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ABSTRACT 

In this paper we construct a set of human capital indexes 

for the states of the United States for each Census year starting 

in 1940. In order to do so, we propose a new methodology for the 

construction of index numbers in panel data sets. our method is 

based on an optimal approach by which we choose the "best" set 

index numbers by minimizing the expected estimation error subject 

to some search constraints. 

Some of the empirical findings are that the stock of human 

capital in the United States grew twice as rapidly as the average 

years of schooling and that human capital inequality across 

states went up during the 1980s (while the dispersion of 

schooling actually fell). We conclude that using the average 

years of schooling for the empirical study of existing growth 

models may be misleading. 

KEY WORDS: Human Capital, Index Numbers, Divisia Index, 
Multilateral Comparisons, Traveling Salesman Problem 



Introduction 

The recent growth literature has emphasized the importance of education and human capital in the process of 

economic growth and development Following Lucas [1988], a number of authors have constructed multisectoral growth 

models to study the dynamic behavior of the economy when agents face the decision to invest in their own bodies as well 

as in physical assets (see Mulligan and Sala-i-Martin [1993] for a general model of this sort). 

The behavior of these models cannot be estimated and tested empirically until good measures of the stock of 

human capital become available. This paper proposes a new methodology for the construction of human capital stocks 

as well as a set of estimates of such stocks for the States of the United States for each census year starting in 1940. We 

follow the theoretical literature by assuming, throughout the paper, that the production function of an economy can be 

expressed as a stable function of aggregate inputs. One of these inputs is what we call human capital, the input 

associated with the labor force. Because, on one hand, workers are heterogenous and have different productivities but, 

on the other hand, the theoretical models consider labor aggregates, the first stage of an empirical study must aggregate 

the heterogenous workers.1 We will maintain the assumption that there exists a stable aggregator function whose 

functional form is unknown, except that it is homogeneous of degree one. Our problem is to generate estimates of the 

stocks of human capital when the functional form of the true aggregator is unknown. 

The early empirical economists used school enrollment rates as a proxy for the stock of human capital (See, 

for example, Barro [1991].) Kiriakou [1992] attempts to estimate average years of schooling by using a benchmark 

year and the estimates of school enrollments. Barro and Lee [1993] compute educational attainment distributions for 

a large cross-section of countries for the period 1960-1990. These attainment distributions allow them to construct a 

measure of average years of schooling, which is then used in the literature as the best measure of human capital stocks. 

The average years of schooling is not necessarily a good measure of human capital for a variety of reasons. 

First, it assumes that workers of each education category are perfect substitutes for workers of all other categories. 

Second, it assumes that the productivity differentials among workers with different levels of education are proportional 

to their years of schooling. For example, it assumes that a worker with 16 years of schooling is 16 times as productive 

The existing literature on economic growth has used two very simple aggregators: the linear sum of all 
workers (that is, the aggregate employment or the aggregate labor force) and the weighted sum of all workers where 
the weights are the years of schooling (that is, the average years of schooling.) 
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as a worker with one year of schooling, regardless of their wage rate differentials. Third, the elasticity of substitution 

across workers of different groups is assumed to be constant always and everywhere. Fourth, one year of schooling is 

assumed to deliver the same increase in skill always and everywhere. In particular, it does so regardless of the field of 

study and the quality of the teachers and the education infrastructure. 

Jn a previous paper (Mulligan and Sala-i-Martin [1994]), we attempted to solve these problems by constructing 

a measure ofhwnan capital based on labor income. Our intuition was that the quality of a person would be related to 

the wage rate he receives in the marketplace. If the type of education a person received was very useful, the markets 

would reward him with a high wage. Similarly, if a person devoted himself to study a field which was not very useful 

from a production point of view (such as XVI century moral reasoning, or certain types of theoretical economics), then 

the productive human capital of that person would be low, and his wage rate would indicate so. 

The key point was that a worker's wage would also depend on the amount of other aggregate inputs available 

in the economy in which he works. For example, wages in 1940 were lower than in 1990,.not only because skills were 

lower, but also because the amount of physical capital and the level of technology were lower. In order to eliminate the 

effect of the aggregate variables from the individual's wage rate, we divided each person's wage rate by the wage rate 

of the zero-skill worker (who, by definition, has no skill). Therefore, our measure of human capital for an economy was 

the weighted sum of all workers, where the weights were the ratio of their wage to the wage of the zero-human-capital 

worker. This is equivalent to the aggregate wage bill divided by the wage of the zero-schooling worker. 

This measure, which we called Labor-Income-Based (LIB) measure of human capital, had the advantage of 

being consistent with variable elasticities of substitution across types of workers. Furthermore, it did not impose all 

workers with the same amount of education to have the same amount of skill (so if they had studied different things, their 

productivities were allowed to differ). It also allowed for changes in the relative productivities over time and across 

economies. 

The main problem with the LIB measure was that we had to assume that the zero-schooling worker (which we 

took as the unskilled worker) had the same amount of skill always and everywhere in order to be able to use him as a 

nwneraire. We also had to assume that this worker was a perfect substitute for all the others (although we allowed for 

any degree of substitutability among all the other types). To the extent that these assumptions do not hold in the data, 
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our measures will be biased (and some economists will argue strongly against these assumptions.) A second problem 

was that when the relative wages among workers changed for reasons other 1han technological shocks, then our measures 

would mtrealisticallyreflectmovements in the stock of human capital. In cases when these prices change substantially, 

our measure would tend to fluctuate unnecessarily. In this paper we propose a different measure of human capital based 

on the education attainment of the labor force. We think that it resolves the shortcomings of the previous one. 

Along with human capital estimates, in this paper we present a new methodology for the construction of index 

numbers that allow for cross-sectional as well as time-series comparisons. Hence, this paper represents a contribution 

to the index number literature. Unlike our predecessors, we propose an optimal index number in that we choose the 

index numbers that minimire a function of the expected error made when human capital indexes are compared across 

economies. As Diewert [1987] points out, the authors of the existing index number literature are unable to choose 

among the scores of functional forms proposed over the course of a century. The best they can do is to check whether 

a particular index number passes a number of desirable "tests" (for example, one may want to check that an index 

number is invariant to changes in scale, that it is monotonic and transitive, etc; see Diewert [1987] for an excellent 

exposition of which numbers satisfy which properties.) Two problems arise, however: which tests are appropriate? 

and, which number do we pick among the ones that pass the desirable tests? 

This paper presents a solution to the problem of choosing among index numbers by suggesting that the optimal 

index number is the one which minimizes an expected error criterion. We implement this idea by constructing optimal 

human capital indexes across the States of the United States for all Census years starting in 1940. Before we do so, in 

Section 1 we construct a human capital index by estimating the parameters of a translogarithmic aggregator. In Sections 

2 and 3 we describe Divisia Indexes over time and across economies. Section 4 describes the spaces of configurations 

over which we will search for the optimal index number. In Section 5 we propose an expected error or cost criterion. 

Theminiminrtionofthis criterion will deliver the optimal index numbers. Section 6 compares the costs of the various 

index number schemes. Section 7 describes the behavior of our favorite human capital indexes across states and over 

time. The final section concludes. We should mention that we actually construct all the index numbers we describe 

throughout the paper, even though we reject their validity. Some descriptive statistics for all of them are reported in the 

appendix. 
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(1) The Translog Aggregator: A Regression Approach. 

Let X be the vector of educational attainment numbers, X;,, (where X;,, is the fraction of category i workers in 

economy a)2 We asswne that the vector of inputs can be aggregated into a human capital number using the aggregator 

:fimction F[X]. 1he number H = F[x18, ... ,xNJ is what we call stock of human capital in economy A. As we mentioned 

in the introduction, our goal is to use an aggregator function F( ) to compute the stock of human capital in a panel of 

economies in a way which allows for both intertemporal and cross sectional comparisons. Although the functional 

form FO is unknown in general, in this section we assume that it is known to be translogarithmic: 

lnH = lnF(X) = a'(lnX) + ..!.c1nX)'~(lnX), 
2 (1) 

where His the vector of aggregate human capital numbers for M economies, H'=[H1, ... ,H~, P is a symmetric matrix 

of elasticities. For now, the functional form is assumed to be known - although its parameters a and p, are not. The 

assumption of linear homogeneity implied by the assumption of a translog F( ) requires that the columns of a must add 

up to I and the column sums of p must equal zero. Differentiating (1) with respect to (In x), we get the following 

relationship: 

v = a + ~ (lnx) (2) 

where v is the vector of income elasticities. Under the usual assumptions about perfect competition, these elasticities 

correspond to the share of labor income earned by the workers of category i. Since we have data on all of these shares 

as well as on the attainment distribution ([x18, ... ,xNJ) the parameters a and Pin Equation (2) could be estimated using 

available data. Once the parameters a and pin (2) were estimated, we could use (1) to estimate the level of human 

capital in each economy. 

2 In principle, there are an endless number of ways to categorize workers: years of schooling, type of 
schooling, occupation, industry, sex, age, and race are some possibilities. In later sections we categorize workers 
from United States Census State data by educational attainment and gender. 
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The translog production function is a second order Taylor approximation to any production function (see 

Diewert [1976].) Hence, the method just described is likely to work well when the range of inputs is close to the 

approximation point or the true production function is not too different from quadratic. However, when we estimate 

human capital stocks across a vast-range of economies over a long period of time (as it will be the case in the present 

paper where we will attempt to compute the stocks of human capital across 48 U.S. states from 1940 to 1990), it is 

unlikely that the we will always be "close" to the point around which we choose to approximate. A second argument 

against using this estimation approach is that there is no reason to believe that the aggregator function is quadratic (in 

the log space). Hence, the regression method for estimating translog aggregators is likely to generate inaccurate 

estimates of the levels of human capital. 

Even though we did not think that this estimation method would deliver good estimates of the stock of human 

capital, we estimated the system of equations in (2) for the states of the United States for the period 1940-1990. We 

used U.S. Census data on six educational attainment categories broken down by gender for each of the six decades and 

for the 48 contiguous states. The data are described in Appendix 2. A brief analysis of the results is reported in 

Appendix 1. 

The translog specification has strong predictions for the relationship between the production elasticities and 

the stocks of inputs: the relation is exactly linear as in (2) and the coefficients in~ are symmetric. Using the estimates 

for the States of the United States reported in Appendix 1, we tested the restrictions imposed by the translog specification 

and easily rejected them. Hence, we found that the translog function is not a very good description of the process which 

generates human capital data in the real world, at least in the United States for the aforementioned period. 

(2) Divisia Index Over Time 

In order to compute the rate of change of the aggregate stock of human capital between periods t and t+ 1 for 

a typical economy, the Divisia index approach suggests the following calculation (see Thornquist [1936] and Diewert 

[1976]) 
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V;,t = atogF 
a log x; x-x, 

(3) 

where V;,1 is the ith category period t share of labor income. Note that, by using the average share of the two periods, 

the Divisia index is the average of the Laspeyres index (which uses the shares at the beginning of the period, vi.I; see 

Laspeyres [1871]) and the Paasche index (which use the shares at the end of the period, V;,1+1; see Paasche [1874].) 

Because it makes bilateral comparisons, the Divisia index formula generates a series of estimates of the rates 

of change of the aggregate stock of human capital for each economy A If we normalize the initial stock to one, the time 

series of growth rates can be used to compute a time series oflevels of human capital. In other words, by establishing 

a series of bilateral comparisons between successive periods, we can generate a time series of growth rates and levels 

of human capital for each economy, which allows for multilateral comparisons of the stocks of human capital of one 

economy over time. We can, in principle, generate one of such series for each economy. Notice, however, that each 

of the time series will be normalized to one in the first period so the cross-sectional comparison among them will be 

meaningless. Thus, this method cannot be used to establish cross-sectional comparisons. 

One common justification for the use of the Laspeyres or Paasche indexes is that they are a first order 

approximation to the rate of change of any aggregator. The Divisia index estimate of the rate of change, because it is 

just the simple average of the Laspeyres and Paasche rate of change indices, is a second order approximation to the rate 

of change of any aggregator.3 A key difference between the Laspeyres, Paasche, or Divisia indexes and the regression 

method outlined in the previous section, is that the former approaches continuously update the approximation points. 

For example, when we compute the growth rate of the economy between 1940 and 1941 using the Laspeyres index, we 

make a Taylor approximation around 1940 but when we do the same for the period 1989-1990, we approximate around 

1989. It follows that the Laspeyres, Paasche, or Divisia approximations will be valid, even if we attempt to compute 

3 The reader can verify that Laspeyres and Paasche approximations are first order by showing that they are 
without error if and only if the true aggregator function is a Cobb-Douglas function. The Divisia approximation is 
said to be second order because it is without error if and only if the true aggregator function is a translog function. 
Of course, the Cobb-Douglas function is a first order linear approximation of the translog function in the log space 
(that is, the Cobb-Douglas is a particular case of (1) when P=O.) 
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human capital stocks over a vast range of economies, as long as any two successive economies are not "too far apart" 

so that the higher order terms of the Taylor expansion series can be safely ignored (the concept of distance between two 

economies will be made more precise in Section 5 .) 

(3) Cross-Sectional Divisia Index 

In order to compare the stocks of human capital of economies A and B, we could compute the rate of change 

of H between A and B (where A and B are different regions from a geographical point of view, rather than the same 

economy at two different points in time) by applying a cross-sectional version of (3): 

log Hs = E ( v,,A + v,,s) 1og X;,s ' v;,A = a log F 
HA 1-1 2 x1.A a log x1 x-xA 

(4) 

If we normalize the level of human capital of the ''first" economy to one, then the rate of change between the first and 

second economies generates the level for the second economy. The rate of change between the second and third delivers 

the level for the third economy and so on. Repeating this procedure for all the economies we can construct a full 

cross-section of levels of human capital. In other words, by applying bilateral cross-sectional comparisons between 

successive pairs of economies, we will arrive at a system of multilateral cross-sectional comparisons. 

The key question is: which economy is the first one? More generally, what's the order in which the successive 

growth rates should be computed? In a time series, it seems natural (almost unquestionable) to assume that 1941 should 

come after 1940 and before 1942. But what is the correct order of economies when we have a cross section? Perhaps 

more importantly, does the ordering matter?" It turns out that the actual ordering matters significantly (see Section ( 6).) 

Hence, close attention needs to be paid to the way the economies are ordered. 

4 Even though 1941 and 1940 are chronologically next to each other, it is not obvious that we want to treat 
them this way when we compute the growth rate of human capital between these two periods. We will argue that, 
in order for the Divisia index to be a good approximation to the true aggregator, the inputs of the two economies 
being compared must be "similar". It is not necessarily true the economy's inputs in two consecutive years are more 
similar. Therefore, the chronological order is not necessary the correct order (although it will tend to be correct when 
the components of the input vector change little over time.) 
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One way to solve the problem is to avoid ordering altogether. The trick is to pick a base economy in a given 

year and then calculate the rate of change of human capital between each economy and the base economy. By 

nonna1izing1he base economy's stock of human capital to one, this procedure generates a cross-section of measures of 

human capital which allows for multilateral comparisons. Kravis [1984] called this the star method because the base 

economy plays a starring role: each region is compared to it and it alone. 

If we want to compute a panel of human capital stocks (that is, an index number for each economy at each point 

in time), we could simply use the same methodology by neglecting the fact that different economies exist at different 

points in time. In other words, we could pick California in 1960 (CA60) as the base economy. We could then compute 

the rate of change between each of the 48 economies for each of the years and CA60. This would generate one human 

capital number for each state and year. We call this the superstar method because the base economy is not only the 

star for its own time period, but it is the star for all periods: all economies of all times are compared to it and to it alone. 5 

Of course, the problem with the star system is its lack of invariance to the choice of the base (star or superstar) 

economi. Different choices for the base economy will give rise to different indexes. Fisher [1922] recognized that the 

simplest way of achieving symmetry was to average base-specific indexes over all possible bases. We estimated a 

human capital index using this average star and average superstar methods. We report some comparative summary 

statistics in Appendix 1. Another possibility is to tty to find the optimal base economy. After defining optimality in 

Section 5, we will compute human capital indexes using optimal basis in Section 6. 

A second way to deal with the ordering problem is to choose what we call the optimal order. The key to the 

optimal order is to remember that the Divisia index can be thought of as a continuously updating second order 

approximation to any aggregator fimction F(X). We know that the error we make when we use a Taylor approximation 

5 Instead of using the superstar method, we could construct a panel data set of human capital numbers by 
computing the cross section of numbers for a base period using the star system (which allows for cross-sectional 
comparisons for that particular year), and then compute the time series for each economy. The problem with this 
is that there are a lot of possible ways of doing this. For example, in order to compare the stock of human capital 
in California and Illinois in 1990, we could compute a cross section of human capitals for 1940, and then the time 
series for California and Illinois, or we could compute the cross section for 1990, which would allow for a direct 
comparison, or we could compute the cross section for 1970, or 1950, or 1960, or 1980, and then the time series for 
California We estimated a variety of them and found the results to be very unreliable in that they were very sensitive 
to the exact choices of base years. 
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is small when we are close to the point around which we approximate. Therefore, in order to minimiz.e the error in the 

computation of our human capital index, we need to remain as close as possible to the point of approximation. But if 

we want to make sure that we do, we need to define a measure of distance between vectors of inputs. The optimal 

ordering will be the one that minimizes some :function of such a distance. According to this method, the economy which 

should be next to economy A is the one whose inputs (that is, whose vector of attainment numbers) are the closest to. 

those in economy A. The next two steps will be to define a measure of distance and a space over which we will 

minimi z.e such distance. 

Before we proceed, we would like to make an important point. The creation of a multilateral index of the sort 

proposed here suggests that the best way to compare the indexes for two economies (that is, the best way to make a 

bilateral comparison) is to use data on other economies. For example, when comparing the 1950 stocks of human capital 

in Oklahoma and Utah, it might be good to use information on economies who are "in between" these two states. In 

other words, although the comparison between Oklahoma and Utah could be done by direct application of the bilateral 

index formula in Eq ( 4), it might be better to compare Oklahoma with its "next" economy, and then compare this "next" 

economy with the next and so on tmtil we reach Utah. The intuition for this important result should by now be familiar: 

If the vector of educational attainments in Oklahoma and Utah are very different, then the error we make by a direct 

quadratic approximation might be very large. In fact, it might be much larger than the sum of errors of all the 

intermediate comparisons. 

( 4) The Choice of Space. 

0: The Unilink Space 

Define configuration as collection of bilateral links between pairs of economies. In the previous section, we 

suggest a few ways to link economies. One configuration is the one often used in the construction of time series indexes 

- a linear arrangement of economies. For example, the 1940 economy comes first, the 1940 economy is linked to the 

1941 economy, the 1941 economy is linked to the 1942 economy, etc. 

A single economy acts as the base economy (i.e. the economy to which all other economies are directly linked) 

in another configuration - the star system ofKravis [1984]. In both setups, a bilateral index formula such as Divisia 
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is used to compute the growth rate of the index across links. However, neither the linear arrangement nor the .Kravis 

star are the only conceivable ways to link economies. This section defines some possible arrangements. 

Since we want to come up with unique measures of human capital, we will only consider spaces (ie, sets of 

configurations) that link any two economies through a single possible route. 6 Define the set of all such configurations 

ofM economies to be the "M-noded uni/ink space." We use the notation O(M) to denote the M-noded uni/ink space. 

A uni/ink space, 0( 4), can be illustrated in an example. Figure la shows each of the elements of the unilink 

space: each of the four economies can be directly linked to as many as M-1 (three in this example) economies and all 

economies are linked (at least indirectly). However, for a configuration to be an element of the uni/ink space, there must 

be only one chain of bilateral comparisons between any two economies. In other words, the "route" linking any two 

economies must be unique. For example, the configuration displayed in Figure 1 b is not an element of the uni/ink space 

because economies A and C can be compared in two ways: (i) a bilateral comparison A and B together with a bilateral 

comparison B and C and (ii) a bilateral comparison A and D together with a bilateral comparison D and C. 

Although the uni/ink space rules out some configurations, there are still clearly many ways to arrange 

economies so that a system of multilateral comparisons can be constructed using the Divisia bilateral index. Our goal 

is to search in this very large space to find the optinlal configuration. 7 However, the space is so large that we need to 

economize on search effort by considering particular subspaces of the unilink space. 8 The remainder of this section 

therefore defines some subspaces. 

0 1: Geographical Traveling Salesman (GTS) 

The first subspace is what we call the geographic traveling salesman (GTS) as we will think of a salesman 

who has to go to each of the economies in a particular year. He can choose the ordering as well as the economy in 

6 Altemative]y, we could report a 288 by 288 matrix of bilateral comparisons and let the reader choose among 
the exceedingly large number of possible multilateral comparisons. 

7 Optimal is defined in section (5). 

8 With a few hWldred economies, as in our example, searches of the unilink space could take billions of years 
even with a very fast computer. Even the best computer algorithms need thousands of years. 
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which he starts his trip. His only constraint is that he has to stop in every economy once and only once. For every cross 

section, there are 48! possible configurations. 

Elements of the GTS space can differ in the way that economies are ordered within a cross-section. Another 

way that elements of the GTS space can differ is in the way that the different cross-sections are linked. For example, 

one configuration may always link period t Connecticut with period t+ 1 Alabama. Another one may link all six 

Mississippi economies in chronological order. An example of an element of the GTS space is depicted in Figure 2. 

When we implement our methodology using the GTS space, we will minimize a cost function by searching over 

elements or configurations of the GTS space. This computational problem is a variation of what mathematicians call 

the Traveling Salesman Problem. Mathematicians and computer scientists have been trying to find the solution to the 

Traveling Salesman Problem for years (see Press et al [1988] and Garey & Johnson [1979]). Although an exact solution 

has not been discovered, a number of computational methods have been found to yield close approximations (see 

Kirkpatrick et al [1984]). In this paper we use a version of the simulated annealing method reported in Press et al 

[1988]. For the 48 economies in any one of our example's cross-sections, the algorithm requires minutes of a Pentium's 

computer time to (approximately) minimiz:e a cost function over 0 1( 48) - as opposed to the thousands of years required 

to approximately minimize a cost function over the entire unilink space 0( 48). 

0 2: The lntertemporal Traveling Salesman (ITS) 

The GTS space allows 1he salesman to travels across all regions in one particular year, but does not allow him 

to travel over time. For example, he is not allowed to go from CT40 to OK50 and back to MA40. The lntertemporal 

Traveling Salesman space allows for these intertemporal trips. In principle there is no reason NOT to allow for these 

intertemporal trips: it could very well be 1he case 1hat WI60 is very "similar" (where "similar" will be defined by a 

distance metric) to AL70 and MA50. If this is 1he case, we would like to allow for 1hese economies to be "next" to each 

other. Sincewehave48 states and 6 time period, we have a total of288 economies. We allow the traveling salesman 

to visit any two consecutive economies of his choosing, regardless of 1he time period in which 1hese two economies 

happen to be (see Figure 3). We also allow the traveling salesman to choose the initial point of his trip. Since we have 
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now 288 economies, for each configuration, the cost function contains 288*287/2 elements. There are 288! 

configurations. 

Notice that the GTS space, 0 1, is not a subset of the ITS space, ~because elements of ITS must link the entire 

panel in a linear fashion. Elements of GTS must link each cross-section in a linear fashion, but the separate cross-

sections can be linked in arbitrary ways (as long as the configuration is part of the unilink space). 

D,: The Star Space 

This space follows the star method described in Section 3. Different elements of the star space, 0 3, can differ 

for two reasons. First, they may have different economies play the starring role in each cross-section. For example, one 

configuration has Oklahoma playing the starring role in every cross-section. Another element has New York as the star. 

Yet another configuration has Illinois as the 1940 star, Georgia as the 1950 star, Washington as the 1960 star, California 

as the 1970 star, West Virginia as the 1980 star, and Florida as the 1990 star. 

A second difference across elements of the star space is the way in which they link the cross-sections. For 

example, one configuration may always link period t Connecticut with period t+ 1 Alabama. Another one may link all 

six Mississippi economies in chronological order. A typical configuration of this subspace is depicted in Figure 4. 

An interesting point is that the famous Kravis's system utilized by the Summers and Heston [1991] data set of 

multilateral GDP comparisons across nations uses a version of this Geographical Star system. In a few words, Summers 

and Heston pick a star economy which the authors think is more or less in the middle of all the economies. This economy 

plays the starring role. A bilateral Divisia comparison is then applied between each economy and the star. This allows 

the authors to generate a cross-sectional series of GDP index numbers.9, 10 

9 The key difference between the method we described here and Kravis' star system described in Section 3 is 
that here we find the star which minimizes the cost function rather than arbitrarily imposing a star or base economy 
or by arbitrarily computing the average human capital for all possible star economies. 

10 In principle, we could allow for different geographical stars within the same year. For example, we could 
link all the Southern States in one star, and the same thing for all the Midwest, East and Western states. We could 
then link each star by the two states which minimize cost. We conjecture that this strategy would deliver very good 
indexes in the sense that their cost would be very low. The problem is that the construction of these multiple stars 
is very complicated. Furthermore, there is no reason for breaking the U.S. into four regions only. The choice of the 
number of stars would complicate the problem beyond our ability to solve it. 
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O,r The Superstar Space 

This space is based on what we called the Superstar System in Section 3. For all of the 288 

cross-section-time-series economies, pick a base economy which will play the tole of superstar. For example, in Figure 

5 the superstar economy is Ohio in 1960 (OH60). Different elements of the superstar space, 0 4, differ in only one way: 

the choice of the starring economy. Hence, ClM) has M elements. 

(5) Measures of Distance Between Vectors of Inputs: 

A Cost Function Approach 

Our basic method has three steps: 

(i) Arrange the economies (ie, choose a configuration or element w of the unilink space Q) 

(ii) Beginning with a numeraire economy, use a bilateral index number formula to compute the human 

capital of each of the other economies. 

(iii) Repeat (i) & (ii) until the "best" configuration is found. 

This section defines "best." 

Our previous discussion suggests a definition of best. We argue that the bilateral index number formulas are 

most appropriate for two economies that are "close together" in the input space. One possible definition of distance 

between two linked economies A and B is the weighted sum of squares of the differences between category i inputs for 

economies A and B: 

E ( vi.A + V;,s) (109 X;,s)2 
1-1 2 X;,A 

(5) 

where the weights are the average for the two economies (as defined in ( 4).) A strategy might be to minimfae a sum of 

distances of type (5). 
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Note that this definition of distance has some appealing properties. For example, it suggests that if two 

economies have identical attainment distributions (so that x,.A. = x1,s for all i), then their distance is zero. The optimal 

ordering will therefore have to place these two economies right next to each other. If two economies differ only in the 

attainment of categories for which the shares, v,.A. and v,,s, are small (that is, categories that appear to be economically 

"unimportant") then the distance between these two economies is still small. In other words, differences in unimportant 

categories are counted little. On the other hand, this definition assigns a large distance, when the differences between 

A and B in the important categories are large. 

Although reasonable, this definition of distance is arbitrary.11 An alternative and possibly better approach 

would entail the minimiV1tion of the error we expect to make when we compute the human capital index. In other words, 

since we do not know the true aggregator :function, any bilateral comparison based on an index number that we construct 

will be in error. For example, we might report that economy A's index is 10 percent larger than economy B's, when in 

fact economy A's is 2 percent smaller. 

Let HA(fJ>) and HB(fJ>) be the estimated indexes of human capital derived from configuration <a> for 

economies A and B respectively. The true relative size of economies A and B is given by HA and H8 . Hence, the error 

we make when we evaluate the relative sizes is given by: 

- log HAl2 
Hs 

(6) 

Our notation includes <a> to emphasize that, because the configuration determines how the human capital indexes are 

estimated, the error d.A,B depends on the configuration. 

Our multilateral index will allow us to compare any two pairs of economies with the comparison between each 

pair involving an error term like (6). A measure of the quality of bilateral comparisons resulting from a set of index 

numbers is given by the average of the squared bilateral errors: 

11 For example, one might use the simple Euclidean distance metric in the log space rather than weighting 
category growth rates by category income shares as in equation (5). 
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1 M M 
-~ ~ d . . (w) 
M2~ ~ l,J 

i-1 j·1 
(7) 

Of comse, by definition of the index number problem, one does not know the value of each of the ~ terms. We proceed 

by computing expectations of equation (7) with respect to a set of priors II( <a>) about the magnitude of the approximation 

errors tiiJ. The resulting expectation C(<a>) is the cost of the configuration <a>: 

C( w) = E(-1 E E d1.i( w) n ( w)] 
M2 i-1 i·t 

(8) 

Our notation allows for the possibility that priors about estimation errors may depend on the configuration. 

The optimal configuration is the element of the uni/ink space that minimius cost: 

w • = argmin C ( w) 
(o) € n (9) 

Assuming that the expectations are well defined, a minimum clearly exists because the unilink space is finite. The 

optimal multilateral system of index numbers is computed using a bilateral index number formula - such as Divisia -

and the optimal configuration. 

At this point, the optimal configuration is not computable for two reasons. First, priors about the magnitude 

of bilateral errors are unspecified. Second, the unilink space is a vecy large space - too large to search exhaustively. 

We suggest five approximations which allow us to arrive at an estimate of the optimal configuration. 

The first two approximations involve specification of the priors II( <a>). Consider a two Taylor expansions of 

the index :function F, one at economy A's endowment point and one at economy B's: 
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N 
log F(X) = log F(XA) + L v;,A (log X; - log X;,A) 

i-1 

N N 1 a2 1og F 
+ L L - (log X; - log x;,A)(log xi - log xi.A) 

i-1 j-1 2 a (log x;) a (log x1.) X•XA 

+ (higher order terms) 

N 
log F(X) = log F(X8 ) + L v;,s (log X; - log X;,s) 

/•1 

N N 1 a2 1ogF 
+ L L - (log x1 - log X;, 8 ) (log xi - log xi. 8 ) 

i-1 j•1 2 a (log X;) a (log x1.) X•X8 

+ (higher order terms) 

where "higher order terms" include third and higher order terms. 

AP.,Proximation 1 For each pair of economies A and B, consider a second-order approximation to the difference 

between each of their second derivatives. The slope terms { yfj~} are unknown, but the econometrician has priors 

which are distributed as joint multivariate normal with mean zero. 

a2 1og F a2 log F = ~ V;:B (log x - log x ) a (log X;) a (log X} X•Xs ~ l,J,k k, A k, B a (log x;) a (log x1.) X•XA 

Approximation 1 allows for a simple representation of the second derivative terms: 

Ifwe evaluate F(X) at either XA or~' take the average of the two Taylor expansions, and invoke Approximation 1, 

we can compute pieces of the cost function (8) for a given configuration w: 

ll(xA,x8,i,j,k,l,m,n) = 

[log (x;, A IX;, a)] [log (xi. A I xi. a}] (log (xk, A I xk, a}] [log (x1, A I x1, a}] [log (xm, A I xm, a}] (log (xn, A I xn, a)] 
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where economies A and B are neighbors in configuration <a>. This set of six sums has N6 terms and must be computed 

for each pair of adjacent economies! Approximation 2 simplifies the computation, resulting in the triple sum (10). 

Approximation 2 For each pair of economies, let the priors about the third order coefficients have mean zero. 

Approximate the covariance matrix with a diagonal matrix and assume that the matrix is a scalar multiple of the identity 

matrix. The econometrician's degree of uncertainty about the third order parameters is independent of the pair of 

economies being compared. 

N N N 
E[dA, 8 (w)] =EE E E[(~.~)2][1og(x1,A/x1, 8)]2 [1og(xi.A/xi.s)l2 [1og(xk,A/xk,s)]2 

i=1 j=1 k=1 

N N N 
= E[y2] L L L [log (x;, A IX;, 8)]

2 [log (xi. A I xi. 8)]
2 [log (xk, A I xk, 8)]

2 

/=1 j=1 k=1 

(10) 

Approximation 2 says two things. First, the econometrician knows that the true aggregator function is not quadratic (in 

the log space), but is not sure about the direction of deviations from quadratic. Third order terms may be negative or 

positive. Second, approximation 2 rules out certain third order interactions in the aggregator function - this is the 

substance of the assumption of a diagonal covariance matrix. 

Approximations 1 and 2 still do not specify the computation of E[ dA.B( <a>)] if economies A and B are not directly 

linked in the configuration w. Approximation 3 fills this gap: 

Approximation 3 For two economies A and B that are directly linked to a third economy C (and therefore, 

according to the definition of the uni/ink space, not directly linked to each other), their expected squared bilateral 

comparison error dA,8(w) can be approximated as the sum of dA,cJ..w) and d8 ,cJ..w): 

Approximation 3 rules out correlations across links of the bilateral comparison errors. 
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Approximations 1 - 3 fully specify the computation of the cost function C( w ). Each term of the cost function 

involves a squared bilateral comparison error d.A.,B(w) which is computed according to equation (10) for adjacent 

economies or according to Approximation 3 for nonadjacent economies. The minimization problem (9) can now be 

computed in a straight-forward way. However, because of the tremendous size of the space O(M), such computations 

are impractical. Approximations 4 and 5 are intended to facilitate the minimization procedure. 

Approximation 4 Replace the minimization over the uni/ink space with a minimization of cost over the union 

w• = argmin C(w) 
hl E ('11 U Ci U ~ U 0 4) c Cl 

= argmin [ min C (<a>) , min C (<a>) , min C (<a>) , 
(,) E 0 1 (,) E Ci (,) E ~ 

min C(w)] 
(,) E '14 

(11) 

The minimization problem (11) still presents a formidable computation problem. The difficulty is that the GTS and ITS 

spaces (01 and OJ are still fairly large and the cost function described by equation (10) and Approximation 3 is quite 

complicated. Because numeral optimization over large spaces is facilitated when the cost function is easy to evaluate, 

Approximation 5 attempts to simplify the evaluation of the cost function on the GTS and ITS spaces: 

Ap_proximation 5 Define a pseudo-cost function, (<a> , to be the sum of the expected squared bilateral 

comparison errors with the sum taken over adjacent economies only. Consider the minimization of the pseudo-cost 

function over 0 1 and 0 2 separately: 

& 1 = argmin C(w) 
(,) E '11 

& 11 = argmin C(w) 
(,) E Ci 
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Effectively, the pseudo-cost :function differs from the actual cost :function in the way that it weights the different links. 

To see this, consider a four economy example. When the four economies are arranged linearly as A-B-C-D, the true 

cost :fimction weights <fs.c four times as heavily as dA.B or dc.o· This is because dB,c also enters into the comparison error 

for pairs (A,C), (B,D), and (A,D) whereas dA.B matters only for the (A,B) comparison. The pseudo-cost :function, on 

the other hand, weights each direct link equally. Also notice that the difference between pseudo-cost and cost depends 

on the space. For the GTS and ITS spaces, pseudo-cost and cost can be quite different. For an element of the superstar 

space, on the other hand, pseudo-cost and cost are identical (up to the constant 2(M-1)/M2). Pseudo-cost and cost are 

also quite similar for an element of the star space (any difference arises from intertemporal links). 

Our estimate of the optimal configuration uses the pseudo-cost :function to economize on the searches of the 

GTS and ITS spaces: 

~ = argmin [c(w') , C(w") , min C(w) , 
<a>e~ 

min C(w)] 
<.> e 0 4 

(12) 

Approximation 5 implies that we use the actual cost :function to estimate minimum cost configurations for the Q 3 and 

'24 spaces (star and superstar respectively), use the pseudo-cost :function to estimate minimum cost configurations for 

the spaces nl and n2, and use the actual cost :function to choose between the spaces nl, '22, '23, and '24. 

Summary and Discussion of the Methodology 

If the true aggregator :function were translog, using all of the data to estimate the translog parameters would 

be the best way to construct index numbers for a cross-section, time-series, or a panel. Use of a chained Divisia index 

(or some other strategy) is therefore an admission that the true aggregator fanction is not translog. True, the Divisia 

is exact when the true aggregator is translog, but each link of the Divisia chain is computed using data from only two 

economies. The justification for neglecting the data for the other (M-2) economies must be that the true aggregator 

function is not translog. Our approach has been to be explicit about our doubts about the exactness of the translog 

approximation and to show that those doubts imply that there is an optimal strategy for computing index numbers and 

that the optimal strategy is not necessarily the commonly used Divisia chain applied to an ad-hoc ordering of economies. 

19 

- - -. ~-- ,:~. -·. - - ··-- ,:._ .c -- --•··- ,:. ___ .. . -- ·-···- ,:. __ -• 



We propose to use a Divisia chain, but to choose the optimal configuration of economies. We seek to ininimi:ze 

the expected bilateral comparison error and show how that criteria can be computed as a function of observables. We 

propose a set of configurations, the unilink space 0, over which the criteria should minimiz.ed. 

With the current computer technology, exact solutions to our minimization problem cannot be found. However, 

we propose a feasible algorithm for approximating a solution to the problem. Section (6) below shows that, despite the 

inexactness of our solution, we can substantially improve upon commonly used index number strategies. 

Note that the cost function we have derived in this section is similar in spirit to the concept of distance we 

postulated in (5): it involves the power sums of differences in education categories. Each of the sums is weighted by 

the average of the shares (the distance measure (5) uses the shares directly, the cost function uses the square of the 

shares). The main difference between the two concepts is that the cost function (IO) involves 6th power terms (rather 

than only quadratic terms) as well as cross products. It turns out that use of the cost (10) instead of the measure of 

distance (5) matters little. To docwnent this point, in Appendix Table 4 we report the correlation between )Vhat will end 

up being our favorite measure of human capital, computed using the cost function derived in this section, and a similar 

measure using the ad-hoc cost function postulated in (5). For 1940, 1960, 1980 and 1990, the correlation is above 0.94. 

For 1950, it is slightly under 0.9 and for 1970 it is 0.84. If we use all decades at the same time, the correlation is over 

0.97. Hence, it turns out that the exact cost function used for estimating human capital indexes does not matter a great 

deal. What turns out to be more important is to search beyond some of the simple configurations that have been 

considered in the index number literature. 

(6) Costs of Each of the Methods and Spaces 

The first panel of Table 1 reports the costs and pseudo-costs associated with each of the methods outlined in 

the previous sections. Among the measures we estimate using our optimal methods (that is, the measures that involve 

the minimization of a cost criterion over some space), we find the best results when we search over the geographical 

traveling salesman space (GTS). The lowest pseudo-cost that we found in the GTS space was 657.3. The actual cost 

of the pseudo-cost minimizing configuration turned out to be 14.3. The second best appears to be the intertemporal 
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traveling salesman (ITS) with a cost of 61.2. We found what we thought to be a good configuration from the ITS space 

by searching with the pseudo-cost criterion; the best pseudo-cost which we could achieve on this space was 399 .3. The 

worst space was the superstar with an cost of3299 (which is 230.7 times as expensive as the GTS). The star space 

delivered an intermediate result with a cost of more than 42 (more than 2.9 times the cost of GTS).12 These results 

suggest that the best panel of human capital numbers is the one generated by the GTS system. 

An interesting finding from Table 1 is that Kravis's star methodology is very costly. If the star was to be 

chosen optimally, then the overall cost would be more than 42 (more than 2.9 times the cost of GTS). Normally, the 

base economy is not chosen optimally so the cost of the method used by Kravis and colleagues is likely to be higher than 

that. Remember that the Summers and Heston data set uses this methodology to make international comparisons of 

levels of income, output, consumption and investment. Our calculations suggest that their methodology is inefficient 

from the point of view of minimizing the sum of expected errors. 

Panel (B) of Table 1 reports the pseudo-costs associated with four measures based on non-optimal orderings 

(that is, measures that do not involve the minimization of the cost function over some space). The first one is the 

average star system described in Section 3. Remember that this method involves choosing a base or star economy for 

each period and computing the bilateral comparison between each economy Within the same period and the base 

economy. A cross section of indexes is computed. The procedure is repeated 48 times (each economy is picked as base 

economy once) and the average of all 48 cross section is taken as the best index of human capital. We then linked each 

period through the minimum cost link. The pseudo-cost associated with this method is 93,679, which is 142.5 times 

more than the pseudo-cost of our optimal measure. 

The second row reports the pseudo-cost associated with the average superstar system. This method is similar 

to the average star system, except that, for each base economy we compute 287 bilateral comparisons corresponding 

to each of the 48 states for each of the 6 census years. This generates a 288xl vector of stocks human capital. We 

repeat the procedure by using each of the 288 economies as the base economy and then average the results. The total 

pseudo-cost of this method is 4,418,800, which is 6, 716 times as expensive as our optimal method with the GTS space. 

12 We have only been able to put a lower bound on the minimum cost from the star space. 
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Finally, we report the pseudo-cost of using two random orderings. The first is the pseudo-cost of ordering states 

by 1940 Average Years of Schooling, which is estimated to be 27, 735 ( 42 times more costly than GTS.) The second 

is alphabetical an ordering. Its pseudo-cost is 116,600 (177 times the pseudo-cost of GTS). 

We conclude that the best measure is the Geographical Traveling Salesman (GTS), in the sense that it 

minimizes the sum of expected errors as defined in (S) or (10). In Table 2 we decompose the total pseudo-cost of GTS 

by year and by link. The 1940 cross section pseudo-costs 19.27 and the 1950 cross section pseudo-costs 4S.OS. An 

interesting aspect of this table is the pseudo-cost associated with the 1970 cross section: 3SS.20, that is, more than one 

half of the overall pseudo-cost of computing GTS comes from the 1970 cross section. We believe that these pseudo-

costs are related to the confidence we should put in each of the measures (that is the cost is related to the variance of 

the measurement error.) Hence, when we use the human capital data derived in this section, we should keep in mind 

that the error with which we measure the 1970 data is larger than the error with which we measure all other decades. 

Finally, Table 2 also reports the pseudo-costs associated with each of the intertemporal links. It turns out that 

the intertemporal links are the following: MA40 to P A50 (pseudo-cost=O. 0010), FL50 to MS60 (pseudo-cost=0.0024), 

FL60 to LA70 (pseudo-cost=0.0065), CA70 to ALSO (pseudo-cost= 0.0113), and CASO to TX90 (pseudo-

cost=0.0967.) 

(7) Results: A Measure of Human Capital 

As indicated in the previous section, our method of analysis suggests that the Geographical Traveling Salesman 

(GTS) yields the lowest expected error. We will therefore adopt the GTS as our measure of human capital for the rest 

of the paper. Table 3 reports the logarithm of the computed panel of human capital indexes. Each of the indexes is 

expressed in California 19SO units of human capital. Hence, a negative number for economy i means that the level of 

human for that economy is less than the level in California 19SO so that the log is negative. 

Figure 6 displays the behavior of over time of the log of our measure of human capital averaged by census 

region (the exact figures are reported in the last four rows of Table 3). We note that in 1940, the region with the highest 

stock of human capital was the West, followed by the Midwest, Northeast and the South. The dispersion of human 

capital across the four census regions was quite high. By 1990, the West had lost its leading position to the Northeast, 
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while the South was still last. We can see in the Figure that four regions were much closer together in 1990 than they 

were in 1940. 

A couple of interesting facts are worth highlighting. First of all, 1he average stock of human capital for the West 

fell between 1940 and 1950. The reason for this is that during the 1940s, the West experienced a rapid increase in the 

participation of females with low schooling. Second, we note that the relative positions of the four regions remained 

constant between 1940 and 1970. During the 1970s, the Northeast took the second position from the Midwest, and 

during the 1980, it took the leading position from the West. During the 1980s, we see that the growth rate for the 

Northeast was substantially higher 1han that of the remaining regions of the country. This could be the reflection of the 

much publicized migration of skilled people towards New England during the 1980s. 

Figure 7 summarizes the behavior of the average stock of human capital for each of the 48 states between 1940 

and 1990. The horizontal axis has the 48 states ranked by increasing levels of human capital in 1940. We see that the 

economy with the lowest stock of human capital was Mississippi, followed South Carolina, Alabama and Georgia. At 

the upper end, we have Utah, Nevada, California and Washington (a complete yearly ranking of states is reported in 

Table 4). 

The line marked with squares corresponds to the level of human capital in 1940 and, by construction, it is 

monotonic and upward sloping. The line corresponding line for 1950 is represented by daggers. We note three 

characteristics. First, the 1950s data are no longer monotonic. This indicates that the relative ranking has changed 

(some states have improved their relative position and, as a result, other has states have worsened.) Second, the overall 

trend seems to be less steep than the line for 1940. This indicates that the states that used to have less human capital 

have experienced a higher growth rate in the stock of human capital. The same the phenomena can be observed for the 

stocks in 1960, 1970, 1980, and 1990. In particular, the line for 1990 is quite flat and not monotonic. This means that 

the ranking in 1940 is very different from the ranking in 1990, and the variance in 1990 is smaller than the variance in 

1940. The states with the largest stocks in 1990 were Massachusetts, Connecticut, and New Jersey while the states with 

the least amounts of human capital in 1990 were Mississippi, Arkansas and South Dakota. 

It is interesting to analyze the speed at which our measures of human capital regresses to the mean. Table 5 

reports some of the results. The estimated speed of convergence when we use the whole sample period is 0.038 
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(s.e. =0.0051 ). Note that this speed of convergence is higher than the estimated speed of convergence of income per 

capita, which is close to 2 percent per year (see for example Barro and Sala-i-Martin [1992].). The striking negative 

relation between the initial level and the subsequent growth rate in the stock of human capital can also be appreciated 

inFigure 8. 

1he rest of the rows of Table 5 suggest that the speed of convergence h was far from constant across decades. 

After two decades oflarge speeds of convergence [ =0.0755 (s.e.=0.0057) for the 1940s and = 0.0446 (s.e.=0.0078) 

in the 1950s], the speed of convergence achieved a relatively low value in the 1960s [0.0121 (s.e.=0.0173)]. The largest 

speed of convergence observe in our sample occurs in the 1970s [0.1176, s.e.=0.0173]. We note that the process of 

convergence halted during the 1980s [the estimated speed 0.0093 (s.e.=0.0109)]. The no-relation between growth and 

the initial stock of human capital during the 1980s can be also appreciated in Figure 9. We note in this Figure that the 

stocks of human capital for the states in the Northeast (Massachusetts, Connecticut, New Jersey, Maryland, and New 

York) experience the largest growth rates during the 1980s, despite the fact that the corresponding stocks in 1980 were 

not small. However, we also see in the Figure that, even if we abstract from the Northeastern states, the negative 

relation is far from obvious. In other words, even though it is true that the stock of human capital in the Northeast 

experienced an extraordinary increase during the 1980s, the story behind the lack of convergence during this same period 

cannot be solely explained by the Northeastern experience (this is especially interesting because a lot of economic 

observers have suggested that "strange" behavior of the state economies during the 1980s can be explained by the 

enormous increase in the stock of human capital in the Northeast --and especially New England). 1helastrow 

of Table 5 reports the estimated speed of convergence when all subperiods are restricted to have the same coefficients. 

The estimated speed is 0.0554 (s.e.=0.0043). It is interesting to point out that this speed is substantially larger than the 

speed of convergence of conventional measures output such as personal income or gross state product.13 

Figure 10 analyzes the behavior of the dispersion of the stock of human capital over time. We note that the 

dispersion in 1940 was quite large: the standard deviation of the log ofH was 0.09. After a dramatic fall during the 

1940 and 1950s, dispersion increased in the 1960s. The process of convergence resumed between 1970 and 1980. 

13 Of course the existence of temporary measurement error in the human capital estimates could be the 
explanation for this high speed of convergence. 
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Dispersion increased during the 1980s. This increase in dispersion is often associated with the increase in income 

inequality which occurred during the Reagan years. It is interesting to compare the behavior of human capital with the 

behavior of the average years of schooling. Figure 10 also shows the dispersion of the average years of schooling over 

time. Notice that it falls monotonically. Hence, a researcher who uses schooling as a proxy for human capital will tend 

to get misleading results. 

Comparing the Various Measures Described in the Paper. 

In Appendix 1 we present a summary of statistics for all the measures that have been described in the paper. 

We report estimates of optimal measures (that is, measures that correspond to the minimization of the cost function over 

some subs-pace of the unilink space) and non-optimal measures (which correspond to some ad-hoc criteria). Among 

the optimal measures, we consider the optimal estimates when we searched for configurations in the following spaces: 

Geographical Traveling Salesman, 0 1, Intertemporal Traveling Salesman, 0 2, Star, 0 3, and Superstar,{}'" Among 

the non-optimal methods, we report the estimates for Star system, Superstar system, estimation of the Translog 

production function, the Labor-Income-Based measure of Mulligan and Sala-i-Martin [1994] and the Average Years 

of Schooling. 

Three basic messages arise from the appendix. First, if one wants to use the an optimal approach to computing 

cross-sectional index numbers, the exact ordering matters. We can see this by comparing the optimal estimates using 

the various orderings with our best measure, the GTS. It is important, therefore, to find the optimal order by mini mi zing 

the expected error. Second, if one decides to use non-optimal methods, then one's estimates will greatly vary with the 

method adopted. This is the classical index number problem described by Diewert [1987]: how do we choose among 

alternative index numbers? The third lesson is that, for the particular application of this paper (namely, the construction 

of human capital indexes across the states of the United States), the set of estimates delivered by the Star space ends 

up being very similar to our optimal measure. Hence, it is very possible that the breakdown of economies in yearly stars 

might deliver good enough estimates in other applications. This result is interesting because the Star system is much 

easier to implement than 1he Geographical Traveling Salesman (remember, again, that the Star methodology is the one 

employed by Summers and Heston to create their cross-country estimates of GDP indexes.) A corollary of all this is 
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that if the econometrician is good at picking the star or base, then the index number estimates generated by the star 

method may not be too bad. 

CONCLUSION 

The main goal of this paper is the construction of a panel data set of human capital indexes for the states of the 

United States for the period 1940 to 1990. We find that slightly different procedures for constructing human capital 

indexes yield very different sets of numbers. It is for this reason that we propose a new methodology for the selection 

of a group of index numbers. As economists, we can't resist thinking that the best way to estimate index numbers (or 

the best way to do anything in life, for that matter) is to optimize. Hence, we propose to use a Divisia chain, but in order 

to choose the optimal configuration of economies, we seek to minimire the expected bilateral comparison error and show 

how that criteria can be computed as a function of observables. We propose a set of configurations, the unilink space 

Q, over which the criteria should minimized. 

With the current computer technology, exact solutions to our minimization problem cannot be found. However, 

we propose a feasible algorithm for approximating a solution to the problem. Section. ( 6) below shows that, despite the 

inexactness of our solution, we can substantially improve upon commonly used index number strategies. 

Using this new methodology, we arrive at the optimal estimates of the stock of human capital across the states 

of the United States. Our empirical analysis of these estimates suggests some interesting results. For example, we find 

that the stock of human capital grew twice as rapidly as the average years of schooling (the measure that is usually taken 

to be a good proxy for human capital in the new growth literature.) We also find that the dispersion of the stock of 

human capital across the United States increased during the 1980s. This is an interesting finding because the dispersion 

of the average years of schooling decreased during the same period. Hence, an economist using the average years of 

schooling as the estimate of the stock of human capital may wrongly conclude that the increase in income inequality 

occurred during the 1980s had nothing to do with the process of human capital accumulation. 

Finally, we find that Kravis's star methodology used by Summers and Heston [1991] to create multilateral 

comparisons of GDP across cmmtries was very costly in the sense of generating high sum of expected errors. However, 

for the states of the United States, the actual estimates delivered by the optimal measure and the star method are very 

similar, which suggests that if one picks the star (or base) economy carefully, then the index number estimates generated 
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by the Star method may not be too bad. The next step in our research agenda is to use the optimal methodology proposed 

in this paper to construct human capital indexes for a panel of countries to be used along with the Summers and Heston 

data set. 

Table 1: Costs of Computing Human Capital Indexes 

PANEL (A): OPTIMAL MEASURES 

Space Pseudo-Cost Cost 

Geographical Traveling Salesman 01 675.3 14.30 

lntertemporal Traveling Salesman 02 399.3 61.16 

Star 03 11908 >42 

Superstar (OK70 is superstar) 04 476670 3299 

PANEL (B): NON-OPTIMAL MEASURES 

Star System (Average) 

Superstar System (Average) 

1940 Average Years of Schooling 

Alphabetical 

Notes to Table 1: 

Pseduo-Cost 

93679.00 

4418800.00 

27735.00 

116600.00 

(1) There are 12 categories (six levels of schooling times two genders) 

Rel. to GTS 

142.50 

6716.60 

42.20 

177.40 

Rel. to GTS 

1 

4.3 

>2.9 

230.7 

(2) Optimal numbers are constructed by minimizing the cost function over the relevant space. Non-optimal function 

involve no minimization. 

(3) Pseudo-cost is the simple sum of the cost of each link of configuration (weighting each link equally). Cost is the 

average squared bilateral comparison error. For the space 0 4(M), the two differ by the factor 2(M-1)/M2 
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Table 2: Pseudo-Cost Decomposition of GTS by Year 

Year 

1940 

1950 

1960 

1970 

1980 

·1990 

Intenemporal Links 

MA40-PA50 

FL50-MS60 

FL60-LA70 

CA70-AL80 

CA80-TX90 

TOTAL 

.,. . ~-- ,:._ -•. 
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Pseudo-Cost 

19.30 

48.10 

5.90 

388.20 

39.20 

156.20 

Pseudo-Cost 

0.0010 

0.0024 

0.0065 

0.0113 

0.0967 

675.3 



Table 3: Human Capital by State and Year 

STATE 1940 1950 1960 1970 1980 1990 
1 AL -0.390 -0.270 -0.151 -0.098 -0.050 -0.018 
2 AZ -0.151 -0.120 -0.076 -0.035 -0.011 0.014 
3 AR -0.343 -0.290 -0.151 -0.117 -0.068 -0.041 
4 CA -0.090 -0.133 -0.050 -0.031 0.000 0.032 
5 co -0.119 -0.138 -0.040 0.036 0.003 0.037 
6 CT -0.207 -0.158 -0.101 -0.045 -0.002 0.053 
7 DE -0.206 -0.164 -0.090 -0.075 -0.002 -0.006 
8 FL -0.250 -0.163 -0.107 -0.065 -0.037 -0.010 
9 GA -0.388 -0.280 -0.166 -0.113 -0.052 -0.011 

10 ID -0.107 -0.131 -0.051 -0.072 -0.002 -0.017 
11 IL -0.190 -0.152 -0.094 -0.076 -0.022 0.023 
12 IN -0.161 -0.148 -0.092 -0.083 -0.049 -0.019 
13 IA -0.155 -0.149 -0.086 -0.008 -0.046 -0.019 
14 KS -0.126 -0.123 -0.048 0.017 -0.023 0.018 
15 KY -0.309 -0.229 -0.149 -0.118 -0.069 -0.039 
16 LA -0.359 -0.250 -0.141 -0.097 -0.036 -0.016 
17 ME -0.190 -0.181 -0.103 -0.086 -0.037 0.001 
18 MD -0.242 -0.155 -0.099 -0.080 -0.011 0.037 
19 MA -0.174 -0.149 -0.095 -0.049 0.001 0.053 
20 MI -0.162 -0.149 -0.093 -0.071 -0.020 -0.004 
21 MN -0.188 -0.165 -0.083 -0.005 -0.022 0.016 
22 MS -0.431 -0.332 -0.178 -0.114 -0.065 -0.052 
23 MO -0.221 -0.168 -0.109 -0.015 -0.041 -0.011 
24 MT -0.128 -0.100 -0.059 0.046 -0.008 0.013 
25 NE -0.147 -0.150 -0.069 -0.092 -0.019 0.009 
26 NV -0.078 ~0.160 -0.085 -0.061 -0.029 -0.031 
27 NH -0.198 -0.162 -0.113 -0.091 -0.043 0.006 
28 NJ -0.210 -0.153 -0.100 -0.051 -0.007 0.039 
29 NM -0.215 -0.165 -0.044 -0.021 -0.019 0.021 
30 NY -0.184 -0.152 -0.097 -0.044 -0.010 0.031 
31 NC -0.331 -0.277 -0.168 -0.137 -0.070 -0.030 
32 ND -0.226 -0.179 -0.126 -0.025 -0.036 -0.016 
33 OH -0.153 -0.151 -0.087 -0.076 -0.026 -0.004 
34 OK -0.191 -0.160 -0.073 -0.060 -0.016 -0.013 
35 OR -0.104 -0.144 -0.053 -0.050 -0.004 0.014 
36 PA -0.205 -0.167 -0.102 -0.083 -0.036 0.006 
37 RI -0.233 -0.172 -0.128 -0.123 -0.047 -0.005 
38 SC -0.406 -0.306 -0.180 -0.147 -0.072 -0.032 
39 SD -0.202 -0.156 -0.123 -0.072 -0.043 -0.039 
40 TN -0.297 -0.231 -0.162 -0.127 -0.061 -0.025 
41 TX -0.194 -0.159 -0.097 -0.080 -0.025 0.008 
42 UT -0.072 -0.098 -0.020 0.043 0.009 0.020 
43 VT -0.189 -0.170 -0.101 -0.098 -0.038 -0.003 
44 VA -0.280 -0.179 -0.118 -0.065 -0.016 0.028 
45 WA -0.098 -0.123 -0.038 0.015 -0.004 0.025 
46 WV -0.222 -0.205 -0.097 -0.092 -0.041 -0.030 
47 WI -0.206 -0.167 -0.106 -0.083 -0.039 -0.007 
48 WY -0.119 -0.120 -0.049 -0.109 0.001 0.016 

U.S. -0.209 -0.175 -0.099 -0.064 -0.028 0.000 
s.d. 0.088 0.053 0.039 0.046 0.022 0.025 

Norheast -0.199 -0.163 -0.105 -0.075 -0.024 0.020 
South -0.302 -0.228 -0.133 -0.099 -0.043 -0.016 
Mldwest -0.178 -0.155 -0.093 -0.049 -0.032 -0.004 
West -0.116 -0.130 -0.051 -0.022 -0.006 0.013 
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Table 4: State Rankings by Year 

1940 1950 1960 1970 1980 1990 
1 UT UT UT MT UT MA 
2 NV MT WA UT co CT 
3 CA WY co co MA NJ 
4 WA AZ NM KS WY co 
5 OR WA KS WA CA-> MD 
6 ID KS WY MN CT CA 
7 co ID CA IA ID NY 
8 WY CA ID MO DE VA 
9 KS co OR NM OR WA 

10 MT OR MT ND WA IL 
11 NE IN NE CA-> NJ NM 
12 AZ MI OK AZ MT UT 
13 OH MA AZ NY NY KS 
14 IA IA MN CT MD MN 
15 IN NE NV MA AZ WY 
16 MI OH IA OR OK OR 
17 MA-> IL OH NJ VA AZ 
18 NY NY DE OK NM MT 
19 MN NJ IN NV NE NE 
20 VT MD MI VA MI ->TX 
21 IL SD IL FL MN PA 
22 ME CT MA MI IL NH 
23 OK TX NY SD KS ME 
24 TX OK WV ID TX VT 
25 NH NV TX DE OH OH 
26 SD NH MD OH NV MI 
27 PA FL-> NJ IL LA RI 
28 WI DE VT MD ND DE 
29 DE MN CT TX ->PA WI 
30 CT NM PA PA FL FL 
31 NJ WI ME IN ME MO 
32 NM ->PA WI WI VT GA 
33 MO MO FL-> ME WI OK 
34 WV VT MO NH WV LA 
35 ND RI NH NE MO ND 
36 RI VA VA WV SD ID 
37 MD ND SD ->LA NH AL 
38 FL ME ND AL IA IN 
39 VA WV RI VT RI IA 
40 TN KY LA WY IN TN 
41 KY TN KY GA AL WV 
42 NC LA AL MS GA NC 
43 AR AL AR AR TN NV 
44 LA NC TN KY MS SC 
45 GA GA GA RI AR KY 
46 AL AR NC TN KY SD 
47 SC SC ->MS NC NC AR 
48 MS MS SC SC SC MS 
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Table 5: Convergence of Human Capital 

Period p R:i. 
(s.e.) [s.e.] 

1940-1950 0.039 0.92 
(0.005) [0.0004] 

1940-1950 0.058 0.80 
(0.006) [0.0020] 

1950-1960 0.045 0.52 
(0.008) [0.0019] 

1960-1970 0.012 0.02 
(0.013) [0.0032] 

1970-1980 0.118 0.78 
(0.017) [0.0017] 

1980-1990 0.009 0.02 
(0.011) [0.0016] 

Restricted 0.055 
(0.004) 
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APPENDIX 1: A Brief Analysis of the Various Measures 

In this append.ix we compare the results of estimating human capital using the various methods and spaces 

described throughout the paper. We report the following measures. 

(1) Minimum Cost over the Geographical Traveling Salesman Space (described in Sections 4 and 5 in the text). This 

measure is called GTS. As discussed in the text, this is our favorite measure. 

(2) Minimum Cost over the lntertemporal Traveling Salesman Space (described Sections 4 and 5 in the text). This 

measure is called ITS. 

(3) Minimum Cost over the Star Space (described in Sections 4 and 5 in the text). Called STAR 

(4) Minimum Cost over the Superstar Space (described in Sections 4 and 5 in the text). Called SUPERSTAR 

(5) Non Optimal Star System (described in Section 3 in the text). Called STAR (AV). 

(6) Non-Optimal Superstar System (described in Section 3 in the text). Called SUPER (AV). 

(7) Regression Estimates of Translog Production Function Coefficients (described in Section 1 in the text). This 

measure is called TRANSLOG. 

We compare these seven measures with 

(8) Labor-Income-Based human capital measure reported by Mulligan and Sala-i-Martin [1994] (a brief description 

of this method appears in the introduction). We call this measure LIB. 

(9) Average Years of Schooling. We call it SCHOOL. 

In order to economize on space, we do not report each of the estimates of human capital for each state and year 

for each of the measures. Instead, we report some interesting summary statistics. 

The first two panels of Appendix Table 1 reports the behavior of the U.S. averages according to each of the nine 

measures. The first panel reports the (logarithm of the) levels of the variables. The second panel reports the average 

annual growth rate for each decade, and the growth rate for the overall sample period 1940-1990. We note that the 

average annual growth rate over the overall sample period is very close to 0 .4 percent for all measures involving Divisia 

indexes. That is, the aggregate growth rate according to GTS, ITS, STAR, SUPERSTAR, STAR (AV) and 

SUPERSTAR (AV) is very similar. The annual growth rate of human capital according to the direct TRANSLOG 

32 

.... _ ~ .: ; ..:.. ,:. ___ .. 



estimation is 2 percent. 'The LIB measure grows at an average rate of 1.4 percent while the growth rate of the Average 

Years of SCHOOLing is 0.8 percent per year. 

Hence, we note that, even though the Average Years of Schooling of the United States labor force increased 

at 0.8 percent per year over the course of half a century (which implies an overall increase of 80 percent), human capital 

increased at a rate of only 0.4 percent (which implies an overall increase of 40 percent.) 

The Table also reports the growth rates of each of the measures decade by decade. We note that there are 

substantial differences in the way the various variables behave over time. 

The third panel of Appendix Table 1 shows the behavior of the cross-sectional standard deviation of each of 

the measures over time (that is, this panel reports, for each year, the standard deviation of the 48 state estimates for each 

measure.) Because our variables are all measured in logs, the measure of dispersion is similar to the coefficient of 

variation in that it is invariant to proportional changes in the levels of the variables. The important point about this panel 

is that the behavior varies a lot from measure to measure. If we look, for example, at the prediction of the behavior of 

dispersion during the 1980s, we see that SCHOOL, TRANSLOG, and ITS predict a decline. The rest of the measures 

predict an increase. In summary, a quick look at the behavior of the U.S. aggregate values for all the human capital 

measures suggests that it matters a lot which measure we use. 

Appendix Table 2 reports the cross-correlation of all nine measures, when each one of them is stacked on one 

large column vector. The important point about this table is that the correlations are very high (above 90 percent for 

almost all measures.) The two possible exceptions are the ITS and LIB. The correlation between ITS and the rest of 

the measures is below 0.9 in all cases. The correlations between LIB and the rest of the variables is much smaller and 

they range from 0.36 (ITS) and 0.62 (School). 

Appendix Table 3 decomposes the cross-correlations by decade. The pattern of correlations is quite interesting. 

First, the cross-correlations involving ITS and LIB are quite low. Second, the number of correlation coefficients above 

0.90 seems to fall over time. In other words, even though all measures yield a similar human capital index for 1940, 

the same is not 1rue for 1980 or 1990. Hence, it matters a lot which measure we choose. The correlation between our 

favorite measure, GTS, and SCHOOL falls from 0.93 in 1940 to a low 0.83 in 1970 and then it goes back up to 0.85 

in 1990. 
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Third, the correlation between the TRANSLOG variable and the rest of the measures deteriorates with time. 

In particular, the correlations for 1980 and 1990 are vecy close to zero for some variables. The correlation between 

TRANSLOG and SCHOOL for 1990 is also vecy low: 0.63. 

Fourth, for the later years, the two measures involving SUPERSTAR orderings (SUPERSTAR and 

SUPERSTAR (AV)) are poorly correlated with the rest of the variables. 

Finally, the Optimal Star configuration is very correlated with GTS for all years. The only possible exception 

seems to be the 1970s, whose correlation is 0.83. For the rest of the years the correlation is close or above to 0.96. 

Appendix Table 4 shows the autocorrelations for each of the variables estimated over the ten year periods for 

which we have data. The first thing to note is that the autocorrelation for the average years of schooling is close or 

above 0.9 for all decades. This is not true for any other estimate. For example, even though the autocorrelation for GTS 

is quite large, it is only above 0.9 in the first decade. The correlation between 1960 and 1970 is 0.88, between 1970 

and 1980 it is 0.64, and in the last decade of the sample period it is. The autocorrelations for all the other measures 

range between zero and 0.99. 

The conclusion from this empirical analysis of the various measures is that the various measures proposed and 

described throughout the paper are very different, and that finding the optimal configuration is important. And this is 

what we attempted to do in this paper. 
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Appendix Table 1: Behavior of U.S. Aggregates 

According to the Various Measures. 

Logs 1940 1950 1960 1970 1980 1990 
GTS -0.209 -0.175 -0.099 -0.064 -0.028 0.000 
ITS -0.297 -0.195 -0.120 -0.118 -0.069 -0.119 
STAR -0.181 -0.129 -0.064 -0.060 -0.022 0.006 
SPERSTAR -0.179 -0.101 -0.052 -0.018 0.035 0.066 
STAR(AV) -0.202 -0.152 -0.079 -0.065 -0.023 0.004 
SPER(AV) -0.153 -0.088 -0.049 -0.033 -0.011 -0.010 
TRANSLOG -0.990 -0.790 -0.574 -0.357 -0.133 0.014 
LIB 3.701 3.383 3.687 3.662 3.871 4.393 
SCHOOL 2.160 2.251 2.360 2.429 2.533 2.576 

Growth Rates 1940-50 1950-60 1960-70 1970-80 1980-90 1940-90 
GTS 0.0034 0.0076 0.0035 0.0036 0.0029 0.0042 
ITS 0.0102 0.0074 0.0002 0.0049 -0.0049 0.0036 
STAR 0.0052 0.0064 0.0005 0.0037 0.0029 0.0037 
SPERSTAR 0.0078 0.0049 0.0034 0.0052 0.0031 0.0049 
STAR(AV) 0.0049 0.0074 0.0013 0.0043 0.0026 0.0041 
SPER(AV) 0.0065 0.0039 0.0016 0.0023 0.0001 0.0029 
TRANSLOG 0.0200 0.0216 0.0217 0.0224 0.0147 0.0201 
LIB -0.0318 0.0303 -0.0025 0.0209 0.0522 0.0138 
SCHOOL 0.0091 0.0109 0.0069 0.0104 0.0043 0.0083 

St. Dev. 1940 1950 1960 1970 1980 1990 
GTS 0.088 0.053 0.039 0.046 0.022 0.025 
ITS 0.094 0.087 0.028 0.048 0.040 0.036 
STAR 0.079 0.041 0.031 0.025 0.020 0.026 
SPERSTAR 0.100 0.066 0.040 0.033 0.022 0.024 
STAR(AV) 0.081 0.051 0.033 0.027 0.020 0.024 
SPER(AV) 0.088 0.055 0.031 0.022 0.017 0.030 
TRAN SLOG 0.184 0.167 0.130 0.131 0.105 0.096 
LIB 0.314 0.288 0.225 0.237 0.206 0.216 
SCHOOL 0.113 0.095 0.066 0.050 0.035 0.023 
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Appendix Table 2: Cross-Correlations (Stacked Variables) 

GTS ITS STAR SUPER STAR SUPER TRANS LIB SCHOOL 
STAR (av) .(Av) LOG 

HKGTS 1.00 0.84 0.98 0.96 0.98 0.90 0.94 0.61 0.97 

HKITS 1.00 0.86 0.84 0.87 0.87 0.76 0.37 0.82 

HKSTRMIN 1.00 0.96 1.00 0.92 0.92 0.60 0.96 

HKSSMIN 1.00 0.98 0.96 0.93 0.60 0.95 

HKSTRAV 1.00 0.93 0.94 0.61 0.97 
G l 
HKSSAVG 1.00 0.80 0.49 0.86 I 

I 
TRAN SLOG 1.00 0.62 0.98 ! 
HKWO 1.00 0.62 

SCHAVL 1.00 
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Appendix Table 3: Cross-Correlations by Decade 

1940 GTS ITS STAR SUPER STAR( A SUP(AV TRANSL LIB SCHOO 
GTS 1 0.96 0.99 0.90 0.99 0.89 0.94 0.56 0.96 
ITS 1.00 0.96 0.85 0.96 0.85 0.89 0.48 0.88 
STAR 1.00 0.91 1.00 0.91 0.95 0.59 0.96 
SUPER 1.00 0.93 1.00 0.90 0.61 0.85 
STAR~ 1.00 0.93 0.95 0.59 0.94 

~s 1.00 0.89 0.63 0.85 
1.00 0.60 0.94 

LIB 1.00 0.62 
1950 GTS ITS STAR SUPER STAR( A SUP(AV TRANSL LIB SCHOO 

GTS 1 0.92 0.95 0.90 0.97 0.89 0.92 0.50 0.94 
ITS 1.00 0.89 0.86 0.92 0.85 0.87 0.57 0.88 
STAR 1.00 0.88 0.97 0.87 0.84 0.42 0.87 
SUPER 1.00 0.95 1.00 0.89 0.42 0.84 
STAR~ 1.00 0.94 0.93 0.46 0.92 

~s 1.00 0.87 0.43 0.82 
1.00 0.45 0.96 

LIB 1.00 0.45 
1960 GTS ITS STAR SUPER STAR( A SUP(AV TRANSL LIB SCHOO 

GTS 1 0.70 0.98 0.95 0.98 0.94 0.91 0.27 0.93 
ITS 1.00 0.74 0.67 0.73 0.72 0.54 0.37 0.61 
STAR 1.00 0.96 1.00 0.96 0.90 0.39 0.93 
SUPER 1.00 0.97 0.99 0.90 0.35 0.89 
STAR~ 1.00 0.97 0.91 0.39 0.92 

~s 1.00 0.85 0.39 0.86 
1.00 0.35 0.96 

LIB 1.00 0.32 
1970 GTS ITS STAR SUPER STAR( A SUP(AV TRANSL LIB SCHOO 

GTS 1 0.51 0.84 0.87 0.85 0.78 0.79 0.03 0.83 
ITS 1.00 0.61 0.57 0.60 0.61 0.35 0.13 0.37 
STAR 1.00 0.98 0.99 0.96 0.77 0.21 0.87 
SUPER 1.00 0.99 0.92 0.86 0.14 0.93 
STAR~ 1.00 0.96 0.80 0.22 0.89 

~s 1.00 0.61 0.30 0.80 
1.00 0.00 0.90 

LIB 1.00 0.17 
1980 GTS ITS STAR SUPER STAR( A SUP(AV TRANSL LIB SCHOO 

GTS 1 -0.04 0.97 0.93 0.97 0.58 0.69 0.29 0.89 
ITS 1.00 0.05 0.12 0.03 0.20 0.03 0.24 0.03 
STAR 1.00 0.97 1.00 0.62 0.72 0.29 0.93 
SUPER 1.00 0.97 0.73 0.63 0.33 0.90 
STAR~ 1.00 0.62 0.71 0.28 0.92 

~s 1.00 -0.04 0.40 0.40 
1.00 0.11 0.87 

LIB 1.00 0.20 
1990 GTS ITS STAR SUPER STAR( A SUP(AV TRANSL LIB SCHOO 

GTS 1 0.31 0.96 0.84 0.98 0.48 0.35 0.34 0.85 
ITS 1.00 0.43 0.39 0.41 0.20 0.15 -0.02 0.49 
STAR 1.00 0.75 0.99 0.35 0.46 0.26 0.93 
SUPER 1.00 0.81 0.85 -0.10 0.38 0.61 
STAR~ 1.00 0.42 0.42 0.29 0.92 

~ 1.00 -0.61 0.28 0.13 
SL 1.00 0.04 0.64 

LIB 1.00 0.26 
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Appendix Table 4: Auto-correlations 

OPTIMUM MEASURES 
Geographic Traveling Salesman 
1940 1950 1960 1970 1980 1990 
1.00 0.93 0.90 0.64 0.73 0.49 

1.00 0.87 0.67 0.78 0.62 
1.00 0.74 0.83 0.59 

1.0 0 0.64 0.53 
1.00 0.79 

1.00 
Intertemporal Traveling Salesman 
1940 1950 1960 1970 1980 1990 
1.00 0.84 0.57 0.33 -0.15 0.28 

1.00 0.63 0.26 -0.03 0.33 
1.00 0.41 -0.10 0.23 

1.00 0.03 0.22 
1.00 0.23 

1.00 
Star (minimum) 
1940 1950 1960 1970 1980 1990 
1.00 0.90 0.88 0.69 0.74 0.59 

1.00 0.88 0.74 0.72 0.55 
1.00 0.82 0.86 0.67 

1.00 0.79 0.64 
1.00 0.88 

1.00 
Superstar (minimum) 
1940 1950 1960 1970 1980 1990 
1.00 0.94 0.90 0.70 0.58 0.30 

1.00 0.94 0.74 0.63 0.33 
1.00 0.86 0.69 0.31 

1.00 0.76 0.44 
1.00 0.66 

1.00 
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Translog Estimates 
1940 1950 1960 1970 1980 1990 
1.00 0.97 0.95 0.83 0.85 0.59 

1.00 0.95 0.83 0.84 0.59 
1.00 0.91 0.89 0.65 

1.00 0.89 0.66 
1.00 0.83 

1.00 
Labor-Income-Based Human Capital 
1940 1950 1960 1970 1980 1990 
1.00 0.70 0.70 0.46 0.52 0.45 

1.00 0.71 0.41 0.50 0.40 
1.00 0.71 0.75 0.63 

1.00 0.65 0.68 
1.00 0.66 

1.00 
Average Years of Schooling 
1940 1950 1960 1970 1980 1990 
1.00 0.98 0.95 0.84 0.83 0.67 

1.00 0.97 0.87 0.86 0.71 
1.00 0.91 0.92 0.74 

1.00 0.91 0.76 
1.00 0.90 

1.00 
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Appendix Table 5: Correlation between Human Capital Estimates 

using Ad-Hoc Quadratic Cost Function (5) and Derived Cost Function (8) 

1940 0.991 

1950 0.897 

1960 0.983 

1970 0.837 

1980 0.963 

1990 0.944 

Stacked 0.973 

APPENDIX 2: Data Description and Sources 

To compute hwnan capital indexes across states of the United States, we use Census Data for all census years 

starting in 1940. We use the Public Use Microdata provided by the Census Bureau. The microsamples include 

information on the schooling, earnings, hours and weeks worked, and employment status of a (practically speaking) 

random sample of roughly one out of every one hundred Americans in each of the census years 1940, 1950, 1960, 

1970, 1980 and 1990.14•15 

14 The 1940, 1950, and 1960 PUMS ate 1/100. To economize on computing resources, we work with 
random subsamples of the later PUMS, arriving at a 1/1000 sample for 1970 and 1/200 samples for 1980 and 
1990. The 1970 subsample was provided by the Census Bureau who derived it from their 5% state sample. 
Our 1980 and 1990 subsamples were constructed from the larger 5% sample by taking only those households 
whose subsample number had a ones digit equal to 2. 

15 According to the Census Bureau, the 1960, 1970 and 1980 PUMS are self-weighting samples, and 
we treated them as such in our computations. We also treat our extracts of the 1940 and 1950 PUMS as 
self-weighting samples, noting that we extract all persons from the raw 1940 data files and only sample 
line persons from the raw 1950 data files. 

The 1990 PUMS is clearly not a self-weighted sample, so all of our computations for that year weight 
by the Census Bureau's estimate of the inverse of each person's sampling probability (columns 18-21 of 
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From the micro data, we compute the educational attainment distribution (among civilians aged 25-65) for each 

state at each of the six dates and the average weekly earnings for each schooling group at each date. 

Each state's educational attainment distribution is estimated by dividing its civilian labor force aged 25-65 

into seven schooling categories: 

0. No schooling 

1. 0-4 years of elementary school 

2. 5-8 years of elementary school 

3. 1-3 years of high school 

4. High school graduate 

5. 1-3 years of college 

6. College graduate or more 

"Years of schooling" refers to the highest grade completed.16 Nursery school and kindergarten are not counted as 

grades, so an individual qualifies for our no schooling category if he attended nursery school, or kindergarten, or even 

if he attended - but did not complete - first grade. 

We will take a worlcer's average weekly earnings (annual earnings divided by weeks worked, both for the year 

prior to the Census) to be his or her marginal productivity. Estimates of average weekly earnings are obtained from 

a subsample of the aged 25-65 civilian labor force (this subsample will be referred to as our "earnings sample"): 

employed civilians who worked at least 13 weeks in the year prior to the Census (the year for which earnings are 

reported), who were not self-employed, and who worked more than 30 usual hours per week (in the year of the 

Census or in the year prior to the Census, depending on the orientation of the Census question in that year). Workers 

the person record). For example, the regression criteria is to minimize a weighted sum of the squared 
residuals, where each person's residual is weighted by the inverse of his sampling probability 

16 Until 1990, it is not clear whether a response such as "6 years of college" means that the person 
obtained a bachelor's degree and worked for two years for a higher degree or whether he worked six years 
to obtain the bachelor's degree. 
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were excluded from the earnings sample if they were currently attending school or if, on average, they earned less 

than 67 1982 dollars per week, adjusted for "real economic growth" at 2% per year. Aged 25-65 civilians who 

satisfy these selection criteria form our "earnings sample." 
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Figure 6: Human Capital by Census Region 
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Figure 7: Human Capital Across States and Over Time 
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Figure 8: Convergence of Human Capital, 1940-1990 
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Figure 9: Convergence of Human Capital, 1980-1990 
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Figure 10: Dispersion of Human Capital and Schooling Over Time 
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