning to the summary statistics, Table 3 describes the composition of the mining sites based on 
the previously mentioned exogenous variations: status, scale, values, and types of mining activities. 
Overall, the table shows that mining sites constitute 17.2 per cent of all 2,182 districts in our sample 
during 2001–2012. Moreover, for the status of mining activities, the table shows that out of the 17 
per cent, active mines constitute about 15.3 per cent, and closed mines about two per cent. 
Classifying the districts’ mining sites by scale of mining operations, the table further shows that 
mining operations in Africa are predominantly large scale (about 16.2 per cent), with small-scale 
operations constituting only one per cent. This is not surprising in a sector that is capital intensive 
and on a continent where the mining sector has attracted significant direct foreign investment in 
recent years. Whereas most of the operations are large scale, the table shows that most of these 
districts’ operations are extractive industries (12.4 per cent) and of low value (13.4 per cent). High-
value minerals and transformation industries constitute a small share—3.8 and 4.8 per cent 
respectively—of districts where mineral deposits and mining activities are present or closed. 

Table 4 reports the summary statistics for all variables of interest in our analysis. These descriptive 
statistics cover the period 2001–2012. Overall, the table indicates that except for Gini, rainfall, 
NDVI, and population sizes, the dispersion of average district MLD, Theil, and mineral prices (in 
logarithms) varies quite considerably around their respective means. In the next section we present 
our empirical strategy.  

4 Empirical strategy 

This section describes the empirical strategy we use to estimate the effects of mineral resources on 
district inequality. The analysis relies on panel data across districts during 2001–2012. Since the 
main covariates of interest are dummies, the first difference models of panel data analysis are 
inappropriate. Thus the empirical framework uses linear fixed effect estimators (i.e. least square 
dummy variable—LSDV) to model and estimate the effects of mining activities on district 
inequality. One natural advantage of LSDV is its ability to address endogeneity concerns. Given 
the hierarchical nature of our data, the use of LSDV is handy for capturing confounding and 
unobserved country and regional fixed effects in addition to district fixed effects, thus purging our 
estimates of any time-invariant unobservable biases. Our baseline model thus takes the following 
forms:   

 𝐷𝐼𝑐,𝑟,𝑑,𝑡 = 𝛼𝑀𝑖𝑛𝑒𝑐,𝑟,𝑑,𝑡 + 𝑋𝑐,𝑟,𝑑,𝑡
′ 𝛽 + 𝑃𝑟𝑖𝑐𝑒𝑚,𝑡  + Τ𝑡 + Ψ𝑖 + Γ𝑐,𝑡 + 𝜖𝑐,𝑟,𝑑,𝑡  [2] 

 𝐷𝐼𝑐,𝑟,𝑑,𝑡 = 𝜗𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑐,𝑟,𝑑,𝑡 + 𝑋𝑐,𝑟,𝑑,𝑡
′ 𝜑 + 𝑃𝑟𝑖𝑐𝑒𝑚,𝑡  + Τ𝑡 + Ψ𝑖 + Γ𝑐,𝑡 + 𝜀𝑐,𝑟,𝑑,𝑡  [3] 

where DI stands for district inequality (measured using spatial lights Gini index), c, r, d, t and m 

stand for country, region, district and time respectively, and i ∈ (c, r, d). Mine is a binary 
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indicator—1 if a district has mineral deposits, 0 otherwise. Intensity denotes the number of 
mining sites available in a district in a given year. This model specification tests whether the 
presence of mineral deposits and mining sites has any measurable effects on district inequality in 

Africa. The coefficients of interest are α and ϑ, capturing the effects on district inequality of 
mineral deposits’ and mining sites’ presence respectively. Following the propositions of the 

resource curse literature, the underlying hypothesis of this specification is (α, ϑ) > 0: that is, 
districts with mineral deposits and mining sites are likely to be more unequal relative to those with 
none. 

The vector Xc,r,d,t captures time-varying observables. As noted in the data section, our specification 
takes into account several factors that would otherwise potentially bias our coefficient estimates. 
These factors include a proxy for agricultural productivity (NDVI), population size, a climatic 
variable (i.e. rainfall), and districts’ geographical locations measured using absolute latitude. As 
noted previously, all these have a bearing on how mining activities impact on spatial inequality at 
the district level. Moreover, it is also possible for the estimates to be driven by lights emission in 
districts with active mining activities relative to districts with fewer or no activities. To control for 
this potential upward bias, we also control for total number of lit grid cell pixels in a district.  

To explain whether mining has an impact on spatial inequality we also need to take into account 
the effects of mineral prices. To account for mineral prices’ specific effects at the district level we 

include Pricem,t, which proxies the district-level average minerals prices. As detailed later, we note 
that a more robust way is to account for individual minerals’ specific prices in order to understand 
the precise mechanisms underpinning the effects of mining on spatial inequality. We also control 

for time fixed effects denoted by Τt, and district, regional, and country fixed effects captured by 

Ψ. Finally, we control for country-year fixed effects (Γc,t) to capture year-specific shocks to the 
countries in our sample.  

District, regional, and country fixed effects capture unobserved differences such as decisions to 
open mining sites, levels of economic activity, technology employed in the mining sector, and 
other factors such as ethnicity, which as Fum and Hodler (2010) assert is also likely to affect 
inequality. Country-year fixed effects account for observed and unobserved shocks, such as 
privatization of the minerals sector, which has been rampant in Africa; the differences in the types 
of investment incentive (e.g., royalties, taxes) offered to attract foreign investors and boost mining 
activities; turbulent international market conditions such as volatile world commodity prices; and 

countrywide institutional and policy changes that affect individual countries over time. ϵc,r,d,t and 

εc,r,d,t are stochastic random error terms. To control for potential intra-region and intra-district 
correlations, we cluster the standard errors at the country level in all our model specifications, 
unless otherwise specified. Note also that we use similar notations for model specifications unless 
stated otherwise. 

The above specifications, however, only tell us what the effects are of mineral deposits’ and mining 
sites’ presence on district inequality. They exclude such potential exogenous variations as the status 
of mining (i.e. active and closed mines); the scale of mining (i.e. small and large scale); values of 
minerals extracted (i.e. mines producing high- or low-value minerals); and the nature of mining 
activities (i.e. whether the mines are involved in the extraction or transformation of minerals). All 
these variations have the potential to explain how mining can affect district inequality in Africa 
and thus elicit relevant policy responses. To account for all these sources of exogenous variation, 
we respecify equation [2] as: 

 𝐷𝐼𝑐,𝑟,𝑑,𝑡 = 𝚽𝑐,𝑟,𝑑,𝑡
𝑗 ′

𝜽𝒋 + 𝑿𝒄,𝒓,𝒅,𝒕
′ 𝜑 + 𝑃𝑟𝑖𝑐𝑒𝑚,𝑡 + Τ𝑡 + Ψ𝑖 + Γ𝑐,𝑡 + 𝜈𝑐,𝑟,𝑑,𝑡  [4] 
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where j refers to the four different sources of exogenous variation defined above. Φ is a vector of 
categorical variables coded as 0, 1, and 2, all meant to capture the above-mentioned exogenous 
variations in mining activities. Thus 0 denotes the base (no mining). 1 and 2 separately but 
respectively denote either active or closed mines; small- or large-scale mines; high- or low-value 
mining activities; and mining extraction or transformation. This extended baseline specification 
allows us to evaluate whether, for example, the districts with active or closed mines experience 
higher or lower inequality compared with districts with no mines. The same logic also applies to 
the other sources of exogenous variation mentioned. The coefficient of interest, which 

disentangles α in equation [2], is θj, with the underlying hypothesis, still following the resource 

curse literature, being θj > 0. ν is an error term. 

One advantage of equation [4] is that it brings into the analysis the mentioned exogenous variation 
in mining activities, which is useful for explaining the mechanisms through which mining activities 
can affect district inequality in Africa. However, the impact of mining activities on district 
inequality is likely to be driven by the specific minerals commodities available (Boschini et al. 2007). 

This latent effect cannot be captured by Pricem,t in equations [2] and [4].  

Obviously, controlling for minerals’ values is important to obtain unbiased estimates and explain 
the mining-spatial inequality nexus. As noted in Section 3, our analysis, which relies on USGS 
mineral data, suffers from the lack of data on mineral production at mining sites in Africa. 
However, the available mineral prices data offer a possibility to circumvent this limitation: the use 
of minerals unit prices as numeraires for minerals across districts where mineral deposits and 
mining activities are available. For districts where mineral deposits and mining activities are absent, 
we assign zero values in unit mineral prices. We therefore update equation [4] slightly differently 
to take into account the idea of using mineral prices as numeraires. The updated specification takes 
the following form: 

 𝐷𝐼𝑐,𝑟,𝑑,𝑡 = 𝜓(𝑀𝑖𝑛𝑒𝑟𝑎𝑙𝑐,𝑟,𝑑,𝑡 × 𝑃𝑟𝑖𝑐𝑒𝑚,𝑡) + 𝑿𝒄,𝒓,𝒅,𝒕
′ 𝜏 

+Τ𝑡 + Ψ𝑖 + Γ𝑐,𝑡 + 𝜔𝑐,𝑟,𝑑,𝑡  [5] 

where Mineralc,r,d,t denotes the dummies for the major mineral commodities types (see Table 2) 

available in our sample, and ωc,r,d,t is an error term. A unique feature of equation [5] is the 

interaction term Mineralc,r,d,t × Pricem,t, which underlies the use of minerals’ unit prices as 
numeraires. In principle, equation [5] mimics the underlying structure of equation [2]: the 

interaction term Mineralc,r,d,t × Pricem,t captures coefficient estimates for all districts with mineral 
numeraires relative to the base (non-numeraire) districts, effectively measuring the effect of 
individual minerals’ unit values on district inequality in Africa. As an added value, this specification 
makes it possible to attribute changes in district inequality to changes in specific mineral 
numeraires, which is useful for identifying the specific types of mineral that influence the dynamics 
of district inequality during the period 2001–2012. As above, the underlying testable hypothesis is 

ψ > 0, suggesting that district inequality increases with increasing mineral numeraires. 

Understanding how specific mineral commodities affect district inequality in Africa is undoubtedly 
necessary but not sufficient, especially if we are to understand the precise sources of the effects. 
We thus extend equation [5] one step further to pin down the precise mechanisms at work in the 
mining-spatial inequality nexus. The extended specification is of the following form: 

 𝐷𝐼𝑐,𝑟,𝑑,𝑡 = 𝜅(𝑀𝑖𝑛𝑒𝑟𝑎𝑙𝑐,𝑟,𝑑,𝑡 × 𝑃𝑟𝑖𝑐𝑒𝑚,𝑡 × 𝚽𝑐,𝑟,𝑑,𝑡
𝑗

) + 𝑿𝒄,𝒓,𝒅,𝒕
′ 𝛿 

+Τ𝑡 + Ψ𝑖 + Γ𝑐,𝑡 + 𝜁𝑐,𝑟,𝑑,𝑡     [6] 
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where Φjc,r,d,t is the same as in equation [3], and ζc,r,d,t is a residual term. A key term of interest is 

Mineralc,r,d,t × Pricem,t × Φjc,r,d,t, which shows the distribution of mineral numeraires by the 
status, scale, value, and nature of district mining activities. The main advantage of equation [6] is 
that it helps to untie the effects of mineral numeraires on district inequality by attempting to 
identify where these effects originate. For example, we are bound to know if the effects on district 
inequality are driven by active or closed mines, high- or low-value minerals, the scale of mining 
activities, or the nature of mining activities (i.e. extraction or transformation). As above, the 

underlying testable hypothesis is κ > 0.  

5 Results 

Table 5 reports our main results. Columns 1 and 2 show the estimates when regressions exclude 
the mineral prices. Columns 3 and 4 show the estimates in which constant mineral prices are 
included as price controls. Finally, in columns 5 and 6 we report the estimates when using average 
annual mineral prices as price controls. Columns 5 and 6 are intuitively direct sensitivity checks of 
the results in columns 3 and 4. Note that columns 1, 3, and 5 present the results without the 
relevant controls (i.e. NDVI as a proxy for agricultural productivity variations, rainfall, population 
sizes, and district geographical locations). Similarly, columns 2, 4, and 6 (which are also our main 
results) report the estimates with these controls.  

Column 1 shows that the presence of mineral deposits [equation 2] and mining sites [equation 3] 
has positive impacts on the district lights Gini index when the analysis excludes the relevant 
controls, with statistically significant coefficient sizes being 0.087 and 0.011 Gini point increments. 
Even with the inclusion of the relevant controls, in column 2, the coefficient sizes, although they 
drop slightly, remain positive and robust. Except for doubled coefficient sizes—mainly explained 
by the inclusion of price controls—the estimates in columns 3 and 4, as well as in columns 5 and 
6, are not qualitatively different from those in columns 1 and 2. When comparing the estimates 
based on constant prices (columns 3 and 4) with those based on average annual prices (columns 5 
and 6), Table 5 reports slightly lower coefficient estimates for the latter than the former.  

Note also that the R-squared drops moderately from 0.763 to 0.762 when price controls are 
included. Columns 1 and 2 have more observations, because we capture the entire sample of 
districts with mining activities. However, this is not the case when we include price controls, 
because of the lack of mineral price data for some of the mineral commodities (see Table 2). Taken 
together, the positive effects are unsurprising: ceteris paribus, the districts with natural advantages in 
mineral deposits and mining sites are likely to create more jobs, generate more income, and enjoy 
more gains from mining activities than districts with no minerals, eventually widening the 
inequality gap across districts with and without mineral endowments. This finding is consistent 
with the standard wisdom of the resource curse literature. 

The positive effects of mineral deposits and mining intensity reported in Table 5 mask a myriad 
of explanations as to the precise mechanisms through which mineral endowment and mining 
intensity can increase inequality at the district level in Africa. To understand the mechanisms, we 
estimate the baseline model using different sources of exogenous variation in mining activities. 
That is, we use dummy variables to identify and exploit the status of mining activities (i.e. active 
or closed); whether mining sites produce high- or low-value minerals; the scale (small or large) of 
mining operations; and the types of mining activities (i.e. extraction or transformation) (see 
equation [4]).  
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Table 6 reports the regressions showing the estimates for all the different sources of exogenous 
variations in mining activities. The columns in Table 6 are organized similarly to those in Table 5. 
Columns 1 and 2 (which report the estimates without price controls) document statistically 
significant positive effects of mining activities across all four sources of exogenous variation, with 
slight declines in the coefficient sizes when relevant controls are included. 

Worth noting are both the similarities and the stark differences in the coefficient sizes. For 
example, whereas districts with active mines, large-scale mining operations, and low-value mineral 
production tend to have similar coefficient sizes, this is not the case when we compare the 
coefficient sizes for districts with closed mines or high-value minerals and districts engaged in 
mineral transformation activities, which altogether are higher in magnitude—suggesting that the 
effects of mining activities are indeed pronounced in these specific sources of variation.  

The results change quite considerably when we include price controls in columns 3–6. First, 
districts with closed mines and those engaged in mining extraction experience statistically 
significant and large declines in their levels of inequality, while districts with small-scale operations 
and those producing high-value minerals experience insignificant effects in their levels of 
inequality. However, the estimates remain unchanged (i.e. positive and statistically significant) for 
districts with active mines, districts with large-scale mining operations, and districts producing low-
value minerals. Evidently, these estimates suggest that the impact of mining activities on district 
inequality largely depends on whether mines are active or closed, mining operations are small or 
large scale, the minerals produced are of low or high value, and the mining activities are extractive 
or transformational. 

As mentioned previously, to further understand the mechanisms at work between mining activities 
and district inequality, it is imperative that we identify and isolate the effects of individual minerals. 
To do so, we investigate the effects of mineral numeraires on district inequality (see equation [5]). 
Table 7 reports the regression estimates. Models 1 and 3 report estimates without the relevant 
controls, while models 2 and 4 report the estimates with the relevant controls.  

As the table demonstrates, on the one hand, district inequality increases with the increase in helium 
(produced in Kenya), garnet (produced in Algeria), and diatomite (produced in Kenya and 
Mozambique) numeraires. The positive effect of helium and garnet is statistically significant with 
both constant and average mineral prices, while that of diatomite is insignificant with the former 
and borderline with the latter. On the other hand, the table also shows that iron-ore-producing 
districts in Sierra Leone, South Africa, Tunisia, Zambia, and Zimbabwe, as well as nickel-
producing districts in Zimbabwe, overall experience declining inequality relative to other districts 
producing other types of minerals. The coefficient estimates for the other types of mineral 
numeraires are both negative (e.g., diamond, barite, bentonite, clay, dolomite, fluorspar, salt, 
vermiculite, fluorine, graphite, cobalt, chromium, niobium (columbium), tantalum, titanium, 
zirconium, tungsten, arsenic trioxide, lithium, manganese, pyrophyllite, soda ash, sodium silicate, 
wollastonite, phosphate rock, phosphoric acid, and zinc) and positive (e.g., stones—crushed and 
dimension, limestone, gypsum, marble, silicon, cement, platinum, and tin), but statistically 
insignificant.  

Again, these results reinforce the notion that the effect of mining on district inequality is largely 
dependent on the different types and prices of minerals produced. One interesting aspect of the 
results in Table 7 is that high-value minerals such as diamond appear not to play a major role in 
explaining district inequality in Africa. We investigate whether this is indeed the case in subsequent 
analysis detailed below. Overall, in all the specifications, the R-squared remains unchanged, while 
the coefficient sizes decline moderately with the inclusion of the relevant controls. 
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Table 8 shows the estimates when the source of variation is the status (i.e. active or closed) of 
mining activities. The results are, in general, quite revealing. On the one hand, the lights Gini index 
increases in districts with active helium, garnet, and gold mining. If constant mineral prices are 
used, the coefficient estimates for helium (0.126) and garnet (0.141) are statistically significant, 
while those for gold (0.047) are marginally significant. On the other hand, the table also reveals 
two results. First, when mines are closed down, district inequality declines quite significantly. This 
is the case for minerals such as diamond (0.346), phosphate and phosphoric acid (0.127), cement 
(0.008), platinum (0.056), nickel (0.158), and tin (0.029). Obviously, the results suggest greater 
inequality declines in districts with closed-down diamond, nickel, and phosphate and phosphoric 
acid mines. Second, active mining of iron ore (0.046) and tin (0.042) significantly reduces districts’ 
inequality. Note that when we use the average mineral prices, the coefficient estimates change 
slightly but remain robust, and the interpretation remains qualitatively the same.  

Tables 9–11 reveal more nuanced estimates capturing the effects of mineral numeraires based on 
different sources of exogenous variation in mining activities). All the tables are organized in the 
same way as Table 7.  

Table 9 reports the estimates when the source of variation in equation [6] is the value (i.e. low or 
high) of the minerals extracted. The results show that, on the one hand, the lights Gini index 
increases in districts where both low-value minerals (i.e. helium and garnet) and high-value 
minerals (i.e. gold) are mined. The statistically significant coefficients show that a point increase in 
the value of mined helium, garnet, and gold increases district inequality by 0.126, 0.138, and 0.040 
Gini points respectively if constant mineral prices are used, and by 0.137, 0.198, and 0.035 Gini 
points respectively if average mineral prices are used. On the other hand, the mining of low-value 
minerals such as tin and nickel significantly depresses district inequality. That is, if we use the 
constant mineral prices, district inequality declines by 0.045 and 0.037 Gini points for a point 
increase in the value (in logarithms) of mined tin and nickel respectively. However, when we use 
the average mineral prices for the analysis, district inequality declines by 0.155 and 0.139 for a 
point increase in the value (in logarithms) of mined tin and nickel, respectively. 

Table 10 reports the estimates when the source of variation is the scale (i.e. small or large) of 
mining operations. On the one hand, the results show that the lights Gini index increases in 
districts with both small-scale mining operations (i.e. for arsenic trioxide, lithium, manganese, 
pyrophyllite, soda ash, sodium silicate, wollastonite, and gold) and large-scale mining operations 
(i.e. for helium, garnet, and gold). The statistically significant coefficients show that the increase in 
district inequality lies between 0.083 and 0.20 Gini points if constant prices are used in the analysis, 
and between 0.071 and 0.193 Gini points if average prices are used instead, for a point increase in 
the value of minerals in districts with both small- and large-scale mining operations. Note also that 
despite its presence in both small- and large-scale operations, gold mining has a consistent positive 
effect on district inequality. On the other hand, the results also show two contrasting results. First, 
the lights Gini index significantly declines in districts endowed with barite, bentonite, clay, 
dolomite, fluorspar, salt, vermiculite, fluorine, graphite, cobalt, chromium, niobium (columbium), 
tantalum, titanium, zirconium, tungsten, and tin and whose operations are small scale. Second, 
inequality also declines in districts with large-scale operations engaged in the extraction of iron ore 
and nickel. In both cases, the estimated inequality declines are in the range of 0.045–0.536 Gini 
points when constant prices are used for analysis. A qualitatively similar result holds when we used 
the average mineral prices instead.  

Table 11 shows the estimates when the source of variation is the nature of the mining activities 
(i.e. extractive or transformational). As above, we have two sets of contrasting results. In the first 
set, the results show that districts engaged in extractive activities experience increases in levels of 
inequality in the magnitude of 0.124, 0.141, 0.042, and 0.044 for helium, garnet, tin, and gold 
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respectively. Moreover, the results indicate that inequality increases in districts engaged in 
transformational activities for minerals such as cement, diatomite, and platinum. The magnitude 
of the increments in Gini points is 0.024, 0.204, and 0.069 respectively. The second set of results 
report negative effects on district inequality. Similarly, there are two subsets of these results. First, 
for the districts engaged in extractive mining activities, inequality declines by 0.059, 0.170, and 
0.154 Gini points for a point increase in the value of iron ore, diatomite, and nickel respectively. 
Second, for districts engaged in transformational activities, inequality declines are between 0.028 
and 0.108 Gini points for minerals such as cobalt, chromium, niobium (columbium), tantalum, 
titanium, zirconium, tungsten, arsenic trioxide, lithium, manganese, pyrophyllite, soda ash, sodium 
silicate, wollastonite, diatomite, tin, and gold. A noteworthy point is that the value of gold appears 
to have a differential impact on district inequality: if extracted, it increases inequality, while when 
passed on for transformation to final product it reduces inequality. All the discussed estimates are 
conditioned by using constant mineral prices in the analysis. When we use the average mineral 
prices, the coefficient estimates change slightly but remain robust, and the interpretation remains 
qualitatively the same.  

We also demonstrate the robustness of our main results by carrying out several sensitivity checks. 
We first employ other different measures of district inequality to re-estimate all our baseline 
models. Tables 12–20 report the results of our sensitivity checks. Second, we test our results using 
a different modelling approach—the multilevel16 analysis suggested by Rabe-Hesketh and Skrondal 
(2012). This check is ideal given the hierarchical nature of our data. 

The results of our sensitivity tests are quite revealing, and show that our estimates are indeed 
robust to other measures of spatial inequality. In our first test, the results are also robust to using 
both constant and average mineral prices in the analysis. Of course, the magnitudes of coefficients 
do change considerably across MLD, Theil, and relative lights per capita (RLP), but the qualitative 
interpretations remain the same when compared with the baseline Gini. Worth noting, however, 
is a change in the R-squared across these different specifications: from 0.763 on the baseline Gini 
to 0.627, 0.677, and 0.464 on MLD, Theil, and RLP respectively. In our second test, when we 
model the data using multilevel analysis, although the magnitude varies across the different 
specifications, the qualitative interpretation of the results (unreported)17 remains the same and 
robust. 

Overall, although the aggregated analysis suggests that mining activities increase spatial inequality 
in favour of districts with natural advantages in mineral endowment, disaggregating the analysis to 
accommodate individual minerals shows that changes in inequality within districts and across 
countries are sensitive to the types of minerals and to whether mining activities are active or closed, 
small or large scale, of low or high value, and extractive or transformational. Based on these 
findings, we argue that mining activities can be both a curse and a blessing. 

                                                 

16 With this approach, we modelled the hierarchical structure of the data to understand the differences in the main 
coefficient estimates across countries, regions, and districts. Taking into account the time dimension of our 
hierarchical data, our modelling goal was to fit a random slope model, which, using maximum likelihood, specifically 
estimated the standard deviations in their respective random residuals (commonly known as unstructured variance 
covariance) within and between countries, regions, and districts. Allowing for different slopes over time across 
districts, Rabe-Hesketh and Skrondal (2012) also assert that this modelling strategy is useful to pin down the precise 
source of coefficient estimate differences, i.e. either from the random slopes or from the variability in the variance 
components.  

17 We have not reported these results here due to space constraints, but they are available from the authors upon 
request. 
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6 Conclusions 

This paper analysed the effects of mining activities on spatial inequality in 2,182 districts over 653 
regions across 38 African countries. Our study employed novel spatial data enabling analysis at the 
local scale. District inequality was measured using night light data from the National Oceanic and 
Atmospheric Association’s National Geophysical Data Centre, while mineral production data 
came from the United States Geological Survey.  

Our study offers three main conclusions. First, when the analysis is aggregated, mining activities 
significantly increase spatial inequality in Africa, a finding that is consistent with the standard 
resource curse literature. Second, when the analysis is disaggregated to include individual minerals, 
our findings suggest that mining activities impact on spatial inequality both positively and 
negatively, with the effects varying quite considerably across different minerals. This finding 
suggests that mineral wealth can be both a blessing and a curse. More importantly, this finding—
a unique contribution of this study—reinforces the idea that disentangling the effects of individual 
minerals is more revealing of the effects of mining activities on development outcomes, and thus 
is important for eliciting the relevant policy responses.  

Finally, our study shows that the effects of mining activities are leveraged by other important 
forces that underpin mining operations. For example, our analysis suggests that the coefficients of 
interest largely depend on whether mining activities are active or closed, small or large scale, of 
low or high value, and extractive or transformational. We argue that these are also relevant 
variables for informing appropriate policy responses aimed at addressing the nexus between 
mining activities and spatial inequality in Africa. 
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Figures 

Figure 1:  Minerals price trends 

 

Source: authors’ construction (based on United States Geological Survey (USGS) data). 

 
Figure 2: Minerals prices trends 

 

Source: authors’ construction (based on USGS data). 
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Figure 3: Average lights Gini trends in Africa, 2001–2012 

 

Source: author’s construction. 

 

Tables 

Table 1: List of countries 
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Table 2: Names of mineral commodities and their SITC codes by district, region, and country of production 

 

Name* SITC 
code 

Commodity names Price 
data 

Districts Regions Countries of production  

SITC_1 120 Helium Yes 1 1 Algeria 

SITC_2 264 Garnet (industrial) Yes 1 1 Kenya 

SITC_3 273 Stones (crushed, dimension), limestone, 
gypsum, marble, and silicon 

Yes 23 22 Algeria, Angola, Ethiopia, Madagascar, Malawi, Mauritania, 
Mozambique, Rwanda, South Africa, Sudan, Tunisia, Uganda, 
and Zambia 

SITC_4 274 Sulphur Yes 13 12 Ethiopia, Kenya, Malawi, Namibia, South Africa, Zambia, and 
Zimbabwe 

SITC_5 277 Diamond Yes 27 17 Angola, Botswana, Cameroon, Liberia, Namibia, Sierra Leone, 
South Africa, Tanzania, and Zimbabwe 

SITC_6 278 Barite, bentonite, clay, dolomite, fluorspar, 
graphite, salt, vermiculite, fluorine, and 
graphite 

Yes 42 35 Algeria, Botswana, Chad, Djibouti, Ethiopia, Kenya, Madagascar, 
Morocco, Mozambique, Namibia, South Africa, Tanzania, 
Tunisia, Uganda, and Zimbabwe 

SITC_7 281 Iron ore Yes 12 10 Sierra Leone, South Africa, Tunisia, Zambia, and Zimbabwe 

SITC_8 283 Copper Yes 27 18 Algeria, Democratic Republic of Congo, Mauritania, Morocco, 
Namibia, Nigeria, Republic of Congo, South Africa, Zambia, and 
Zimbabwe 

SITC_9 287 Cobalt, chromium, niobium (columbium), 
tantalum, titanium, zirconium, and tungsten 

Yes 18 17 Botswana, Burundi, Ethiopia, Gambia, Madagascar, 
Mozambique, Nigeria, Rwanda, Sierra Leone, South Africa, 
Uganda, and Zimbabwe 

SITC_10 522 Arsenic trioxide, lithium, manganese, 
pyrophyllite, soda ash, sodium silicate, and 
wollastonite 

Yes 13 11 Chad, Cote d’Ivoire, Kenya, Morocco, Namibia, South Africa, 
Zambia, and Zimbabwe 

SITC_11 523 Phosphate rock, and phosphoric acid Yes 8 6 Malawi, South Africa, Tanzania, Togo, and Tunisia 
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SITC_12 661 Cement Yes 52 48 Algeria, Angola, Benin, Burundi, Cameroon, Chad, Democratic 
Republic of Congo, Ethiopia, Gabon, Kenya, Liberia, Malawi, 
Mauritania, Morocco, Mozambique, Niger, Nigeria, Republic of 
Congo, Senegal, Sierra Leone, Somalia, South Africa, Sudan, 
Tanzania, Togo, Tunisia, and Zimbabwe 

SITC_13 662 Diatomite Yes 2 2 Kenya and Mozambique 

SITC_14 681 Platinum Yes 8 7 Botswana, Ethiopia, South Africa, and Zimbabwe 

SITC_15 683 Nickel Yes 1 1 Zimbabwe 

SITC_16 686 Zinc Yes 2 2 Algeria and South Africa 

SITC_17 687 Tin Yes 6 6 Nigeria, Rwanda, and Uganda 

SITC_18 971 Gold Yes 35 26 Algeria, Burundi, Cote d’Ivoire, Ethiopia, Kenya, Liberia, Mali, 
Republic of Congo, South Africa, Tanzania, Uganda, Zambia, 
and Zimbabwe 

SITC_19 282** Steel No 16 14 Kenya, Mozambique, Nigeria, South Africa, Sudan, and Uganda 

SITC_20 289** Gemstones No 13 10 Botswana, Ethiopia, Madagascar, Mozambique, and Rwanda 

SITC_21 321** Coal No 37 22 Botswana, Burundi, Ethiopia, Malawi, Morocco, Mozambique, 
Niger, Nigeria, South Africa, Tanzania, Zambia, and Zimbabwe 

SITC_22 525** Uranium No 2 2 Namibia and Niger 

SITC_23 663** Chromite No 8 6 South Africa, Sudan, and Zimbabwe 

SITC_24 684** Aluminium, ammonia, and bauxite No 5 5 Cameroon, Mozambique, Nigeria, and South Africa 

SITC_25 728** Asbestos No 4 3 South Africa 

Subtotal    376 304 

Base 999 No commodities n.a. 1806 349 

Total    2182 653 

* Names assigned by authors for purposes of analysis and ease of understanding of results. ** These commodities were dropped from the regressions that included mineral 
prices; this explains the differences in the numbers of countries in the regression tables. 

Source: authors’ construction (based on USGS data). 
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Table 3: Mining sites by districts in Africa, 2001–2012 

Status of mining activities      

 Status No mine Active mines Closed mines Total  

Mineral deposits No 1806 0 0 1806 82.8% 

 Yes 0 333 43 376 17.2% 

 Total 1806 333 43 2182 100% 

  82.8% 15.3% 2.0% 100%  

Scale of mining operations      

 Status No mine Large-scale Small-scale Total  

Mineral deposits No 1806 0 0 1806 82.8% 

 Yes 0 354 22 376 17.2% 

 Total 1806 354 22 2182 100% 

  82.8% 16.2% 1.0% 100%  

Extracted minerals’ value      

 Status No mine High value Low value Total  

Mineral deposits No 1806 0 0 1806 82.8% 

 Yes 0 83 293 376 17.2% 

 Total 1806 83 293 2182 100% 

  82.8% 3.8% 13.4% 100%  

Types of mining activities      

 Status No mine Extraction Transformation Total  

Mineral deposits No 1806 0 0 1806 82.8% 

 Yes 0 271 105 376 17.2% 

 Total 1806 271 105 2182 100% 

  82.8% 12.4% 4.8% 100%  

Source: authors’ calculation (based on USGS data). 

 

Table 4: Summary statistics 

      

 Obs. Mean Std dev. Min. Max. 

Gini index 21433 0.256 0.200 0.0 0.940 

Mean logarithmic deviation 21433 0.271 0.334 0.0 4.353 

Theil index 21433 0.247 0.331 0.0 7.289 

Sen index 21433 0.072 0.778 0.0 43.545 

Std dev. rainfall (mm) 26014 4.538 4.617 0.0 88.428 

Std dev. NDVI 26014 0.826 1.532 0.0 7.838 

Log(Population) 26014 11.173 1.425 3.651 15.931 

Log(Constant prices) 23745 1.051 3.239 0.0 17.424 

Log(Average prices) 23745 1.078 3.301 0.0 17.767 

Notes: (1) The table shows descriptive statistics across a sample of 2,247 districts across 39 countries in Africa 
during 2001–2012. (2) Inequality indicators are at the district level and measured using night-time light intensity. 
(3) The number of observations varies because some districts have observations with zero light intensity. (4) 
Constant (measured at constant 1998 US dollars) and average (measured as annual averages) prices come from 
USGS. (5) NDVI stands for Normalized Difference Vegetation Index, a proxy for agricultural productivity. 

Source: authors’ calculations. 
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Table 5: The effects of mineral deposits’ and mining sites’ presence on lights Gini index 

Dependent variable: district lights Gini index 

 No prices Constant mineral prices Average mineral prices 
 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Equation [2]:       
Deposits [1=present] 0.087*** 0.081*** 0.190*** 0.180*** 0.176*** 0.166*** 
 [0.000] [0.004] [0.048] [0.048] [0.043] [0.043] 

Equation [3]:       
Mining sites 0.011*** 0.010*** 0.095*** 0.090*** 0.088*** 0.083*** 
 [0.000] [0.001] [0.024] [0.024] [0.021] [0.022] 

Log(Prices)   0.005 0.005 0.007 0.007 
   [0.009] [0.009] [0.008] [0.008] 
Fixed effects Yes Yes Yes Yes Yes Yes 
Controls  No Yes No Yes No Yes 
N 20703 20703 19298 19298 19298 19298 
R-squared 0.763 0.763 0.762 0.762 0.762 0.762 
Countries 38 38 38 38 38 38 

Notes: (1) The table shows the regression results for a sample of 2,182 districts in 653 regions across 38 countries 
in Africa during 2001–2012. (2) The regressions use the presence of mineral deposits and mining sites to explain 
spatial-temporal variations in lights Gini. (3) Gini index is at the district level and measured using night-time light 
intensity. (4) The standard errors, clustered at the country level, are in the brackets. (5) Prices (measured at 
constant 1998 US dollars and as annual averages) come from USGS. (6) Fixed effects include time fixed effects, 
district fixed effects, regional fixed effects, country fixed effects, and country-year fixed effects. (7) Controls include 
a proxy for agricultural productivity, rainfall, population sizes, lights pixels lit, and district geographical locations 
(measured in absolute latitudes). * p < 0.10. ** p < 0.05. *** p < 0.01. 

Source: authors’ estimations. 
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Table 6: The effects of mining activities on lights Gini index 

Dependent variable: district lights Gini index 

 No Prices Constant mineral prices Average mineral prices 
 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Active mines  0.087*** 0.081*** 0.190*** 0.180*** 0.176*** 0.166*** 
 [0.000] [0.004] [0.048] [0.048] [0.043] [0.043] 
       
Closed mines  0.314*** 0.313*** -0.193** -0.191** -0.213*** -0.211*** 
 [0.000] [0.005] [0.071] [0.072] [0.063] [0.064] 

High-value minerals 0.144*** 0.135*** 0.063 0.054 0.022 0.014 
 [0.000] [0.006] [0.158] [0.157] [0.135] [0.135] 
       
Low-value minerals 0.087*** 0.081*** 0.190*** 0.180*** 0.176*** 0.166*** 
 [0.000] [0.004] [0.048] [0.048] [0.043] [0.043] 

Small-scale mines   0.144*** 0.135*** 0.063 0.054 0.022 0.014 
 [0.000] [0.006] [0.158] [0.157] [0.135] [0.135] 
       
Large-scale mines  0.087*** 0.081*** 0.190*** 0.180*** 0.176*** 0.166*** 
  [0.000] [0.004] [0.048] [0.048] [0.043] [0.043] 

Mineral extraction 0.087*** 0.081*** -0.444*** -0.448*** -0.462*** -0.465*** 
 [0.000] [0.004] [0.061] [0.061] [0.054] [0.055] 
       
Mineral transformation 0.215*** 0.203*** 0.190*** 0.180*** 0.176*** 0.166*** 
 [0.000] [0.012] [0.048] [0.048] [0.043] [0.043] 

Log(Prices)   0.005 0.005 0.007 0.007 
   [0.009] [0.009] [0.008] [0.008] 
Fixed effects Yes Yes Yes Yes Yes Yes 
Controls  No Yes No Yes No Yes 
N 20703 20703 19298 19298 19298 19298 
R-squared 0.763 0.763 0.762 0.762 0.762 0.762 
Countries 38 38 38 38 38 38 

 

Notes: (1) The table shows the regression results for a sample of 2,182 districts in 653 regions across 38 countries 
in Africa during 2001–2012. (2) The regressions use the presence of active and closed mining activities to explain 
spatial-temporal variations in inequality measures. (3) Gini index is at the district level and measured using night-
time light intensity. (4) The standard errors, clustered at the country level, are in the brackets. (5) Prices (measured 
at constant 1998 US dollars and as annual averages) come from USGS. (6) Fixed effects include time fixed effects, 
district fixed effects, regional fixed effects, country fixed effects, and country-year fixed effects. (7) Controls include 
a proxy for agricultural productivity, rainfall, population sizes, lights pixels lit, and district geographical locations 
(measured in absolute latitudes). (8) High-value refers to mining sites where high-value minerals are extracted, 
whereas low-value refers to places where low-value minerals are extracted. (9) Small-scale refers to sites with 
artisanal mining activities, while large-scale refers to sites where large-scale mining activities are taking place. (10) 
Mineral extraction refers to mining sites where extractive mining activities are taking place, and mineral 
transformation refers to sites where the value addition of raw minerals is performed. * p < 0.10. ** p < 0.05. *** p < 
0.01. 

Source: authors’ estimations. 
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Table 7: The effects of mineral prices on lights Gini index 

Dependent variable: district lights Gini Index 

 Constant mineral prices Average mineral prices 

 Model 1 S.E. Model 2 S.E. Model 3 S.E. Model 4 S.E. 

SITC_1 x log(Price) 0.131*** [0.001] 0.126*** [0.006] 0.149*** [0.001] 0.137*** [0.014] 

SITC_2 x log(Price) 0.137*** [0.007] 0.138*** [0.008] 0.195*** [0.008] 0.198*** [0.011] 

SITC_3 x log(Price) 0.013 [0.089] 0.014 [0.089] 0.022 [0.085] 0.023 [0.085] 

SITC_5 x log(Price) -0.006 [0.049] -0.005 [0.049] -0.007 [0.062] -0.006 [0.062] 

SITC_6 x log(Price) -0.086 [0.080] -0.085 [0.078] 0.026 [0.062] 0.025 [0.062] 

SITC_7 x log(Price) -0.045*** [0.010] -0.045*** [0.010] -0.037*** [0.008] -0.037*** [0.008] 

SITC_9 x log(Price) -0.003 [0.020] -0.003 [0.019] -0.002 [0.019] -0.002 [0.019] 

SITC_10 x log(Price) -0.047 [0.057] -0.048 [0.056] -0.039 [0.045] -0.039 [0.044] 

SITC_11 x log(Price) -0.051 [0.031] -0.051 [0.032] -0.046 [0.028] -0.046 [0.029] 

SITC_12 x log(Price) 0.013 [0.009] 0.013 [0.009] 0.014 [0.009] 0.014 [0.009] 

SITC_13 x log(Price) 0.017 [0.143] 0.016 [0.143] 0.750* [0.416] 0.747* [0.419] 

SITC_14 x log(Price) 0.005 [0.019] 0.005 [0.018] 0.033 [0.032] 0.033 [0.031] 

SITC_15 x log(Price) -0.155*** [0.003] -0.155*** [0.003] -0.139*** [0.003] -0.139*** [0.003] 

SITC_16 x log(Price) -0.110 [0.106] -0.111 [0.104] -0.098 [0.092] -0.099 [0.091] 

SITC_17 x log(Price) 0.001 [0.027] 0.001 [0.027] 0.004 [0.025] 0.004 [0.026] 

Fixed effects Yes  Yes  Yes  Yes  

Controls  No  Yes  No  Yes  

N 19298  19298  19298  19298  

R-squared 0.763  0.763  0.763  0.763  

Countries 38  38  38  38  

Notes: (1) The table shows the regression results for a sample of 2,182 districts in 653 regions across 38 countries in Africa during 2001–2012. (2) The regressions use the presence of mining 
activities to explain spatial-temporal variations in lights Gini. (3) Gini index is at the district level and measured using night-time light intensity. (4) The standard errors, clustered at the country level, 
are in the brackets. (5) Prices (measured at constant 1998 US dollars and as annual averages) come from USGS. (6) Fixed effects include time fixed effects, district fixed effects, regional fixed 
effects, country fixed effects, and country-year fixed effects. (7) Controls include a proxy for agricultural productivity, rainfall, population sizes, lights pixels lit , and district geographical locations 
(measured in absolute latitudes). (8) SITC_1: helium. (9) SITC_2: garnet (industrial). (10) SITC_3: stones (crushed, dimension), limestone, gypsum, marble, and silicon. (11) SITC_5: diamond. 
(12) SITC_6: barite, bentonite, clay, dolomite, fluorspar, graphite, salt, vermiculite, fluorine, and graphite. (13) SITC_7: iron ore. (14) SITC_9: cobalt, chromium, niobium (columbium), tantalum, 
titanium, zirconium, and tungsten. (15) SITC_10: arsenic trioxide, lithium, manganese, pyrophyllite, soda ash, sodium silicate, and wollastonite. (16) SITC_11: phosphate rock and phosphoric 
acid. (17) SITC_12: cement. (18) SITC_13: diatomite. (19) SITC_14: platinum. (20) SITC_15: nickel. (21) SITC_16: zinc. (22) SITC_17: tin. * p < 0.10. ** p < 0.05. *** p < 0.01. 
Source: authors’ estimations. 

Table 8: The effects of mining activities on lights Gini index 

Dependent variable: district lights Gini index 
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 Constant mineral prices Average mineral prices 

 Model 1 S.E. Model 2 S.E. Model 3 S.E. Model 4 S.E. 

SITC_1 x Active x log(Price) 0.132*** [0.001] 0.126*** [0.006] 0.149*** [0.001] 0.137*** [0.015] 

SITC_2 x Active x log(Price) 0.140*** [0.005] 0.141*** [0.006] 0.197*** [0.006] 0.201*** [0.010] 

SITC_3 x Active x log(Price) 0.013 [0.089] 0.014 [0.089] 0.022 [0.085] 0.023 [0.085] 

SITC_5 x Active x log(Price) 0.026 [0.037] 0.027 [0.037] 0.031 [0.048] 0.032 [0.048] 

SITC_5 x Closed x log(Price) -0.346*** [0.002] -0.346*** [0.002] -0.407*** [0.002] -0.407*** [0.002] 

SITC_6 x Active x log(Price) -0.063 [0.091] -0.063 [0.089] 0.003 [0.065] 0.003 [0.065] 

SITC_6 x Closed x log(Price) -0.286 [0.176] -0.282 [0.177] 0.195*** [0.050] 0.190*** [0.051] 

SITC_7 x Active x log(Price) -0.046*** [0.011] -0.046*** [0.010] -0.039*** [0.009] -0.039*** [0.009] 

SITC_9 x Active x log(Price) -0.003 [0.019] -0.003 [0.019] -0.003 [0.019] -0.003 [0.019] 

SITC_10 x Active x log(Price) -0.047 [0.057] -0.048 [0.056] -0.039 [0.044] -0.039 [0.044] 

SITC_11 x Active x log(Price) -0.037 [0.026] -0.037 [0.026] -0.034 [0.023] -0.034 [0.023] 

SITC_11 x Closed x log(Price) -0.127*** [0.001] -0.127*** [0.002] -0.115*** [0.001] -0.115*** [0.001] 

SITC_12 x Active x log(Price) 0.015 [0.010] 0.015 [0.010] 0.016 [0.010] 0.016 [0.010] 

SITC_12 x Closed x log(Price) -0.009*** [0.003] -0.008*** [0.002] -0.006*** [0.001] -0.005*** [0.001] 

SITC_13 x Active x log(Price) 0.017 [0.143] 0.016 [0.143] 0.751* [0.415] 0.748* [0.418] 

SITC_14 x Active x log(Price) 0.009 [0.020] 0.010 [0.019] 0.038 [0.035] 0.038 [0.034] 

SITC_14 x Closed x log(Price) -0.056*** [0.002] -0.056*** [0.002] -0.035*** [0.003] -0.035*** [0.003] 

SITC_15 x Closed x log(Price) -0.158*** [0.002] -0.158*** [0.003] -0.142*** [0.002] -0.142*** [0.003] 

SITC_16 x Closed x log(Price) -0.110 [0.105] -0.111 [0.104] -0.098 [0.092] -0.099 [0.091] 

SITC_17 x Active x log(Price) 0.042*** [0.005] 0.042*** [0.005] 0.042*** [0.003] 0.042*** [0.003] 

SITC_17 x Closed x log(Price) -0.028*** [0.000] -0.029*** [0.001] -0.024*** [0.000] -0.024*** [0.001] 

SITC_18 x Active x log(Price) 0.047* [0.025] 0.047* [0.025] 0.040* [0.021] 0.041* [0.021] 

SITC_18 x Closed x log(Price) 0.001 [0.015] 0.001 [0.014] 0.001 [0.013] 0.001 [0.013] 

Fixed effects Yes  Yes  Yes  Yes  

Controls No  Yes  No  Yes  

N 19298  19298  19298  19298  

R-squared 0.763  0.763  0.763  0.763  

Countries 38  38  38  38  



 

28 

Notes: (1) The table shows the regression results for a sample of 2,182 districts in 653 regions across 38 countries in Africa during 2001–2012. (2) The regressions use the 
presence of active and closed mining activities to explain spatial-temporal variations in inequality and welfare measures. (3) Gini index is at the district level and measured using 
night-time light intensity. (4) The standard errors, clustered at the country level, are in the brackets. (5) Constant (measured at constant 1998 US dollars) and average (measured 
as annual averages) prices come from USGS. (6) Fixed effects include time fixed effects, district fixed effects, regional fixed effects, country fixed effects, and country-year fixed 
effects. (7) Controls include a proxy for agricultural productivity, rainfall, population sizes, lights pixels lit, and district geographical locations (measured in absolute latitudes). (8) 
SITC_1: helium. (9) SITC_2: garnet (industrial). (10) SITC_3: stones (crushed, dimension), limestone, gypsum, marble, and silicon. (11) SITC_5: diamond. (12) SITC_6: barite, 
bentonite, clay, dolomite, fluorspar, graphite, salt, vermiculite, fluorine, and graphite. (13) SITC_7: iron ore. (14) SITC_9: cobalt, chromium, niobium (columbium), tantalum, 
titanium, zirconium, and tungsten. (15) SITC_10: arsenic trioxide, lithium, manganese, pyrophyllite, soda ash, sodium silicate, and wollastonite. (16) SITC_11: phosphate rock 
and phosphoric acid. (17) SITC_12: cement. (18) SITC_13: diatomite. (19) SITC_14: platinum. (20) SITC_15: nickel. (21) SITC_16: zinc. (22) SITC_17: tin. (23) SITC_18: gold. 
* p < 0.10. ** p < 0.05. *** p < 0.01. 

Source: authors’ estimations. 
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Table 9: The effects of minerals’ value on lights Gini index 

Dependent variable: district lights Gini index 

 Constant mineral prices Average mineral prices 

 Model 1 S.E. Model 2 S.E. Model 3 S.E. Model 4 S.E. 

SITC_1 x Low value x log(Price) 0.131*** [0.001] 0.126*** [0.006] 0.149*** [0.001] 0.137*** [0.014] 

SITC_2 x Low value x log(Price) 0.137*** [0.007] 0.138*** [0.008] 0.195*** [0.008] 0.198*** [0.011] 

SITC_3 x Low value x log(Price) 0.013 [0.089] 0.014 [0.089] 0.022 [0.085] 0.023 [0.085] 

SITC_5 x High value x log(Price) -0.006 [0.049] -0.005 [0.049] -0.007 [0.062] -0.006 [0.062] 

SITC_6 x Low value x log(Price) -0.086 [0.080] -0.085 [0.078] 0.026 [0.062] 0.025 [0.062] 

SITC_7 x Low value x log(Price) -0.045*** [0.010] -0.045*** [0.010] -0.037*** [0.008] -0.037*** [0.008] 

SITC_9 x Low value x log(Price) -0.003 [0.020] -0.003 [0.019] -0.002 [0.019] -0.002 [0.019] 

SITC_10 x Low value x log(Price) -0.047 [0.057] -0.048 [0.056] -0.039 [0.045] -0.039 [0.044] 

SITC_11 x Low value x log(Price) -0.051 [0.031] -0.051 [0.032] -0.046 [0.028] -0.046 [0.029] 

SITC_12 x Low value x log(Price) 0.013 [0.009] 0.013 [0.009] 0.014 [0.009] 0.014 [0.009] 

SITC_13 x Low value x log(Price) 0.017 [0.143] 0.016 [0.143] 0.750* [0.416] 0.747* [0.419] 

SITC_14 x High value x log(Price) 0.005 [0.019] 0.005 [0.018] 0.033 [0.032] 0.033 [0.031] 

SITC_15 x Low value x log(Price) -0.155*** [0.003] -0.155*** [0.003] -0.139*** [0.003] -0.139*** [0.003] 

SITC_16 x Low value x log(Price) -0.110 [0.106] -0.111 [0.104] -0.098 [0.092] -0.099 [0.091] 

SITC_17 x Low value x log(Price) 0.001 [0.027] 0.001 [0.027] 0.004 [0.025] 0.004 [0.026] 

SITC_18 x High value x log(Price) 0.040** [0.018] 0.040** [0.018] 0.034** [0.016] 0.035** [0.016] 

Fixed effects Yes  Yes  Yes  Yes  

Controls No  Yes  No  Yes  

N 19298  19298  19298  19298  

R-squared 0.763  0.763  0.763  0.763  

Countries 38  38  38  38  

Notes: (1) The table shows the regression results for a sample of 2,182 districts in 653 regions across 38 countries in Africa during 2001–2012. (2) The regressions use the 
classification of minerals’ value to explain spatial-temporal variations in inequality. (3) Gini index is at the district level and measured using night-time light intensity. (4) The 
standard errors, clustered at the country level, are in the brackets. (5) Constant (measured at constant 1998 US dollars) and average (measured as annual averages) prices 
come from USGS. (6) High value refers to mining sites where high-value minerals are extracted, whereas low value refers to places where low-value minerals are extracted. (7) 
Fixed effects include time fixed effects, district fixed effects, regional fixed effects, country fixed effects, and country-year fixed effects. (8) Controls include a proxy for agricultural 
productivity, rainfall, population sizes, lights pixels lit, and district geographical locations (measured in absolute latitudes). (9) SITC_1: helium. (10) SITC_2: garnet (industrial). 
(11) SITC_3: stones (crushed, dimension), limestone, gypsum, marble, and silicon. (12) SITC_5: diamond. (13) SITC_6: barite, bentonite, clay, dolomite, fluorspar, graphite, salt, 
vermiculite, fluorine, and graphite. (14) SITC_7: iron ore. (15) SITC_9: cobalt, chromium, niobium (columbium), tantalum, titanium, zirconium, and tungsten. (16) SITC_10: arsenic 
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trioxide, lithium, manganese, pyrophyllite, soda ash, sodium silicate, and wollastonite. (17) SITC_11: phosphate rock and phosphoric acid. (18) SITC_12: cement. (19) SITC_13: 
diatomite. (20) SITC_14: platinum. (21) SITC_15: nickel. (22) SITC_16: zinc. (23) SITC_17: tin. (24) SITC_18: gold. * p < 0.10. ** p < 0.05. *** p < 0.01. 

Source: authors’ estimations. 
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Table 10: The effects of the scale of mining activities on lights Gini index 

Dependent variable: district light Gini index 

 Constant mineral prices Average mineral prices 
 Model 1 S.E. Model 2 S.E. Model 3 S.E. Model 4 S.E. 

SITC_1 x Large scale x log(Price) 0.132*** [0.001] 0.126*** [0.006] 0.150*** [0.001] 0.137*** [0.014] 
SITC_2 x Large scale x log(Price) 0.133*** [0.005] 0.134*** [0.007] 0.189*** [0.007] 0.193*** [0.010] 
SITC_3 x Large scale x log(Price) 0.011 [0.089] 0.012 [0.089] 0.020 [0.086] 0.021 [0.085] 
SITC_5 x Small scale x log(Price) -0.105 [0.063] -0.103 [0.065] -0.116 [0.087] -0.113 [0.090] 
SITC_5 x Large scale x log(Price) 0.002 [0.054] 0.002 [0.054] 0.001 [0.068] 0.001 [0.068] 
SITC_6 x Small scale x log(Price) -0.536*** [0.005] -0.536*** [0.005] -1.177*** [0.004] -1.173*** [0.004] 
SITC_6 x Large scale x log(Price) -0.076 [0.082] -0.076 [0.080] 0.051 [0.059] 0.051 [0.059] 
SITC_7 x Large scale x log(Price) -0.045*** [0.010] -0.045*** [0.010] -0.037*** [0.008] -0.037*** [0.008] 
SITC_9 x Small scale x log(Price) -0.065*** [0.001] -0.066*** [0.002] -0.067*** [0.000] -0.067*** [0.002] 
SITC_9 x Large scale x log(Price) 0.005 [0.020] 0.005 [0.020] 0.006 [0.019] 0.006 [0.019] 
SITC_10 x Small scale x log(Price) 0.200*** [0.003] 0.200*** [0.003] 0.156*** [0.002] 0.157*** [0.002] 
SITC_10 x Large scale x log(Price) -0.063 [0.059] -0.063 [0.059] -0.052 [0.046] -0.052 [0.045] 
SITC_11 x Large scale x log(Price) -0.051 [0.031] -0.051 [0.032] -0.046 [0.028] -0.046 [0.029] 
SITC_12 x Large scale x log(Price) 0.013 [0.009] 0.013 [0.009] 0.014 [0.009] 0.014 [0.009] 
SITC_13 x Large scale x log(Price) 0.015 [0.143] 0.014 [0.143] 0.751* [0.415] 0.748* [0.418] 
SITC_14 x Large scale x log(Price) 0.005 [0.019] 0.005 [0.018] 0.034 [0.032] 0.034 [0.031] 
SITC_15 x Large scale x log(Price) -0.156*** [0.003] -0.156*** [0.003] -0.140*** [0.003] -0.140*** [0.003] 
SITC_16 x Large scale x log(Price) -0.110 [0.106] -0.112 [0.105] -0.098 [0.092] -0.099 [0.091] 
SITC_17 x Small scale x log(Price) -0.231*** [0.001] -0.230*** [0.002] -0.242*** [0.001] -0.241*** [0.002] 
SITC_17 x Large scale x log(Price) 0.003 [0.027] 0.002 [0.028] 0.005 [0.025] 0.005 [0.026] 
SITC_18 x Small scale x log(Price)  0.082*** [0.023]  0.083*** [0.023]  0.070*** [0.020]  0.071*** [0.020] 
SITC_18 x Large scale x log(Price) 0.034* [0.019] 0.034* [0.019] 0.029* [0.017] 0.030* [0.017] 

Fixed effects Yes  Yes  Yes  Yes  
Controls No  Yes  No  Yes  
N 19298  19298  19298  19298  
R-squared 0.763  0.763  0.763  0.763  
Countries 38  38  38  38  
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Notes: (1) The table shows the regression results for a sample of 2,182 districts in 653 regions across 38 countries in Africa during 2001–2012. (2) The regressions use the scale 
of district mining operations to explain spatial-temporal variations in inequality. (3) Gini index is at the district level and measured using night-time light intensity. (4) The standard 
errors, clustered at the country level, are in the brackets. (5) Constant (measured at constant 1998 US dollars) and average (measured as annual averages) prices come from 
USGS. (6) Small scale refers to sites with artisanal mining activities, while large scale refers to sites where large-scale mining activities are taking place. (7) Fixed effects include 
time fixed effects, district fixed effects, regional fixed effects, country fixed effects, and country-year fixed effects. (8) Controls include a proxy for agricultural productivity, rainfall, 
population sizes, lights pixels lit, and district geographical locations (measured in absolute latitudes). (9) SITC_1: helium. (10) SITC_2: garnet (industrial). (11) SITC_3: stones 
(crushed, dimension), limestone, gypsum, marble, and silicon. (12) SITC_5: diamond. (13) SITC_6: barite, bentonite, clay, dolomite, fluorspar, graphite, salt, vermiculite, fluorine, 
and graphite. (14) SITC_7: iron ore. (15) SITC_9: cobalt, chromium, niobium (columbium), tantalum, titanium, zirconium, and tungsten. (16) SITC_10: arsenic trioxide, lithium, 
manganese, pyrophyllite, soda ash, sodium silicate, and wollastonite. (17) SITC_11: phosphate rock and phosphoric acid. (18) SITC_12: cement. (19) SITC_13: diatomite. (20) 
SITC_14: platinum. (21) SITC_15: nickel. (22) SITC_16: zinc. (23) SITC_17: tin. (24) SITC_18: gold. * p < 0.10. ** p < 0.05. *** p < 0.01. 

Source: authors’ estimations. 
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Table 11: The effects of the nature of mining activities on lights Gini index 

Dependent variable: district lights Gini index 

 Constant mineral prices Average mineral prices 

 Model 1 S.E. Model 2 S.E. Model 3 S.E. Model 4 S.E. 

SITC_1 x Extraction x log(Price) 0.130*** [0.001] 0.124*** [0.006] 0.148*** [0.001] 0.135*** [0.014] 

SITC_2 x Extraction x log(Price) 0.140*** [0.005] 0.141*** [0.007] 0.196*** [0.006] 0.200*** [0.011] 

SITC_3 x Extraction x log(Price) 0.015 [0.120] 0.016 [0.119] 0.065 [0.099] 0.066 [0.098] 

SITC_3 x Transform x log(Price) 0.003 [0.097] 0.004 [0.097] -0.069 [0.106] -0.068 [0.104] 

SITC_5 x Extraction x log(Price) -0.006 [0.049] -0.006 [0.049] -0.007 [0.062] -0.007 [0.062] 

SITC_6 x Extraction x log(Price) -0.095 [0.080] -0.093 [0.078] 0.034 [0.066] 0.033 [0.066] 

SITC_6 x Transform x log(Price) 0.116* [0.067] 0.091 [0.059] -0.168*** [0.018] -0.171*** [0.017] 

SITC_7 x Extraction x log(Price) -0.059*** [0.013] -0.059*** [0.013] -0.049*** [0.011] -0.049*** [0.011] 

SITC_7 x Transform x log(Price) 0.026 [0.033] 0.026 [0.033] 0.022 [0.029] 0.022 [0.028] 

SITC_9 x Extraction x log(Price) 0.003 [0.019] 0.003 [0.019] 0.004 [0.019] 0.004 [0.018] 

SITC_9 x Transform x log(Price) -0.109*** [0.001] -0.108*** [0.001] -0.099*** [0.001] -0.098*** [0.001] 

SITC_10 x Extraction x log(Price) -0.043 [0.068] -0.043 [0.068] -0.037 [0.055] -0.038 [0.055] 

SITC_10 x Transform x log(Price) -0.068** [0.030] -0.069** [0.030] -0.041* [0.024] -0.041* [0.024] 

SITC_11 x Extraction x log(Price) -0.070 [0.043] -0.071 [0.043] -0.064 [0.039] -0.065 [0.039] 

SITC_11 x Transform x log(Price) -0.003 [0.103] -0.002 [0.105] -0.001 [0.095] -0.000 [0.096] 

SITC_12 x Extraction x log(Price) -0.019 [0.023] -0.019 [0.023] -0.018 [0.021] -0.018 [0.021] 

SITC_12 x Transform x log(Price) 0.024** [0.010] 0.024** [0.010] 0.025** [0.011] 0.025** [0.011] 

SITC_13 x Extraction x log(Price) -0.170*** [0.007] -0.170*** [0.008] 1.293*** [0.003] 1.294*** [0.003] 

SITC_13 x Transform x log(Price) 0.205*** [0.006] 0.204*** [0.006] 0.203*** [0.004] 0.196*** [0.009] 

SITC_14 x Extraction x log(Price) -0.008 [0.011] -0.007 [0.011] 0.016 [0.022] 0.016 [0.021] 

SITC_14 x Transform x log(Price) 0.070*** [0.001] 0.069*** [0.001] 0.127*** [0.001] 0.124*** [0.002] 

SITC_15 x Extraction x log(Price) -0.154*** [0.003] -0.154*** [0.003] -0.138*** [0.003] -0.138*** [0.003] 

SITC_16 x Extraction x log(Price) -0.110 [0.106] -0.112 [0.104] -0.098 [0.092] -0.099 [0.091] 

SITC_17 x Extraction x log(Price) 0.042*** [0.005] 0.042*** [0.005] 0.042*** [0.003] 0.043*** [0.003] 

SITC_17 x Transform x log(Price) -0.028*** [0.000] -0.028*** [0.001] -0.024*** [0.000] -0.024*** [0.001] 

SITC_18 x Extraction x log(Price) 0.044** [0.019] 0.044** [0.019] 0.038** [0.016] 0.038** [0.016] 

SITC_18 x Transform x log(Price) -0.054*** [0.001] -0.053*** [0.001] -0.047*** [0.000] -0.047*** [0.000] 

Fixed effects Yes  Yes  Yes  Yes  
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Controls No  Yes  No  Yes  

N 19298  19298  19298  19298  

R-squared 0.763  0.763  0.763  0.763  

Countries 38  38  38  38  

Notes: (1) The table shows the regression results for a sample of 2,182 districts in 653 countries across 38 countries in Africa during 2001–2012. (2) The regressions use the 
nature of mining activities to explain spatial-temporal variations in inequality. (3) Gini index is at the district level and measured using night-time light intensity. (4) The standard 
errors, clustered at the country level, are in the brackets. (5) Constant (measured at constant 1998 US dollars) and average (measured as annual averages) prices come from 
USGS. (6) Extraction refers to mining sites where extractive mining activities are taking place, and transform refers to sites where value addition to raw minerals is performed. 
(7) Fixed effects include time fixed effects, district fixed effects, regional fixed effects, country fixed effects, and country-year fixed effects. (8) Controls include a proxy for 
agricultural productivity, rainfall, population sizes, lights pixels lit, and district geographical locations (measured in absolute latitudes). (9) SITC_1: helium. (10) SITC_2: garnet 
(industrial). (11) SITC_3: stones (crushed, dimension), limestone, gypsum, marble, and silicon. (12) SITC_5: diamond. (13) SITC_6: barite, bentonite, clay, dolomite, fluorspar, 
graphite, salt, vermiculite, fluorine, and graphite. (14) SITC_7: iron ore. (15) SITC_9: cobalt, chromium, niobium (columbium), tantalum, titanium, zirconium, and tungsten. (16) 
SITC_10: arsenic trioxide, lithium, manganese, pyrophyllite, soda ash, sodium silicate, and wollastonite. (17) SITC_11: phosphate rock and phosphoric acid. (18) SITC_12: 
cement. (19) SITC_13: diatomite. (20) SITC_14: platinum. (21) SITC_15: nickel. (22) SITC_16: zinc. (23) SITC_17: tin. (24) SITC_18: gold. * p < 0.10. ** p < 0.05. *** p < 0.01. 

Source: authors’ estimations.



 

35 

Table 12: The effects of mineral deposits’ and mining sites’ presence on district inequality 

 Constant mineral prices Average mineral prices 

 Gini MLD Theil RLP Gini MLD Theil RLP 

Equation [2]:          

Deposits [1=present] 0.180*** 0.277*** 0.206** 17.504*** 0.166*** 0.255*** 0.178** 17.240*** 

 [0.048] [0.095] [0.091] [2.040] [0.043] [0.085] [0.082] [1.914] 

Equation [3]:         

Mining sites 0.090*** 0.139*** 0.103** 8.752*** 0.083*** 0.127*** 0.089** 8.620*** 

 [0.024] [0.047] [0.046] [1.020] [0.022] [0.043] [0.041] [0.957] 

Log(Prices) 0.005 -0.003 0.003 -0.045 0.007 0.001 0.008 0.006 

 [0.009] [0.017] [0.018] [0.049] [0.008] [0.014] [0.015] [0.059] 

Fixed effects  Yes Yes Yes Yes Yes Yes Yes Yes 

Controls Yes Yes Yes Yes Yes Yes Yes Yes 

N 19298 19298 19298 23745 19298 19298 19298 23745 

R-squared 0.762 0.625 0.676 0.463 0.762 0.625 0.676 0.463 

Countries 38 38 38 38 38 38 38 38 

Notes: (1) The table shows the regression results for a sample of 2,182 districts in 653 regions across 38 countries 
in Africa during 2001–2012. (2) The regressions use the presence of mineral deposits and mining sites to explain 
spatial-temporal variations in lights Gini. (3) All inequality indicators are at the district level and measured using 
night-time light intensity. (4) The standard errors, clustered at the country level, are in the brackets. (5) MLD stands 
for mean logarithmic deviation, and RLP stands for relative lights per capita. (6) Constant (measured at constant 
1998 US dollars) and average (measured as annual averages) prices come from USGS. (7) Fixed effects include 
time fixed effects, district fixed effects, regional fixed effects, country fixed effects, and country-year fixed effects. 
(8) Controls include a proxy for agricultural productivity, rainfall, population sizes, lights pixels lit, and district 
geographical locations (measured in absolute latitudes). * p < 0.10. ** p < 0.05. *** p < 0.01. 

Source: authors’ estimations. 
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Table 13: The effects of the status of mining activities on district inequality 

 Constant mineral prices Average mineral prices 

 Gini MLD Theil RLP Gini MLD Theil RLP 

Active mines [1=Active] 0.180*** 0.277*** 0.206** 17.504*** 0.166*** 0.255*** 0.178** 17.240*** 

 [0.048] [0.095] [0.091] [2.040] [0.043] [0.085] [0.082] [1.914] 

         

Closed mines [2=Closed] -0.191** -0.463*** -0.407*** -4.435*** -0.211*** -0.496*** -0.447*** -4.822*** 

 [0.072] [0.129] [0.141] [1.014] [0.064] [0.112] [0.124] [1.209] 

         

Log(Prices) 0.005 -0.003 0.003 -0.045 0.007 0.001 0.008 0.006 

 [0.009] [0.017] [0.018] [0.049] [0.008] [0.014] [0.015] [0.059] 

         

Fixed effects  Yes Yes Yes Yes Yes Yes Yes Yes 

Controls Yes Yes Yes Yes Yes Yes Yes Yes 

N 19298 19298 19298 23745 19298 19298 19298 23745 

R-squared 0.762 0.625 0.676 0.463 0.762 0.625 0.676 0.463 

Countries 38 38 38 38 38 38 38. 38 

Notes: (1) The table shows the regression results for a sample of 2,182 districts in 653 regions across 38 countries in Africa during 2001–2012. (2) The regressions use the 
presence of active and closed mining activities to explain spatial-temporal variations in inequality and welfare measures. (3) All inequality indicators are at the district level and 
measured using night-time light intensity. (4) The standard errors, clustered at the country level, are in the brackets. (5) MLD stands for mean logarithmic deviation, and RLP 
stands for relative lights per capita. (6) Constant (measured at constant 1998 US dollars) and average (measured as annual averages) prices come from USGS. (7) Fixed effects 
include time fixed effects, district fixed effects, regional fixed effects, country fixed effects, and country-year fixed effects. (8) Controls include a proxy for agricultural productivity, 
rainfall, population sizes, lights pixels lit, and district geographical locations (measured in absolute latitudes). * p < 0.10. ** p < 0.05. *** p < 0.01. 

Source: authors’ estimations. 
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Table 14: The effects of the scale of mining activities on district inequality 

 Constant mineral prices Average mineral prices 

 Gini MLD Theil RLP Gini MLD Theil RLP 

Small-scale mines 0.054 0.184 0.072 3.851*** 0.014 0.113 -0.011 3.001*** 

 [0.157] [0.285] [0.301] [1.154] [0.135] [0.240] [0.257] [0.985] 

         

Large-scale mines 0.180*** 0.277*** 0.206** 17.504*** 0.166*** 0.255*** 0.178** 17.240*** 

 [0.048] [0.095] [0.091] [2.040] [0.043] [0.085] [0.082] [1.914] 

         

Log(Prices) 0.005 -0.003 0.003 -0.045 0.007 0.001 0.008 0.006 

 [0.009] [0.017] [0.018] [0.049] [0.008] [0.014] [0.015] [0.059] 

Fixed effects  Yes Yes Yes Yes Yes Yes Yes Yes 

Controls Yes Yes Yes Yes Yes Yes Yes Yes 

N 19298 19298 19298 23745 19298 19298 19298 23745 

R-squared 0.762 0.625 0.676 0.463 0.762 0.625 0.676 0.463 

Countries 38 38 38 38 38 38 38 38 

Notes: (1) The table shows the regression results for a sample of 2,182 districts in 653 regions across 38 countries in Africa during 2001–2012. (2) The regressions exploit the 
scale of mining operations to explain spatial-temporal variations in district inequality. (3) All inequality indicators are at the district level and measured using night-time light 
intensity. (4) The standard errors, clustered at the country level, are in the brackets. (5) MLD stands for mean logarithmic deviation, and RLP stands for relative lights per capita. 
(6) Constant (measured at constant 1998 US dollars) and average (measured as annual averages) prices come from USGS. (7) Small-scale refers to sites with artisanal mining 
activities, while large-scale refers to sites where large-scale mining activities are taking place. (8) Fixed effects include time fixed effects, district fixed effects, regional fixed 
effects, country fixed effects, and country-year fixed effects. (9) Controls include a proxy for agricultural productivity, rainfall, population sizes, lights pixels lit, and district 
geographical locations (measured in absolute latitudes). * p < 0.10. ** p < 0.05. *** p < 0.01. 

Source: authors’ estimations. 
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Table 15: The effects of minerals’ value on district inequality 

 Constant mineral prices Average mineral prices 

 Gini MLD Theil RLP Gini MLD Theil RLP 

High-value minerals 0.054 0.184 0.072 3.851*** 0.014 0.113 -0.011 3.001*** 

 [0.157] [0.285] [0.301] [1.154] [0.135] [0.240] [0.257] [0.985] 

         

Low-value minerals 0.180*** 0.277*** 0.206** 17.504*** 0.166*** 0.255*** 0.178** 17.240*** 

 [0.048] [0.095] [0.091] [2.040] [0.043] [0.085] [0.082] [1.914] 

         

Log(Prices) 0.005 -0.003 0.003 -0.045 0.007 0.001 0.008 0.006 

 [0.009] [0.017] [0.018] [0.049] [0.008] [0.014] [0.015] [0.059] 

Fixed effects  Yes Yes Yes Yes Yes Yes Yes Yes 

Controls Yes Yes Yes Yes Yes Yes Yes Yes 

N 19298 19298 19298 23745 19298 19298 19298 23745 

R-squared 0.762 0.625 0.676 0.463 0.762 0.625 0.676 0.463 

Countries 38 38 38 38 38 38 38 38 

Notes: (1) The table shows the regression results for a sample of 2,182 districts in 653 regions across 38 countries in Africa during 2001–2012. (2) The regressions exploit the 
value of minerals to explain spatial-temporal variations in district inequality. (3) All inequality indicators are at the district level and measured using night-time light intensity. (4) 
The standard errors, clustered at the country level, are in the brackets. (5) MLD stands for mean logarithmic deviation, and RLP stands for relative lights per capita. (6) Constant 
(measured at constant 1998 US dollars) and average (measured as annual averages) prices come from USGS. (7) High-value refers to mining sites where high-value minerals 
are extracted, whereas low-value refers to places where low-value minerals are extracted. (8) Fixed effects include time fixed effects, district fixed effects, regional fixed effects, 
country fixed effects, and country-year fixed effects. (9) Controls include a proxy for agricultural productivity, rainfall, population sizes, lights pixels lit, and district geographical 
locations (measured in absolute latitudes). * p < 0.10. ** p < 0.05. *** p < 0.01. 

Source: authors’ estimations. 
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Table 16: The effects of the nature of mining activities on district inequality. 

 Constant mineral prices Average mineral prices 

 Gini MLD Theil RLP Gini MLD Theil RLP 

Mineral extraction -0.448*** -0.603*** -0.530*** -3.395*** -0.465*** -0.630*** -0.564*** -3.726*** 

 [0.061] [0.111] [0.118] [0.741] [0.055] [0.096] [0.104] [0.907] 

         

Mineral transformation 0.180*** 0.277*** 0.206** 17.504*** 0.166*** 0.255*** 0.178** 17.240*** 

 [0.048] [0.095] [0.091] [2.040] [0.043] [0.085] [0.082] [1.914] 

         

Log(Prices) 0.005 -0.003 0.003 -0.045 0.007 0.001 0.008 0.006 

 [0.009] [0.017] [0.018] [0.049] [0.008] [0.014] [0.015] [0.059] 

Fixed effects  Yes Yes Yes Yes Yes Yes Yes Yes 

Controls Yes Yes Yes Yes Yes Yes Yes Yes 

N 19298 19298 19298 23745 19298 19298 19298 23745 

R-squared 0.762 0.625 0.676 0.463 0.762 0.625 0.676 0.463 

Countries 38 38 38 38 38 38 38 38 

Notes: (1) The table shows the regression results for a sample of 2,182 districts in 653 countries across 38 countries in Africa during 2001–2012. (2) The regressions exploit the 
nature of mining activities to explain spatial-temporal variations in district inequality. (3) All inequality indicators are at the district level and measured using night-time light 
intensity. (4) The standard errors, clustered at the country level, are in the brackets. (5) MLD stands for mean logarithmic deviation, and RLP stands for relative lights per capita. 
(6) Constant (measured at constant 1998 US dollars) and average (measured as annual averages) prices come from USGS. (7) Mineral extraction refers to mining sites where 
extractive mining activities are taking place, and mineral transformation refers to sites where value addition to raw minerals is performed. (8) Fixed effects include time fixed 
effects, district fixed effects, regional fixed effects, country fixed effects, and country-year fixed effects. (9) Controls include a proxy for agricultural productivity, rainfall, population 
sizes, lights pixels lit, and district geographical locations (measured in absolute latitudes). * p < 0.10. ** p < 0.05. *** p < 0.01. 

Source: authors’ estimations. 
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Table 17: The effects of the status of mining activities by mineral type on district inequality 

 Constant mineral prices Average mineral prices 
 Gini MLD Theil RLP Gini MLD Theil RLP 

SITC_1 x Active x log(Price) 0.126*** 0.207*** 0.105*** 9.333*** 0.137*** 0.201*** 0.109*** 13.313*** 
 [0.006] [0.020] [0.014] [1.080] [0.015] [0.047] [0.035] [2.704] 
SITC_2 x Active x log(Price) 0.141*** 0.296*** 0.366*** 0.404*** 0.201*** 0.560*** 1.332*** 0.025 
 [0.006] [0.016] [0.016] [0.131] [0.010] [0.017] [0.024] [0.188] 
SITC_3 x Active x log(Price) 0.014 -0.178 0.020 -0.873 0.023 -0.160 -0.045 -0.261 
 [0.089] [0.223] [0.129] [0.808] [0.085] [0.194] [0.161] [0.882] 
SITC_5 x Active x log(Price) 0.027 0.065 -0.002 0.611 0.032 0.081 0.008 0.619 
 [0.037] [0.067] [0.081] [1.044] [0.048] [0.087] [0.106] [1.153] 
SITC_5 x Closed x log(Price) -0.346*** -0.821*** -0.570*** -0.796*** -0.407*** -0.976*** -0.673*** -0.911*** 
 [0.002] [0.003] [0.004] [0.068] [0.002] [0.004] [0.005] [0.080] 
SITC_6 x Active x log(Price) -0.063 -0.099 0.050 -7.762 0.003 -0.020 0.012 0.404 
 [0.089] [0.135] [0.168] [6.670] [0.065] [0.095] [0.091] [1.054] 
SITC_6 x Closed x log(Price) -0.282 -0.412** -0.610** -1.658 0.190*** 0.331** 0.279*** 2.558** 
 [0.177] [0.152] [0.246] [1.341] [0.051] [0.135] [0.089] [1.015] 
SITC_7 x Active x log(Price) -0.046*** -0.160*** -0.069*** -0.065 -0.039*** -0.135*** -0.058*** -0.049 
 [0.010] [0.032] [0.023] [0.138] [0.009] [0.028] [0.019] [0.118] 
SITC_9 x Active x log(Price) -0.003 -0.018 -0.012 0.182* -0.003 -0.019 -0.009 0.176* 
 [0.019] [0.036] [0.040] [0.104] [0.019] [0.034] [0.041] [0.101] 
SITC_10 x Active x log(Price) -0.048 -0.090 -0.131 -0.562 -0.039 -0.076 -0.105 -0.481* 
 [0.056] [0.132] [0.184] [0.336] [0.044] [0.106] [0.150] [0.274] 
SITC_11 x Active x log(Price) -0.037 -0.087* -0.022 -0.269** -0.034 -0.079* -0.019 -0.241* 
 [0.026] [0.044] [0.042] [0.132] [0.023] [0.040] [0.038] [0.121] 
SITC_11 x Closed x log(Price) -0.127*** -0.234*** -0.276*** 0.801*** -0.115*** -0.207*** -0.255*** 0.721*** 
 [0.002] [0.004] [0.004] [0.159] [0.001] [0.003] [0.003] [0.147] 
SITC_12 x Active x log(Price) 0.015 0.029 0.030 0.082 0.016 0.029 0.031 0.080 
 [0.010] [0.020] [0.019] [0.051] [0.010] [0.020] [0.020] [0.050] 
SITC_12 x Closed x log(Price) -0.008*** -0.038*** -0.006 -1.502** -0.005*** -0.029*** 0.006 -1.532** 
 [0.002] [0.013] [0.040] [0.698] [0.001] [0.010] [0.041] [0.689] 
SITC_13 x Active x log(Price) 0.016 -0.316 -0.166 0.487 0.748* 1.097*** 1.018** 0.334 
 [0.143] [0.667] [0.418] [0.426] [0.418] [0.323] [0.390] [0.290] 
SITC_14 x Active x log(Price) 0.010 0.048*** 0.005 0.394*** 0.038 0.090** 0.062 0.655*** 
 [0.019] [0.011] [0.049] [0.137] [0.034] [0.039] [0.066] [0.148] 
SITC_14 x Closed x log(Price) -0.056*** -0.251*** -0.094*** -0.344*** -0.035*** -0.208*** -0.066*** -0.249*** 
 [0.002] [0.003] [0.004] [0.026] [0.003] [0.006] [0.008] [0.044] 
SITC_15 x Closed x log(Price) -0.158*** -0.379*** -0.225*** -0.091*** -0.142*** -0.346*** -0.202*** -0.086** 
 [0.003] [0.005] [0.005] [0.032] [0.003] [0.005] [0.006] [0.036] 
SITC_16 x Closed x log(Price) -0.111 -0.362 -0.229 0.581* -0.099 -0.325 -0.206 0.675* 
 [0.104] [0.300] [0.188] [0.288] [0.091] [0.268] [0.169] [0.385] 
SITC_17 x Active x log(Price) 0.042*** 0.083*** 0.037*** 0.012 0.042*** 0.083*** 0.038*** 0.002 
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 [0.005] [0.009] [0.005] [0.452] [0.003] [0.006] [0.004] [0.390] 
SITC_17 x Closed x log(Price) -0.029*** -0.190*** -0.041*** 0.035 -0.024*** -0.163*** -0.034*** 0.033 
 [0.001] [0.003] [0.003] [0.532] [0.001] [0.003] [0.003] [0.460] 
SITC_18 x Active x log(Price) 0.047* 0.087* 0.053 -0.134 0.041* 0.074* 0.045 -0.114 
 [0.025] [0.045] [0.045] [0.147] [0.021] [0.039] [0.039] [0.128] 
SITC_18 x Closed x log(Price) 0.001 -0.049 0.033** 0.208 0.001 -0.045 0.026* 0.190 

 [0.014] [0.050] [0.015] [0.184] [0.013] [0.045] [0.014] [0.158] 

Fixed effects  Yes Yes Yes Yes Yes Yes Yes Yes 

Controls Yes Yes Yes Yes Yes Yes Yes Yes 

N 19298 19298 19298 23745 19298 19298 19298 23745 

R-squared 0.763 0.628 0.677 0.464 0.763 0.628 0.677 0.463 

Countries 38 38 38 38 38 38 38 38 

Notes: (1) The table shows the regression results for a sample of 2,182 districts in 653 regions across 38 countries in Africa during 2001–2012. (2) The regressions exploit the 
status of mining activities to explain spatial-temporal variations in inequality and welfare measures. (3) All inequality indicators are at the district level and measured using night-
time light intensity. (4) The standard errors, clustered at the country level, are in the brackets. (5) Constant (measured at constant 1998 US dollars) and average (measured as 
annual averages) prices come from USGS. (6) Fixed effects include time fixed effects, district fixed effects, regional fixed effects, country fixed effects, and country-year fixed 
effects. (7) Controls include a proxy for agricultural productivity, rainfall, population sizes, lights pixels lit, and district geographical locations (measured in absolute latitudes). (8) 
SITC_1: helium. (9) SITC_2: garnet (industrial). (10) SITC_3: stones (crushed, dimension), limestone, gypsum, marble, and silicon. (11) SITC_4: sulphur. (12) SITC_5: diamond. 
(13) SITC_6: barite, bentonite, clay, dolomite, fluorspar, graphite, salt, vermiculite, fluorine, and graphite. (14) SITC_7: iron ore. (15) SITC_8: copper. (16) SITC_9: cobalt, 
chromium, niobium (columbium), tantalum, titanium, zirconium, and tungsten. (17) SITC_10: arsenic trioxide, lithium, manganese, pyrophyllite, soda ash, sodium silicate, and 
wollastonite. (18) SITC_11: phosphate rock and phosphoric acid. (19) SITC_12: cement. (20) SITC_13: diatomite. (21) SITC_14: platinum. (22) SITC_15: nickel. (23) SITC_16: 
zinc. (24) SITC_17: tin. (25) SITC_18: gold. * p < 0.10. ** p < 0.05. *** p < 0.01. 

Source: authors’ estimations. 
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Table 18: The effects of the scale of mining activities by mineral type on district inequality 

 Gini MLD Theil RLP Gini MLD Theil RLP 

SITC_1 x Large scale x log(Price) 0.126*** 0.206*** 0.105*** 9.326*** 0.137*** 0.202*** 0.110*** 13.289*** 

 [0.006] [0.019] [0.014] [1.085] [0.014] [0.046] [0.034] [2.714] 

SITC_2 x Large scale x log(Price) 0.134*** 0.280*** 0.359*** 0.456*** 0.193*** 0.543*** 1.324*** 0.147 

 [0.007] [0.021] [0.019] [0.132] [0.010] [0.021] [0.027] [0.205] 

SITC_3 x Large scale x log(Price) 0.012 -0.179 0.016 -0.844 0.021 -0.163 -0.046 -0.268 

 [0.089] [0.225] [0.129] [0.805] [0.085] [0.194] [0.160] [0.880] 

SITC_5 x Small scale x log(Price) -0.103 -0.150 -0.451 -0.122 -0.113 -0.141 -0.533 -0.141 

 [0.065] [0.224] [0.398] [0.141] [0.090] [0.312] [0.502] [0.156] 

SITC_5 x Large scale x log(Price) 0.002 -0.002 -0.020 0.581 0.001 -0.002 -0.015 0.589 

 [0.054] [0.102] [0.096] [1.142] [0.068] [0.129] [0.125] [1.265] 

SITC_6 x Small scale x log(Price) -0.536*** -0.010 -0.159*** 0.703 -1.173*** -1.565*** -1.135*** 0.526 

 [0.005] [0.013] [0.009] [3.941] [0.004] [0.013] [0.009] [2.979] 

SITC_6 x Large scale x log(Price) -0.076 -0.132 -0.018 -7.390 0.051 0.058 0.068 0.621 

 [0.080] [0.120] [0.158] [6.261] [0.059] [0.097] [0.088] [1.064] 

SITC_7 x Large scale x log(Price) -0.045*** -0.156*** -0.069*** -0.074 -0.037*** -0.131*** -0.058*** -0.058 

 [0.010] [0.030] [0.023] [0.142] [0.008] [0.025] [0.019] [0.119] 

SITC_9 x Small scale x log(Price) -0.066*** -0.173*** -0.147*** 0.467 -0.067*** -0.180*** -0.147*** 0.453 

 [0.002] [0.003] [0.003] [0.401] [0.002] [0.003] [0.003] [0.390] 

SITC_9 x Large scale x log(Price) 0.005 0.003 0.006 0.134 0.006 0.002 0.008 0.130 

 [0.020] [0.033] [0.042] [0.101] [0.019] [0.030] [0.043] [0.097] 

SITC_10 x Small scale x log(Price) 0.200*** 0.185*** 0.168*** -1.229*** 0.157*** 0.157*** 0.136*** -0.932*** 

 [0.003] [0.006] [0.007] [0.272] [0.002] [0.004] [0.005] [0.205] 

SITC_10 x Large scale x log(Price) -0.063 -0.108 -0.151 -0.529 -0.052 -0.091 -0.122 -0.461 

 [0.059] [0.141] [0.196] [0.339] [0.045] [0.114] [0.160] [0.280] 

SITC_11 x Large scale x log(Price) -0.051 -0.110** -0.060 -0.135** -0.046 -0.099** -0.054 -0.122** 

 [0.032] [0.051] [0.069] [0.060] [0.029] [0.046] [0.064] [0.052] 

SITC_12 x Large scale x log(Price) 0.013 0.022 0.027 -0.079 0.014 0.023 0.030 -0.085 

 [0.009] [0.018] [0.017] [0.112] [0.009] [0.018] [0.018] [0.113] 

SITC_13 x Large scale x log(Price) 0.014 -0.324 -0.169 0.466 0.748* 1.096*** 1.016** 0.298 

 [0.143] [0.667] [0.421] [0.441] [0.418] [0.323] [0.390] [0.308] 

SITC_14 x Large scale x log(Price) 0.005 0.027 -0.003 0.338** 0.034 0.071 0.053 0.580*** 
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 [0.018] [0.029] [0.048] [0.154] [0.031] [0.043] [0.062] [0.169] 

SITC_15 x Large scale x log(Price) -0.156*** -0.372*** -0.224*** -0.094*** -0.140*** -0.339*** -0.201*** -0.085** 

 [0.003] [0.006] [0.007] [0.032] [0.003] [0.006] [0.007] [0.038] 

SITC_16 x Large scale x log(Price) -0.112 -0.363 -0.230 0.582* -0.099 -0.326 -0.207 0.671* 

 [0.105] [0.300] [0.188] [0.288] [0.091] [0.268] [0.169] [0.386] 

SITC_17 x Small scale x log(Price) -0.230*** -0.413*** -0.205*** -1.130*** -0.241*** -0.434*** -0.213*** -0.982*** 

 [0.002] [0.003] [0.003] [0.238] [0.002] [0.003] [0.004] [0.207] 

SITC_17 x Large scale x log(Price) 0.002 -0.073 -0.007 0.264 0.005 -0.058 -0.003 0.225 

 [0.028] [0.105] [0.031] [0.314] [0.026] [0.094] [0.029] [0.268] 

SITC_18 x Small scale x log(Price) 0.083*** 0.136* 0.138* -0.389 0.071*** 0.114* 0.116* -0.351 

 [0.023] [0.080] [0.079] [0.393] [0.020] [0.067] [0.068] [0.352] 

SITC_18 x Large scale x log(Price) 0.034* 0.056* 0.037 -0.032 0.030* 0.048* 0.031 -0.023 

 [0.019] [0.030] [0.039] [0.112] [0.017] [0.026] [0.034] [0.096] 

Fixed effects Yes Yes Yes Yes Yes Yes Yes Yes 

Controls Yes Yes Yes Yes Yes Yes Yes Yes 

N 19298 19298 19298 23745 19298 19298 19298 23745 

R-squared 0.763 0.627 0.677 0.464 0.763 0.627 0.677 0.463 

Countries 38 38 38 38 38 38 38 38 

Notes: (1) The table shows the regression results for a sample of 2,182 districts in 653 regions across 38 countries in Africa during 2001–2012. (2) The regressions use the scale 
of district mining operations to explain spatial-temporal variations in inequality. (3) All inequality indicators are at the district level and measured using night-time light intensity. 
(4) The standard errors, clustered at the country level, are in the brackets. (5) Constant (measured at constant 1998 US dollars) and average (measured as annual averages) 
prices come from USGS. (6) Small scale refers to sites with artisanal mining activities, while large scale refers to sites where large-scale mining activities are taking place. (7) 
Fixed effects include time fixed effects, district fixed effects, regional fixed effects, country fixed effects, and country-year fixed effects. (8) Controls include a proxy for agricultural 
productivity, rainfall, population sizes, lights pixels lit, and district geographical locations (measured in absolute latitudes). (9) SITC_1: helium. (10) SITC_2: garnet (industrial). 
(11) SITC_3: stones (crushed, dimension), limestone, gypsum, marble, and silicon. (12) SITC_4: sulphur. (13) SITC_5: diamond. (14) SITC_6: barite, bentonite, clay, dolomite, 
fluorspar, graphite, salt, vermiculite, fluorine, and graphite. (15) SITC_7: iron ore. (16) SITC_8: copper. (17) SITC_9: cobalt, chromium, niobium (columbium), tantalum, titanium, 
zirconium, and tungsten. (18) SITC_10: arsenic trioxide, lithium, manganese, pyrophyllite, soda ash, sodium silicate, and wollastonite. (19) SITC_11: phosphate rock and 
phosphoric acid. (20) SITC_12: cement. (21) SITC_13: diatomite. (22) SITC_14: platinum. (23) SITC_15: nickel. (24) SITC_16: zinc. (25) SITC_17: tin. (26) SITC_18: gold. * p < 
0.10. ** p < 0.05. *** p < 0.01. 

Source: authors’ estimations. 
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Table 19: The effects of minerals’ value by mineral type on district inequality 

 Constant mineral prices Average mineral prices 
 Gini MLD Theil RLP Gini MLD Theil RLP 

SITC_1 x Low value x log(Price) 0.126*** 0.206*** 0.105*** 9.326*** 0.137*** 0.201*** 0.109*** 13.285*** 
 [0.006] [0.019] [0.014] [1.086] [0.014] [0.046] [0.034] [2.715] 
SITC_2 x Low value x log(Price) 0.138*** 0.286*** 0.367*** 0.432*** 0.198*** 0.551*** 1.334*** 0.112 
 [0.008] [0.018] [0.018] [0.125] [0.011] [0.018] [0.026] [0.197] 
SITC_3 x Low value x log(Price) 0.014 -0.177 0.019 -0.851 0.023 -0.160 -0.044 -0.269 
 [0.089] [0.223] [0.128] [0.805] [0.085] [0.193] [0.160] [0.878] 
SITC_5 x High value x log(Price) -0.005 -0.012 -0.050 0.504 -0.006 -0.011 -0.051 0.511 
 [0.049] [0.095] [0.093] [1.002] [0.062] [0.121] [0.120] [1.112] 
SITC_6 x Low value x log(Price) -0.085 -0.129 -0.020 -7.041 0.025 0.023 0.044 0.624 
 [0.078] [0.118] [0.155] [5.969] [0.062] [0.101] [0.089] [1.016] 
SITC_7 x Low value x log(Price) -0.045*** -0.156*** -0.067*** -0.074 -0.037*** -0.131*** -0.057*** -0.059 
 [0.010] [0.030] [0.024] [0.140] [0.008] [0.025] [0.020] [0.118] 
SITC_9 x Low value x log(Price) -0.003 -0.018 -0.012 0.182* -0.002 -0.018 -0.009 0.175* 
 [0.019] [0.036] [0.040] [0.104] [0.019] [0.034] [0.041] [0.100] 
SITC_10 x Low value x log(Price) -0.048 -0.090 -0.131 -0.571 -0.039 -0.076 -0.105 -0.492* 
 [0.056] [0.132] [0.184] [0.339] [0.044] [0.106] [0.150] [0.277] 
SITC_11 x Low value x log(Price) -0.051 -0.109** -0.060 -0.136** -0.046 -0.099** -0.054 -0.123** 
 [0.032] [0.051] [0.069] [0.060] [0.029] [0.046] [0.063] [0.052] 
SITC_12 x Low value x log(Price) 0.013 0.022 0.027 -0.080 0.014 0.023 0.029 -0.085 
 [0.009] [0.018] [0.018] [0.113] [0.009] [0.018] [0.018] [0.114] 
SITC_13 x Low value x log(Price) 0.016 -0.319 -0.164 0.459 0.747* 1.095*** 1.015** 0.298 
 [0.143] [0.666] [0.421] [0.438] [0.419] [0.325] [0.392] [0.305] 
SITC_14 x High value x log(Price) 0.005 0.026 -0.002 0.349** 0.033 0.069 0.054 0.584*** 

 [0.018] [0.029] [0.048] [0.143] [0.031] [0.043] [0.062] [0.165] 

SITC_15 x Low value x log(Price) -0.155*** -0.371*** -0.222*** -0.099*** -0.139*** -0.338*** -0.199*** -0.090** 

 [0.003] [0.005] [0.007] [0.031] [0.003] [0.005] [0.007] [0.037] 

SITC_16 x Low value x log(Price) -0.111 -0.363 -0.230 0.581* -0.099 -0.326 -0.207 0.670* 

 [0.104] [0.300] [0.188] [0.288] [0.091] [0.268] [0.169] [0.386] 

SITC_17 x Low value x log(Price) 0.001 -0.076 -0.008 0.021 0.004 -0.060 -0.004 0.015 

 [0.027] [0.103] [0.030] [0.421] [0.026] [0.093] [0.028] [0.362] 

SITC_18 x High value x log(Price) 0.040** 0.066** 0.050 -0.087 0.035** 0.056** 0.043 -0.073 

 [0.018] [0.030] [0.037] [0.131] [0.016] [0.026] [0.032] [0.113] 

Fixed effects  Yes Yes Yes Yes Yes Yes Yes Yes 

Controls Yes Yes Yes Yes Yes Yes Yes Yes 

N 19298 19298 19298 23745 19298 19298 19298 23745 
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R-squared 0.763 0.627 0.676 0.464 0.763 0.627 0.676 0.463 

Countries 38 38 38 38 38 38 38 38 

Notes: (1) The table shows the regression results for a sample of 2,182 districts in 653 regions across 38 countries in Africa during 2001–2012. (2) The regressions use the 
classification of minerals’ value to explain spatial-temporal variations in inequality. (3) All inequality indicators are at the district level and measured using night-time light intensity. 
(4) The standard errors, clustered at the country level, are in the brackets. (5) Constant (measured at constant 1998 US dollars) and average (measured as annual averages) 
prices come from USGS. (6) High value refers to mining sites where high-value minerals are extracted, whereas low value refers to places where low-value minerals are extracted. 
(7) Fixed effects include time fixed effects, district fixed effects, regional fixed effects, country fixed effects, and country-year fixed effects. (8) Controls include a proxy for 
agricultural productivity, rainfall, population sizes, lights pixels lit, and district geographical locations (measured in absolute latitudes). (9) SITC_1: helium. (10) SITC_2: garnet 
(industrial). (11) SITC_3: stones (crushed, dimension), limestone, gypsum, marble, and silicon. (12) SITC_4: sulphur. (13) SITC_5: diamond. (14) SITC_6: barite, bentonite, clay, 
dolomite, fluorspar, graphite, salt, vermiculite, fluorine, and graphite. (15) SITC_7: iron ore. (16) SITC_8: copper. (17) SITC_9: cobalt, chromium, niobium (columbium), tantalum, 
titanium, zirconium, and tungsten. (18) SITC_10: arsenic trioxide, lithium, manganese, pyrophyllite, soda ash, sodium silicate, and wollastonite. (19) SITC_11: phosphate rock 
and phosphoric acid. (20) SITC_12: cement. (21) SITC_13: diatomite. (22) SITC_14: platinum. (23) SITC_15: nickel. (24) SITC_16: zinc. (25) SITC_17: tin. (26) SITC_18: gold. 
* p < 0.10. ** p < 0.05. *** p < 0.01. 

Source: authors’ estimations. 
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Table 20: The effects of the nature of mining activities by mineral type on district inequality 

 Constant mineral prices Average mineral prices 

 Gini MLD Theil RLP Gini MLD Theil RLP 

SITC_1 x Extraction x log(Price) 0.124*** 0.205*** 0.104*** 9.266*** 0.135*** 0.199*** 0.107*** 13.299*** 

 [0.006] [0.018] [0.013] [1.068] [0.014] [0.044] [0.033] [2.713] 

SITC_2 x Extraction x log(Price) 0.141*** 0.301*** 0.366*** 0.444*** 0.200*** 0.549*** 1.321*** 0.089 

 [0.007] [0.020] [0.013] [0.118] [0.011] [0.028] [0.019] [0.184] 

SITC_3 x Extraction x log(Price) 0.016 -0.171 0.063 -0.351 0.066 -0.077 0.080 0.178 

 [0.119] [0.270] [0.159] [1.141] [0.098] [0.248] [0.164] [0.843] 

SITC_3 x Transform x log(Price) 0.004 -0.201 -0.091 -1.250 -0.068 -0.338* -0.310* -0.871 

 [0.097] [0.222] [0.129] [0.974] [0.104] [0.176] [0.179] [1.774] 

SITC_5 x Extraction x log(Price) -0.006 -0.013 -0.050 0.482 -0.007 -0.012 -0.051 0.515 

 [0.049] [0.095] [0.093] [0.978] [0.062] [0.121] [0.120] [1.106] 

SITC_6 x Extraction x log(Price) -0.093 -0.137 -0.084 -1.495 0.033 0.036 0.057 0.022 

 [0.078] [0.117] [0.118] [1.512] [0.066] [0.107] [0.095] [0.729] 

SITC_6 x Transform x log(Price) 0.091 0.083 1.458 -145.355 -0.171*** -0.273* -0.270*** 16.046 

 [0.059] [0.150] [1.102] [113.332] [0.017] [0.143] [0.020] [14.116] 

SITC_7 x Extraction x log(Price) -0.059*** -0.189*** -0.088*** -0.149 -0.049*** -0.159*** -0.074*** -0.123 

 [0.013] [0.035] [0.031] [0.112] [0.011] [0.029] [0.026] [0.097] 

SITC_7 x Transform x log(Price) 0.026 0.003 0.035 0.249 0.022 0.003 0.029 0.228 

 [0.033] [0.092] [0.024] [0.547] [0.028] [0.078] [0.021] [0.474] 

SITC_9 x Extraction x log(Price) 0.003 -0.008 -0.000 0.209* 0.004 -0.009 0.002 0.201* 

 [0.019] [0.036] [0.041] [0.113] [0.018] [0.035] [0.042] [0.108] 

SITC_9 x Transform x log(Price) -0.108*** -0.169*** -0.197*** -0.457*** -0.098*** -0.156*** -0.180*** -0.425*** 

 [0.001] [0.003] [0.002] [0.098] [0.001] [0.003] [0.002] [0.094] 

SITC_10 x Extraction x log(Price) -0.043 -0.092 -0.164 -0.741* -0.038 -0.080 -0.135 -0.660* 

 [0.068] [0.165] [0.229] [0.409] [0.055] [0.136] [0.190] [0.338] 

SITC_10 x Transform x log(Price) -0.069** -0.083 0.024 0.273 -0.041* -0.053 0.030 0.208 

 [0.030] [0.277] [0.060] [0.295] [0.024] [0.214] [0.044] [0.219] 

SITC_11 x Extraction x log(Price) -0.071 -0.150** -0.107* 0.070 -0.065 -0.135** -0.098* 0.080 

 [0.043] [0.070] [0.054] [0.161] [0.039] [0.064] [0.050] [0.151] 

SITC_11 x Transform x log(Price) -0.002 -0.010 0.055 -0.714* -0.000 -0.009 0.053 -0.702* 

 [0.105] [0.164] [0.191] [0.356] [0.096] [0.150] [0.174] [0.350] 
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SITC_12 x Extraction x log(Price) -0.019 -0.015 -0.009 0.116 -0.018 -0.015 -0.008 0.104 

 [0.023] [0.026] [0.013] [0.089] [0.021] [0.025] [0.011] [0.090] 

SITC_12 x Transform x log(Price) 0.024** 0.035 0.039 -0.151 0.025** 0.036 0.042* -0.157 

 [0.010] [0.024] [0.024] [0.145] [0.011] [0.024] [0.025] [0.152] 

SITC_13 x Extraction x log(Price) -0.170*** -1.185*** -0.717*** 1.062*** 1.294*** 1.522*** 1.526*** 0.664*** 

 [0.008] [0.012] [0.012] [0.147] [0.003] [0.006] [0.007] [0.188] 

SITC_13 x Transform x log(Price) 0.204*** 0.553*** 0.382*** 0.125* 0.196*** 0.665*** 0.499*** -0.140 

 [0.006] [0.019] [0.012] [0.072] [0.009] [0.014] [0.014] [0.095] 

SITC_14 x Extraction x log(Price) -0.007 0.016 -0.028 0.313* 0.016 0.053 0.021 0.357** 

 [0.011] [0.032] [0.042] [0.161] [0.021] [0.039] [0.042] [0.131] 

SITC_14 x Transform x log(Price) 0.069*** 0.077*** 0.125*** 0.958*** 0.124*** 0.157*** 0.226*** 1.671*** 

 [0.001] [0.003] [0.003] [0.164] [0.002] [0.006] [0.005] [0.326] 

SITC_15 x Extraction x log(Price) -0.154*** -0.370*** -0.221*** -0.123*** -0.138*** -0.336*** -0.198*** -0.094** 

 [0.003] [0.005] [0.007] [0.043] [0.003] [0.005] [0.007] [0.039] 

SITC_16 x Extraction x log(Price) -0.112 -0.363 -0.229 0.549* -0.099 -0.326 -0.207 0.671* 

 [0.104] [0.300] [0.188] [0.275] [0.091] [0.268] [0.169] [0.387] 

SITC_17 x Extraction x log(Price) 0.042*** 0.083*** 0.037*** 0.161 0.043*** 0.083*** 0.038*** 0.137 

 [0.005] [0.009] [0.005] [0.408] [0.003] [0.006] [0.004] [0.361] 

SITC_17 x Transform x log(Price) -0.028*** -0.190*** -0.040*** -0.635*** -0.024*** -0.163*** -0.034*** -0.556*** 

 [0.001] [0.003] [0.003] [0.156] [0.001] [0.003] [0.002] [0.138] 

SITC_18 x Extraction x log(Price) 0.044** 0.068** 0.052 -0.083 0.038** 0.057** 0.044 -0.076 

 [0.019] [0.032] [0.039] [0.129] [0.016] [0.027] [0.034] [0.117] 

SITC_18 x Transform x log(Price) -0.053*** 0.033*** -0.001 -0.080*** -0.047*** 0.027*** -0.002** -0.090*** 

 [0.001] [0.002] [0.001] [0.021] [0.000] [0.001] [0.001] [0.021] 

Fixed effects  Yes Yes Yes Yes Yes Yes Yes Yes 

Controls Yes Yes Yes Yes Yes Yes Yes Yes 

N 19298 19298 19298 23745 19298 19298 19298 23745 

R-squared 0.763 0.627 0.677 0.471 0.763 0.627 0.677 0.463 

Countries 38 38 38 38 38 38 38 38 
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Notes: (1) The table shows the regression results for a sample of 2,182 districts in 653 countries across 38 countries in Africa during 2001–2012. (2) The regressions use the 
nature of mining activities to explain spatial-temporal variations in inequality. (3) All inequality indicators are at the district level and measured using night-time light intensity. (4) 
The standard errors, clustered at the country level, are in the brackets. (5) Constant (measured at constant 1998 US dollars) and average (measured as annual averages) prices 
come from USGS. (6) Extraction refers to mining sites where extractive mining activities are taking place, and transform refers to sites where value addition to raw minerals is 
performed. (7) Fixed effects include time fixed effects, district fixed effects, regional fixed effects, country fixed effects, and country-year fixed effects. (8) Controls include a proxy 
for agricultural productivity, rainfall, population sizes, lights pixels lit, and district geographical locations (measured in absolute latitudes). (9) SITC_1: helium. (10) SITC_2: garnet 
(industrial). (11) SITC_3: stones (crushed, dimension), limestone, gypsum, marble, and silicon. (12) SITC_4: sulphur. (13) SITC_5: diamond. (14) SITC_6: barite, bentonite, clay, 
dolomite, fluorspar, graphite, salt, vermiculite, fluorine, and graphite. (15) SITC_7: iron ore. (16) SITC_8: copper. (17) SITC_9: cobalt, chromium, niobium (columbium), tantalum, 
titanium, zirconium, and tungsten. (18) SITC_10: arsenic trioxide, lithium, manganese, pyrophyllite, soda ash, sodium silicate, and wollastonite. (19) SITC_11: phosphate rock 
and phosphoric acid. (20) SITC_12: cement. (21) SITC_13: diatomite. (22) SITC_14: platinum. (23) SITC_15: nickel. (24) SITC_16 zinc. (25) SITC_17: tin. (26) SITC_18: gold. 
* p < 0.10. ** p < 0.05. *** p < 0.01. 

Source: authors’ estimations. 


