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Abstract:

A preliminary step in the measurement of inequality regards the choice of the index to use.
Several indices exist, each one responding to a built-in aversion to inequality, and the choice
affects conclusions. But how much? And in which way? We test the ranking correlation
between inequality indices, by drawing a distinction between cases involving non-intersecting
and intersecting Lorenz curves.
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1. Introduction

A vast literature has flourished over the last thirty years in order to present more refined and

complete indices of inequality, but a general consensus on the best index to use has not been

reached. In this paper, the focus is on a particular aspect of this problem, the robustness of

inequality comparisons to the use of alternative indices.

In this section we introduce the issue under investigation by briefly discussing the problem of

the index choice1 while in the next section we attempt to evaluate the impact of this issue in

empirical studies: how much do inequality comparisons rely on the indices that are used?

How much correlation is there between inequality indices? How important is the problem of

Lorenz intersection when real world distributions are investigated? Finally, Section 3

concludes.

Income distributions are usually represented through Lorenz curves L(p) which plot the

relationship between the cumulative percentage of recipient units p, arranged in ascending

order of income, and the cumulative percentage of income they earn. It is well known that a

first comparison between distributions is possible through the Lorenz Dominance Criterion

(LDC):

Given two distributions X and Y, if L(p)X≥L(p)Y for each 0≤p≤1, and L(p)X>L(p)Y for

some p, then distribution X is more equal than distribution Y.

This statement can be justified in two different ways, through a positive approach, which builds

upon a series of axioms implicitly assumed when the LDC is applied, and through a normative

approach, which starts from the representation of social values through a Social Welfare

Function (SWF).2

Whatever is the approach, the core of the problem lies in the incompletness of LDC to judge

intersecting Lorenz curves, and therefore in the need to use sinthetic indices to complete the

ranking. It seems reasonable to evaluate inequality indices on the basis of their ability to order

distributions as the LDC does when Lorenz curves do not intersect. Lorenz consistent (LC)

indices are the class of General Entropy Measures (and the indices ordinally equivalent to them,

as the Coefficient of variation, Herfindal and Theil), the Gini coefficient, the Kakwani index

and the Atkinson index.

If Lorenz curves did not intersect, LDC would be a complete criterion and, if one were only

interested in the ordering of distributions, any Lorenz Consistent index would provide

sufficient information. Unfortunately, intersection can occur and, unfortunately, LC indices do

                                           
1 We refer to the existing literature for a complete description of the indices and approaches used in inequality studies
(for example Cowell 1995, Sen 1973, Kakwani 1980).
2 For a comprehensive analysis of the axioms underlying Lorenz consistency and of the properties of SWFs., see for
example Cowell (1995)  and Fields and Fei (1978).
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not necessarily provide the same information: the ranking of distributions depends upon the

index chosen. In other words, any distributive change that implies an intersection of Lorenz

curves might lead to an increase in inequality as measured by one LC index and to a decrease

in inequality as measured by another LC index.  To understand this point, it might be useful to

think that a distribution can be transformed into another one by a sequence of transfers;

indices are not ordinally equivalent because of the different way they weight transfers. Clearly,

two interscting Lorenz curves can be transformed one into each other by, for sake of

simplicity, two transfers: one progressive transfer at the bottom of the distribution and one

regressive transfer at the top, the first one implying more equality, the second one more

inequality.  If an index gives more emphasis at the bottom of the distribution, the equalising

effect appears stronger than the disequalising effect and less inequality is measured. The

opposite happens if the index weights more heavily the transfer at the top of the distribution.

In other words, two or more LC indices, depending on their own sensitivity to transfers, can

capture in opposite ways the same change in the distribution of income.

2. Correlation between inequality indices using LIS data

As the previous overview has recalled, alternative indices can order distributions differently.

However, what is the real extent of the disagreement between indices? How important is the

problem of Lorenz crossing? How much correlation is there between inequality indices?

The issue of correlation between indices can be addressed in two different ways: As

Champernowne (1974) did, a family of theoretical distributions (lognormal distributions with

different values of parameters α, β, γ, representing respectively inequality among high, middle

and low incomes) can be derived. He therefore studies a series of distributions which differ for

variance, skewness and Kurtosis, he computes inequality according to some well-known

indices of inequality and computes the ranking correlation between them. These coefficients of

correlation are presented in the top-right part of Table 1. The correlation is very high among all

the LC indices. The less correlated is the coefficient of variation (CV), particularly when

correlated to Atkinson with ε=1 (A(1.0) in Table 1 - coefficient of 0.802).3 Yet, Champernowne

himself underlines that, by using real data, the correlation is likely to be lower because real

distributions are much closer one to each other than theoretical ones, thus implying that

Lorenz intersection is more likely to appear in real world.

                                           
3 The Spearman coefficient of correlation, used to test ranking correlation, is computed using, instead of inequality
values, values representing the position of each distribution into the ranking (1, 2, ...N).
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One could extend the study of Champernowne by testing different functional forms of income

distribution, i.e., choosing the functional form that best fits the data. However, in this paper,

an alternative empirical approach is taken. Using the Luxembourg Income Study (LIS)

database, a consistent and comprehensive source of inequality data, the correlation between

indices has been calculated4. Inequality is computed on equivalent income Y, where total

household disposable income is adjusted with respect to household size according to the

formula:

Y=DPI/S0.5          (1)

Where DPI is total disposable income in the household, S is household size and 0.5 is the scale

relativity with respect to size. The sample data are weighted by the number of individuals, not

by the number of households, leading to the equivalent income distribution of the population

of individuals.

The correlation between indices is represented in the bottom-left part of Table 1. The

correlation coefficients are slightly lower than the theoretical values (from Champernowne,

1974) presented in the top-right part of the same table: as suggested, this could be partially due

to the fact that real distributions are much closer one to each other than theoretical

distributions. Therefore, Lorenz intersection (and contrasting rankings) are more likely to

happen with real data.

The correlation is particularly low with CV (coefficient of variation) and with A2.5 (Atkinson,

with ε=2.5) that definitely show the most peculiar behaviour among all LC indices. These two

indices are ordinally equivalent to indices of the GEM family in which extreme values of the

parameter θ  (2 for CV and -1.5 for A2.5) are applied, thus confirming that extreme sensitivities

to transfers strongly affect the overall measure of inequality and the ranking of distributions.

In contrast, the most common measures (Gini - G, Theil - T, Atkinson with ε=0.5 - A0.5) present

very high correlation coefficients: for example, G has a correlation of 0.955 with A0.5 and of

0.979 with T. Also Kakwani (K) and Herfindal (H) indices have correlation coefficients very

close to 1 (K has a correlation of 0.978 with A0.5 and 0.991 with G). These findings do not mean

that there exists a core of indices that are more precise in measuring inequality; on the

contrary, in these indices, differences in their sensitivities to transfers are not as important

such to determine relevant changes in the ranking.

An interesting implication of this exercise, however, refers to the relationship between LC and

non-LC indices. This separation is theoretically important, since non-LC measures of inequality

                                           
4 At present, microdata of more than 70 datasets representing 25 countries are present in LIS, available and comparable
to a very good degree. Technical information is available at the LIS web page http://lissy.ceps.lu/.
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are often rejected on the ground that they do not satisfy the basic axioms underlying the LDC5.

However, from a ranking perspective, we find that these theoretical setbacks are relatively

unimportant and that the ranking of Lorenz inconsistent indices is not qualitatively different

from the ranking of LC indices6. For example, the Spearman coefficient between PC40 and G is

0.973, between the difference of the income shares of the top 20% and the bottom 20% of the

population (E) and H is 0.993 and between T and  is 0.978. Only MM (the relative difference

between the mean and the median income, often used in growth and inequality studies) has

lower correlation (often below 0.8) with the other indices.

Before speculating on such findings, it might be worthy to separate cases of Lorenz dominance

and cases of Lorenz intersection, in order to shed further light on the relationship between

alternative indices.

2.1 Correlation when Lorenz curves intersect

All the possible comparisons between Lorenz curves are herein considered. From the sample

of 69 distributions of the Luxembourg Income Study database, 2346 combinations between

couples of Lorenz curves are attainable. These couples are divided into two groups: the

couples of intersecting curves (1512) and the couples of not intersecting curves (834).7 This

disaggregation partially changes the overall picture described in the previous section. First,

Lorenz intersection is quite likely to happen (35.55% of the total comparisons) thus

emphasising the importance of the issue under consideration. This percentage is higher than a

previous study (Bishop et al., 1991) in which 9 distributions and 36 comparisons were

considered. In their paper, Bishop et al. found intersection in only 25% of the cases, when

drawing Lorenz curves with 10 points corresponding to deciles of the population. Since the

frequency of intersections also depends upon the number of points used to draw the Lorenz

curves (Buhmann et al. (1988), find intersections in 80% of the cases when Lorenz curves are

built using 100 points), we have replicated the disaggregation of our sample by using 10 points

only. However, also in this case we find intersections in 31% of the combinations. We keep

analysing Lorenz curves built using 20 points in the difficult exercise to balance the risk of

giving up information (if we reduce the number of points) and the risk of emphasising the

importance of intersection among extreme incomes (the reliability of these incomes is arguable,

as often they are the result of procedures of top and bottom recoding).

                                           
5 For example, the share of income accruing to the bottom 40% of the population, (PC40) is indifferent to the distribution
of income (and consequently to transfers) among the top 60%.
6 Throughout the paper we keep considering Lorenz consistency in the strong sense. In fact, some of the Lorenz
inconsistent indices are in fact weakly Lorenz consistent.
7 20 points have been used to derive the Lorenz curve, each representing the cumulative income of successive 5% of the
population. The sample of 69 distribution is comprehensive of both cross-country (25 countries are analysed) and time-
series comparisons (up to 6 observations for the same country).
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Second, in the case of non intersection, all LC indices agree (as expected) but also Lorenz

inconsistent indices as E and PC40 have the same ordering of LC indices (in fact they are

consistent in the weak sense): in only 5 cases, PC40 ranks the distribution whose Lorenz curve

lies above, as unequal as the second one. These are the cases in which the two distributions are

equal in the bottom 40% (the value of PC40 is the same) but one curve lies above the other one

in the following 60% (PC40 fails to represent this difference). There are not such cases for E:

Range orders distributions exactly as LC indices do. Other non-LC indices (inconsistent also in

the weak sense), as the standard deviation of logarithms and MM, present Lorenz

inconsistency in 19.7% and 12% of the comparisons respectively.

Third, a much higher disagreement appears when only cases of Lorenz intersection are

analysed. In this occurrence, ranking correlation between indices is much lower (Table 2).

However, for this type of analysis, a more powerful indicator is provided in Table 3: the

percentage of agreement between indices in ordering distributions. For each inequality index

we have computed the direction of inequality change in each one of the 834 couples of

intersecting distributions. Then, we have computed the number of cases in which indices agree

on the direction of the change and finally, we have expressed the frequency of this agreement

in percentage terms.

From Table 3 it can be stressed that, when Lorenz curves intersect, the choice of the index used

to measure inequality appears much more relevant than what inferred in the previous section.

The most popular indices show a percentage of agreement around 80% (e.g., 84.77% between T

and G; 82.61% between T and A0.5; 89.76% between H and G, 78.54% between A0.5 and G) but

this percentage is much lower for other couples of indices: for example, between CV and A2.5

there is only 40.05% of agreement. Our conclusions are therefore not in line with Bishop et al.

(1991), who under-evaluated the frequency of Lorenz intersection and the rate of disagreement

between indices, and with Atkinson (1970) who, in contrast, over-evaluated Lorenz

intersections. Their results were probably driven by the small size of their sample (9 countries

in Bishop et al. and 12 countries in Atkinson).

Fourth, as in the overall analysis previously carried out, there is not a qualitative difference

between the behaviour of LC and non-LC indices. For example, T is more likely to agree with a

non-LC index as E (83.45%) than with A0.5 (82.61%). Moreover, G, T and A0.5 are more likely

to agree with non-LC indices as E and PC40 than with extreme LC indices as CV and A2.5.

Fifth, such an investigation highlights the links between inequality and relative poverty.

Measures of relative poverty8 are often criticised on the grounds that they are closer to the

concept of inequality rather than poverty. Running a test of ranking correlation in our sample,

                                           
8 Measures in which the poverty line is defined as a certain percentage of the mean or the median income, contrary to
measures of absolute poverty in which the poverty line is defined with respect to the cost of a certain bundle of goods.
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we find that relative poverty measures are highly correlated to inequality measures (Table 4),

particularly for measures of poverty built upon the line of the 50% of the mean income. It is

therefore clear that inequality is positively correlated to relative poverty, that is, unequal

countries also have high relative poverty rates. Whether this high correlation is a symptom of

an economic relationship between inequality and poverty or rather an indicator of bad

measurement of poverty is still a matter of debate and fuel for further research.

3. Some conclusions

While on the theoretical side different rankings of Lorenz intersecting distributions coexist, the

lack of a unique ordering is also a relevant issue empirically. Whether it is important enough to

care is a matter of debate. A test on LIS data shows that, when curves intersect, there is a

relatively high percentage of cases in which the indices are not ordinally equivalent. There is

not any qualitative difference between Lorenz consistent and Lorenz inconsistent indices in the

way they rank distributions. Empirically, the sensitivity to transfers implicitly assumed by

indices is a more relevant factor in determining the direction of the change in inequality than

the theoretical distinction between their Lorenz consistency or otherwise.

To conclude, an empirical suggestion of this study would be to measure inequality using

several indices, with different sensitivities to transfers. This would reveal what kind of

inequality is prevalent in a country and how it changes. Table 5 shows how a composite use of

different indices enlightens different aspects of inequality. Indices for 23 selected countries

from LIS in the period 1986-1992 are computed, together with the relative ranking of each

country. Belgium, Denmark and Hungary show a relatively high level of inequality among low

incomes (their ranking for A1.0 are relatively high). Czech Republic, Taiwan and Italy have

inequality more concentrated among high incomes (the ranking for CV is higher than the

ranking for other indices). The Netherlands and France have higher rankings for both A1.0 and

CV, thus implying that inequality is concentrated in both the tails of the distribution.

Therefore, important characteristics of each distribution can be highlighted by studying

inequality with indices that sketch alternative aversions to inequality.
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Table 1 - Ranking correlation: Champernowne results compared to LIS database

A0.5 A1.0 A2.5 CV Gini Herfindal Kakwani MM PC40 Range Theil Logstdev

A0.5 1 0.94 0.95 0.993 0.982 0.946
A1.0 0.9157 1 0.802 0.901 0.866 0.998
A2.5 0.6892 0.5246 1
CV 0.845 0.6741 0.9533 1 0.974 0.985 0.811
Gini 0.9554 0.8008 0.722 0.8719 1 0.966 0.908
Herfindal 0.9447 0.7718 0.7731 0.9124 0.9879 1
Kakwani 0.9781 0.8358 0.7066 0.8592 0.9909 0.9787 1
MM 0.6866 0.4609 0.7717 0.8452 0.7766 0.8433 0.7404 1
PC40 0.9406 0.812 0.6244 0.7922 0.973 0.9386 0.975 0.6742 1
Range 0.9442 0.7756 0.736 0.8846 0.9954 0.9933 0.9856 0.8087 0.9668 1
Theil 0.9741 0.8302 0.7868 0.9217 0.9791 0.9862 0.9852 0.782 0.939 0.9778 1 0.873
Logstdev 0.618 0.8552 0.2343 0.3245 0.4333 0.3951 0.4877 0.0861 0.4603 0.3958 0.4813 1

Notes: Champernowne coefficients in the top-right side of the table. Empirical coefficients using LIS database in the bottom-left side. The Spearman coefficient
of ranking correlation is computed throughout the paper. A0.5, A1.0 and A2.5

�DUH�WKH�$WNLQVRQ�LQGLFHV�ZLWK�WKH�SDUDPHWHU���UHVSHFWLYHO\�HTXDO�WR����������DQG�����
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Table 2 - Ranking correlation in the cases where Lorenz curves intersect.

A0.5 A1.0 A2.5 CV Gini Herfindal Kakwani PC40 Range Theil Logstde
v

A0.5 1
A1.0 0.4863 1
A2.5 0.2186 0.1243 1
C 0.3345 0.167 0.826 1

Gini 0.6297 0.2615 0.1035 0.2571 1
Herfindal 0.6001 0.2455 0.216 0.3808 0.7842 1
Kakwani 0.7113 0.3002 0.1344 0.2834 0.8645 0.7709 1

PC40 0.49 0.1793 0.1276 0.0144 0.6749 0.4949 0.6715 1
Range 0.5968 0.2393 0.0856 0.2469 0.8929 0.8302 0.8114 0.6466 1
Theil 0.6969 0.3095 0.3747 0.5214 0.6847 0.7906 0.7533 0.4482 0.6599 1

Logstdev 0.1762 0.5579 0.0718 0.0604 -0.005 0.0383 0.0297 -0.1138 -0.0192 0.0823 1

Notes: The Spearman coefficient of correlation is computed. A0.5, A1.0 and A2.5
�DUH�WKH�$WNLQVRQ�LQGLFHV�ZLWK�WKH�SDUDPHWHU��

respectively equal to 0.5, 1.0 and 2.5.
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Table 3 - Percentage of agreement between indices where Lorenz curves intersect

A0.5 A1.0 A2.5 CV Gini Herfindal Kakwani MM PC 40 Range Theil Logstdev

A0.5 1
A1.0 73.86 1 x
A2.5 54.39 54.39 1
C 60.01 40.75 93.73 1

Gini 78.54 53.96 60.37 66.51 1
Herfindal 75.37 49.57 67.44 73.8 89.76 1
Kakwani 83.9 58.54 58.66 64.94 93.05 88.05 1

MM 55.63 33.25 78.53 79.45 69.74 77.09 65.58 1
PC 40 73.74 54.79 47.44 53.33 83.69 75.12 84.15 60.73 1
Range 75.66 50.24 61.71 67.84 94.84 92.32 90.12 72.91 82.49 1
Theil 82.61 57.43 69.88 76.18 84.77 89.51 87.8 69.11 73.14 83.45 1

Logstdev 70.23 86.05 31.71 32.84 41.82 39.11 46.49 25.65 43.05 38.01 46.62 1
Notes: A0.5, A1.0 and A2.5

�DUH�WKH�$WNLQVRQ�LQGLFHV�ZLWK�WKH�SDUDPHWHU���UHVSHFWLYHO\�HTXDO�WR����������DQG�����
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Table 4 - Ranking correlation between inequality and relative poverty indices

A0.5 Gap40 Gap50 Head40 Head50 Gini Sen40 Sen50 Theil

A0.5 1
Gap40 .7262 1
Gap50 .8265 .9126 1

Head40 .7440 .8711 .9044 1
Head50 .7646 .7363 .8781 .9245 1

Gini .9554 .6360 .7665 .7745 .8333 1
Sen40 .7281 .9980 .9159 .8722 .7446 .6402 1
Sen50 .8257 .9168 .9981 .8944 .8757 .7646 .9209 1
Theil .9741 .6388 .7550 .7312 .7793 .9791 .6421 .7533 1

Notes: Gap40 (Gap50) = ( )z y

q z
ii

−∑  where z is the 40% (50%) of the mean income, yi is the income of the poor and

q is the number of the poor.
Head40 (Head50) = % of units below the 40% (50%) of the mean income.
Sen40 (Sen50) = ( )[ ]H e a d G a p G a p G p+ −1 where Head is Head40 (Head50) above defined, Gap is Gap40 (Gap50)

above defined and Gp is the Gini coefficient among the poor.
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Table 5 - Inequality indices and their rankings in selected LIS countries
Country A1.0 A0.5 Theil Herfind. CV Gini kakwani MM Range PC40

SV92 0.060 1 0.031 1 0.065 1 0.112 1 0.403 1 0.189 1 0.033 1 0.060 4 0.290 1 28.0 1
CZ92 0.072 2 0.038 2 0.083 2 0.115 2 0.482 7 0.208 2 0.040 2 0.079 8 0.530 2 27.2 2
FI91 0.089 4 0.042 3 0.085 3 0.116 3 0.433 4 0.223 3 0.046 3 0.058 3 0.690 3 25.7 3
OS87 0.084 3 0.042 3 0.087 4 0.117 4 0.432 3 0.227 4 0.049 4 0.062 6 0.740 4 25.3 4
BE92 0.137 9 0.049 7 0.090 5 0.117 4 0.430 2 0.230 5 0.049 4 0.060 4 0.780 6 25.0 7
LX85 0.101 5 0.046 5 0.092 6 0.118 7 0.449 5 0.238 8 0.051 8 0.084 10 0.920 9 24.8 8
SW92 0.116 8 0.048 6 0.093 7 0.117 4 0.449 5 0.230 5 0.050 6 0.054 2 0.760 5 25.2 5
NW91 0.114 7 0.049 7 0.100 8 0.118 7 0.498 8 0.233 7 0.050 6 0.062 6 0.810 7 25.2 5
DK92 0.161 15 0.056 10 0.110 9 0.118 7 0.549 9 0.240 9 0.054 9 0.039 1 0.880 8 24.3 10
GE89 0.112 6 0.055 9 0.114 10 0.121 10 0.554 10 0.249 10 0.057 10 0.083 9 1.030 10 24.4 9
CN91 0.155 13 0.069 11 0.138 11 0.126 12 0.566 11 0.285 12 0.073 12 0.097 11 1.470 12 21.8 14
NL91 0.211 19 0.073 13 0.145 12 0.125 11 0.652 18 0.272 11 0.068 11 0.099 12 1.290 11 23.1 11
PL92 0.141 10 0.070 12 0.146 13 0.129 13 0.605 12 0.291 14 0.076 13 0.128 17 1.570 15 22.0 13
HU91 0.214 21 0.077 16 0.154 14 0.129 13 0.625 14 0.290 13 0.076 13 0.111 14 1.530 13 22.1 12
IS92 0.144 12 0.075 14 0.157 15 0.131 17 0.626 15 0.306 17 0.082 17 0.148 21 1.770 18 20.8 18
AS89 0.174 16 0.079 17 0.158 16 0.130 16 0.607 13 0.306 17 0.083 18 0.118 15 1.740 17 20.5 20
FB89 0.259 23 0.082 20 0.158 16 0.129 13 0.640 17 0.293 15 0.079 15 0.107 13 1.560 14 21.8 14
RC91 0.142 11 0.075 14 0.162 18 0.131 17 0.737 22 0.302 16 0.081 16 0.138 19 1.730 16 21.1 16
SP90 0.174 16 0.080 18 0.168 19 0.132 19 0.692 19 0.308 19 0.084 19 0.137 18 1.790 19 20.9 17
IT86 0.155 13 0.080 18 0.173 20 0.133 20 0.729 21 0.310 20 0.085 20 0.140 20 1.810 20 20.7 19
US91 0.217 22 0.096 22 0.188 21 0.137 21 0.638 16 0.337 22 0.101 22 0.121 16 2.140 22 18.3 23
IR87 0.213 20 0.094 21 0.193 22 0.138 22 0.716 20 0.330 21 0.096 21 0.161 23 2.070 21 19.6 21

UK91 0.204 18 0.099 23 0.214 23 0.140 23 0.871 23 0.341 23 0.101 22 0.157 22 2.210 23 18.8 22

Notes: SV92 = Slovakia, 1992; CZ92 = Czech Republic, 1992; FI91 - Finland, 1991; OS87 = Austria, 1987; BE92 = Belgium, 1992; LX85 = Luxembourg, 1985; SW92
= Sweden, 1992; NW91 = Norway, 1991; DK92 = Denmark, 1992; GE89 = Germany (Fed. Republic), 1989; CN91 = Canada, 1991; NL91 = The Netherlands, 1991;
PL92 = Poland, 1992; HU91 = Hungary, 1991; IS92 = Israel, 1992; AS89 = Australia, 1989; FB89 = France, 1989; RC91 = Taiwan, 1991; SP90  =Spain, 1990; IT86 =
Italy, 1986; US91 = United States, 1991; IR87 = Ireland, 1987; UK91 = United Kingdom, 1991.


