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While there is a large body of literature on the negative health effects of air pollution, there 

is much less written about its effects on cognitive performance for the whole population. 

This paper studies the effects of contemporaneous and cumulative exposure to air pollution 

on cognitive performance based on a nationally representative survey in China. By merging 

a longitudinal sample at the individual level with local air-quality data according to the exact 

dates and counties of interviews, we find that contemporaneous and cumulative exposure 

to air pollution impedes both verbal and math scores of survey subjects. Interestingly, the 

negative effect is stronger for men than for women. Specifically, the gender difference is 

more salient among the old and less educated in both verbal and math tests. 
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1. Introduction 

While a large body of literature has shown that air pollution poses a significant threat 

to human health, 1  knowledge about the potential consequences of air pollution on 

cognitive abilities is more limited. Poor cognitive function may have profound social, 

economic and health implications (Lang et al. 2008). While recent studies have explored 

the link between air pollution and cognition (Sanders 2012; Bharadwaj et al. 2014; Ham, 

Zweig, and Avol 2014; Molina 2016; Marcotte 2016; Ebenstein, Lavy, and Roth 2016), 

several challenges plague the empirical identifications. 

First, omitted variables correlated with both cognition and exposure to air pollution 

may bias estimations. Most studies, except for Ebenstein, Lavy, and Roth (2016) and 

Marcotte (2016), do not account for individual-level heterogeneity. For instance, Ham, 

Zweig, and Avol (2014) only control for school-grade fixed effects, and Bharadwaj et al. 

(2014) include sibling fixed effects. In this study, we are able to remove individual-level 

unobservable factors by using a longitudinal dataset – the China Family Panel Studies 

(CFPS). 

Second, most existing studies consider either the effects of transitory or cumulative 

exposure to air pollution but rarely both effects simultaneously, with the exception of 

Marcotte (2016). For example, Ham, Zweig, and Avol (2014) and Ebenstein, Lavy, and 

Roth (2016) focus on contemporaneous exposure; Bharadwaj et al. (2014), Molina (2016) 

and Sanders (2012) examine cumulative exposure. We are among the first to examine both 

contemporaneous and cumulative exposure to air pollution on cognitive performance. By 

simultaneously studying both effects, we are able to determine the degree to which human 

beings can adapt to air pollution in the long run. In addition, the relative importance of the 

two effects has policy implications. In the case of test taking, if transitory effects dominate, 

resources could be directed toward limiting pollution near test sites or rescheduling high-

stakes exams in the event of severe air pollution. However, these short-term interventions 

may be less effective than more drastic actions to cut air pollution if cumulative effects 

                                                              
1 The literature includes but is not limited to studies on the effect of air pollution on life expectancy (Chay 
and Greenstone 2003), illness and hospitalization rates (Pope, Bates, and Raizenne 1995; Cohen et al. 2005), 
child health (see an excellent review by Currie et al. 2014), and health behavior (Graff Zivin and Neidell 
2009; Zheng, Sun, and Kahn 2015). 
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dominate. 

Third, most cognitive tests in previous studies were administered to young cohorts, 

such as students (Ham, Zweig, and Avol 2014; Stafford 2015; Ebenstein, Lavy, and Roth 

2016). It is not clear whether the findings inferred from these specific groups hold true for 

the population as a whole. The cognitive tests in our nationally representative sample cover 

nearly all ages above 10, which enable us to test if there is age heterogeneity in cognition. 

Fourth, most economic studies have been silent about gender gap in cognitive 

performance. We provide the first attempt to explicitly testing how air pollution may affect 

males differently from females and explain the potential mechanisms at work. 

Understanding the gender gap in cognitive performance as a result of environmental 

stressors may bear implications for gender equity in schooling and allocative efficiency in 

the labor market. 

Fifth, most previous studies do not match exposure to local environmental stressors 

with individual cognitive performance according to the exact time of test taking. For 

instance, Ham, Zweig, and Avol (2014) match yearly air pollution with average 

standardized test scores at the school-grade level. Measures of yearly air pollution capture 

the accumulative effect but not the instantaneous effect of air pollution on cognitive 

performance at the time of the exams. Using information on the exact time and location of 

the interview for each survey subject, we can match test scores and local air pollution levels 

more precisely than what was possible in previous studies. 

We find that contemporaneous and cumulative exposure to air pollution lowers both 

verbal and math test scores of survey subjects, and the effect on verbal abilities is larger 

than the effect on math skills. The effect is more pronounced for men than for women, i.e., 

men perform worse than women on both tests when exposed to the same dose of air 

pollution. Our calculation suggests that males’ verbal test scores on a day with hazardous 

air pollution (API ≥ 301) are on average 0.30 standard deviations lower than their scores 

on a day without air pollution (API ≤ 50). In addition, the gender difference is more salient 

among the old and less educated in both tests. 

The large gender gap in cognitive abilities probably has something to do with gender 

difference in the composition of gray matter (information processing centers) and white 

matter (the connections between these processing centers) in brain’s central nervous system. 
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The gray matter is highly associated with mathematical skills. The white matter is mainly 

responsible for coordinating communication between different brain regions and largely 

determines language skills. It has been found that air pollution mainly reduces the density 

of white matter (Calderón-Garcidueñas et al. 2008; Wilker et al. 2015). This explains why 

air pollution affects verbal test scores more than math test scores. Given men’s relatively 

smaller volume of white matter activated during general intelligence tests than women do 

(Haier et al. 2005), it is not surprising that air pollution exposure has a more negative effect 

on men, as shown by its effect on their verbal test scores. 

Our study also relates to the broader literature on the effect of air pollution on a wide 

variety of topics which range from happiness and mental well-being (Luechinger 2009; 

Levinson 2012; Zhang, Zhang, and Chen 2015) to labor productivity (Graff Zivin and 

Neidell 2012; Chang et al. 2014, 2016; He, Liu, and Salvo 2016). Given the importance of 

human capital as a principal engine of economic growth, the relationship between air 

pollution and cognition reveals an important but underexplored channel through which 

environmental stressors may affect economic well-being. 

The remainder of the paper is organized as follows. Section 2 describes the data. 

Section 3 lays out the empirical strategy. Section 4 presents our main findings. Section 5 

concludes. In the Appendix B, we discuss the scientific background of this study and 

potential mechanisms in detail. 

2. Data 

2.1. Cognitive Tests 

We utilize cognitive test scores from the CFPS, a nationally representative survey of 

Chinese families and individuals conducted in 2010, 2012, and 2014. The CFPS includes 

questions on a wide range of topics for families and individuals from 162 counties in 25 

provinces of China, including their economic activities, education outcomes, family 

dynamics and relationships, health, and cognitive abilities.2 

                                                              
2 The CFPS is funded by Peking University and carried out by the university’s Institute of Social Science 
Survey. The CFPS uses multistage probability proportional to size sampling with implicit stratification to 
better represent Chinese society. The 2010 CFPS baseline sample is drawn through three stages (county, 
village, and household) from 25 provinces. The 162 randomly chosen counties largely represent Chinese 
society (Xie and Hu 2014). 
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The CFPS is suitable for our study for several reasons. First, the survey includes 

several standardized cognitive tests. Second, exact information about the geographic 

locations and dates of interviews is available to us for all respondents, enabling us to 

precisely match individual test scores in the survey with local air-quality data. Third, the 

longitudinal data allow us to remove unobserved individual factors that may bias estimates. 

Further, the survey embodies rich information at multiple levels, allowing us to control for 

a wide range of covariates. Finally, because the cognitive tests are administered to all age 

cohorts older than 10, we can study the effects of air pollution on different age groups. 

CFPS 2010 and CFPS 2014 contain the same cognitive ability module, i.e., 24 

standardized mathematics questions and 34 word-recognition questions. All these 

questions are obtained from standard textbooks and are sorted in ascending order of 

difficulty. The starting question depends on the respondent’s education level.3 The test 

ends when the individual incorrectly answers three questions in succession. The final test 

score is defined as the rank of the hardest question a respondent is able to answer correctly. 

If the respondent fails to answer any questions during the test, his or her test score is 

assigned as the rank of the starting question minus one. For example, a respondent with 

middle school education begins with the 9th question in the verbal test. If the hardest 

question he is able to correctly answer is the 14th question, then his verbal test scores would 

be 14. However, if he fails the 9th, 10th, and 11th questions consecutively, his verbal test 

scores would be 8.4 

2.2. Weather and Pollution Measures 

We measure air quality using the air pollution index (API), which is aggregated based 

on daily readings for three atmospheric pollutants, namely sulfur dioxide (SO2), nitrogen 

dioxide (NO2), and particulate matter smaller than 10 micrometers (PM10).5 The API 

                                                              
3 Specifically, those whose education level is primary school or below start with the 1st question; those who 
attended middle school begin with the 9th question in the verbal test and the 5th question in the math test; 
and those who finished high school or above start with the 21st question in the verbal test and the 13th 
question in the math test. 
4 The respondents did not know the rules before they were interviewed. So they did not have the incentive 
to fail the tests on purpose. 
5 We use the Chinese Ministry of Environmental Protection’s (MEP’s) breakpoints table (see Table A1) and 
the following formula to generate the API measurement: IP = ((IHI - ILO) / (BPHI - BPLO)) * (CP - BPLO) + ILO, 
where IP is the index for pollutant P, CP is the rounded concentration of pollutant P, BPHI is the breakpoint 



5 

ranges from 0 to 500, with larger values indicating worse air quality. 6  Daily API 

observations are taken from the city-level air-quality report published by the Chinese 

Ministry of Environmental Protection (MEP). The report includes 86 major cities in 2000 

and covers all the cities in 2014.7 Figure A1 plots the daily API in China from 2010 to 

2014. 

We also include rich weather data in our analysis to help isolate the impact of air 

pollution from the impact of overall weather patterns. The weather data comes from the 

National Climatic Data Center (now known as the National Centers for Environmental 

Information) of the US National Oceanic and Atmospheric Administration. The dataset 

contains daily records of weather conditions, such as temperature, precipitation, wind speed, 

and indicators for bad weather, from 402 monitoring stations in China.8 

We match city-level API with CFPS samples in the following way. If a CFPS county 

is within an API reporting city, we use the city’s API reading as the county’s reading. If it 

does not lie in any API cities, we use the API readings of the nearest available city within 

40 kilometers according to the distance between the centroid of the CFPS county to the 

boundaries of nearby API reporting cities. Our baseline results are robust if we restrict the 

sample to only respondents living in API reporting cities.9 Following the convention of 

the literature (Levinson 2012), we use the radius of 40 km in our analyses to ensure precise 

match and retain greater number of observations. The weather conditions are obtained as 

the inverse distance-weighted average of all monitoring stations within a radius of 100 

kilometers of the county centroid.10 The binary indicator for bad weather comes from the 

                                                              
that is greater than or equal to CP, BPLO is the breakpoint that is less than or equal to CP, IHI is the API value 
corresponding to BPHI, and ILO is the API value corresponding to BPLO. The API represents the highest index 
value calculated for each pollutant. 
6 Carbon monoxide (CO), ozone, and particulate matter smaller than 2.5 micrometers (PM2.5) were not 
added to the basket of the index until 2014. Because all the cognitive tests were administered between 2010 
and 2014, we transform the air quality index (AQI) to the API in 2014 and use the API based on SO2, NO2, 
and PM10 in our paper. 
7 If the government indeed manipulates the API data as suggested by Chen et al. (2012) and Ghanem and 
Zhang (2014), using the official API data would underestimate the true impact of air pollution. In this case, 
our estimates would represent a lower bound. 
8 Bad weather includes fog, rain/drizzle, snow/ice pellets, hail, thunder, and tornadoes/funnel clouds. 
9 The results are available upon request. 
10 The matching radius is comparable to those used in Deschenes, Greenstone, and Guryan (2009) and 
Deschenes and Greenstone (2011). Our baseline results are robust to alternative weights, including inverse 
of the square root distance or squared distance between the monitoring stations and the county centroids. The 
results are available upon request. 
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nearest monitoring station. 

The CFPS surveyed a balanced panel of 25,485 individual respondents over age 10 in 

2010 and 2014, for a total of 50,970 observations.11 Of the individuals surveyed in both 

waves, 181 are missing values for cognitive test scores. Among the remaining 50,789 

observations, 37,918 observations could be matched to API and weather data.12 Due to 

some missing values for household demographics, the final dataset used in this study 

includes 31,959 observations. Figure A2 displays the percentage of respondents who took 

the cognitive tests and the hourly pollutant concentration. Most of the cognition tests were 

conducted in the afternoon and evening. Among the three major pollutants, PM10 is a 

dominant one throughout the day. 

3. Empirical Strategy 

Our baseline econometric specification is as follows: 
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 is the mean API readings in the past k days. It 

indicates the air quality measure at date t if k equals 1. We control for a set of demographic 

correlates Xijt, including gender, age and its square and cubic terms, log form of household 

per capita income, years of education and an indicator of cross-county migration.13 We 

also control for a vector of rich weather conditions Wjt, involving a set of temperature bins 

(that is, <25°F, 25–45°F, 45–65°F, 65–85°F, and >85°F), total precipitation, mean wind 

                                                              
11 The attrition rates for consecutive waves, that is, 2010–2012 and 2012–2014, are 19.3 percent and 13.9 
percent, respectively. We compare the attrition rate of the CFPS with that of the UK Household Longitudinal 
Survey (UKHLS). The two surveys were conducted during the same period and followed similar interview 
methods, so the UKHLS serves as a good benchmark for the CFPS. Compared to the UKHLS, the CFPS’s 
attrition rate is reasonable. The key reason for using the 2010 and 2014 waves is that the two waves included 
exactly the same test modules, whereas the short memory and logic tests employed in the 2012 wave are not 
comparable with the tests used in the other two waves. 
12  Counties unmatched to any API report cities within 40 kilometers or weather stations within 100 
kilometers are dropped. The matching rate of 74.7 percent (37,918 out of 50,789) is within a reasonable range 
compared with other studies. For example, Levinson (2012) was able to maintain 52.3 percent of the 
observations when matching the US General Social Survey with PM10 readings from the Environmental 
Protection Agency’s Air Quality System. 
13 Our baseline results are robust if using nonmigrants only. The results are available upon request. 
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speed, and a dummy for bad weather on the day of the interview, and a vector of county-

level characteristics Tjt, including gross domestic product (GDP) per capita (deflated to 

2010 yuan), population density, and industrial value share, to account for factors that are 

correlated with both test scores and air quality.14 λ denotes individual fixed effects. ߜ 

represents county fixed effects. ߟ௧ indicates month, day of week, and post meridiem hour 

fixed effects. f(t) is the quadratic monthly time trend that ranges from 1 (January, 2010) to 

60 (December, 2014). ߝ௧ is the error term. Standard errors are clustered at the county 

level.15 Table 1 describes key variables and their summary statistics. 

[Insert Table 1 here.] 

By conditioning on the full set of fixed effects listed above, the key parameters are 

identified by making use of variations in exposure to air pollution for the same respondent 

in the 2010 and 2014 surveys. Figure A3 displays the monthly distribution of interview 

times in the two waves of the CFPS survey. Although a majority of interviews were 

conducted in July and August when college students were employed as numerators, the 

survey spans all months and seasons, providing us with large temporal variations.16 

The validity of our empirical strategy also hinges on one key assumption: that 

variations in an individual’s exposure to air pollution at the time of the tests between the 

two waves have little to do with unobserved time-varying factors that may also affect 

cognitive performance. We have checked some other potential factors, such as the 

assignment of interviewers and the days of the week on which cognition tests were 

implemented, and found that these variables are random. 

4. Results 

Figure 1 plots residuals from regressions of verbal and math test scores on years of 

                                                              
14 Graff Zivin, Hsiang, and Neidell (2015) find that high temperature is associated with significant decreases 
in cognitive performance on math in the short run. Here we have controlled for a set of temperature bins to 
capture the effect. 
15 Our results are robust to controlling for province-by-year fixed effects and clustering standard errors at 
the province level. 
16 Besides, we divide the sample into two groups with equal weight. Respondents in group one were 
interviewed at least once in winter months (November, December and January), while respondents in group 
two were only interviewed in non-winter months (from February to October). The weighted regression 
indicates that the results are robust, i.e., the size of the effects is similar to that estimated in the baseline 
results. Hence, the underestimation of the effect of air pollution, if any, is small. The results are available 
upon request. 
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education versus age cohort for males and females in polluted and less polluted areas. As 

revealed in Panel A (verbal test scores) and Panel B (math test scores) of Figure 1, women 

and men perform equally well in both verbal and math tests before age 20. Both math and 

verbal test scores decline steadily with age afterwards for men and women, but the speed 

of decline is faster for women than men. As a result, the gender gap between males and 

females in cognitive scores widens as people become older. The large gender difference in 

test scores masks the difference in test scores between people living in more polluted and 

less polluted areas. 

[Insert Figure 1 here.] 

Considering that the gender difference may also result from some covariates other 

than air pollution, we use a difference-in-differences approach to remove these systematic 

factors. Specifically, we first obtain gender differences in test scores for polluted and less 

polluted areas, respectively, and then gauge the differences in the gender gap between more 

polluted and less polluted areas. Panel C displays the results. The difference-in-differences 

in test scores is negative for most cohorts, indicating that men are generally more 

vulnerable to air pollution than women. 

However, Figure 1 does not consider many other factors that may affect test scores, 

such as interpersonal differences. Next, we conduct more rigorous regression analyses by 

controlling for more individual-level factors. Table 2 presents regression estimates on the 

effect of air quality on verbal test scores (Panel A) and math test scores (Panel B) based on 

equation (1). In each panel, we test the impacts of contemporaneous exposure (Columns 1 

and 2) and cumulative exposure (Columns 3 through 7), respectively.17 

Three findings are apparent from Table 2. First, in general, air pollution negatively 

affects respondents’ test performance as shown by the negative coefficient for the pollution 

variable in all the regressions. Except for the effect of one-day air pollution exposure on 

math test scores (first column in Panel B), all the coefficients for air pollution variable are 

statistically significant. The impact is economically significant. For example, the estimate 

in Column (5) of Panel A indicates that a one-unit increase in the annual mean API leads 

to a 0.043-point decline in verbal scores. Second, the impact of cumulative exposure on 

                                                              
17 In Table A2, we further display results that add individual fixed effects and demographic controls step-by-
step. 
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test scores is larger than that of contemporaneous exposure. As shown in the last row of 

Panel A and Panel B, an increase in the mean API on the interview date by one standard 

deviation (SD) lowers verbal test scores by 0.131 point (0.012 SD), while a one SD increase 

in average API over three years prior to the interview is associated with an up to as 1.139 

points (0.109 SD) drop in verbal test scores. Third, air pollution exposure appears to have 

a more negative effect on verbal test performance than math test performance. It is evident 

that the changes in SDs in the parentheses presented at the bottom of Panel A for verbal 

test scores are more prominent than the corresponding ones in Panel B for math test scores. 

Given that the cognitive tests we used might be easier and less challenging than the college 

entrance exams, our identified contemporaneous effects are a little smaller than those 

obtained in Ebenstein, Lavy, and Roth (2016). For example, Ebenstein, Lavy, and Roth 

(2016) find that a one SD reduction in air pollution leads to an increase in Bagrut scores 

by 0.038 SD. However, our estimated cumulative effects are larger than their 

contemporaneous effects. 

[Insert Table 2 here.] 

To further explore potential differential effects on men and women, Panel A and Panel 

B in Tables A3 and A4 present separate regressions on verbal and math test scores for 

males and females. Panel C combines the male and female subsamples and uses an 

interaction term between a dummy for males and pollution concentration to identify gender 

differences in the effect of exposure to air pollution on test scores. 

Figure 2 visualizes the key estimates obtained from Tables A3 and A4. Panel A is for 

verbal tests, while Panel B is for math test scores. In each panel, the left part presents the 

estimated coefficients for API, as well as their 95 percent confidence intervals, for men and 

women, respectively; the right part is drawn based on the estimates of the interaction term 

between air pollution and a gender dummy in the whole sample. As shown in the left part 

of Panel A, exposure to air pollution lowers verbal test scores for both men and women 

regardless of the length of exposure (with the exception of females’ one-day exposure). In 

general, the effect increases with the duration of exposure to air pollution. Men are more 

vulnerable to air pollution than women. The gender difference is statistically significant, 

as shown in the right part of Panel A. 

[Insert Figure 2 here.] 
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As shown in Panel B, the effect on math tests is more muted than the effect on verbal 

tests. Although the coefficients for the API are negative in all 14 regressions in the left part 

of Panel B, they are only statistically significant in four regressions using the subsamples. 

Interestingly, the gender difference persists. All the seven coefficients for the interaction 

term between gender and level of air pollution as presented in the right part of Panel B are 

statistically significant at the 5 percent level. Once again, in accordance with the findings 

of Ebenstein, Lavy, and Roth (2016), men’s math performance is more significantly 

affected by exposure to polluted air than women’s performance. 

To understand how the aging brain may affect the gender differences in the effect of 

air pollution on cognition, we repeat the exercises above to estimate the effect for different 

age groups, i.e., children (age 20 and under), young adults and the middle-aged (age 21 to 

59), and seniors (60 and above). Figure 3a displays the estimated coefficients for API and 

their 95 percent confidence intervals in regressions on verbal test scores for different age 

groups. As revealed in Panel A, the negative effect of air pollution on verbal test scores is 

minimal for children with no obvious differential impact by gender. As shown in Panel B, 

for young adults and the middle-aged, air pollution has a detrimental effect on verbal scores 

for both men and women without showing a significant gender difference. For seniors 

(Panel C), air pollution is strongly associated with worse verbal test scores for males but 

not for females. 

[Insert Figure 3a here.] 

Figure 3b repeats the exercises but plots the coefficients and their confidence intervals 

in regressions on math test scores. Similar to the verbal test scores, there is a salient gender 

difference among the old cohorts. 

[Insert Figure 3b here.] 

We repeat estimations in Figure 2 by running separate regressions on verbal tests for 

three subgroups based on education level—primary school and below, middle school, and 

high school and above, to identify potential heterogeneous effects by education. Figure 4a 

displays the coefficients for API across various windows of exposure. Overall, exposure to 

air pollution negatively affects verbal test scores, especially for less educated men, as 

shown in Panel A and Panel B. The effect is much weaker for the more educated (Panel C), 

probably because these individuals are more likely to work indoors or because they are 
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more knowledgeable about the negative effects of air pollution. Figure 4b reports the same 

analysis for math test scores. Among the less educated group (middle school and below), 

men perform worse than women in the presence of air pollution. 

[Insert Figures 4a and 4b here.] 

In Table A5, we further explore the heterogeneous effects by income and workplace. 

Comparing the coefficients for the API in Panel A (income level below median) and Panel 

B (income level above median), air pollution has a greater adverse effect on the low-income 

group than on the high-income group. Another comparison between Panel C (working 

outdoors) and Panel D (working indoors) reveals that the negative effect of air pollution is 

greater on people working outdoors than those working indoors. The gap widens when 

measuring the API over a longer period, suggesting a lasting, more negative effect of 

exposure to air pollution on men. 

Some time-variant unobserved factors may affect both cognitive test scores and 

exposure to air pollution even after controlling for individual fixed effects. In a falsification 

test, we employ a strategy similar to Bensnes (2016). If concerns about such unobserved 

factors are valid, we would expect to see API readings on the days after cognitive tests also 

affect test scores. Figure 5 presents the estimated coefficients with their 95 percent 

confidence intervals from a regression of test scores on API readings one to six days into 

the future. For both men and women, all the coefficients are statistically indifferent from 

zero, largely dismissing the concern about potential omitted variables. 

[Insert Figure 5 here.] 

Table A6 estimates a more flexible nonlinear functional form to capture potentially 

heterogeneous effects at various intervals of pollution concentrations.18 We assign several 

indicators to capture the interval bins of APIs and leave “API ≤ 50” as the reference bin. 

Since very few observations fall into the long-term average API > 100, we combine API 

readings from 101 to 200 as one bin when examining 90-day and longer interval exposures. 

We identify the impact of contemporaneous exposure in Panel A and Panel B and 

cumulative exposure in the remaining panels. Our results consistently show that males are 

more affected by both contemporaneous and cumulative air pollution exposure, while 

females are largely immune to the effect of short-term pollution during cognitive tests. Our 

                                                              
18 Figure A4 reveals the distribution of API readings with these cutoffs. 
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back-of-the-envelope calculation suggests that men score 2.840 points (0.301 SD) lower 

on a day with hazardous air pollution (API ≥ 301) than on a day with good air (API ≤ 50). 

According to the relationship between test scores and education years revealed in Figure 

A5, 2.840 points corresponds to approximately 0.9 year of education. 

Furthermore, Panel A and Panel B of Table A7 in the appendix estimate verbal and 

math test scores, respectively, by simultaneously controlling for contemporaneous 

exposure as well as cumulative exposure. It is apparent from the table that cumulative 

exposure to air pollution plays a greater role in lowering verbal test scores than 

contemporaneous exposure. 

5. Conclusion 

This paper estimates the contemporaneous and cumulative impacts of air pollution on 

cognition by matching the scores of verbal and math tests given to people age 10 and above 

in a nationally representative survey with local air-quality data for the exact dates and 

locations of the interviews. Contemporaneous and cumulative exposure to air pollution 

significantly lowers both the verbal and math test scores of survey subjects. In general, men 

perform worse than women when exposed to the same dose of air pollution. The gender 

difference is more salient among the old and less educated in both tests. 

The population-weighted annual mean concentration of PM2.5 over 2014 in China is 

68 μg/m3, much higher than the primary and secondary standards in the NAAQS published 

by the U.S. Environmental Protection Agency (EPA).19 Reducing the annual mean PM2.5 

to levels below the secondary standard, which corresponds to 44 units in one-year-mean 

API, will lead to a sizable increase in verbal test scores by 1.89 points (or 0.63 education 

year) and math test scores by 0.26 point (or 0.16 education year). 

As cognitive functioning is critical to everyday activities, human capital formation, 

and productivity, our finding about the negative effect of air pollution on cognition implies 

that the indirect effect on social welfare could be much larger than previously thought. A 

narrow focus on the negative effect on health may underestimate the total cost of air 

                                                              
19 The annual mean PM2.5 data at the city level are obtained from the China Environmental Statistical 
Yearbook 2015, and the population data (for the weighting purpose) come from China City Statistical 
Yearbook 2015. The primary and secondary standards of annual mean PM2.5 published by the EPA are 12 
μg/m3 and 15 μg/m3, respectively. Source: https://www3.epa.gov/ttn/naaqs/standards/pm/s_pm_history.html. 
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pollution. 

In Appendix B, we hypothesize that differences in brain composition may help explain 

why men appear more sensitive to the negative effects of air pollution. It is beyond the 

scope of this paper to formally test this mechanism. We leave it as a future research topic. 
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Figure 1: Mean test scores by age and pollution level 

 

 

 
Source: Authors’ calculations using CFPS survey 2010 and 2014. 
Note: The residuals are generated from regressions of test scores on education years. The less 
polluted and more polluted areas are divided by the median of the pollution level in the past year. 
The difference-in-differences is generated by the gender difference (male-female) in differences in 
test scores between polluted and less polluted areas. 
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Figure 2: Effects of air pollution on test scores, by gender 
Panel A: Verbal test scores 

 
Panel B: Math test scores 

 
Source: Authors’ estimations using CFPS survey 2010 and 2014. 
Note: The figures plot the estimated coefficients with 95% confidence intervals based on the 
estimates in Tables A3 and A4. In each panel, the left part presents the coefficients on air pollution 
for males and females in the subsample; the right part is drawn based on the estimates of the 
interaction term between air pollution and a male dummy in the whole sample. 

-.
15

-.
1

-.
05

0

Subsample Whole sample with an interaction

1 7 30 90 1 yr 2 yr 3 yr 1 7 30 90 1 yr 2 yr 3 yr

male female gender difference

-.
03

-.
02

-.
01

0
.0

1

Subsample Whole sample with an interaction

1 7 30 90 1 yr 2 yr 3 yr 1 7 30 90 1 yr 2 yr 3 yr

male female gender difference



16 

Figure 3a: Effects of air pollution on verbal test scores, by age 
Panel A: Age 20 and under 

 
Panel B: Age 21 to 59 

 
Panel C: Age 60 and over 

 
Source: Authors’ estimations using CFPS survey 2010 and 2014. 
Note: In each panel, the left part presents the estimated coefficients with 95% confidence intervals on 
air pollution for males and females in the subsamples; the right part is drawn based on the estimates 
of the interaction term between air pollution and a male dummy in the whole sample.
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Figure 3b: Effects of air pollution on math test scores, by age 
Panel A: Age 20 or under 

 
Panel B: Age 21 to 59 

 
Panel C: Age 60 or over 

 
Source: Authors’ estimations using CFPS survey 2010 and 2014. 
Note: In each panel, the left part presents the estimated coefficients with 95% confidence intervals 
on air pollution for males and females in the subsamples; the right part is drawn based on the 
estimates of the interaction term between air pollution and a male dummy in the whole sample. 
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Figure 4a: Effects of air pollution on verbal test scores, by education level 
Panel A: Primary school or below 

 
Panel B: Middle school 

 
Panel C: High school or above 

 
Source: Authors’ estimations using CFPS survey 2010 and 2014. 
Note: In each panel, the left part presents the estimated coefficients with 95% confidence intervals 
on air pollution for males and females in the subsamples; the right part is drawn based on the 
estimates of the interaction term between air pollution and a male dummy in the whole sample. 
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Figure 4b: Effects of air pollution on math test scores, by education level 
Panel A: Primary school or below 

 
Panel B: Middle school 

 
Panel C: High school or above 

 
Source: Authors’ estimations using CFPS survey 2010 and 2014. 
Note: In each panel, the left part presents the estimated coefficients with 95% confidence intervals on 
air pollution for males and females in the subsamples; the right part is drawn based on the estimates 
of the interaction term between air pollution and a male dummy in the whole sample. 
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Figure 5: Placebo tests: Effects of air pollution on test scores in the days after the interview 
Panel A: Verbal test scores 

 
Panel B: Math test scores 

 
Source: Authors’ estimations using CFPS survey 2010 and 2014. 
Note: The figure plots the coefficients with 95% confidence intervals from a regression of test scores on air pollution index (API) readings in the days after 
the interview. Other controls and fixed effects are the same as those presented in Table 2. 
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Table 1: Summary statistics 

Variable Description 
All  Male  Female 

Mean SD  Mean SD  Mean SD 
Verbal scores verbal scores 18.115 10.488  19.728 9.431  16.629 11.171 
Math scores math scores 10.438 6.403  11.497 5.924  9.464 6.667 
API API 73.519 32.683  73.203 31.714  73.810 33.549 
API_7 7-day mean API 72.907 21.360  72.641 21.108  73.151 21.588 
API_30 30-day mean API 73.012 17.125  72.822 17.086  73.187 17.160 
API_90 90-day mean API 75.529 16.179  75.359 16.129  75.686 16.223 
API_1y 1-year mean API 84.009 20.804  83.832 20.865  84.172 20.747 
API_2y 2-year mean API 78.386 16.245  78.223 16.329  78.536 16.167 
API_3y 3-year mean API 75.284 13.397  75.110 13.462  75.443 13.335 

Household per capita income (log) 
log form of household per capita 
income (Chinese yuan) 

8.874 1.154  8.891 1.153  8.858 1.155 

Age age 44.738 17.893  44.920 18.160  44.572 17.643 
Education years education years 7.187 4.657  7.938 4.309  6.497 4.854 

Source: Authors’ estimations using CFPS survey 2010 and 2014. 
Note: API = air pollution index; SD = standard deviation. 
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Table 2: Effects of air pollution on cognitive test scores 
 Contemporaneous  Cumulative 
 1-day  7-day  30-day  90-day  1-year  2-year  3-year 
 (1)  (2)  (3)  (4)  (5)  (6)  (7) 

A. Verbal test scores 
1

0

1 k

t ii
API

k



  -0.004*  -0.014***  -0.035***  -0.044***  -0.043***  -0.057***  -0.085*** 

 (0.002)  (0.005)  (0.008)  (0.011)  (0.012)  (0.016)  (0.020) 
Observations 31,959  31,959  31,959  31,959  31,959  31,959  31,959 
Overall R2 0.280  0.278  0.282  0.338  0.283  0.286  0.321 
Impact of a one SD reduction 
in mean API on test scores 
(SDs of test scores) 

0.131 
(0.012) 

 
0.299 

(0.029) 
 

0.599 
(0.057) 

 
0.712 

(0.068) 
 

0.895 
(0.085) 

 
0.926 

(0.088) 
 

1.139 
(0.109) 

B. Math test scores 
1

0

1 k

t ii
API

k



  -0.001  -0.003**  -0.005**  -0.008**  -0.006**  -0.009**  -0.015** 

 (0.001)  (0.001)  (0.002)  (0.003)  (0.003)  (0.005)  (0.006) 
Observations 31,959  31,959  31,959  31,959  31,959  31,959  31,959 
Overall R2 0.667  0.664  0.663  0.707  0.672  0.684  0.693 
Impact of a one SD reduction 
in mean API on test scores 
(SDs of test scores) 

0.033 
(0.005) 

 
0.064 

(0.010) 
 

0.086 
(0.013) 

 
0.129 

(0.020) 
 

0.125 
(0.019) 

 
0.146 

(0.023) 
 

0.201 
(0.031) 

Source: Authors’ estimations using CFPS survey 2010 and 2014. 

Note: 
1

0

1 k

t ii
API

k



 indicates the mean of API readings in the past k days, where k equals 1, 7, 30, 90, 365, 730, and 1,095, respectively. All the 

regressions include individual fixed effects; county fixed effects; year, month, day of week, and post meridiem hour fixed effects; and a quadratic monthly 
time trend. Demographic controls include gender, age and its square and cubic terms, household per capita income, years of education, and an indicator for 
migration. Weather controls include 20°F indicators for temperature bins (that is, <25°F, 25–45°F, 45–65°F, 65–85°F, and >85°F), total precipitation, mean 
wind speed, and a dummy for bad weather. County-level characteristics include gross domestic product (GDP) per capita, population density, and industrial 
value share. Robust standard errors, clustered at the county level, are presented in parentheses. API = air pollution index; SD = standard deviation. *10% 
significance level; **5% significance level; ***1% significance level. 
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Appendix A: Supplementary Figures and Tables 

Figure A1: Daily air pollution index (API) in China, 2010–2014 

 

 

 
Source: Daily air-quality report, Ministry of Environmental Protection of the People’s Republic of China. 
Note: The daily mean API is calculated by finding the weighted average of all the API report cities 
within the region, where the weights are the yearly population in each city. The US National Ambient 
Air Quality Standard for fine particulate matter smaller than 10 micrometers is 0.15 mg/m3, which 
corresponds to API = 100 in China. Northeast China includes Heilongjiang, Jilin, and Liaoning. North 
China includes Beijing, Hebei, Inner Mongolia, Shanxi, and Tianjin. East China includes Anhui, Fujian, 
Jiangsu, Jiangxi, Shandong, Shanghai, and Zhejiang. Northwest China includes Gansu, Ningxia, 
Qinghai, Shanxi, and Xinjiang. Southwest China includes Guizhou, Sichuan, Tibet, Yunnan, and 
Chongqing. South China includes Guangdong, Guangxi, Hainan, Henan, Hubei, and Hunan. 
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Figure A2: PM10 API, SO2 API, and NO2 API during the day, 2014 

 
Source: Hourly air-quality report, Ministry of Environmental Protection of the People’s Republic 
of China. 
Note: The hourly mean pollution concentrations are calculated using the average values from all 
the monitoring stations in China. The left axis indicates the pollutant API that converts the 
corresponding pollutant measure in micrograms per cubic meter (μg/m3) into an API score ranging 
from 0 to 500 using a formula devised by the MEP. The right axis indicates the interview time 
distribution (percent). This detailed air-quality dataset is only available for 2014, so we cannot use 
it in our main empirical analysis. API = air pollution index; NO2 = nitrogen dioxide; PM10 = 
particulate matter 10 micrometers or less in diameter; SO2 = sulfur dioxide. 
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Figure A3: Distribution of interviews by month in 2010 and 2014 
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Figure A4: Distribution of API, 2010 and 2014 

 
Note: API = air pollution index. 
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Figure A5: Relations between test scores and mean of education years 

 

 
Note: k values indicate the coefficients from regressing mean of education 
years on verbal test scores/math test scores. 
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Table A1: Breakpoints for API value calculation 
API index value PM10 (μg/mଷ) SO2 (μg/mଷ) NO2 (μg/mଷ) 

0 0 0 0 
50 50 50 40 
100 150 150 80 
150 250 475 180 
200 350 800 280 
300 420 1600 565 
400 500 2100 750 
500 600 2620 940 

Note: API = air pollution index; NO2 = nitrogen dioxide; PM10 = particulate matter 10 
micrometers or less in diameter; SO2 = sulfur dioxide. 
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Table A2: Robustness checks: Adding controls step-by-step 
A: Verbal test scores 

 1-day mean  7-day mean  1-year mean 
 (1) (2) (3)  (4) (5) (6)  (7) (8) (9) 

1

0

1 k

t ii
API

k



  -0.002 -0.003 -0.004*  -0.010*** -0.011** -0.014***  -0.033*** -0.048*** -0.043*** 

 (0.002) (0.002) (0.002)  (0.004) (0.005) (0.005)  (0.011) (0.012) (0.012) 
Income per capita 0.353***  0.148*  0.353***  0.145*  0.355***  0.155* 
 (0.043)  (0.084)  (0.043)  (0.084)  (0.042)  (0.080) 
Years of education 1.393***  0.693***  1.394***  0.692***  1.393***  0.678*** 
 (0.020)  (0.108)  (0.020)  (0.108)  (0.020)  (0.106) 
Individual fixed effects No Yes Yes  No Yes Yes  No Yes Yes 
County-level characteristics Yes No Yes  Yes No Yes  Yes No Yes 
Observations 31,959 31,959 31,959  31,959 31,959 31,959  31,959 31,959 31,959 
Overall R2 0.351 0.351 0.351  0.340 0.340 0.340  0.327 0.327 0.327 

B: Math test scores 
 1-day mean  7-day mean  1-year mean 
 (1) (2) (3)  (4) (5) (6)  (7) (8) (9) 

1

0

1 k

t ii
API

k



  -0.001 -0.001 -0.001  -0.002 -0.002 -0.003**  -0.006* -0.010** -0.006** 

 (0.001) (0.001) (0.001)  (0.001) (0.002) (0.001)  (0.003) (0.004) (0.003) 
Income per capita 0.094***  0.014  0.094***  0.013  0.094***  0.015 
 (0.026)  (0.040)  (0.026)  (0.040)  (0.026)  (0.039) 
Years of education 1.113***  0.998***  1.113***  0.997***  1.113***  0.995*** 
 (0.009)  (0.049)  (0.009)  (0.049)  (0.009)  (0.049) 
Individual fixed effects No Yes Yes  No Yes Yes  No Yes Yes 
County-level characteristics Yes No Yes  Yes No Yes  Yes No Yes 
Observations 31,959 31,959 31,959  31,959 31,959 31,959  31,959 31,959 31,959 
Overall R2 0.714 0.714 0.714  0.698 0.698 0.698  0.693 0.693 0.693 

Note: 1

0

1 k

t ii
API

k



 indicates the mean of the air pollution index (API) in the past k days, where k equals 1, 7, and 365, respectively. All the regressions 

include county fixed effects; year, month, day of week, and post meridiem hour fixed effects; and a monthly quadratic time trend. Demographic controls 
include gender, age and its square and cubic terms. Weather controls include 20°F indicators for temperature bins (that is, <25°F, 25–45°F, 45–65°F, 65–
85°F, and >85°F), total precipitation, mean wind speed, and a dummy for bad weather. County-level characteristics include gross domestic product (GDP) 
per capita, population density, and industrial value share. Robust standard errors, clustered at the county level, are presented in parentheses. *10% 
significance level; **5% significance level; ***1% significance level. 
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Table A3: Effects of air pollution on verbal test scores, by gender 
Dependent variable Contemporaneous  Cumulative 
verbal scores 1-day  7-day  30-day  90-day  1-year  2-year  3-year 
 (1)  (2)  (3)  (4)  (5)  (6)  (7) 

A. Male subsample 
1

0

1 k

t ii
API

k



  -0.007**  -0.017***  -0.047***  -0.056***  -0.054***  -0.069***  -0.104*** 

 (0.003)  (0.006)  (0.010)  (0.014)  (0.014)  (0.020)  (0.026) 
Observations 15,318  15,318  15,318  15,318  15,318  15,318  15,318 
Overall R2 0.252  0.249  0.247  0.249  0.244  0.244  0.243 

B. Female subsample
1

0

1 k

t ii
API

k



  -0.003  -0.010**  -0.023***  -0.034***  -0.033***  -0.045***  -0.067*** 

 (0.002)  (0.005)  (0.007)  (0.010)  (0.011)  (0.013)  (0.018) 
Observations 16,641  16,641  16,641  16,641  16,641  16,641  16,641 
Overall R2 0.450  0.449  0.456  0.460  0.440  0.437  0.444 

C. Whole sample with an interaction 

Male	ൈ 1

0

1 k

t ii
API

k



  -0.007***  -0.010**  -0.019***  -0.023***  -0.017***  -0.025***  -0.038*** 

 (0.003)  (0.004)  (0.005)  (0.005)  (0.004)  (0.007)  (0.012) 
Observations 31,959  31,959  31,959  31,959  31,959  31,959  31,959 
Overall R2 0.277  0.293  0.335  0.330  0.285  0.277  0.311 

Note: See the notes to Table 2. 
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Table A4: Effects of air pollution on math test scores, by gender 
Dependent variable Contemporaneous  Cumulative 
math scores 1-day  7-day  30-day  90-day  1-year  2-year  3-year 
 (1)  (2)  (3)  (4)  (5)  (6)  (7) 

A. Male subsample 
1

0

1 k

t ii
API

k



  -0.002  -0.003  -0.005**  -0.009**  -0.006  -0.008  -0.014* 

 (0.001)  (0.002)  (0.003)  (0.004)  (0.004)  (0.005)  (0.007) 
Observations 15,318  15,318  15,318  15,318  15,318  15,318  15,318 
Overall R2 0.512  0.524  0.514  0.517  0.534  0.513  0.537 

B. Female subsample
1

0

1 k

t ii
API

k



  -0.001  -0.004**  -0.004  -0.008*  -0.007*  -0.010*  -0.016** 

 (0.001)  (0.002)  (0.003)  (0.004)  (0.004)  (0.006)  (0.008) 
Observations 16,641  16,641  16,641  16,641  16,641  16,641  16,641 
Overall R2 0.692  0.697  0.688  0.701  0.692  0.683  0.689 

C. Whole sample with an interaction 

Male	ൈ 1

0

1 k

t ii
API

k



  -0.003***  -0.005***  -0.008***  -0.011***  -0.008***  -0.012***  -0.016*** 

 (0.001)  (0.002)  (0.002)  (0.002)  (0.002)  (0.003)  (0.006) 
Observations 31,959  31,959  31,959  31,959  31,959  31,959  31,959 
Overall R2 0.671  0.705  0.699  0.691  0.671  0.670  0.677 

Note: See the notes to Table 2. 
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Table A5: Heterogeneous effects of air pollution on verbal test scores, by income and workplace 
Dependent variable Contemporaneous  Cumulative 
verbal scores 1-day  7-day  30-day  90-day  1-year  2-year  3-year 
 (1)  (2)  (3)  (4)  (5)  (6)  (7) 

A. Income level 0-50% 
1

0

1 k

t ii
API

k



  -0.006*  -0.014**  -0.037***  -0.053***  -0.061***  -0.093***  -0.127*** 

 (0.003)  (0.006)  (0.011)  (0.012)  (0.014)  (0.019)  (0.026) 
Observations 13,019  13,019  13,019  13,019  13,019  13,019  13,019 
Overall R2 0.338  0.338  0.338  0.338  0.338  0.338  0.338 

B. Income level 50-100% 
1

0

1 k

t ii
API

k



  -0.003  -0.013**  -0.033***  -0.040***  -0.033***  -0.036**  -0.060** 

 (0.002)  (0.006)  (0.009)  (0.013)  (0.012)  (0.017)  (0.023) 
Observations 18,213  18,213  18,213  18,213  18,213  18,213  18,213 
Overall R2 0.357  0.357  0.357  0.357  0.357  0.357  0.357 

C. Working outdoors 
1

0

1 k

t ii
API

k



  -0.006*  -0.009  -0.039***  -0.046***  -0.055***  -0.082***  -0.121*** 

 (0.003)  (0.007)  (0.012)  (0.015)  (0.015)  (0.018)  (0.024) 
Observations 13,029  13,029  13,029  13,029  13,029  13,029  13,029 
Overall R2 0.277  0.277  0.277  0.277  0.277  0.277  0.277 

D. Working indoors 
1

0

1 k

t ii
API

k



  -0.003  -0.016***  -0.031***  -0.040***  -0.032***  -0.036**  -0.055** 

 (0.002)  (0.005)  (0.008)  (0.012)  (0.011)  (0.015)  (0.022) 
Observations 18,930  18,930  18,930  18,930  18,930  18,930  18,930 
Overall R2 0.328  0.328  0.328  0.328  0.328  0.328  0.328 

Note: See the notes to Table 2.
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Table A6: Nonlinear effects of air pollution on verbal test scores 
Dependent 
variable 

A: 1-day mean  B: 7-day mean  C: 30-day mean 

verbal scores all male female  all male female  all male female 
 (1) (2) (3)  (4) (5) (6)  (7) (8) (9) 
0-50 (reference) -- -- --  -- -- --  -- -- -- 
            
51–100 0.112 -0.106 0.327  -0.327 -0.592 -0.054  -0.664 -1.162* -0.166 
 (0.286) (0.336) (0.293)  (0.382) (0.481) (0.368)  (0.481) (0.595) (0.434) 
101–150 -0.078 -0.215 0.027  -0.861* -1.108* -0.622  -1.684** -2.160** -1.234** 
 (0.329) (0.404) (0.366)  (0.495) (0.614) (0.499)  (0.687) (0.849) (0.605) 
151–200 -0.121 0.074 -0.286  -1.543 -2.068 -1.016  -6.901*** -8.421*** -5.176*** 
 (0.542) (0.825) (0.669)  (0.941) (1.278) (1.164)  (1.009) (1.283) (0.909) 
201–300 -1.241 -3.878** 0.700  -3.108 -3.908 -2.248  -- -- -- 
 (1.557) (1.569) (1.380)  (1.878) (3.016) (1.518)     
301–500 -0.715 -2.840** 0.585  -- -- --  -- -- -- 
 (1.145) (1.247) (1.278)         
Observations 31,959 15,318 16,641  31,959 15,318 16,641  31,959 15,318 16,641 
Overall R2 0.453 0.453 0.453  0.446 0.446 0.446  0.452 0.452 0.452 
Dependent 
variable 

D: 90-day mean  E: 1-year mean  F: 2-year mean 

verbal scores all male female  all male female  all male female 
 (1) (2) (3)  (4) (5) (6)  (7) (8) (9) 
0-50 (reference) -- -- --  -- -- --  -- -- -- 
            
51–75 -1.352** -1.878** -0.828  -1.694* -2.695** -0.750  -0.931 -1.851* 0.032 
 (0.656) (0.737) (0.661)  (1.000) (1.220) (0.789)  (0.993) (1.102) (0.920) 
76–100 -1.821** -2.309** -1.329*  -2.025* -3.100** -0.996  -1.584 -2.478** -0.615 
 (0.789) (0.897) (0.780)  (1.076) (1.324) (0.846)  (1.048) (1.181) (0.969) 
101–200 -2.197** -2.806*** -1.625*  -2.934** -4.281*** -1.667*  -3.033*** -4.186*** -1.840* 
 (0.933) (1.062) (0.911)  (1.183) (1.485) (0.930)  (1.123) (1.259) (1.059) 
Observations 31,959 15,318 16,641  31,959 15,318 16,641  31,959 15,318 16,641 
Overall R2 0.446 0.446 0.446  0.447 0.447 0.447  0.431 0.431 0.431 

Note: See the notes to Table 2. 
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Table A7: Contemporaneous and cumulative exposure 
A. Verbal test scores 

Dependent variable Contemporaneous  Cumulative 
verbal scores 1-day  7-day  30-day  90-day  1-year  2-year  3-year 
 (1)  (2)  (3)  (4)  (5)  (6)  (7) 

tAPI -0.004*  -0.001  -0.000  -0.002  -0.002  -0.003  -0.003 

 (0.002)  (0.002)  (0.002)  (0.002)  (0.002)  (0.002)  (0.002) 

1

0

1 k

t ii
API

k



    -0.013**  -0.035***  -0.043***  -0.042***  -0.055***  -0.083*** 

   (0.005)  (0.008)  (0.011)  (0.012)  (0.015)  (0.020) 
              
Observations 31,959  31,959  31,959  31,959  31,959  31,959  31,959 
Overall R2 0.284  0.284  0.284  0.284  0.284  0.284  0.284 

B. Math test scores 
Dependent variable Contemporaneous  Cumulative 
math scores 1-day  7-day  30-day  90-day  1-year  2-year  3-year 

 (1)  (2)  (3)  (4)  (5)  (6)  (7) 

tAPI  -0.004*  -0.001  -0.000  -0.002  -0.002  -0.003  -0.003 

 (0.002)  (0.002)  (0.002)  (0.002)  (0.002)  (0.002)  (0.002) 
1

0

1 k

t ii
API

k



    -0.003  -0.004*  -0.007**  -0.006*  -0.009*  -0.015** 

   (0.002)  (0.002)  (0.003)  (0.003)  (0.004)  (0.006) 
              
Observations 31,959  31,959  31,959  31,959  31,959  31,959  31,959 
Overall R2 0.680  0.680  0.680  0.680  0.680  0.680  0.680 

Note: See the notes to Table 2. 
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Appendix B: Scientific Background and Potential Mechanisms 

Broadly speaking, according to the existing medical literature, air pollution may affect 

cognition through physiological and psychological pathways. 

A few of these physiological pathways have been documented in the literature (Block 

and Calderón-Garcidueñas 2009). First, multiple pollutants (or toxic compounds bonded to 

the pollutants) may directly affect brain chemistry. For example, ozone in the air can react 

with body molecules to create toxins, causing asthma and respiratory problems (Sanders 

2012).20 Particulate matter (PM), especially fine particles, can carry toxins through small 

passageways and directly enter into the brain. There is evidence that suggests that exposure 

to high PM concentrations may compromise cognitive performance even for people 

working indoors (Braniš, Řezáčová, and Domasová 2005).21 

Second, people breathing polluted air are more likely to be subject to oxygen 

deficiency, which in turn impairs their cognitive abilities (Amitai et al. 1998; Kampa and 

Castanas 2007). Carbon monoxide (CO), one important element of air pollution, prevents 

the body from releasing adequate oxygen to vital organs, in particular to the brain, which 

consume a large fraction of total oxygen intake. Third, air pollution could also damage the 

immune system, hinder neurological development, and impair neuron behavior, all of 

which contributeto long-term memory formation (Perera et al. 2009). Fourth, long-term 

exposure to pollution leads to the growth of white-matter lesions, potentially inhibiting 

cognition (Calderón-Garcidueñas et al. 2008). Further, exposure to highly concentration 

air pollution can be linked to markers of neuroinflammation and neuropathology that are 

associated with neurodegenerative conditions, such as Alzheimer’s disease (Calderón-

Garcidueñas et al. 2004; Levesque et al. 2011). 

In addition to physiological pathways, air pollution could also disrupt cognitive 

                                                              
20  Ozone is formed through a chemical reaction between nitrogen oxides, sunlight, and various gaseous 
pollutants. 
21  PM is generated by power plants, factories, vehicles, dust, pollen and forest fires. 
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functioning through some psychological pathways. For example, high concentrations of 

CO and nitrogen dioxide (NO2) are significantly associated with headache, eye irritation, 

and respiratory problems (Nattero and Enrico 1996).22 High levels of ozone and sulfur 

dioxide (SO2) have also been found to cause psychiatric distress (Rotton and Frey 1984).23 

Exposure to high concentrations of CO, NO2, SO2, ozone, and PM may also increase the 

risk of depression (Szyszkowicz 2007). 

Our central nervous system has two important tissues: gray matter and white matter. 

Gray matter represents information processing centers, and white matter represents the 

networking of – or connections between – these processing centers. Mathematics abilities, 

which require more local processing, mainly depend on gray matter. While language skills, 

which require integrating and assimilating information from distributed gray-matter 

regions in the brain, mainly rely on white matter.24 

A brain scanning study conducted by Haier et al. (2005) reveals that men have 

approximately 6.5 times the amount of gray matter activated during general intelligence 

tests than women do, but women have nearly 10 times the amount of white matter activated 

during general intelligence tests than men do. Please see Figure B1 for a front view of grey 

and white matter activation during IQ tests. This finding may help explain why men tend 

to excel in math tests, while women tend to excel in verbal tests. 

Figure B1: Front view of grey and white matter activation during IQ tests 

 
Source: Haier et al. (2005). 

                                                              
22  NO2 and CO are emitted by coal-burning power plants and the burning of fossil fuels. 
23  SO2 is mainly emitted by coal-burning power plants. 
24 University of California, Irvine. "Intelligence in Men and Women Is a Gray and White Matter." Science 
Daily. www.sciencedaily.com/releases/2005/01/050121100142.htm [accessed January 25, 2017]. 
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A large body of literature has proven that air pollution can reduce the density of white 

matter in the brain (Calderón-Garcidueñas et al. 2008, 2011; Wilker et al. 2015), which 

may directly explain why air pollution appears to have a larger effect on verbal test than 

on math test scores. Besides, since men have a much smaller amount of white matter 

activated during intelligence tests, their cognitive performance, especially in the verbal 

domain, tends to be more affected by exposure to air pollution. 
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