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ABSTRACT 

In subjective expected Utility (SEU) the decision weights people attach to events are their beliefs 
about the likelihood of events. Much empirical evidence, inspircd by Ellsberg (1961) and others, 
shows that people prefer to bet on events they know more about, even when their beliefs are held 
constant. (They are averse to "ambiguity", or uncertainty about probability.) We review evidence, 
recent theoretical explanations, and applications of research on ambiguity and SEU. 

Key Words: Ambiguity, uncertainty, Ellsberg paradox, non-expected Utility 

JEL Code Numbers: D81, C91 

8 August, 1991. Thanks to Jonathan Baron, James Dow, Itzhak Gilboa, Howard Kunreuther, Tomas 
Phillipson, David Schmeidler, and Arnos Tversky for corrections and helpful comments. Camerer's 
contribution to this work was supported by the National Science Foundation, grant no. SES 88-
09299. Weber's contribution was supported by the Deutsche Forschungsgemeinschaft, grant no. WE 
993/5-1. Between 9/1/91 and 8/15/92, address correspondence to : Russell Sage Foundation, 112 
East 64th Street, New York NY 10021. e-mail: colin@rsage.bitnet 

* Graduate School of Business 
University of Chicago, Chicago EL 60637 

** Lehrstuhl für Allgemeine Betriebswirtschaftslehre und Entscheidungsforschung 
Christian-Albrechts-Universität zu Kiel 



1 

In the last 40 years the leading theories of choice in economics and psychology have 

been the expected Utility theoiy (EU) of von Neumann and Morgenstern (1947) and the 

subjective expected utility theoiy (SEU) of Savage (1954). Empirical violations have led to 

reexaminations of both kinds of theoiy. In Weber and Camerer (1987) we reviewed the 

evidence, axioms, and application of alternatives to EU. Here we do the same for SEU. 

EU assumes the probabilities of outcomes are known. If preferences follows a set of 

simple axioms they can be represented by a real-valued utility function- preferred choices 

have higher utility numbers- and the utility of a choice is the expected utility of its possible 

outcomes, weighted by their probabilities. 

In SEU, probabilities are not necessarily objectively known, so SEU applies more 

widely than EU. (Indeed, it is hard to think of an important natural decision for whidi 

probabilities si& objectively known.) In SEU decision makers choose acts, which have 

consequences that depend on which of several imcertain "states" occurs. People are assumed 

to have subjective, or "personal", probabilities of the states (which may legitimately differ 

across people). The SEU axioms show the conditions under which preferences can be 

represented by a numerical expected utility which uses subjective probabilities of states to 

weight consequence Utilities. The theoiy combines the von Neumann and Morgenstern 

(1947) EU approach with de Finetti's (1937) calculus of subjective probabilities. 

Much of the empirical evidence against SEU (as a description of choices) concerns 

precisely the distinction between whether probability is known or unknown. This basic 

distinction goes by many names: risk vs. uncertainty (Knight, 1921); unambiguous vs. 

ambiguous probability (Ellsberg, 1961); precise or shaip vs. vague probability (Savage, 1954, 

p. 59), epistemic reliability (Gardenfors & Sahlin, 1982), and so forth. We generally use 

the term "ambiguity", purely from tradition. 

In SEU the distinction between known and unknown probability is pointless because 

subjective probabilities are never unknown-they are always known to decision makers (or 

inferrable from their choices). But empirical evidence suggests that how much people know 

about a state's probability does influence their willingness to bet on the State. 

For example, suppose you must choose between bets on two coins. After flipping the 
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first coin thousands of times you conclude it is fair. You throw the second coin twicc; the 

result is one head and one tail. Many people believe both coins are probably fair 

(p(head)=p(tail)=ü) but prefer to bet on the first coin, because they are more confident 

or certain that the first coin is fair. Ambiguity about probability creates a kind of risk in 

betting on the second coin- the risk of having the wrong belief.1 SEU effectively requires 

that decision makers be indifferent toward such a risk. 

Most of the research we review tests whether SEU is a good descriptive theory, or 

suggests alternative descriptions. There is relatively little discussion about whether SEU is 

normativelv adequate.2 We suspect most alternatives to SEU are meant to be normative 

improvements too, but unclear Standards for what makes a theory normative inhibit such 

Claims. A clearer Standard and more debate would be useful. 

Our goal in this paper is to review recent literature on ambiguity in decision malring 

We will cover both empirical and theoretical work, and we will try to point out the 

relevance of ambiguity for a wide ränge of professions and disciplines. There are many 

important related areas we ignore. We will not review generalizations of EU. We will also 

ignore the literatures on probability elicitation (e.g. Spetzler and von Holstein, 1975), 

psychology of probability judgments (e.g., Kahneman, Slovic, Tversky, 1982), organizational 

choice under ambiguity (e.g., March and Olsen, 1976), and ambiguity intolerance as a 

Personality trait (e.g., Büdner, 1962). More technical reviews include Fishburn (1988b, pp. 

190-193, 1989), Kami and Schmeidler (1990), and Kischka and Puppe (1990). Smithson 

(1989) offers an eclectic, broad review. 

The paper proceeds as follows. Section 1 is a brief formal overview of SEU. Section 

2 reviews empirical work demonstrating ambiguity effects in individual decisions. Some 

1 Savage (1954) recognized such a risk but did not know how to model it: "...there seem 
to be some probability relations about which we feel relatively "sure" as compared with 
others...The notion of "sure" and "unsure" introduced here is vague, and my complaint is 
precisely that neither the theory of personal probability, as it is developed in this book, nor 
any other device known to me renders the notion less vague." (pp. 57-8) 

2 Exceptions include Ellsberg (1961), Fellner (1961), Hazen (1987) and Gilboa (1989a, 
p. 1; 1989b, p. 412), and Neehring (1990, p. 4). 
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conceptions and sources of ambiguity are mentioned in Section 3. Recent generalization 

of SEU are described in Section 4. Applications of these recent developments to several 

areas, mostly in economics and business, are discussed in Section 5. Some conclusions and 

suggestions for future research are drawn in Section 6. 

1. SUBJECTIVE EXPECTED UTILITY AND THE ELLSBERG PARADOX 

We first describe SEU very briefiy, to motivate our review of experimental studies 

and the discussion that follows. Section 4 gives more details of the SEU axioms. 

1.1 Subjective Expected Utility Theorv 

SEU was first developed by Savage (1954) (inspired by Ramsey, 1931, and de Finetti, 

1937), then derived by Anscombe and Aumann (1963) in an approach that combined EU 

and SEU. 

In SEU a decision maker must choose between HactsH denoted by uppercase letters 

(e.g., X). The consequences of an act X depend on which State s occurs, from the set S of 

possible states. (The consequence of X if s occurs is denoted x(s).) For simplicity we 

assume the sets of acts and states are finite.3 If we include subjective probabilities of the 

states, denoted p(s), then an act X will be described by a vector (x(s1),p(s1);...pc(sj,p(sj) 

(where states are indexed sl5 V-.sJ. Preferences between a pair of acts X and Y will be 

denoted by X ~ Y (X is indifferent to Y) and X t Y (X is weakly preferred- preferred to 

or indifferent- to Y). 

The mathematical goal of SEU is to represent preferences over acts by a numerical 

utility index u and a probability measure on the states, p, such that act X is preferred to act 

Y if and only if the subjective expected utility (SEU) of X is larger than the SEU of Y. The 

SEU of X is defined as 

(1) SEU(X) = Z p(s) u(x(s)) 
seS 

3 This is technically wrong for Savage's SEU formulation, since Savage's P6 axiom 
implies an uncountable set of states. 
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If preferences satisfy certain axioms then there are numerical Utilities and probabilities 

which represent acts by their SEU. 

1.2 The Challenge to SEU: The Ellsberg Paradox 

As innocuons as the SEU form (1) looks, there is a long, rieh tradition of questioning 

whether it describes behavior adequately. Keynes (1921) drew the distinetion between 

the implications of evidence- the likelihood judgment evidence implies- and the weight of 

evidence, or the confidence in assessed likelihood. Keynes wondered whether a Single 

probability number could express both dimensions of evidence. 

Knight (1921) distinguished "risk", or known probability, and "uncertainty". He 

suggested that economic returns were eamed for bearing uncertainty, but not for bearing 

risk. 

The modern attack on SEU as a descriptive theory was made most directly by the 

"Ellsberg paradox" (Ellsberg, 1961). Two similar problems were posed in that remarkable 

paper. (One was mentioned much earlier by Knight, 1921, pp. 218-219.) 

In the first problem, a decision maker has to choose from an um which, contains 30 

red balls and 60 balls in some combination of black and yellow. We call this the three-color 

problem. There are two pairs of acts, X and Y, and X' and Y\ Acts have consequences W 

(for "win") or 0, as shown in Table 1. 

Many people choose X > Y and Y' > X\ The number of black balls which yield a 

win if act Y is chosen is unknown (or ambiguous); people prefer the less ambiguous act X. 

The same principle, applied to the second choice, favors Y' because exactly 60 balls yield 

W. (The same preference pattem is common for losses, W < 0.) 

In the three-color problem, people prefer acts with a known probability of winning. 

That is, they take confidence in estimates of subjective probability into account when making 

choices. Such a pattem is inconsistent with the sure-thing principle of SEU. Both pairs 

of acts only differ in consequences when the yellow State occurs. That consequence is the 

same for X and Y (you win 0) and for X' and Y' (you win W). The sure-thing principle 

assumes a State with a consequence common to both acts is irrelevant in determining 

preference between the acts. According to SEU, X > Yif and only if X' > Y\ The common 
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pattera X > Y and Y' > X violates the sure-thing principle because ambiguity affects 

choices and the ambiguity inherent in one State- red, for example- may disappear when the 

State is combined with an equally ambiguous State, like yellow. 

More formally, suppose p(r), p(b), and p(y) are the subjective probabilities of drawing 

a red, black or yellow ball. Under SEU, X > Y if and only if p(r)u(W) > p(b)u(W), or p(r) 

> p(b).4 Similarly, Y' > X' implies p(b uy) > p(r u y). If we assume probabilities are 

additive then p(b u y)=p(b)+p(y) (since p(b n y)=0). Then Y' implies p(b) > p(r), 

which conflicts with the inequality p(r) > p(b) implied by X > Y. 

Ellsberg also posed a two-color problem using two ums, one containing 50 red and 

black balls and one containing 100 balls in an unknown combination of red and black (see 

Table 2). Many people prefer to bet on red from um 1 (rather than betting on red from 

um 2) and prefer to bet on black from um 1 too, but they are indifferent between the two 

colors when betting on only one of the two ums (i.e., "bet red i"~"bet black i" for i=l, 2). 

That pattera violates SEU. 

2. CONCEPTIONS AND SOURCES OF AMBIGUITY 

A working definition of ambiguity is useful to guide theorizing and empirical studies. 

Researchers have followed three strategies in developing definitions. 

2.1 Panishing Anfriguity 

The first strategy is to banish ambiguity by simply denying that "ambiguous" and 

"unambiguous" are distinctive categories of events. To a staunch subjectivist, there is no 

such thing as unknown probability- all probabilities are equally well-known, to ourselves-

so ambiguity is meaningless (de Finetti, 1977). This may be a reasonable normative 

Position, but it does not help explain descriptive evidence of ambiguity-aversion. 

2.2 Expressinp Ambiguity as Second-order Probability 

* We have the freedom to set u(0) 
positive linear transformations. 

=0 for simplicity, since utility is only unique up to 
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The second strategy is reductionist: Express ambiguity about a probability p(sj as 

a "second-order" probability (SOP) distribution of its possible values, denoted #(p(sj) (e.g, 

Marschak, 1975). For example, in the two-color Ellsberg problem p(black) might be 

uniformly distributed between 0 and 1 rather than setting p(black)=JO. Since EU and SEU 

are linear functions of probabilities, only the expected value of an SOP should matter for 

choice, so ambiguity should not matter. 

The SOP view is routinely used in many kinds of reasoning. Recall the coin example 

given in the introduction: One coin is Qipped twice (the result is one head and one tail); 

another is Oipped many times (half heads, half tails). If one takes true, or objective, 

probability to be the long-run limiting relative frequency of heads, then everv subjective 

probability is an SOP of objective probabilities. The many-flip coin simply has a tighter 

SOP around p=than the two-flip coin does. 

In some of the research reviewed below, the SOP view goes further, by presuming 

subjective second-order probabilities of (first-order) probabilities which might also be 

subjective. When three oddsmakers give different odds that a horse will win the Preakness 

Stakes- a one-time event for which a limiting-frequency Interpretation of probability is 

unnatural- a person could have an SOP over the oddsmakers' subjective beliefs. (Or more 

peculiarly, she could have an SOP over three of her own possible beliefs.) 

The SOP view is populär (e.g., Howard, 1988) but has some drawbacks. Certain 

kinds of ambiguity, like the um in Ellsberg's two-color problem, do not appear to completely 

captured by SOP be cause subjects prefer bets on known SOPs to bets on ambiguous ums 

(stylized fact 4 in Table 3). Furthermore, known probability and SOP will only lead to the 

same choices if Compound lotteries are reduced to equivalent single-stage bets. But the 

reduction principle is often violated in experiments (Camerer & Ho, 1991). 

Other objections to SOP are philosophical and practical. Since SOP does not 

describe observed departures from SEU well, its best use might be as a normative theoiy, 

but the normative case for replacing Single subjective probabilities with SOPs has not been 

made. As a practical matter, if a person cannot express a precise probability she may not 

be able to confidently express a second-order distribution either, or a third-order distribution 

over second-order distributions, ad infinitum (see Savage, 1954, p. 59). 
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2-3 Defininp Ambiguitv: Missing Information 

The third strategy is to construct a pragmatic definition of ambiguity which captures 

its psychological essence. Ellsberg's (1961) definition is typical: Ambiguity is the "quality 

depending on the amount, type, reliability, and iinanimity' of Information". Vt 6or 

a more general definition mentioned by Fellner (1961) and many others, and elaborated by 

Frisch & Baron (1988): 

Ambiguity is uncertainty about probability created by missing information that is 
relevant and could be known. 

Not knowing important information is upsetting and scary; it makes people shy away 

- from taking either side of a bet (see Heath & Tversky, 1991). Indeed, one explanation of 

ambiguity-aversion is that people transfer a heuristic which is helpful in many natural 

situations- "avoid betting when you lack information others might have"- to other situations 

in which their fears are unfounded (Frisch and Baron, 1988, p. 153). 

3.4 Other Definitions and Tvpes of Ambiguitv 

Many populär definitions and types of ambiguity can be traced to missing 

information. We mention a few. 

Ambiguity about probability. In Ellsberg problems the composition of the ambiguous 

um is missing information which is relevant and could be known, but isn'L 

Source credibilitv and expert disagreement. Credibility of sources creates an 

important kind of ambiguity (e.g., Einhorn and Hogarth, 1985). In legal proceedings, for 

example, observations by witnesses, attomeys, and judges must be weighed by a juiy to reach 

a verdict.5 Disagreements among experts, often stemming from controversy about the 

causal mechanisms generating physical or social activity, cause ambiguity too. In these 

settings, ambiguity is caused by missing information about whose belief should be believed. 

5 One could model credibility concems in a Bayesian framework by attaching 
probabilities to likelihood evidence from different sources which reflect their truthfulness, 
performing a "cascaded inference" (e.g., Schum, 1989). But ambiguity about which sources 
are most truthful then requires truthfulness probabilities of truthfulness probabilities, ad 
infinitum. It is not clear such a procedure captures the kind of ambiguity generated by 
credibility concems, or does so in a practical way. 



8 

Wp.ight nf evidence. Evidence has both implications. and Wgi&ht or amount (Keynes, 

1921; Shafer, 1976; Cohen, 1977). Standard probabilities should express only the 

implications of evidence, not its weight, but it seems reasonable for choices to sometimes 

depend on both.6 The weight of evidence can be defined as the amount of available 

information relative to the amount of conceivable Information (see Keynes, 1921). The gap 

is the amount of missing information. 

In all the experiments reviewed in the next section, and most of the theories and 

applications described in sections 4 and 5, ambiguity is simply uncertainty about a 

probability. We refer back to the more general idea of ambiguity as missing information 

when appropriate. 

3,5 Pf grees of ambiguity 

Before we proceed it is useful to distinguish precisely between various degrees of 

uncertainty before we proceed. Suppose the the Utilities of states u(sj are known, so we can 

focus only on the probabilities p(sj. 

When a person knows one State will occur with certainty (p(sj = 1 for some i) her 

distribution of p(s,)'s is the spike shown in Figure la. We call this "certainty". 

When a person is not sure which State will occur, but knows the probabilities of each 

State precisely, her distribution is like the one shown in Figure lb. We call this "risk", or 

unambiguous probability.7 

6 For instance, in Scottish law there are three verdicts: guilty, innocent, and unproven. 
All the evidence might imply guilt, but if there is too little of it the verdict will be unproven. 
Choices should depend on the weight of evidence when more evidence might be gathered; 
then a reluctance to bet allows time to get more information and bet more wisely. 
Ambiguity-aversion observed in experiments, and in some everyday choices, might reflect 
an overapplication of this principle to situations in which there is no time or possibility of 
getting missing information (Frisch & Baron, 1988). 

7 In many definitions, risk and uncertainty differ be cause risk involves objectively-known 
probabilities (or "roulette lotteries") and uncertainty involves subjectively-known probabilities 
over states (or "horse lotteries"). Since we are exclusively interested in subjective 
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When a person is not sure which distribution of probabilities over states is correct, 

we call the State probabilities "ambiguous". The definitions mentioned above distinguish two 

kinds of ambiguity: When the probability distributions in the set of conceivable distributions 

can themselves be assigned probabilities, ambiguity can be expressed as second-order 

probability, as in Figure lc. When the distributions cannot be assigned probability, as in 

Figure ld, ambiguity is expressed by a set of probability distributions. 

Recall the three views mentioned earlier in this section. Ranishing ambiguity means 

assuming that choices are made as if ambiguous sets of distributions (Figure lc and ld) are 

collapsed intoa Single distribution (Figure 1b). The SOP view implies that knowledge about 

probabilities can always be expressed as in Figure lc. If ambiguity is caused by missing 

information, then the number of possible distributions in Figure ld might vary as the 

amount or nature of missing information varies. 

Figures la-d also illustrate a small confusion about ambiguity over probability versus 

ambiguity over outcomes. Ambiguity about which outcome will occur is too coarse a 

category, because risk (Figure lb) and ambiguous probability (Figures lc-d) both exhibit 

ambiguity about outcomes. And it is misleading to suppose ambiguity about outcomes and 

ambiguity about probabilities are parallel conditions or treatment variables. If people are 

averse to ambiguity about which outcome will occur, but outcome probabilities are known 

(Figure lb), they are risk-averse and consistent with EU. But if people are averse to 

ambiguity about the probability of an outcome, they are ambiguity-averse and inconsistent 

with SEU. The two kinds of "ambiguity" are fundamentally different 

3 EMPIRICAL STUPIESOF AMBIGUITY 

Ellsberg did not run careful experiments.8 But the intuitive appeal of bis thought 

probabilities in this review, we blur the distinction by calling known subjective probabilities, 
as in Figure lb, "risk" instead of uncertainty. 

8 However, he alludes to "a large number of responses, under absolutely 
nonexperimental conditions" which suggest ambiguity-aversion is the majority pattern of 
choice. 
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experiments, and vaiying reactions from famous theorists of the time (mentioned in bis 

paper) were enough to initiate a lively debate. Since then, many others have studied 

ambiguity empirically. 

There are roughly three kinds of empirical work on ambiguity. The first kind is 

Ellsberg's original thought experiment and replications of it which vary parameters. The 

second kind tries to determine the psychological causes of ambiguity. The third kind tests 

specific definitions or models of ambiguity, or studies ambiguity in an applied setting (these 

are mostly discussed in section 5). 

Several stylized facts about ambiguity-aversion have been established by studies with 

chance devices, typically bingo cages or decks of cards. Table 3 summarizes some of the 

stylized facts. (The reader who is busy or bored by experimental details can glance at Table 

3 and skip ahead to the summary section 3.4.) The table only reports findings replicated 

by more than one study, using chance devices (or stated probabilities). Many other 

interesting empirical results are mentioned below but left out of Table 3. 

2.1 Ellsberg experiments and extensions 

Chipman (1960) was the first to study ambiguity empirically*, in a setting slightly 

different from Ellsberg's. His ten subjects chose bets on boxes with known proportions of 

100 matchstick heads and stems (say, 60-40, inducing p=.6) and ambiguous boxes with 

unknown proportions from which small samples were drawn. Subjects acted roughly like 

Bayesians who thought the unknown proportions were centered around 50-50 and updated 

their beliefs using a 10-stick sample. For example, 67% preferred betting on an ambiguous 

box with a 4-6 sample to a 40-60 box. They exhibited some inherent ambiguity-aversion too, 

sine 70% preferred a bet on the 50-50 box to a bet on the ambiguous box from which a 5-5 

sample was drawn. 

Gigliotti & Sopher (1990) replicated most of Chipman's results with a wider variety 

of um and samples sizes. Their subjects obeyed some Statistical principles in judging 

samples from unknown ums. 

9 According to Ellsberg (1961), footnote 8. 
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Becker and Brownson (1964) did the first study of ambiguity effects in Ellsberg-type 

settings. Ambiguity was operationalized as the ränge of the number of red balls in an um. 

Subjects were given a list of ten pairs of ums differing in ambiguity One of the ten choices 

was picked randomly and played for $1. 

Before the experiment began, subjects were screened for ambiguity-aversion using 

the two-color Ellsberg problem. About half the subjects were ambiguity-averse; they then 

chose between pairs of ums. They always picked the less ambiguous um and paid 

substantial amounts to avoid ambiguity. For example, to avoid an ambiguous um and 

choose from an um with exactly SO red balls, they paid an average of 72% of expected value 

when the ambiguous um had 0 to 100 red balls, and 28% when the ambiguous um had 40 

to 60 red balls. Becker & Brownson estimated that the amount paid to avoid ambiguity, or 

"ambiguity premium", was about 60% of the difference in the ranges of two ums.10 

MacCrimmon (1968) gave 35 business executives a series of three Ellsberg problems, 

involving choices between bets on chance devices or on natural events (a stock price change, 

or the level of GNP). Only 10% exhibited the Ellsberg pattern. However, almost half were 

ambiguity-averse when choosing whether to make Investments in coiwtries with historical 

frequencies ("risky") or no historical frequencies ("uncertainty"). Exposure to written 

arguments for and against the Ellsberg pattem did not change choices. 

Sherman (1974) found modest correlations between ambiguity-aversion (in the 

Ellsberg two-color problem) and a psychometric scale measuring "intolerance of ambiguity". 

(He also noted that the intolerance scale correlates with some intelligence measures.) 

Yates and Zukowski (1976) studied whether the ränge of possible probabilities is a 

reasonable measure of ambiguity. They compared a "known um" with 5 red and 5 blue 

poker chips, a "uniform um" with the number of red Chips uniformly distributed from 0 to 

10, and an "ambiguous um" with chips in unknown proportion. The ränge explanation of 

ambiguity predicts that subjects would like the uniform um least (since it has the largest 

10 These ambiguity premia are much higher than those observed in other studies, but 
recall that Becker & Brownson only allowed subjects who were ambiguity-averse in the 
initial two-color Ellsberg problem to participate in the rest of their experiment 
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possible ränge). Subjects chose between pairs of ums, and stated minimum selling prices 

for bets on ums (using the Becker, DeGroot, Marschak, 1964) procedure. The unknown um 

was least preferred and lowest-priced. Subjects were Willing to pay an average ambiguity 

premium of 20% of expected value to bet on the known um instead of the uniform um, 

showing that ambiguity-aversion extends to bets with known second-order distributions of 

probability (SOFs). 

MacCrimmon and Larsson (1979) studied the three-color Ellsberg problem. Fifteen 

of their 19 subjects committed the Standard paradox (see their Figure 7). They lowered the 

known-probability of a red ball, to measure how much of a probability premium subjects 

were Willing to pay to avoid ambiguity. Only six subjects committed the paradox when the 

known probability was .25 (instead of its original value of 1/3), suggesting a probabilistic 

ambiguity premium of .05-. 10. 

Larson (1980) tested aversion to differing degrees of ambiguity using decks of cards 

with (truncated) known normal distributions of winning probability. The decks had expected 

probabilities, E(p), of .2, .5, and .8. Subjects chose between two decks with the same E(p), 

but different distributions of probability. (They played one choice for $3.) About 2/3 of 

the subjects preferred the less ambiguous distribution in a pair, roughly independently of 

E(p). 

Curley and Yates (1985) also studied the effects of probability ränge and E(p) 

("center of ränge") on choices. Students chose between 30 pairs of ums, and stated their 

strengths of preference. Each pair had two ums with the same E(p) and different ranges, 

with unknown distributions of probability. They played one choice for $5. 

Ambiguity-aversion increased with E(p). About 80% disliked the ambiguous 

distribution when E(p)=.80 but they were indifferent to ambiguity for E(p) below .4. The 

strengest aversion to an increase in ränge occurred for intermediate values of E(p). In 

addition, ambiguity-aversion was stronger (and most sensitive to E(p)) when comparing an 

um with no ambiguity (e.g., p=.4) to an um with a little ambiguity (e.g., (2,.6)), than when 

comparing a low-ambiguity um, like (.2,.6), to a high-ambiguity um like (0,-8). 

Boiney (1990) found a significant effect of skewness in the second-order distribution 

of probability (as did Viscusi & Magat, 1991). Small majorities preferred positive skewness 
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(53%) and disliked negative skewness (57%), for E(p)=2, 5, and .8. (These patterns 

parallel skewness preference for distributions of outcomes.) 

Bemasconi & Loomes (in press) used a two-stage lottery operationalization of the 

Ellsberg three-color problem. Drawing the color red (R) was the unambiguous event 

(p(R)=1/3); blue (B) and yellow (Y) were ambiguous separately, and unambiguous together 

(p(B u Y)=2/3). About half the subjects indicated ambiguity-aversion by betting on R (for 

£ 10). About 60% of the subjects were unwilling to switch their £ 10 bet on an ambiguous 

color to a £ 12 bet on any other color. Nearly 90% of those who chose the unambiguous 

bet R refused to switch (implying an ambiguity premium of more than 20%). 

When told they could bet on any £WQ colors (the second choice in the three-color 

Ellsberg problem, essentially), those who had bet on ambiguous colors, either B or Y, mostly 

chose the unambiguous combination BuY. However, those who bet the unambiguous R 

typically bet ambiguous combinations, RuB or RuY, rather than the unambiguous BuY. 

These odd choice patterns do not reflect a clear preference for or against ambiguity. 

Instead, subjects mostly chose one color to bet on, then coupled their choice with another 

color, thus switching from apparent ambiguity-aversion to ambiguity-preference or vice versa. 

In several studies, parameters were varied more widely. 

Cohen, Jaffray and Said (1985) elicited certainty equivalents for a 50-50 chance of 

winning 10 French francs and an unknown chance of winning the same amount They 

conducted the same experiment for losses of 10 francs. (Subjects whose certainty equivalents 

only differ by half a franc were classified as indifferent) For gambles over gains, 59% of 

the subjects were ambiguity-averse, 35% were indifferent and 6% ambiguity-preferring. For 

losses, 25% were averse, 42% indifferent, and 33% preferring. Ambiguity attitudes for gains 

and losses were not significantly correlated. Neither were risk attitudes and ambiguity 

attitudes. (However, in this study and others below both types of correlations could be low 

simply because risk and ambiguity attitudes are measured with error") 

" The appropriate comparison is between the risk-ambiguity correlation, for example, 
and the correlation between two separate measures of risk attitude or ambiguity attitude. 
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Kahn and Sarin (1988) (detailed in their 1987 paper) ran several experiments in 

which subjects made choices and stated ambiguity premiums (increments of known 

probability they would give up to avoid ambiguity). Kahn & Sarin replicated the Ellsberg 

paradox and found that ambiguity premiums were increasing in probability ränge, roughly 

linearly. They also observed modest ambiguity-seeking at low probabilities for gains (.1-3) 

and high probabilities for losses (.7-.9). In another experiment subjects preferred an 80% 

chance of an um with 63 winning balls (of 100) to a 50-50 chance of ums with 25 or 75 

balls. Since the two choices have the same mean and variance of probability, the observed 

preference for the first um (61% chose it) suggests mean and variance of second-order 

probability are not the only determinants of ambiguity-aversion (et Boiney, 1990, and 

Viscusi & Magat, 1991, on skewness). In decisions about natural contexts— pregnancy, 

produet breakdown, scholarship applications- MBA subjects were roughly ambiguity-neutral 

on average, except in the scholarship context (premium=.02). 

Curley and Yates (1989) had subjects rank a large variety of gambles which varied 

by stake (gain or loss), expected probability, and ambiguity. (Their methods are like the 

risk-measurement approach of Coombs & Lehner, 1981.) In an iterated choice task, subjects 

were Willing to pay 5-10% of expected value to avoid ambiguity when probability was around 

.5 or .75, but they demanded a similar premium to give up ambiguity when the probability 

was low (.25). The subjects' rankings of gambles also ruled out a variety of simple additive 

and multiplicative models in which ambiguity, probability, and outcome were independent 

in various ways. 

Hogarth and Einhorn (1990) had subjects choose among ums with Single outcomes 

and distributions of outcomes (to measure risk-aversion), and known probabilities or 

ambiguous probabilities (to measure ambiguity-aversion). To create ambiguity, subjects 

were told they had been allowed to look into the um and estimate its compositum, "but 

[you] are not too sure of your estimate". Subjects made choices for two outcome levels ($1 

We know of no studies that adjust risk-ambiguity correlations for measurement error in this 
way. 
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and $10,000 in one experiment, $.10 and $10 in an experiment with real payoffs), for 

and losses, and for three probability levels (.10, .50, .90). Subjects were generally 

ambiguity-averse. There was some ambiguitv-preference for low probabilities of gain and 

high probabilities of loss. (Einhorn & Hogarth, 1986, found the same pattem.) Ambiguity-

aversion was weaker for losses than for gains, and slightly weaker for «npH payofis thnn for 

large payoffs. There was no correlation between risk-attitudes and ambiguity-attitudes. 

Goldsmith & Sahlin (1983) report a study using bets on natural events, like the 

occurrence of a bus strike in Verona next week. Holding first-order (or mean) probability 

constant, about half the subjects preferred bets on less ambiguous events for gains and bets 

on more ambiguous events for losses. When ambiguity-preference switched across the ränge 

of probabilities, it usually switched from ambiguity-preference at low probability to 

ambiguity-aversion at high probability for gains, and oppositely for losses. 

Many people think the Ellsberg paradox is an error in judgment, like an arithmetic 

or logic mistake, which people will correct when their error is made clear (Howard, in 

press). A study by Slovic and Tversky (1974) suggests subjects are immune to certain kinds 

of persuasion. They showed the three-color Ellsberg problem to 49 students. Students read 

two statements before making choices. One Statement explained the psychological appeal 

of ambiguity-aversion; the other explained the sure-thing-principle. Most subjects said the 

Statement advocating ambiguity-aversion was more compelling. Eighty percent of them 

committed the paradox. Curley, Yates & Abrains (1986, Table 4) replicated this finding 

with slightly different arguments. Axiom popularity polls of this sort are controversial. If 

subjects do not accept an argument for SEU, perhaps a poor argument may have been used. 

(The statements used in the experiments are given in the papers so readers can judge them.) 

More strongly-worded arguments migbt work better, but there is a fine line between simply 

presenting subjects with an argument and creating subtle experimental demands for 

conformity. We think axiom polls are of some help in answering a simple quesdon: Will 

people abandon appealing principles, or stick by them, when the piinciples conflict with 

specific choices that are appealing and the conflict is made clear? 

3.2 Psvcholopical Determinants of Ambipuitv-aversion 
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Three empirical studies explored the psychological roots of ambiguity-aversion in 

special detail. 

Einhorn & Hogarth (1985, 1986) proposed a two-parameter descriptive model 

(discussed further in section 4.4) based on the idea that subjects anchor on an ambiguous 

probabilily and adjust upward or downward depending on their Imagination of other possible 

probabilities. Their subjects judged the likelihood of an event based on confiicöng evidence 

(e.g., 2 witnesses to an accident said a car was green and 1 said it was blue). Judgments fit 

the model well. In one experiment, parameters estimated from their likelihood judgments 

were used to predict subjects' choices between bets on events and bets on unambiguous 

chance devices. The model predicted 60% of the choices correctly. 

Curley, Yates, Abrams (1986) used variants of the two-color Ellsberg problem to test 

several hypotheses about sources of ambiguity-aversion. Subjects who said the um could not 

be biased against them were ambiguity-averse too; their ambiguity-aversion was not due to 

belief in "hostile" generation of outcomes. As in other studies, many subjects were 

ambiguity-averse even when indifference was allowed (disproving the conjecture of Roberts, 

1963, and others), indicating a strict preference for avoiding ambiguity. There was no 

correlation between the risk-attitudes and ambiguity-attitudes of individual subjects. 

Subjects were no more ambiguity-averse when the contents of the um were revealed 

afterward (contrary to some regret-based arguments). However, subjects were significantly 

more ambiguity-averse (using a 7-point strength-of-preference scale) when the gamble they 

chose would be played, and the urn's contents revealed, in front of other subjects. 

Heath & Tversky (1991) suggest that competence- knowledge, skill, comprehension-

is what causes the gap between belief and decision weight. Subjects gave probability 

assessments for natural events (like the temperature in Tokyo). Then they chose between 

betting on the event and betting on a chance device constructed to have the same subjective 

probability as the event. If people are ambiguity-averse they should prefer the matched-

probability chance bets to bets on events (which are inherently ambiguous). In one 

experiment subjects were generally ambiguity-averse: The sum of certainty-equivalents for 

a bet on an event and a bet against the same event was less than the sum for bets on chance 

devices. Keppe & Weber (1991) replicated this result using probability-equivalents. 



17 

But subjects were not uniformly ambiguity-averse. They preferred betting on events 

they knew a lot about, holding beliefs constant: In one experiment, those who knew a lot 

about football preferred bets on football-related events to matched-probabiiity chance bets 

(at all levels of probability), and those who knew little about football preferred the chance 

bets (cf. Fellner, 1961, p. 687).u 

The competence hypothesis broadens the study of choice anomalies in SEU, by 

suggesting that ambiguity about probability is just one of many forces that undermines 

competence and makes people reluctant to bet. For example, people would rather bet on 

future events than on past events, because not knowing what happened undermines 

competence (Rothbart & Snyder, 1970; Brun & Teigen, 1990). They would also rather bet 

on skill (which creates ambiguous probability of winning) than on chance (Cohen & Hansel, 

1959; Howell, 1971; cf. Langer, 1975, on the "illusion of control"). 

Competence also provides an interesting, long-awaited bridge between the psychology 

of choice and the psychology of group and organizational decisions. Heath & Tversky 

conjecture that competence influences betting because social (and personal) assignments of 

credit and blame are asymmetric- competent people can take credit for winning but 

incompetent people can only take blame for losing. (Altematively, competent people might 

get more blame for losing than incompetent people do.) The fact that subjects were more 

ambiguity-averse when bets were resolved in front of others, in the study by Curley, Yates 

& Abrams (1986), is consistent with the credit-blame hypothesis. The influence of 

competence and justification in group decision-making under ambiguity should be an 

important new area of research. 

3-3 Experimental Markets 

12 In another experiment, subjects chose the most likely answer to a question with four 
possible answers and gave the probability their answer was right Then they chose between 
betting on their answer or betting on matched-probabiiity chance devices. Since a high 
subjective probability is an indication of knowledge about the right answer, if knowledge 
increases decision weight then preference for betting on answers should rise with probability. 
It did. Taylor (1991) replicated this result with a different probability-elicitation method, 
but Goldsmith & Sahlin (1983) found the opposite result (p. 464). 
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Ambiguity has been studied in two market experiments. Camerer and Kunreuther 

(1989) created a simple market for insurance, in which some traders were endowed with 

Potential losses which they could transfer to other traders by paying a negotiated insurance 

premium. In some periods the probability of loss was .1 (unambiguous), and in other 

periods it was equally likely to be 0, .1, or 2 (ambiguous). Ambiguity had no systematic 

effect on prices, but it did create concentration in the insurance-seller's market (increasing 

the number of losses insured by each active insurer). 

Sarin and Weber (1989) tested whether ambiguity affected prices in an experimental 

asset market, with German business students and bankers as subjects. The assets were 

draws from ums, with a known .5 chance of winning or an ambiguous chance of winning. 

The market price of the known .5 bet was considerably larger than the market price of the 

ambiguous bet, in both sealed-bid and double oral auctions, whether the two assets were 

traded sequentially or simultaneously. Prices of known and ambiguous bets were about the 

same when the probability was .05. Over several periods the ambiguity effects got slightly 

smaller, but did not disappear. 

The difference in these two studies could be due to several factors. In the Camerer-

Kunreuther insurance market study the subjects were American undergraduates, ambiguity 

was clearly operationalized as second-order probability, and prices were close to expected 

value. In the Sarin-Weber study the subjects were German business students, ambiguity was 

operationalized a la Ellsberg, and prices were further from expected value (often above it). 

There were some differences in exchange institutions too. 

3.4 The difficultv of establishing equivalence of ambiguous and unambiguous probability 

Preferring bets on unambiguous events is only a violation of SEU if equivalence 

between the likelihoods of the ambiguous and unambiguous events has been established.13 

In many experiments subjects might guess the ambiguous probability has a skewed 

13 For example, in the Ellsberg two-color problem Frisch (1988) found that many 
subjects said the probabilities of red or black draws from the ambiguous um were not .5. 
Those who said the ambiguous probabilities were 5 were generally not ambiguity-averse. 
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distribution which biases its mean. An event with ambiguous probability around .1, for 

instance, might have a positive skew and a mean above .1 (even if the median and mode are 

.1). Betting on such an event, instead of a chance device with p=.l, is consistent with SEU. 

To check for equivalence, Heath & Tversky (1991) induced ambiguity by telling 

subjects that probabilities were around .01 (as in many experiments), then asked subjects 

whether an ambiguous probability around .01 was above, below, or exactly .01. A majority 

(75%) said it was above .01. Nearly 60% said an ambiguous .9 was most likely to be below 

.9. Other data suggest that perceptions of skewness, and hence non-equivalence of known 

probabilities and mean ambiguous probabilities, are widespread (e.g., Larson, 1980, p. 301; 

Goldsmith & Sahlins, 1983, p. 459; Curley, Eraker & Yates, 1984, p. 507; Frisch, 1988). 

These data warn researchers to include simple manipulation checks— ask subjects whether 

they »hink the mean of the ambiguous event probability is the same as the known 

probability.14 We should not be surprised if the two are different. 

3.5 Svnthesis: Stvlized Facts From Empirical Work 

Several stylized facts emerge from the empirical work (see Table 3). We Start with 

the simplest findings and proceed to the most subtle (and controversial) ones. 

Ambiguity-aversion is found consistently in variants of the Ellsberg problems (many 

of them using small actual payoös). Ambiguity-averters have not been swayed in 

experiments which offered written arguments against their paradoxical choices. Indeed, 

subjects pay substantial premiums to avoid ambiguity- around 10-20% of expected value or 

expected probability. 

Subjects typically prefer to bet on known probabilities, instead of known distributions 

of probability (SOPs) with the same expected probability. Increasing the ränge of possible 

14 It is conceivable that the probability estimates given by subjects in manipnlariftn 
checks are actually decision weights, which already reflect forces that create ambiguity-
aversion (like psychological adjustment of stated probabilities, nonlinear weighting of SOPS, 
or non-additivity of probability). Then the onus is on researchers to better ttimitangla true 
subjective beliefs and reported beliefs. 
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probabilities increases ambiguity-aversion. 

There is some evidence of ambiguity-preference for betting on gains with low 

ambiguous probability, or betting on losses with high probability. (This may be due to 

perceived skewness, which distorts the mean of the ambiguous distributions of high and low 

probabilities.) 

Broader studies show that ambiguity about probability is simply one determinant of 

competence, and hence of decision weight Other determinants include the presenee of 

knowable missing information and overall knowledge about event domains. 

Several phenomena should be studied further. Betting on gains (rather than losses) 

and making choices in the presenee of others both seem to increase ambiguity-aversion, but 

the effects are weak and should be replicated. There is also weak evidence that ambiguity-

aversion increases with outcome size,* which should certainly be explored further because 

outcome-dependency distinguishes sharply between theories. The correlation between risk-

attitudes and ambiguity-attitudes appears to be low, but studies have not carefully corrected 

for measurement error. And in many studies, the failure to induce or establish a sharp 

equivalence between unambiguous and ambiguous probabilities makes it difficult to know 

whether results violate SEU or not. Simple, reliable techniques for inducing equivalence 

would be very useful. 

4. FORMAL MODELS OF AMBIGUITY 

Since many of the models proposed to describe ambiguity effects generalize the 

axioms underlying SEU, it is useful to give some details of the axioms. (See Fishburn, 1970, 

1982, 1988b, for more detail.) 

The lottery-act formulation of Anscombe & Aumann (1%2), which encompasses both 

EU and SEU as special cases. In their formulation each consequence is a lotteiy over 

15 Hogarth & Einhorn (1990) report a weak stakes effect (hypothetical stakes ränge from 
$1 to $10,000). Goldsmith & Sahlin (1983) report no difference from multiplying stakes by 
twenty. Unpublished data collected by the first author and Murray Low, using 54 MBA's, 
show no stakes effect between bets of $5 (70% ambiguity-averse) and $1000 (71%). 
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outcomes with objective probabilities. A consequence, an outcome lotteiy a(s), will be 

written as a vector (Xi,pi;...%,,p_), where the p4's denote objective probabilities (perhaps 

generated by physical devices like coins or roulette wheels). In the lottery-act framework, 

the final outcome of act X depends on which State s, occurs, then on which outcome the 

lottery a(sj yields. They call the first stage of consequences (a(s1),p(s1);...;cr(sB),p(sB)) a 

"horse lotteiy" and the second stage (x1,p1;...pc-,pm) a "roulette lotteiy".1* 

Anscombe and Aumann use Standard EU axioms to establish existence of state-

dependent utility functions which represent preferences: Order (completeness and 

transitivity); continuity; and independence. We define independence (because some of the 

theories reviewed below relax it): 

Independence 
If X fc Y, then for any number r e [0,1] and any Z, rX+(l-r)Z fc rY+(l-r)Z. 

The independence axiom states that preferences between two lotteiy-acts composed of 

roulette lotteries between X or Y and a common act should be independent of the common 

(or "irrelevant") act. 

These axioms yield a state-dependent SEU representation in which the utility of 

consequences depends on the State in which the consequence occurs. Two other axioms 

restrict the utility function to be the same for all states. The SEU representation theorem 

states that preferences over lotteiy-acts satisfy the five axioms if and only if there exists a 

unique additive probability measure (or distribution) for all states: p: S -»[0,1] and urilitv 

function on the lotteries a(s), /3(s), etc., unique up to a positive linear transformation, so 

that: 

(2) X t Y ~ z P(s) u(a(s)) k 2 p(s)u(/3(s)) 
seS scS 

16 Sarin & Wakker (1990) use an analogous representation with only one stage. States 
can be either unambiguous, like roulette lotteries, or ambiguous, like horse lotteries. 
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The Anscombe-Aumann representation has EU and Savage-style SEU as special 

cases.17 Note also that the probability measure must be additive": P(AuB)=P(A)+P(B) 

if A n B = 0 (e.g., the probabilities of heads and tails in a coin flip must add to one.) 

Savage (1954) used six axioms (for acts with finitely-many outcomes). His second, 

the "sure-thing principle" is analogous to independence in EU (see Fishburn, 1987a): 

Sure-Thing Prindpk 
Let X, Y, X* and Y* be acts and let S' be a subset of the set of states S. If x(s) = 
x'(s) and y(s) = y"(s) for s e S' and x(s) = y(s) and x'(s) = /(s) for s e S / S', then 
X fc Y if and only if X' * Y\ 

Hie sure-thing principle requires one to ignore states in which acts yield the same 

consequence when choosing between the acts.19 

Several formal models have been proposed to accomodate ambiguity effects. (Note 

that these models attempt to describe attitudes toward ambiguity, revealed by choices or 

judgments, rather than just define ambiguity.) Some models invoke psychological principles 

or propose ad hoc decision rules. Others generalize the axioms of SEU. Of course, there 

is no reason that weakening SEU axioms necessarily leads to a better descriptive theory, but 

having an axiomatic underpinning for a theory provides a simple way to test it, and might 

provide a transparent way to judge its plausibility. (Unfortunately, some of the axioms given 

below are flQi transparent!) 

The models can be roughly grouped into four classes: 

17 Savage's formulation applies if all lotteries a(s) have sure outcomes; then there are 
only horse lotteries. EU applies if there is only one State; then there are only roulette 
lotteries. 

* In SEU, additivity of probability is implied by the conjunction of the sure-thing 
principle and Savage's fourth axiom, "comparative probability". Machina & Schmeidler 
(1990) show that abandoning the sure-thing principle, but strengthening the comparative 
probability axiom by adding a dash of the sure-thing principle to it, yields axioms which 
guarantee that preferences satisfy additivity without necessarily satisfying SEU. Nonadditive 
probability explains some SEU violations (as we see below). The Machina-Schmeidler 
axioms show the conditions under which SEU violations can be explained without invoking 
nonadditivity. 

19 In the axiom, ignore states S/S'. Since X=X' and Y=Y' in the other states, if XhY 
then X'kT too. 
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(1) Some theories account for ambiguity in consequence Utilities (Smith, 1969; Sarin 

& Winkler, 1990). The other three classes assume vaiying degrees of knowledge about 

second-order probability (SOP). 

(2) Some theories assume a Single SOP distribution (with mean E(p)), but relax the 

axiom of Compound lotteiy reduction and weight SOPs nonlinearly to explain ambiguity-

aversion or ambiguity-preference (Segal, 1987a; Kahn & Sarin, 1988; Becker & Sarin, 1990). 

These theories treat possible probabilities the way possible outcomes are treated in EU and 

SEU. 

(3) Other theories accept the idea of s£l& of probabilities, but do not assume a 

unique distribution of probability over elements of the set (as the SOP approach does). 

They assume preferences are generated by considering some or all of the possible 

probability distributions in the set (Hodges & Lehmann, 1952; Ellsberg, 1961; Gilboa & 

Schmeidler, 1989; Gardenfors & Sahlin, 1982; Weber, 1987; Nau, 1988; Neehring, 1990). 

(4) Still other theories avoid unique SOPS or sets of probabilities entirely. In some 

theories, the expected probability E(p) is assumed to be known (or measurable) and is 

transformed to express ambiguity-aversion (Fellner, 1961; Einhorn & Hogarth, 1985; cf. 

Viscusi, 1989). When E(p) is not known, nonadditive probabilities of events can be used 

to express ambiguity-aversion (Schmeidler, 1982, 1986, 1989; Gilboa, 1987; Hazen, 1987; 

Fishbum, 1988a; Wakker, 1989a; cf. Luce and Marens, 1985; Tversky and Kahneman, 1990; 

Luce & Fishbum, 1991). A similar approach, designed to be easily tested with market data, 

separates decision weight into risky probability (based on a sample of observations) and 

uncertainty which depends on the sample sizes (Phillipson, 1991). 

We now review each of the four classes of models in tum. 

4.1 Utilitv-based Models 

A simple way to express ambiguity aversion is to allow the Utilities from winning bets 

on ambiguous and unambiguous events to be different (cf. Kami, 1985, on state-dependent 

utility). If the utility from winning an ambiguous bet is lower, aversion to ambiguity is 

consistent with utility maximization (Smith, 1969; Franke, 1978). 

Recall the three-color Ellsberg problem from section 1.2. Suppose Utilities of the 
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ambiguous events b and r u y are uA(W) and Utilities of the unambiguous events r and b u 

y are Uu(W). Then assuming additivity, the paradoxical pattern of preferences implies 

p(r)uu(W) > p(b)uA(W) and p(b u y)uu(W) > p(r u y)uA(W). These inequalities need not 

be inconsistent if u^(W) > uA(W). While it expresses ambiguity-aversion in a direct 

way, the state-dependent Utility approach is not parsimonious and borders on tautology. It 

cannot explain many of the empirical facts, especially Variation in ambiguity-aversion across 

probability levels, unless those observations are built directly into Utilities. 

Sarin & Winkler (1990) advocate the utility-based approach and offer axioms which 

imply more restrictive models. In their models, the Utility of a prize depends on the other 

possible prizes. In the Ellsberg problem, for example, a person dislikes betting on the 

ambiguous um because the disutility of losing is increased by the amount one could have 

won (reflecting disappointment). (To model aversion when probabilities are ambiguous, 

they assume there is no disappointment when probabilities are known.) 

To some extent, it is a matter of modelling taste whether ambiguity-aversion is 

located in modified Utilities, reflecting how people feel about consequences, or in modified 

decision weights, reflecting feelings about likelihoods. The choice between the two 

approaches turns crucially on whether one believes likelihood estimates and decision weights 

must be equal. Those who advocate modifying Utilities are reluctant to let likelihood and 

decision weight differ. Those who are Willing to allow a difference may find Utility 

modification cumbersome or tautological. 

4.2 Models Based On Unique SOPs 

Several models assume unique SOPs, but relax the reduction of Compound lottery 

assumption20 and weight the possible probabilities nonlinearly. These models exhibit risk-

aversion toward (second-order) distribution of probability, akin to risk-aversion toward 

distributions of outcomes in EU (Chew, Kami & Safra, 1987). Segal (1987a) uses the "rank-

20 Reduction is violated in systematic ways (Camerer & Ho, 1991). One class of 
violations, called "probabilistic risk-aversion", corresponds to nonlinear weighting of possible 
probabilities in an SOP distribution. 
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dependent" generalization of EU originally developed by Quiggin (1982) and expanded by 

Yaari (1987), Jullien & Green (1988), Chew (1989), Segal (1989), Luce (1988, 1991), and 

Luce and Fishbum (1991). Segal's application represents an interesting bridge between the 

EU and SEU approaches. Like all SOP approaches, bis assumes that subjective uncertainty 

about a state's occurrence can be reduced to a distribution of possible probabilities, and 

probability can be assigned to the elements of that distribution, effectively transforming 

uncertainty and risk. Whether the SOP assumption represents a useful unification of EU 

and SEU, or deliberate ignorance of an essential distinction, is for the reader to judge. 

Segal supposes that the subjective distribution of balls in the Ellsberg two-color 

problem is discretely uniform between 0 and 100. Since a discrete uniform distribution has 

101 possible outcomes, the decumulative second-order distribution (one minus the 

cumulative distribution) assigns a (101-i)/101 chance of having i or more winning balls in 

the urn.21 His approach differs from others based on SOP because he does not assume that 

the Compound lottery generated by the SOP is reduced to its single-stage equivalent 

Therefore, the utility of betting on either color from the ambiguous um is 

100 
(3) u(W){ z f(i/100)[f((101-i)/101)-f((101-i-l)/101)] } 

i=0 

The unambiguous um has utility 

(4) u(W)f(50/100) 

The function f(p) allows nonlinear probability weights, between zero and one, to express 

ambiguity-aversion or -preference. Tedious algebra shows that if f(p)=p then (3) and (4) 

21 The incremental probabilities in the decumulative distribution run in the opposite 
direcöon than you might think, beginning at 0/101 for 100 winning balls, because the 
decumulative distribution arranges the outcomes from best (100 winning balls) to worst (0 
winning balls) and takes increments in weighted decumulative probabilities from best to 
worst. 
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are the same; people should not be ambiguity-averse. 

The terms in (3) represent weighted probabilities of drawing i balls and winning. For 

example, the i=63 summation term is u(W)f(63/100)[f(38/101)-f(37/101)], the weighted 

Utility of winning if the um has 63 winning balls, u(W)f(63/100), times the incremental 

weighted probability of getting 63 or more winning balls (f(38/101)) instead of 64 or more 

winning balls (f(37/101)). When f(p) is convex, the increments in (3) are laigest when i is 

small, overweighting the possibility of an unfavorable um with few winning balls. However, 

a slightly stronger condition than convexity of f(p) is needed to guarantee ambiguity-

aversion.22 Luce and Marens (1985) and Luce (1988) axiomatized related forms of rank-

dependent Utilities, though the connection to ambiguity-aversion is not made explicit 

Kahn and Sarin (1988) also posit a nonlinear weighting function. The weight for an 

event with second-order probability distribution *(p) (with mean E(p) and variance ff2(#(p)) 

is 

1 
(5) w($(p))= E(p) + J *(p)(p-E(P))e'X(p'E(p»/"(*(p)) dp 

0 

If k is zero, w(*(p))=E(p); the model reduces to SEU. If k is positive, the function (5) 

adjusts the probability weight by underweighting the chance of higher-than-average values 

of p and overweighting lower-than-average values, producing w(#(p))<E(p) and expressing 

ambiguity-aversion. A negative k does the opposite, expressing ambiguity-preference.23 

The Kahn-Sarin model resembles theories of disappointment and elation in choice 

22 A convex f(p) undfiiweights the probability f(i/100) if i is small (the um has few 
winning balls), and overweights f(i/100) when i is large, so convexity is not sufficient for 
ambiguity-aversion. Instead, f(p) must be convex and have nondecreasing elasticity 
pf(p)/f(p) (or equivalently, f(p)f(q)£f(pq)) and l-f(l-p) must have nonincreasing elasticity 
(Segal, 1987a, Theorem 4.2). The "common ratio effect" observed in studies of EU can be 
explained by similar restrictions on elasticity of f(p) (Segal, 1987b). 

23 Note that ambiguity-aversion for both gains and losses requires k to be positive for 
gflins and negative for losses. 
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(Bell, 1985; Loomes and Sugden, 1986; Gul, 1991), except that disappointment results from 

bad probability outcomes (from the second-order distribution #(p)) instead of bad 

consequences. Put differently, the adjustments in (5) reflect aversion to the probability risk 

inherent in the second-order distribution. The same risk function has been applied 

elsewhere (e.g., to asset pricing by Weber, 1990). 

Becker & Sarin (1990) take a more general approach. Leaning heavily on the 

assumption of a well-specified SOP, their paper builds up analytical tools reflecting the 

natural analogy between aversion toward spreads in outcomes (risk-aversion) and aversion 

toward spread in probabilities (ambiguity-aversion). They first derive the existence of a 

decision weight function on events, w(e) (much like the non-additive probabilities described 

in section 4.4 below). They assume the event e has an SOP, f,(p). Then they posit a 

"probability equivalence" function which gives decision-weight equivalents, ^(w(e)) 

equal to the expectation of the weighted SOP probabilities, E(0(4(p))). The function #(p) 

is simply a utility function on the second-order probabilities in f«(p). Ambiguity-aversion 

corresponds to concavity of <t>(p); ambiguity-preference corresponds to convexity. They also 

derive ambiguity-premia from properties of <ß(p), much as risk-premia are related to u(x) 

in EU. The value of their approach depends on whether the formal analogy between risk-

aversion and ambiguity-aversion proves theoretically useful and empirically tenable. 

4.3 Models Based On Sets of Probabilities 

Hodges and Lehmann (1952) and Ellsberg (1961) suggested people choose using a 

weighted average of a gamble's expected utility (averaged over possible distributions) and 

its minimnm expected utility over those distributions.24 In Ellsberg's three-color exanq)le, 

suppose uncertainty about the ambiguous um is characterized by a set of equally-likely 

possible probabilities for W, from 0 to 2/3. Then a bet on the ambiguous um has an 

expected utility of (l/3)u(W) and a minimum expected utility of 0 (which occurs if 

24 Gilboa (1986) derives a related generalization of EU (but not SEU) in which 
preferences are represented by a function of both a lotter/s expected utility and the utility 
of its worst consequence. 
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p(W)=0), whereas the unambiguous um has an expected Utility of (l/3)u(W) and a 

minimnm expected Utility of (l/3)u(W). Any average which puts some weight on minimum 

expected Utility favors the unambiguous um. 

Others have proposed models based on similar decision criteria, typically combining 

expectation with some other moment or parameter, or taking an expectation on a limited 

set of distributions. Gardenfors and Sahlin (1982) propose choosing according to the 

minimnm expected Utility over all probability distributions which satisfy some threshold level 

of "epistemic reliability". (The threshold reflects the "epistemic risk", or risk of error in 

probability judgment, one is Willing to take.) Their criterion resembles Hurwicz's (1951) 

"generalized Bayes-minimax principle". Gigliotti & Sopher (1990) suggest a rule, of limited 

applicability, based on hypothesis testing: The null hypothesis that a known probability and 

ambiguous probability are the same is tested, using a sample from the ambiguous um or 

process, against the alternative hypothesis that the ambiguous probability is different. One 

bets on the known-probability event unless the hypothesis is rejected. 

Minimax decision rules also emerge from axiomatic analyses in which people are 

assumed to have probabilities which are additive but not unique. In Gilboa and Schmeidler 

(1989), preferences are represented by the minimum of all the expected Utilities of a lotteiy 

over its possible probability distributions. (Their representation thus justifies formally the 

"maximin" criterion first suggested by Wald (1950) for choice under uncertainty.) 

The crucial axioms for the Gilboa-Schmeidler maximin representation are 

"uncertainty-aversion" and "certainty-independence". Uncertainty-aversion requires that f-g 

imply pf+(l-p)g k f (that is, mixing f and g using objective probabilities can only be an 

improvement). The maximin rule is consistent with uncertainty-aversion because the 

minimum EU for pf+(l-p)g can be no worse than the minimums for f and g taken 

separately. 

Certainty-independence is a independence restricted to mixtures of acts with sure 

outcomes (denoted h): f t g iff pf+(l-p)h k pg+(l-p)h. Intuitively: The sure outcome h 

has the same expected Utility for gny distribution of probabilities, so mixing it with f and g 

does not affect determination of the distributions that minimize EU for f and g. Therefore, 

the minimum EU's for f and g will be ranked the same way as the minimum ELFs for 
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pf+(l-p)h and pg+(l-p)h. 

A closely related model is proposed by Bewley (1986). He suggests that the 

distinction between risk and uncertainty is best captured by allowing lotteries to be 

incomparable when their consequences are uncertain. Incomparability implies preferences 

are incomplete. Aumann (1962) showed that incomplete preferences can be represented 

by expected Utilities over gfils of probabilities. Then XtY iff E(Ü(X) J r) > E(U(Y) | *•) for 

all distributions w; otherwise X and Y are incomparable. 

When lotteries are incomparable, Bewley assumes choices are made by inertia: The 

current choice, or "status quo", is only abandoned if a new choice appears which is certainly 

better (i.e., which has higher expected utility for all possible probability distributions). 

Bewley admits it is probably hard to distinguish bis inertial theoiy from the marlmin SEU 

approach of Gilboa and Schmeidler (1989), but experimental evidence of "status quo bias" 

(Samuelson & Zeckhauser, 1988; Knetsch, 1989) supports Bewle/s inertia assumption. 

Neehring (1990) offers a related approach in which sets of beliefs are assumed as a 

primitive construct (rather than simply implied, as they are by the marimin SEU and Bewley 

approaches). Imagine that each of the most extreme beliefs in the set are the beliefs of a 

different alter ego within a person's mind. Neehring's "simultaneous EU" rule then chooses 

an act as if resolving bargaining among the alter egos holding the most extreme beliefs by 

using the Kalai-Smorodinsky bargaining Solution. In contrast, maximin SEU uses a Rawlsian 

bargaining Solution, by picking the act which makes the alter ego made worst-off by that act 

as well-off as possible. 

There is also a large Statistical and philosophical literature concerning sets of 

probabilities, or "upper" and "lower" probabilities (Koopman, 1940; Good, 1950; Smith, 

1961). The main objection to this approach (as with SOP) is that it replaces unrealistic 

precision in probability estimates with precision in estimates of probability bounds. But 

people might be comfortable giving precise bounds. And even if bounds are imprecise, 

decisions might be more robust to errors in upper and lower estimates th^n to errors in 

unique probability estimates. 

Nau (1986) derived a choice representation using upper and lower probabilities whidi 

are "confidence-weighted" by the amount of money a decision maker will bet at the odds 
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implied by the upper or lower probabilities. The confidence weights are like a membership 

function (Zadeh, 1965) for specific Upper and lower probabilities. They also measure the 

Keynesian "weight of evidence", in a manner consistent with de Finetti and Savage's 

principle of inferring judgments from choice. Nau's model also avoids objections to precise 

assessment of upper and lower probabilities because the confidence weight measures their 

imprecision. His model can also allow imprecision of Utilities. 

4.4 Models Without SOPs 

4.4.1 Nonlinear weighting of expected probability E(p) 

Einhorn and Hogarth (1985) propose an anchoring and adjustment model underlying 

nonlinear weights. They begin by positing weights equal to an anchor pA, adjusted up by k, 

and down by k, to express the Imagination of possible probabilities greater and amaller than 

the anchor. (The Kahn-Sarin model can be interpreted as making such adjustments, with 

the anchor pA equal to the expected probability.) Upward adjustment k, is assumed to be 

proportional to the ränge between one and the anchor (1-p^J; downward adjustment is 

proportional to the anchor, raised to a power ß to reflect ambiguity attitude. The resulting 

probability weight is 

(6) S(p) = (l-0)pA + 6(l-pAß) = PA + Ö(I-PA-PA') 

The Kahn-Sarin and Einhorn-Hogarth models allow probability weights to depend 

on outcomes through the parameters A. a nd ß. Outcome-dependence is important because 

people are ambiguity-averse for both gain and loss gambles. Models like Fellner's (1961), 

in which ambiguous events simply have a lower probability weight, fail descriptively because 

they predict preference for ambiguous bets on losses. 

Viscusi (1989) proposes a probability adjustment model in which subjective 

probabilities s, like the imagined probabilities in the Einhorn-Hogarth approach or Clements 

of the set of possible probabilities, are weighted and combined with a weighted objective 

probability q (perhaps a stated probability or subjective best-guess). The combination rule 

corresponds to Bayesian updating of a beta distribution, which generates a simple posterior 

probability p'=(ys+£p)/(y + 0- The parameters y and ( are weights that represent 
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confidence, or the amount of information backing each probability (formally operationalized 

as a number of observations based on the probability). For example, in the two-color 

Ellsberg problem s for the ambiguous um would be less than ü, and q=.5, giving p*< 

(depending on the weights y and (). 

Hazen (1987) axiomatized a "subjectively weighted linear utility" (SWLU) model 

which permits direct outcome-dependence of ambiguity. As in weighted utility under risk 

(Chew and MacCrimmon, 1979; Chew, 1983), in SWLU subjective probabilities are weighted 

by a function of their consequences. SWLU assumes independence and Substitution for 

roulette lotteries, and two unique axioms which dictate how uncertain probability-equivalents 

of risky lotteries are combined. Then the SWLU of an act f is 

n 
z p(si)i|r[u(f(si))]u(f(si)) 

(7) & 

z p(si)^[u(f(si))] 
i=l 

The function i|r[ii(f(sj)] weights the subjective probability p(sj in a way that depends on the 

utility of the outcome f(sj. The denominator normalizes the weighted probabilities so they 

add to one. Note that if i)r(») is constant, all subjective probabilities are weighted equally, 

so SWLU reduces to SEU. 

SWLU expresses both features of evidence that Keynes wrote about: Subjective 

probabilities p(sj have the classical interpretation as degrees of belief (implications of 

evidence), but the function *(*) allows one to be hesitant or eager to bet according to those 

beliefs (reflecting the weight of evidence). Furthermore, one's hesitance to bet can depend 

on the size of the outcomes (though recall that outcome-dependence is weak in 

experiments). Hazen and Lee (1989) spell out some other implications of the SWLU model 

4.4.2. Models with non-additive probabilities 

Schmeidler (1982,1989) axiomatized SEU with non-additive probability distributions 

in an extension of the Anscombe-Aumann framework (using both objective and subjective 
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probabilities). In bis model, probabilities vaiy between 0 and 1 and are "monotonic" (i.e., 

P(E)<P(F) if E and F are sets of events with E c F) but not necessarily additive. That is, 

P(E u F) # P(E) + P(F) - P(E n F). 

Non-additive probability allows the probabilities of two equally-likely events to be 

equal (P(A)=P(B)), but does not force them have the same probabilities as two events C 

and D which are also thought to be equally likely, based on a richer set of information. 

Non-additivity allows P(A) and P(B) to measure likelihood of events (implications of 

evidence), while 1-P(A)-P(B) measures faith in those likelihoods (weight of evidence). 

Schmeidler showed SEU can be generalized to allow non-additive probabilities when 

independence is weakened to apply only to "comonotonic" events. Acts f and g are 

comonotonic if f(s)>f(t) implies g(s)fcg(t) (for states s and t). If f and g are comonotonic 

they (weakly) rank states, according to their consequences, in the same way. Violations of 

independence seem to occur when g >- f but the mixture pf+(l-p)h is preferred to the 

mixture pg+(l-p)h because h "hedges" f more than it hedges g. (An act h hedges f if it has 

a good outcome when f has a poor outcome, and vice versa.) By definition, comonotonic 

acts cannot hedge each other because a State which pays off well for one act pays well for 

every act that is comotonic. 

Comonotonicity is crucial in deriving nonadditive probability. To see the link, 

reconsider the three-color Ellsberg example, rewritten slightly in Table 4. No pair of the 

three acts X, Y, and Z are comonotonic because there are always two states in which the 

acts' consequences are ranked oppositely. (For example, X(red) > Y(red) but X(black) < 

Y(black).) Now note that the act X* is a mixture which yields a 3 chance of W (a 

probability mixture between X and Z) if red or yellow occurs. Y is a similar mixture of Y 

and Z. 

Ambiguity about the black and yellow states is what makes Y and Z unappealing. 

Mixing Y with Z hedges that ambiguity (or probability risk), producing the appealing act V, 

precisely because Y and Z are nol comonotonic. The black and yellow states hedge each 

other because each State "cancels out" the ambiguity in the other when the states are 

unionized. A way to express the value of hedging mathematically is to make the decision 

weight on the union (black u yellow) greater than the sum of the weights on black and on 
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yellow. The mathematical expression of the value of hedging probability risk is precisely 

what nonadditive probability ailows. 

When probabilities are nonadditive, expected Utilities must be calculated in an 

unorthodox way, introduced by Choquet (1953-4) and first applied to utility theoiy in 

Schmeidler (1982). First rank the states s, from 1 to n based on their utility u(f(sj) (for a 

particular act f). Then for lotteries with finitely-many outcomes, non-additive subjective 

expected utility is 

n i i-1 
- (8) u(f(s1))p(s1) + s u(f(Sj)) [p( u Sj) - p( u Sj)] 

i=2 j=l j=l 

Note that if the probability measure p(») is additive, the bracketed difference is simply p(sj 

and the expression reduces to SEU. 

The rank-dependent extension of prospect theoiy to many-outcome lotteries, called 

cumulative prospect theory (Tversky & Kahneman, 1990), uses Choquet Integrals to compute 

weighted values of consequences. The twist is that the Choquet weighting refiects around 

the origin (or reference point). The decumulative distribution function of positive outcomes 

above the reference point (or its event-based equivalent) is weighted, the nimulatwe 

distribution of negative outcomes is weighted separately, and the two are added together to 

determine the weighted value of a gamble. 

Gilboa (1987) axiomatized SEU with non-additive probability in a Savage framework 

(using only subjective probabilities, with an infinite State space). His proof uses a variant 

of the sure-thing principle restricted to comonotonic acts, which is shown in Table 5. In 

Gilboa's axiom, indifference between the acts in the first row of the table, combined with 

preference for the left act in the third row (and the fact that yt > xj implies that A is a 

better State to bet on than B. His axiom then requires that indifference between acts in the 

third row implies the preference pattern in the fourth row. Note that the axiom only applies 

if the acts in the left and right halves of the table are comonotonic with other acts in the 

same half. Since acts in each half are comonotonic, the probabilities of A and not-A could 

be nonadditive without disturbing the axiom's implication. 
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Wakker (1984) found an alternative axiomatic route to the proof of EU, using a 

complicated axiom called "cardinal coordinate independence". In Wakker (1989a,b) he uses 

the same axiom, restricted to comonotonic acts, to derive SEU with non-additive 

probabilities. 

Table 5 shows Wakker's axiom. The crucial idea is whether tradeoffs across different 

State outcomes are stable. In the first two rows, preferences for acts are reversed by 

substituting y for a in State A, and S for ß in State B. The bottom two rows imply that the 

same substitutions should not reverse preference in the opposite direcöon when the 

consequences in the complementary states not-A and not-B are changed. Prohibiting such 

contradictory substitution effects is enough to prove an SEU representation. Timiting the 

prohibition only to comonotonic acts allows probabilities to be nonadditive.35 

Fishbum (1988a) derived a generalization of SEU allowing nonadditive probabilities 

with nontransitive preferences. 

Sarin & Wakker (1990) derive nonadditive SEU in yet another way. Their paper 

introduces a new axiom which generates nonadditive probability without mentioning 

comonotonicity. First, they introduce the useful idea of "cumulative consequence sets", sets 

of consequences E such that if x is in E then all better consequences, ytx are in E too. 

Denote the set of states which give consequences in E, for a particular act f, by f X(E). Then 

induce a preference relation on states A and B from preferences over acts: A>B if an act 

which pays off an amount on A is preferred to an act which pays off the same amount on 

B. Sarin & Wakker show that the usual Savage axioms (with the sure-thing principle 

restricted to a set of unambiguous events), along with a "cumulative dominance" axiom, 

imply a nonadditive SEU representation. 

Cumulative dominance: If f *(E) k g'x(E) for all E then f t g 

25 In Wakker's world the State space can be either finite or infinite, and the set of 
consequences must be a connected separable topological space. Nakamura (1990) proved 
the same result for finite State spaces, with an infinite set of consequences that is not 
necessarily a connected separable topological space. 
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Cumulative dominance requires that an act which gives good consequences (in E) in more 

likely states should be preferred. (It is a reasonable SEU analogue to stochastic dominance 

in EU.) In conjunction with the other axioms, cumulative dominance is strong enough to 

force probabilities to be monotonic- it would be violated if P(A) J>P(B) when AcB~ but not 

strong enough to require additivity. 

We note that it is difficult tojudge the normative appeal or empirical descriptiveness 

of cumulative dominance or the two axioms shown by Table 5. But all three axioms are 

easy to test experimentally (and all three are implied by the Standard SEU axioms, but they 

do not imply all the Standard axioms). 

Luce and Marens (1985) studied even more abstract models in which outcome Utilities 

were weighted by (rank-dependent) event weights. But their study was limited only to 

binaiy gambles. Luce (1988) extended the rank-dependent model to gambles with many 

events and provided axioms. Luce (1991) and Luce and Fishbum (1991) extended it further, 

to gambles with both gains and losses. 

Non-additive probabilities have also been prominently discussed in the belief theories 

of Dempster (1967), Shafer (1976) and others (e.g., Levi (1984)). In the Dempster-Shafer 

theory, a portion of belief can be committed precisely to event A (the amount of belief is 

denoted m(A)), or to subsets of events which include A. Belief committed to sets of events 

need not satisfy additivity. In the Ellsberg two-color example, for example, we might have 

m(red)=m(black)=0~ we refuse to commit any belief specifically to red or black— but 

m(red u black) = 1. Dempster-Shafer beliefs (and related approaches) are widely used in 

applications such as artificial intelligence, where elicitation of conditional probabilities and 

Bayesian updating is tedious and unappealing to users (see Buchanan and Shortliffe, 1984). 

Nonadditive probabilities create some curious problems (Gilboa, 1989b). If 

probabilities are nonadditive, then mairimizing u(x) is not necessarily the same as minimizing 

-u(x)26, preference Orders can differ when two different kinds of Choquet expectations are 

26 The two are not the same because the Choquet integral in (10) runs in the opposite 
direction when minimizing -u(x) (since the negative Utilities are ranked oppositely of positive 
ones). Tversky & Kahneman's (1990) formulation can prevent the problem by weighting 
gains and losses differently. 
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taken, and the Standard conditional probability p(A|B) * p(AnB)/P(B) can violate 

intuitively appealing properties (such as P(B | AJ >. P(B | AJUA2) >. P(B | A2). Gilboa (1989b, 

p. 412) inteiprets these problems as normative reasons to prefer additive probability. 

In a novel approach, Fishburn (1990) supposes the ambiguity of an event can be 

measured directly (acts can be ordered by their degree of ambiguity), not merely inferred 

from choices. He proposes several axioms on ambiguity judgments, shows what numerical 

properties of ambiguity the axioms imply, and connects event ambiguity with subadditivity 

of event probability. His axioms are easy to test 

Phillipson (1991) constructs a model designed to be testable using observable market 

data. In his model, risky probabilities arise from a sample of N observations of outcomes 

in the set Z={zi, (For example, insurance companies observe accident frequencies 

of drivers in demographically-determined risk classes.) Uncertainty arising from the sample 

of size N is represented by putting a decision weight M(N) on the set of all possible out­

comes Z (as in the Dempster-Shafer approach). The weight placed on z, is the relative 

frequency of observations of that outcome (%/N), times the weight placed on all risks rather 

than uncertainty, l-M(N). The scheme therefore expresses both uncertainty (through M(N)) 

and risk (through n^N). Then the model can be tested using observable prices and relative 

frequencies, if assumptions are made about M(N) and an uncertainty-aversion parameter. 

4.4.3 Non-additive probabilities and mavimin rules on sets of SOPs 

There is an important kinship between probabilities which are unique but non­

additive, and sets of additive probabilities (section 43 above). The "core" of a non-additive 

probability distribution v generates a set of distributions. For example, suppose A and B 

are two events with v(A)=.2, v(B)=3, v(A u B)=1, and v(A n B)=0. Then the core of v 

is all p(A) and p(B) satisfying p(A)>.2, p(B)>3 and p(A)+p(B)=l. If v is convex (Le., 

v(AuB) >. v(A)+v(B)-v(AnB), as in the example), then the nonadditive SEU determined 

by v is the same as the marimin SEU determined by the set of probabilities which is the 

core of v. Intuitively, one can think of the unique non-additive distribution v as a compact 

way of representing mayitnin preferences. Weighting outcomes by subadditive probabilities 
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expresses precisely the same kind of pessimism that taking the minimnm SEU over possible 

probabilities does. But strictly speaking, neither approach is a special case of the other.27 

4.4.4 Pseudo-Bayesian updating with non-additive and maximin SEU 

Gilboa & Schmeidler (1991) study a crucial problem in generalized SEU approaches: 

How to update nonadditive probabilities and sets of probabilities. They define a family of 

pseudo-Bayesian updating rules in which decision makers update after an event A occurs 

by implicitly assuming that an outcome f would have happened if A hadn'L (Preferences 

over the acts updated this way reveal updated subjective beliefs about A.) Each f gives a 

different updating rule. When probabilities are additive each rule coincides with Bayes' 

rule. 

Probabilities updated using pseudo-Bayesian rules are nonadditive if and only if the 

possible outcomes f are the best and worst possible outcomes (or combinations of them 

across states). If f is the worst possible outcome, the updating rule corresponds to the 

familiar formula p(B | A)=p(BnA)/P(A). If f is the best possible outcome the updating rule 

corresponds to the Dempster-Shafer rule, p(B| A)=[p((BnA)uAe)-p(Ac)]/(l-P(Ae)) (where 

Ac denotes the complement of A).28 

When there is a set of additive probabilities (as in the section 43 models), a 

27 Maximin SEU is not more general because a nonadditive v which is not convex may 
not have a core (e.g., v(A)=.4 and v(B)=.7 in the example above has no core), and 
therefore does not correspond to maximin SEU over a set of probabilities. And nonadditive 
SEU is not more general because some sets of probabilities (e.g., 1_> P(A)+P(B)_>.8) do not 
correspond to the core of any convex non-additive distribution, so maximinimizing over the 
set is not the same as maximizing over a nonadditive distribution. 

28 Recall that the Choquet integral in (9) weights the State with the best outcome by 
p(s1), then weights other states i by p(sxu...usi)-p(s1u...usH). Then roughly speaking, if the 
outcome f in Ae is the worst possible outcome, it comes last in the Choquet weighting and 
does not disturb the Standard Bayesian updating of the probability of A. If the outcome f 
is the best outcome, it comes first in the Choquet weighting and creates the complicated 
non-Bayesian Dempster-Shafer rule. 
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maYimmn likelihood updating rule picks out those distributions which give maximum 

probability to an observed event A, Updates them, and gives zero probability to all other 

distributions. When preferences can be expressed either by nonadditive SEU or by mgrimin 

SEU, then the maximum likelihood rule gives the same updated probabilities as the 

Dempster-Shafer rule. The equivalence to maximum-likelihood (which is widely used in 

classical statistics) gives a novel undeipinning to the Dempster-Shafer rule. 

4.5 Synthesis 

The theories reviewed in this section are diverse and numerous. Unlike generaliza-

tions of EU, which weaken one of a few crucial axioms, attempts to modify SEU to allow 

ambiguity-aversion have gone in many different directions. 

The available evidence on ambiguity (some of which was reviewed in section 2) casts 

doubt on features of some of the theories. For example, since the degree of observed 

ambiguity-aversion seems to be roughly independent of the consequences of bets, 

approaches which modify probability appear, so far, to be more descriptively apt than utüity-

based approaches. Other studies indicate that subjects are sensitive to features of the 

distribution of probability beyond the minimnm and mean, which casts doubt on the 

maximin-SEU approach (and on some variants, including Ellsberg's). Most available studies 

find no correlation between risk attitudes and ambiguity-attitudes, which suggests that 

conceiving of ambiguity-aversion as simply an implication of risk-aversion toward probabil-

ity— as in the nonlinear weighting approaches- might be wrong. 

So far, we know of no evidence that directly contradicts the nonadditive SEU, or the 

psychological theories based on distortion or modification of "expected" probability. The two 

kinds of theorizing could be productive complements. Psychological notions of distortion 

arising from anchoring and adjustment, or pessimism, might explain why probabilities are 

nonadditive and suggest tests in natural settings. At the same time, giving nonadditive SEU 

an axiomatic undeipinning supplies a sharp new way to test for nonadditivity (by testing 

axioms like comonotonic independence or cumulative dominance). 

Finally, aH the theories in this section were initially inspired by experiments on the 

Ellsberg paradox (or thought experiments described by Ellsberg and earlier sources). As 
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a result, none of the theories incorporate the newer ideas that ambiguity springs from 

missing information, and gaps between decision weight and belief arise because of compe-

tence (which is connected to missing information through decision maker knowledge). It 

is time for a second generation of richer theories which are stretched, or spccißcally 

designed, to reach beyond Ellsberg-type problems into broader domains of missing 

information and competence. 

S. APPLICATIONS AND SPECULATIONS 

5.1 Mediane and Health 

Hamm & Bursztajn (1979) were the first to replicate the Ellsberg paradox in a 

medical setting, using a hypothetical clinical scenario. They found a substantial minority of 

ambiguity-averters. 

Curley, Eraker & Yates (1984) gave a hypothetical case, describing a patient with 

stiffness and pain in the legs after Walking, to patients waiting for treatment in a clinic. The 

patients first gave a probability of success P at which they would choose a specified 

treatment (if they were the patient in the case). Then they said whether they would choose 

treatments with ambiguous probabilities distributed around P. 

About 20% avoided the ambiguous treatments. That degree of ambiguity-aversion 

may seem low, but only 25% of the same patients avoided ambiguity in an Ellsberg-type 

question with monetary outcomes. (Ambiguity attitudes in the medical and monetary 

settings were only weakly correlated.) There was no Variation in ambiguity-aversion for 

three brands of ambiguity (the treatment was new, patients' reactions were variable, or 

doctors' estimates were variable). The best predictor of ambiguity-aversion was a lack of 

confidence that the ambiguous treatment would work as well as the unambiguous treatment 

Ritov & Baron (1990) studied the effect of ambiguity on decisions about vaccinating 

children. Vaccination reduces the risk of dying from a disease, but the vaccination itself 

might be harmful. When ambiguity about vaccination risk was caused by salient missing 

information about the risks from vaccination- a child had a high risk of being harmed by 

the Vaccine, or no risk at all, but it was impossible to find out which- subjects were more 
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reluctant to vaccinate.29 Viscusi, Magat & Huber (1991) studied reactions to ambiguous 

informatioii about the risk of nerve disease and lymphatic cancer among 650 customers at 

a Shopping mall. Subjects were told that two studies gave different estimates about the risk 

in town A (150 and 200 cases per million, for example). Then they were asfced what eertain 

risk level in town B (or risk-equivalent) would make them indifferent between living in A 

and living in B. A person neutral (averse) toward ambiguity should have a risk-equivalent 

equal to (greater than) 175, the mean of the estimates in the two studies. There was a small 

amount of ambiguity-aversion: The median risk-equivalent was usually 175, but the mean 

was 178.1 for estimates of (150,200) and 180.7 for when estimates were more widely-

dispersed (110,240). Regression estimates of individual risk-equivalents (Viscusi & Magat, 

1991) suggested that the risk estimate given first received more weight than the second 

estimate (a "primacy effect"), unless subjects were explicitly told that the second study was 

done after the first. The effect of dispersion in risk estimates also appeared to be concave 

(the dispersion of 130 between (110,240) had only a little more effect than the dispersion 

of 50 in (150,200).) 

Curley, Young & Yates (1989) tried to measure doctors' ambiguity about the chance 

of coronary obstruction in several hypothetical cases, in three different ways: expressions 

of confidence, interquartile ranges around estimated probability, and ranges between 

minimum and maximnm "plausible" probability values. Their goal was to study 

validity of the three measures of ambiguity, rather than to investigate ambiguity-aversion in 

choice. Validity was unimpressive. While precise probability estimates did reflect the 

Contents of the case, and changed when additional case information was given, the ränge 

measures changed in unpredicted ways when additional Information was given. The 

interquartile and plausible ranges were correlated across doctors (r=.54) but only weakly 

29 Their experiment also circumvented the problem of subjects transforming ambiguous 
probabilities they are told (see section 3.4). Their subjects gave overall risk thresholds 
(probabilities) at which they would vaccinate. Then the comparison between control-group 
thresholds and missing information-group thresholds does not assume subjects believe or 
widerstand any probability information given by the experimenters, since the only probability 
information is supplied by the subjects themselves. 



41 

correlated with confidence. The ambiguity measures were also correlated with precise 

probability estimates, suggesting that disentangling measures of ambiguity from measures 

of probability is difficult. 

These medical and health studies are a little discouraging, because they show less 

ambiguity-aversion, and less reliable measurement of ambiguity, than is observed or assumed 

in laboratoiy experiments (and in theory). But applied work of this sort is crucial to bridging 

the gap between the world of theory and the natural world. 

52 Insurance, Liahilitv. and Taxes 

In the 1980's American insurance firms began raising premiums dramatically (or 

refusing to seil insurance at all) for several classes of highly ambiguous risks, like 

environmental hazards or manufacturing defects (e.g., Priest, 1987). Intrigued by the 

insurance companies' behavior, Hogarth and Kunreuther (1985,1989) conducted surveys and 

discovered ambiguity-aversion in hypothetical decisions by both professional actuaries and 

experienced insurance underwriters. Indeed, many actuaries set rates by multiplying 

expected value by a multiple which reflects both administrative costs and unanticipated risks 

(an ambiguity premium; see Lemaire, 1986). This pricing rule is predicted by Phillipson's 

(1991) model, in which rates reflect expected losses and a premium depending on the firms' 

ambiguity-aversion and on their sample size. (His model is easy to test because it links the 

degree of ambiguity explicitly to an observable variable, the sample size of observed 

accidents.) 

Hogarth & Kunreuther (1990) also found that actuaries responded to perfect 

correlation of risks by adding a large ambiguity premium to rates, contraiy to the SEU 

prediction that ambiguity should not matter when risks are perfectly correlated. 

Ambiguity may be important in litigation. Hogarth (1989) used experimental 

scenarios to study willingness to settle litigation before trial when ambiguity about winning 

was high or low. (Ambiguity was defined as an attome/s uncertainty about the probability 

of winning.) Piain tiffs filing suits were always eager to settle rather than litigate. Defenda-

nts' decisions were more subtle. When the (expected) p=.5, ambiguity made defendants m-

ore Willing to settle; at p=.8 ambiguity made defendants less Willing to settle (consistent with 
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ambiguity-seekiiig at high probabilities of loss observed in other studies). 

Willham & Christensen-Szalanski (in press) gave subjects actual medical liability 

cases and manipulated ambiguity about the probability of winning. As in the Hogarth 

(1989) study, ambiguity was high when lawyers had Tittle confidence" in the assessed 

probabilities, and low when the lawyers had "extreme confidence". When ambiguity was 

high, subjects were Willing to settle for less as plaintiffs, and offered more as defendants. 

As a result, pairs of subjects were three times as likely to settle out of court when ambiguity 

was high. In the legal framework ambiguity appears to increase the zone of Settlements 

subjects prefer to a court battle. Compliance with tax reporting requirements is another 

legal choice where ambiguity about the probability of getting caught may matter. Casey & 

Scholz (in press) conducted an experiment with tax compliance scenarios in which the risks 

and penalties from getting caught were clear or ambiguous. Their data replicate patterns 

observed in more abstract settings (e.g., Einhorn & Hogarth, 1986): Subjects were typically 

ambiguity-averse, but were ambiguity-preferring when expected probabilities of getting 

caught were high (.9) and the expected penalty was near its stated maximum. 

Kahn & Meyer (in press) studied choices of consumer products when the usefulness 

of a new feature was ambiguous30. For example, subjects could buy a VCR with or without 

a Stereo feature; the fraction of Stereo Videos available for rent was 25% (no ambiguity) or 

0 to 50% (high ambiguity). When features enhanced the value of a product corresponding 

to a gain in utility, subjects were ambiguity-averse (they were less likely to buy the enhanced 

product when ambiguity was high than when ambiguity was low). But when features were 

necessary to preserve the producta value, they preferred ambiguity. 

Ross (1989) gave subjects a choice of whether to make a new product or not, given 

five expert estimates of the probabilities that other firms would make a competing product 

Ambiguity was created by dispersion of the experts' estimates. A Computer system recorded 

30 Ambiguity about the incremental utility from a product feature corresponds to 
ambiguity about the feature's weight in a multiattribute utility evaluation. 
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the information subjects looked at while they made their decisions. When ambiguity was 

higher, subjects took longer to make a decision, looked longer at "bad information" (the 

experts' assessed probabilities that tgß other firms would compete), but made roughly the 

same choice as when ambiguity was low. These data are the first direct evidence that 

increasing ambiguity shifts measured attention from good outcomes to bad outcomes, 

providing a psychological underpinning to theories in which ambiguous probabilities of bad 

outcomes are overweighted, or a maximin SEU is calculated over pessimistic probabilities. 

5.4 Financial markets 

Dow and Werlang (1988) applied SEU with nonadditive probability to asset 

markets31 (see also Simonsen & Werlang, 1990). Consider an ambiguity-averse trader who 

begins owning no shares of a stock. They showed that if an asset's value is ambiguous, there 

will be a price B at which a trader will buy shares and a price S at which a trader will seil 

shares short (with B < S, a positive "bid-ask" spread). In the ränge from B to S, the trader 

will not take a position. In SEU with risk-neutrality B must equal S. 

The Dow and Werlang model implies that trading volume on organized exchanges 

will be affected by changes in ambiguity. For instance, when the US-led forces attacked 

Iraq in Januaiy 1991, ambiguity presumably rose because the Invasion created missing 

relevant information (viz.: Who would win the war?). Because of the ambiguity, many 

stockbrokers told investors that it was a bad time to either buy 21 seil. Careful studies are 

needed to test whether ambiguity shocks like these actually do raise bid-ask spreads and 

reduce trading volume. The crucial empirical step is finding a sensible observable measure 

of ambiguity which predicts bid-ask spreads. 

On the other band, when Iraq invaded Kuwait in August, 1990— raising ambiguity 

about future oil prices- there was enormous trading volume in oil markets. This curious 

contrast in trading volume- high in oil, low in stocks- suggests willingness to trade in 

ambiguous situations may be moderated by knowledge or confidence (as in Heath & 

31 In their setting, nonadditive probability gives the same result as maximin EU. 
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Tversky, 1991): professional oil speculators traded more while individual stockholders traded 

less. 

While the Dow-Werlang theorem suggests a kind of portfolio inertia, or reluctance 

to trade, other applications of ambiguity-aversion suggest an irrational eagerness to trade. 

Milgrom & Stokey (1982) showed that two traders whose only moüve for trade was 

speculation based on private information should not trade with each other. Their "Groucho 

Marx theorem"* implies no speculative trade, roughly speaking, because the willingness of 

A to trade with B indicates the superiority of A's information, which should make B 

unwilling to trade. Dow, Madrigal & Werlang (1989) showed that, surprisingly, if one trader 

has nonadditive beliefs then she will be Willing to trade (violating the Groucho Marx 

theorem). Taken together, the Dow-Werlang and Dow-Madrigal-Werlang results show that 

compared to SEU, ambiguity-aversion creates irrational reluctance to trade against "nature" 

(when asset values are exogeneous) and irrational eagerness to trade against others who may 

be better-informed. 

Ambiguity might be especially important for certain kinds of assets about which little 

is known, like shares of smaller firms or "initial public offerings" (IPOs) of small privately-

held companies. Indeed, stock prices of smaller firms do rise more than price of large firms, 

adjusting for market risk (Keim, 1983), and IPOs tend to jump in price about 10% when the 

market for their shares first opens. The apparent excess returns to small firms and IPOs 

might be premiums paid to Investors who dislike ambiguity (see Yoo, 1990), but there are 

many competing explanations (e.g., Koh & Walter, 1989 and others they cite). 

Another indication of financial ambiguity-aversion comes from personal holdings of 

domestic and foreign securities. French & Poterba (1991) estimate that people in several 

countries sacrifice about 3% in annual expected returns- a substantial amount, since stocks 

rise about 8% per year- by holding too many shares of domestic firms, and not enough 

foreign shares. One explanation is that people feel less ambiguity, or have more knowledge, 

about their own counti/s economy (cf. MacCrimmon, 1968, pp. 13-14). The 3% ioss they 

32 The theorem is named after a joke told by comedian Groucho Marx, who would 
'never belong to a club that would have him as a member.' 
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accept is the premium they pay for avoiding ambiguity about foreign investments. 

5.5 Economic Applications 

5.5.1 Entrepreneurship 

Knight (1921) distinguished between risk and uncertainty (or ambiguity) because he 

thought entrepreneurs eamed economic rents from bearing nnr^rtaintv rather than risk. 

Bewley (1986) made a similar conjecture. (In technical terms, entrepreneurs are those with 

"fatter cones".) Some studies have found that entrepreneurs have a higher "tolerance for 

ambiguity" than non-entrepreneurs (e.g., Begley & Boyd, 1987), as measured by psychomet-

ric scales, but no studies have looked specifically for differences in ambiguity-aversion. 

5.5.2 Contracting 

There is a large literature discussing "incomplete contracting" in economic situations. 

The presumption is that there are many contingencies which could affect the terms of an 

economic relationship, but the probabilities of all contingencies cannot be sharply specified. 

Ambiguity about State probabilities might force agents to use simplified contracts with 

flexible, heuristic methods for resolving disputes. Williamson (1985), Grossman and Hart 

(1986) and others note that the inability to make complete contracts will favor ex-ante 

specification of authority as a mechanism for resolving disputes- transactions will be 

"internalized" within firms- when disputes are costly to resolve. When disputes are less 

costly, vague long-term contracts, enforced by reputational incentives, will be common.31 

Bewley (1986) applied his choice framework to labor contracting.34 Contracts are 

often simple (keeping wages rigid, for instance) but extend for long terms. Bewley suggests 

33 As Hellwig (1989) wrote: "It may well be that the 'house bank' relation emphasized 
by Mayer owes some of its stability to the firm's reluctance to exchange a known partner for 
one whose behaviour in the course of the overall relation it can less well predict." (p 284) 

34 Indeed, he began considering uncertainty-aversion models after "exasperation and 
defeat" in trying to explain how simple long-term contracts with rigid wages could be optimal 
under asymmetric information or risk-aversion. 
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that ambiguity creates a special kind of bargaining cost, which can be reduced if contracts 

are simple. 

S.6 Demand for Ambipuitv-Reducing Information 

If people are averse to ambiguity because they dislike not having missing information, 

it follows that people will value Provision of any information which reduces their ambiguity 

(or increases perceived competence), even if it will not change their decisions. This result 

is in sharp contrast to the economic model of demand for information, which assumes that 

demand for information is derived from its value in making decisions. (One could model 

demand for ambiguity-reducing information in the economic model simply by positing direct 

preferences over the amount of information known, or distaste for unknown information. 

Asch, Patton & Hershey, 1990, give such a model for medical choices.) 

For example, medical tests are sometimes conducted even when they are not accurate 

enough to change a doctor's diagnosis.35 And surveys show that patients prefer to know 

more than doctors typically teil them (Strull, Lo & Charles, 1984), but the patients do not 

want a greater rqle in making medical decisions. Perhaps the patients simply dislike 

ambiguity. 

5-7 Decision Analvsis 

Decision analysis is the practice of engineering better decisions. In decisions which 

involve risk or uncertainty, analysts usually begin by assuming, or tiying to persuade people, 

that SEU is an appealing rule for making decisions.* 

35 Many doctors realize the tests have no decision-theoretic value, but conduct them to 
avoid legal liability. Then we wonder: Is the legal system which induces doctor to overtest 
guided by a desire for irrelevant information, induced by ambiguity-aversion among patients, 
jurors, judges, attomeys, or others? 

34 The typical presumption among decision analysts is that people make paradooäcal 
choices because they don't see the conflict between specific behavior and general axioms (or 
the "desiderata" the axioms imply). When properly educated, the/11 switch to conform to 
the axioms (e.g., Howard, in press). But there is no scientific agreement on what proper 
education is (except that some small doses do not work; MacCrimmon, 1968; Slovic and 
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Many decision analysts have tried to incorporate concern for ambiguity, or at least 

second-order probability, in their analyses. In risk estimation it is common to include three 

(or more) levels of estimated risk, rather than collapsing them into a Single estimate (e.g, 

Pate-Comell, 1987). Brown (1990) describes an "assessment uncertainty technology" for 

Computing the chance that probability estimates are accurate. Strategie planners in 

businesses and govemment often work with an expected, "best case", and Vorst case" 

scenario in forecasting variables that are probabilities. Others have developed decision-

analytic methods which allow users to speeify ranges on probabilities, rather than point 

estimates (Weber, 1987). Users are then told whether the expressed ränge is informative 

enough to pick one alternative, and how narrowing the expressed ränge would affect the 

optimal choice. 

5.8 PuttbBwto 

de Finetti (1937) showed that a person who made incoherent probability estimates 

could be offered a series of bets, each of which she would take, which would certainly make 

her worse off. Such "Dutch books" (or "money pumps") are often thought to provide an 

extemal diseipline which might enforce principles of rationality when people mistakenly 

violate the principles or consciously reject them. 

A Dutch book can be constructed to exploit ambiguity-aversion too. Consider the 

Ellsberg two-color problem. In step 1, give an ambiguity-averter a bet on a red draw from 

the ambiguous um. She will pay to exchange it for a red bet on the unambiguous um; 

collect her payment. In step 2, do the same with a bet on black. Now if she had kept both 

of the bets she got iniüally (ambiguous red and ambiguous black), she would have certainly 

won W. With the unambiguous bets she bought, she certainly wins W too, but she paid 

money in the process. (To complete the cycle, persuade her to give the two unambiguous 

bets back in exchange for the two ambiguous ones.) Heath & Tversky (1991) and Keppe 

& Weber (1991) report empirical observations of this sort. 

Tversky, 1974; Curley, Yates, & Abrams, 1986). The intuitive appeal of the Ellsberg 
paradoxes and SEU generalizations designed to explain it raise at least some doubt about 
whether people should be helped to conform to SEU. 
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The construction of Dutch books like this one is delicate. If our ambiguity-averter 

had known in step 1 that she was getting a matching ambiguous black bet in step 2, she 

would not have exchanged the ambiguous red bet. So the success of the Dutch book relies 

on isolating each choice in a sequence (cf. Fishburn, 1988b, pp. 43-44): If the victim had 

asked at step 1 whether a second step was Coming up, and what it was, the Dutch bookie 

would have to close up shop (or lie). Furthermore, a victim would have to be myopic to be 

led through the entire cycle repeatedly. 

A less slippery Dutch book arises from an Observation first made by Raiffa (1961): 

A person who dislikes ambiguity in the two-color Ellsberg problem can always flip a coin 

to decide whether to bet red or black, transforming the choice between ambiguous bets into 

a gamble similar to a bet on the unambiguous um. In some theories proposed to account 

for ambiguity-aversion, the coin flip is distinctly preferred to an ambiguous bet (If it is not, 

the Dutch book will not work.) For instance, Gilboa & Schmeidler's (1989) marimin SEU 

theory explicitly assumes such an axiom (called uncertainty-aversion): f~g imply pf+(l-p)g 

k f, where pf+(l-p)g is a probabilistic mixture of f and g. For people that exhibit 

uncertainty-aversion, a Dutch book works as follows: Give them f. Then let .them pay to 

exchange it for the gamble pf+ (l-p)g. Play the gamble: If it yields g, switch g for f (since 

f~g); if it yields f do nothing. The Dutch book always leaves them with f, where they 

began37, and leaves them a little poorer. 

A Dutch book is an extreme example of violating stochastic dominance (since, by 

definition, one is certainly left worse off by a Dutch book). Violations of dominance which 

might leave a person worse off, because of ambiguity-aversion, can also be constructed. 

Tversky & Kalineman (undated) give an elegant example: Two boxes each contain 

red and green marbles. A marble is drawn from each box; if their colors match you win 

$60. In Game A both boxes have 50% red and 50% green marbles. In Game B one box 

37 A possible objection is that getting f from the resolution of the gamble pf+(l-p)g is 
worse than getting f at the Start, violating "consequentialism". But since f—g, it is hard to 
imagine that the taste of getting f as an outcome of the gamble instead of g is soured by 
disappointment, as might occur in most other counterexamples to consequentialism (e.g^ 
Machina, 1989). 
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has 50% red and 50% green and the other box's composition is unknown. In Game C both 

boxes have the same composition of red and green marbles, but their composition is 

unknown. The games can be easily ranked by their ambiguity, based on the amount of 

missing information about the boxes- A is least ambiguous, and C most ambiguous. Asked 

to choose which game they would like to play, about 2/3 of their subjects ranked A first and 

2/3 ranked C last But C is the best bet: While A and B have the same chance of wuiniqg 

(5.), C has the greatest chance of winning (because the chance of matching colors rises if 

there are many green balls, QZ many red balls, in both boxes).38 Ambiguity-aversion leads 

most people to reject the bet with the highest chance of winning, violating stochastic 

dominance. 

6. CONCLIJSION 

In expected utility (EU), a numerical utility function over outcomes represents 

preferences by establishing a correspondence between numbers (Utilities) and bets in which 

higher-numbered bets are preferred. But EU assumes events have known objective 

probabilities, which is rarely true. The elegance of the Ramsey-de Finetti-Savage approach 

to subjective expected utility (SEU) is that preferences among bets simiil»giM*nnsly reveal 

beliefs about the probability of events, and Utilities of the consequences of events. 

(Conversely, the approach implies that combining Utilities and subjective probabilities using 

the SEU rule- as decision analysis helps people to do- guarantees satisfaction of certain 

appealing axioms.) 

The crucial presumption in SEU is that people bet on events only because they think 

the events are likely. Betting weights must be the same as beliefs, which can refiect the 

implications of evidence but not its weight. But as Ellsberg (1961) showed (following the 

intuitions of Keynes and Knight), people demonstrate a persistent preference for betting on 

events whose likelihoods they know more about, when perceived likelihoods are held 

ranstant- "Ambiguity-aversion" has been observed in a dozen or so experimental studies, 

38 Define p as the proportion of green marbles in the C boxes. Since both boxes have 
the same proportion p, the chance of winning is p2+(l-p)2, which is at least S 
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using various methods and parameters. (In about half the studies, subjects actually played 

one gamble for money.) 

In most studies, subjects bet on chance devices with vaiying amounts of information 

about the probability of winning. This brand of ambiguity is narrow. More generally, 

ambiguity means that information, which could be known, is missing and salient 

Uncertainty about the compositum of an um of balls is just one kind of missing information. 

Feeimg ignorant about football or politics, having doubts about which of several experts is 

right, wondering whether your child has a predisposition to Vaccine side-effects, or being 

unsure about another countr/s economy, are all manifestations of missing information. 

Some newer studies suggest these other kinds of missing information about events make 

people reluctant to bet on the events. 

Theories 

Many theories have been proposed to explain ambiguity-aversion. Some theories are 

utility-based: Ambiguity about events lowers the Utility of the consequences those events 

have (keeping beliefs and betting weights the same, but making Utilities event-dependent). 

Other theories assume a second-order distribution of belief about an event's probability and 

allow the second-order beliefs to be weighted nonlinearlv. (Those theories explain 

ambiguity-aversion in much the same way that risk-aversion is explained in EU, weighting 

possible probabilities nonlinearly instead of outcomes.) A third class of theories ässumes 

there is a set of possible event probabilities and bases choice on the minimum SEU taken 

over all probabilities in the set. And a fourth class of theories assume no second-order 

beliefs about probability. These theories either take an expected probability, then adjust it 

or weight it nonlinearly to reßect ambiguity, or allow probabilities which are unique but 

nonadditive (P(E uF) , P(E) + P(F) - P(E n F)). 

Purposes and directions 

The research reviewed in this paper does not always cohere because the researchers' 

purposes are different. Psychologists are mostly interested in how people think and behave: 

Their goal is to build parsimonious models which are psychologically plausible and fit 
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individual-level data (typically from experiments). Decision theorists are curious about the 

mathematical connections between axioms and numerical representations of preferences. 

Economists want predictions that are testable using observable market-level data. Decision 

analysts want to help people make better decisions. 

The differences in researchers' purposes sometimes limit communication and cross-

fertilization. For example, psychologists are sometimes annoyed that decision theorists rely 

on unrealistic axioms. Theorists see more reaüstic axioms as inelegant and difficult to work 

with. A review like this is meant to promote cross-fertilization by telling people with 

different purposes about other kinds of research, so they can draw Inspiration and ideas 

from others. Since psychologists and decision theorists are not as curious about market 

implications as economists, economists who find the psychology described here inspiring 

must figure out its market implications, and test them using market data, themselves. 

Research directions 

We see several fruitful directions for research. Experimental studies which do not 

directly test a specific theory should contribute to a broader understanding of betting on 

natural events in a wider variety of conditions where information is missing information. 

There are diminishing returns to studying ums! 

There are many open empirical questions. Valuable contributions could be made by 

measuring the dependence of ambiguity-aversion on the size of outcomes, the correlation 

between risk-attitudes and ambiguity-attitudes (adjusted for measurement error), the 

influence of credit and blame (by oneself or by others) on ambiguity-aversion, the 

information processing people do when making decisions under ambiguity (e.g., Ross, 1989), 

or by testing the axioms underlying new theories. Measurement of the parameters or 

functions posited by different theories is important too because theories can be approxi-

mately true (and useful) even if the axioms they are based on are false (see Kahn & Sarin, 

1987, 1988; Einhorn & Hogarth, 1985). 

Only measurement can teil how good the approximation is. (Such measurement also gives 

decision analysts an idea of how robust reliance on SEU is.) 

Some applications have already been made to a wide variety of topics, including 
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medicine, law, consumer behavior, finance, and economics. Each of these Gelds wrestles 

with questions of individual and collective choice in the face of uncertainty. Many 

anomalies in these Gelds might be explained by ambiguity theories, and the anomalies can 

refine theories in return. 
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Table 1: The three-color Ellsberg problem. 

number of balls 

act 
30 
red 

60 
black vellow 

X W 0 0 
Y 0 W 0 

X" w 0 W 
Y» 0 w W 

Table 2: The two-color Ellsberg problem. 

um 1 number of balls 
50 50 

aü isd klask 
bet red 1 W 0 
bet black 10 W 

um 2 number of balls 
100 

m isd black 
bet red 2 W 0 
bet black 2 0 W 

Table 4: The three-color Ellsberg problem, revisited. 

number of balls 
30 60 

act red black vellow 
X W 0 0 
Y 0 W 0 
Z 0 0 W 

X' JW 0 .5W 
Y* 0 .5W .5W 



Table 3: Stylized Empirical Facti About Ambiguity-Aversion 

Stylized fact 

1. Replication of Eilsberg 

Formal dcfinition* 

.5 > (0,1) 

2. Immunity to persuasion 

3. Strict aversion to 
ambiguity 

4. Aversion to SOP 

5. Aversion to increasing 
ränge of probability 

6. Ambiguity-prcference at 
low probabilities(gains) 
high probabilities(losses) 

7. Independence of risk-
attitude and ambiguity 
attitude 

8. Less ambiguity-aversion 
for losses than for gains 

Studica 

Becker & Brownson (1964), Table 2 
Slovic & Tversky (1974), * 
MacCrimmon & Larsson (1979) 
Einhorn & Hogarth (1986), Täble 1 
Curley & Yates(1989) 
Kahn & Sarin(1988) 

P > (PL, Pu) after written arguments Slovic & Tversky (1974) 
in favor of p - (PL, pu) Curley, Yates & Abrains (1986), Table 4 

p > (pL, pu) not p_> (PL.PU) Einhorn Sc Hogarth(1986), Table 1 
Curley, Yates & Abrams(1986), Table 2 
Cohen, Jaffray & Said (1985) 
Curley & Yates (1989) 

p>0(p) 0(p) uniform 
E[0(p)] = p 

(PL, Pu) > (qL. qu) 
withpu-pL<qu-qL 

(PL,PU)> P 
for E(p) < Piow(gains) 

E(P) > PhighOosses) 

x< E(x) uncorrelated 
with p > (PL, pu) 

Less p > 0(p) for x< 0 
than for x > 0 

Commcnts 

Ambiguity premium = 70% of EV 

= 20% of p 

= 5-10% of EV 

Yates & Zukowski (1976) 
Bemasconi & Loomes (in press) 

Becker & Brownson (1964) 
Yates & Zukowski (1976) 
Larson (1980) 
Curley & Yates (1985) 

Curley & Yates (1985) 
Einhorn & Hogarth (1986) 
Hogarth & Einhorn (1990) 
Casey & Scholz (in press) 
Kahn & Sarin (1988) 
Curley & Yates (1989) 

Cohen, Jafltay & Said (1985) 
Curley, Yates & Abrains (1986), Table 1 
Hogarth & Einhorn (1990), p. 797 

Cohen, Jaffray & Said (1985) 
Einhorn & Hogarth (1986), Table 1 
Hogarth & Einhorn (1990), Table 4 
Kahn & Sarin (1988) (no gain-loss difference) 

Test by allowing indifference 

Ambiguity premium = 20% of EV 
> 20% of EV. 

SOP with 0(p) normal 

flow < .4 
Plow = 001 
P|ow = *10, Phigh=,90 
Phigh — 90 
Plow = .1- 3, Phigh = 7- 9 
Plow- — 25 

* p denotes a lottery with known probability p. 0(p) denotes a sccond-ordcr probability distribution 
(SOP) of p. (PL.PU) denotes a lottery with probabilities bounded by lower and upper values PL and pu. 



Table 5: Generalized Sure-Thing Principles 

Gilboa (1987) 

A not-A not- B 

*1 U - h 
X2 gl ~ X2 g2 
yi fi > yi fz 

implies y2 gz > y: g2 

(for yi > Xi, all acts in each column are pairwise co-monotonic) 

Wakker(1989) 

_A not- A A not-A 

a f < ß g 
y f > 5 g 

_ß not-ß B not - B 
a s > ß t 

implies y s > 8 t 

(all acts in the top two rows are pairwise comonotonic, and all acts in the bottom two 
rows axe pairwise co-monotonic) 


