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Abstract 

The steady state and transitional dynamics of two-sector models of 
endogenous growth are analyzed in this paper. We describe necessary 
conditions for endogenous growth. The conditions allow us to reduce the 

. dynamics of the solution to a system with one - state-like and two 
control-like variables. We analyze the determinants of the long run growth 
rate. 

We use the Time-Elimination Method to analyze the transitional dynamics 
of the models. We find that there are transitions in real time if the 
point-in-time production possibility frontier is strictly concave, which 
occurs, for example, if the two production functions are different or if 
there are decreasing point-in-time returns in any of the sectors. 

We also show that if the models have a transition in real time, the 
models are globally saddle path stable. We find that the wealth or · 
consumption smoothing effect tends to dominate the substitution or real wage 
effect so that the transition from relatively low levels of physical capital 
is carried over through high work effort rather than high savings. 

We develop some empirical implications. We show that the models 
predict conditional convergence in that, in a cross section, the growth rate 
is predicted to be negatively related to initial income but only after some 
measure of human capital is held constant. Thus, the models are consistent 
with existing empirical cross country evidence . 

... :;.:. ;.· .. 



(I) INTRODUCTION. 

The transitional dynamics of two-sector models of endogenous growth are 

not well undrestood. Following the pioneering work of Lucas (1988), a lot 

of the recent endogenous -- growth - literature deals with economies with .two 

capital goods. One of. the goods is usually physical capital. The other one 

varies across models: human capital, ·embodied and -disembodied knowledge, 

public capital, quality of products, number of varieties of products, and 

financial capital are some examples of stock variables that are accumulated 

through some investment process; The analysis in all these papers is 

generally restricted to the steady state in that it is always assumed that 

all the variables in the economy grow at their long run growth rate. 

If there are initial imbalances among the different sectors, however, 

there may be a transitional period where the relevant variables do not 

behave as predicted by the steady state analysis. For instance, the initial 

ratio of capital stocks may not be the same as the steady state one due to -- · 

some recent unusual event such as a war or a large price shock: if, 

starting from a steady state position, a war destroys a large fraction of 

the physical capital stock leaving human capital relatively unaffected, the 

economy will somehow have to get back to the steady state proportions by 

having larger (smaller) than steady state growth rates for the physical 

(human) capital stock. It is natural to ask how, if at all, this happens. 

Due to its analytical difficulty, however, these transitional 'dynamics are 

always left unexplained. This paper tries to fill this gap in the 

literature by studying them in detail. Even though we will be calling the 

two capital stocks 'physical' and 'human', our analysis applies to any of 

the two-sector models mentioned above. 

There are several reasons why worrying about transitions is important 

and interesting. First, there is -the question of whether there actually are 

transitional dynamics and, if there are, what they look like. One could 

think of different plausible ways of correcting the initial sectoral 

imbalances. One possibility is to invest at an infinite rate in the capital 

stock that is relatively scarce. That is, the economy jumps to the steady 

state at time zero so there are no transitional dynamics. In this model 

agents may find it optimal to behave this way because they can invest in one 



good at infinite rates by disinvesting in the other good at an infinite rate 

while leaving the consumption path relatively smooth. An alternative 

plausible conjecture is that there is a transition in real time but that it 

entails investment in the relatively scarce sector ONLY. If this is the 

. case, the economy will look very much like the one-capital-good neoclassical· 

model, the transition of which we · already understand. A third plausible 

alternative is that the transition involves positive investment rates in 

both sectors. Initial imbalances· are then corrected by larger investment 

rates in the capital stock that is relatively scarce. This raises further 

questions like: where are the larger investment rates coming from? In a 

(closed economy) one-sector model the answer is larger savings. But in the 

class of two-sector models we consider, investment in one sector can also be 

increased by reducing investment in the other sector. It would therefore be 

interesting to know under what conditions agents rebuild their stock of 

physical capital by substituting away from other capital goods rather than 

by substituting away from consumption. A final plausible conjecture is that 

initial imbalances are not corrected at all because agents find it optimal 

to invest relatively more in the stock that is relatively more abundant. 

That is, the model could be unstable. We believe that being able to answer 

all these questions is important, and we shall do so in this paper. 

A second important reason for studying the transitional dynamics of 

two-sector models of endogenous ·.growth is to investigate their empirical 

implications. Despite the theoretical appeal of the concept of steady 

states or balanced growth paths, there is the possibility that the data sets 

available to empirical researchers involve economies in the transition 

towards some of these ideal states. In particular, the widely used Summers 

and Heston (1988) data set starts five years after the second world war. It 

can be persuasively argued that the unusual episodes of the 1940's 

represented shocks that took most world economies away from their steady 

state paths. If the model we like to use to analyze long run growth 

involves long transitions, we should not use the available data to 

empirically test the model, unless we understand its predictions along the 

transition. Furthermore, we should not use empirical·· tests (such as those 

developed by Bernard and Durlauf (1991)) that rely on the assumption of the 

economy's being in the steady state. 

On the other hand, testing the transitional implications of models 

2 



designed to explain long run growth may be a way to tell which ones should 

be used both for long run forecasting or policy advice. More specifically, 

using the Summers and Heston (1988) data set, a variety of researchers1 find 

that there is conditional · convergence across countries. By that is meant 

that countries that are relatively . poor at some initial moment (which in 

general is 1950 or 1960) tend to grow faster over the next 25 to 35 years· 

. but only if some other variables (such as measures of human capital 

accumulation or the savings rate) are held constant. People have 

interpreted these findings in the light of the neoclassical model and argued 

that the conditioning variables tend to hold constant the steady state 

towards which each particular economy converges. Hence, the argument goes, 

the data suggest that, as predicted by the neoclassical model and contrary 

to the one-sector endogenous growth model's implications, countries actually 

converge to their own steady state at decreasing growth rates. 

Thus, the one-sector endogenous growth models used as alternative 

hypothesis by the empirical papers above seem inconsistent with this body of 

.evidence .. ·Yet this does not mean that endogenous growth models with more 

sophisticated dynamics are inconsistent too. The problem is that the 

transitional dynamics of such models are not well understood - another 

reason why their study is important. As a matter of fact, we will show in 

this paper that these models predict that the growth rate should be 

negatively related to initial income, but · only if some variables (such .. as 

measures of human capital and/or savings rates) are held constant. 

Therefore, they are consistent with the existing empirical evidence. 

A third important reason to study the transitional dynamics of 

two-sector models is that they allow us to understand their predictions for 

the behavior of the economy in the short run, thereby providing integrated 

theories of business cycles and growth. Real business cycle theory has been 

relatively successful in explaining short run fluctuations by using the 

neoclassical growth model as the basic framework. Unfortunately, however, 

the neoclassical growth model leaves . the determinants of long run growth · 

unexplained. Endogenous growth theory, on the other hand, is an attempt to 

1 See Barro (1991), Barro and Sala-i-Martin (1991,1992), Mankiw, Romer, 
and Weil (1991). 
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characterize the determinants of the rate of long run growth. . The simpler 

one-sector models such as the "Ak" model tend not to have transitional 

dynamics which makes them uninteresting theories of the business cycle. 

This of course means that it is important to understand the transition of 

more sophisticated models of endogenous growth, such as the ones we deal in 

this paper. 

The rest of the paper is organized as follows. In section II we 

present a general two-sector. growth model with two capital goods. The 

investment in one of the two capital stocks (physical capital) is a perfect 

substitute for consumption, while the other , (human capital) is not. In 

section III we ·characterize the. solution. The next section derives 

necessary conditions for model to generate positive steady state growth 

rates (ie, endogenous growth). Section V summarizes the methodology used to 

analyze the transitional dynamics (Mulligan (1991) discusses the time 

el.imination method in more detail). Sections VI and VII examine the 

transition of the Lucas (1988) and the general two-sector models 

·respectively. . Section VIII presents some interesting empirical . implications 

of the models. The final section concludes. 

Throughout the paper we find a number of interesting results. We 

highlight them with italics as we move along. 

(1) 

(II) A GENERAL MODEL OF HUMAN CAPITAL AND GROWTH. 

(Ila) The Setup 

We assume that agents maximize a utility function of the form 

00 1-0 J e -pt ( c ( t ) -1) dt 
1-0 

0 

where c(t) is per capita consumption at time t, p is the subjective rate of 

time preference, which includes population growth2
, and 0 is the coefficient 

that measures the (constant). intertemporal elasticity of substitution. The 

2 * That is, p=p -n, where n is the exogenous rate of population growth and * p is the pure rate of time preference. 
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only consumption good is measured in units of final output. Final output is 

produced with two capital goods which we call physical and human. Physical 

capital is assumed to be foregone consumption. Human capital is produced in 

an alternative sector (which we call the education or learning sector). 

Households choose · a consumption path, and the amount of human and· physical··•• 

· capital they use .in each sector so as to maximize (l) subject to some 

accumulation constraints. 

" (2) k(t) = f(kf(t),hf(t),k(t),h(t)) 

(3) h(t) " = e(k (t),h (t),h(t),k(t)) e e 

k(O)>O and h(O)>O, given. 

okk(t) - c(t) 

where k() and h() are the net accumulations of physical and human capital 

respectively, and f() and e() are the (flow) productions of final output (f 

stands for final) and human capital (e stands for education). These two 

production functions are assumed to exhibit constant returns to the sector 

specific capital stocks: hf and kf are the effective amounts of human and 

physical capital employed in the final output sector, and h and k are the e e 
corresponding variables for the education sector3

• ·We also allow for the 

.possibility of externalities from the average 4 stocks of capital Ck and h) 

in both sectors. The reason for these externalities is that we want to 

3 Note that we are not allowing for non-reproducible inputs such as raw 
labor or land. The reason is that we will end up constraining our analysis 
to models that display endogenous growth. This restriction limits the role 
for such inputs. In order to simplify notation, therefore, we decided to 
neglect them all together. 

4 One could also assume that the externalities . apply to the total (not 
. average) stock of physical or human capital. This alternative specification · 
would generate counterfactual scale effects. 

Externalities from the aggregate level of investment in one of the two 
capital goods could also be introduced. Chamley (1991) shows that, at least 
in the Lucas (1988) specification, they yield the same results as 
externalities from the stocks. 
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allow for the production function to exhibit increasing (or decreasing) 

returns to scale, yet we want to have a competitive solution. The modeling 

of increasing returns through externalities is, after Romer (1986) and Lucas 

(1988), common practice among endogenous growth theorists. These 

externalities could be positive, negative or zero and we have no presumption 

over their sign. 

Note that the key asymmetry between the two capital goods is that the 

accumulation of one· of them, k(t), -is a perfect substitute· for consumption· 

(ie, consumption subtracts from k(t) and not from h(t)). Hence, even though 

we are calling k physical and h human capital, technically speaking, the key 

distinction between capital goods is whether their accumulation is a perfect 

substitute for consumption or not. Some of the early two-sector 

neoclassical models such as Srinivasan (1962), Ryder (1969), Kurz (1968), or 

Burmeister (1980, chapter 6) assume that the production process for 

consumption . and ... ,. capital are essentially different. Their models are 

slightly more complicated because they involve an additional control 

variable and an additional relative price. Their approach amounts to the 

introduction of adjustment costs in the transformation of consumption into 

physical capital in our model. Our simpler specification, however, seems a 
5 good place for us to start . 

The depreciation rates ok and oh are assumed to be constant over time 

and .may include population growth rates (because the model is expressed in 

per capita terms). The depreciation of physical capital has the usual 

interpretation. 

interpretations. 

The depreciation rate of human capital has two different 

First, people tend to forget the things they learn. 

Second, we can interpret the infinite horizon assumption as a family whose 

generations are altruistically linked (as in Barro (1974)). In this setup, 

5 Another key difference with the early literature is that we will 
.. restrict . ourselves to parameterizations that can generate· endogenous ·growth.-· 

As we will argue in section IV, this simplifies our problem even further. 
Within the the endogenous growth literature, Rebelo (1991) uses a 

two-sector model similar to the one we propose here but he confines his 
analysis to the steady state. Jones and Manuelli (1990) show conditions for 
endogenous growth in models with N capital goods, where all of them are 
produced with a single technology, which is also used to produce output. . . . 
That is, FCK1,K2, ... KN)=K1+K2+ ... +KN+C. 

are left unexplained. 
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depreciation can be thought of as imperfect transmission of human capital 

across generations. 

We assume that the two production functions are Cobb Douglas with 

constant returns to the private inputs 

(4) f(.) 

(5) e(.) 

where A and </> are productivity parameters that reflect the level of 

technology in each sector, where the physical capital shares, a: and (3, may 

or may not be the same in the two sectors and where the externality 

parameters, ~. may be positive, negative or zero. 
1 

(Ilb) Point-in-Time Technologies and Point-in-Time Returns. 

At every point in time, the economy-wide stocks of capital, k(t) and 

h(t) are given. Agents can generate a sector-specific capital, kf(t), 

ke(t), hf(t), and he(t), combining the aggregate stocks and effort6 with 

what we call point-in-time technologies1
. Both humans and machines are 

endowed with one unit of effort, which can be allocated across the two 

sectors. Thus, if we define u(t) as the human capital effort in the final 
output sector, and v(t) as the physical capital effort in the final output 
sector, the corresponding efforts in the learning sector are 1-u(t) and 

1-v(t) respectively. The point-in-time technologies for the sector specific 

6 We would prefer to use the word "time" rather than "effort" because we 
have endowments of 24 hours per day or 7 days a week in mind. However, 
"time" could be confused with the variable t in our model. 

7 This is not the first paper to consider point-in-time technologies nor 
is ours the first· growth model that allows for decreasing point-in-time· 
returns - see Lucas (1990) and Heckman (1976). We stress the importance of 
point-in-time returns for understanding transitional dynamics. 
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:, 

capital stocks are 

c /(I-a) 
(6) hf(t) = u(t) 1 h(t) 

c /a 
kf(t) = v(t) 2 k(t) 

"' /(1-{3) 
h (t) = (1-u(t)) 1 h(t) e 

"' /{3 k (t) = (1-v(t)) 2 k(t) e 

If th~ exponent on an effort variable is less than one, we, say that 

there are decreasing point-in-time returns in the production of that capital 

stock (see figure la). Note that in addition to exhibiting decreasing 

returns to effort, this specification has the property that the marginal 

product at zero effort is infinite. Thus, if the exponent in an effort 

variable is less than one, optimizing agents never choose zero effort in the 

· production of that . sector-specific stock. If the exponent in an effort 

variable is exactly equal to one, we say that there are constant 
point-in-time returns. In the case of constant point-in-time returns in all 

sectors, we can think of u(t) and v(t) as being the fraction of aggregate 

human and physical capital used in the final output sector at instant t 

(and, conversely, (1-u(t)) and (1-v(t)) are the fractions used in the 

education sector). With the sector-specific capital production functions 

above, the capital accumulation equations become: 

(2)' k(t) 
c c 2 1-a a,.. i.;;1,.. i.;;2 = A u(t) 1v(t) h(t) k(t) h(t) k(t) - okk(t) - c(t) 

"' "' 1-{3 f3 i;; i;; (3)' h(t) = </> (1-u(t)) 1c1-v(t)) 2h(t) k(t) h(t) 3k(t) 4 - ohh(t) 

It is worth noticing at this point that our model includes, as a 

particular- case, that of Lucas (1988) where the production function of human 

capital is assumed to use human capital·. only. This assumption implies that 

all the physical capital is employed in the output sector. and, therefore,. 

the share · v is trivially set to one · at all .. points in time. Furthermore, it 

is assumed that the production of human capital exhibits constant returns to . 

8 
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human capital8
• 

c1=1-IX, "11=1. We also note that he imposes constant point-in-time returns. 

The two accumulation constraints in Lucas (1988) are, therefore 

IX (1-IX)" < 
k(t) = Ak(t) (u(t)h(t)) h(t) l - c(t) - okk(t) 

h(t) = q, (1-u(t)) h(t) - ohh(t) 

(Ile) Convex Production Possibility Sets and Adjustment Costs. 

Implicit in (2)' and (3)' is the possibility of "costs of adjustment" . 
between the two sectors, reflected in the parameters c 1, c 2, "11, and l/J2. 

Consider the production possibilities facing a consumer at a point in time -

when the aggregate capital stocks are fixed. 

hypothetical production possibility frontier (PPF). 

Figure 2a graphs a 

Given h(t) and k(t), 

agents can choose to produce a lot of education by putting zero effort in 

the final output sector. When v=u=O, q,kf3hl-{3 units (a flow) of human 

capital are produced. Alternatively, agents can choose to produce a lot of 

final output by devoting all their effort to that sector. For u = v = 1, 

Ak~l-IX units (a flow) of physical capital are produced. Intermediate 

values for u and v will produce at points in the interior of the production 

possibility set (PPS). 

When we say that there are adjustment costs, we mean that this 

production possibility set is . strictly convex (production. possibility 

frontier strictly concave). If, as in figure 2b, the production possibility 

frontier is a straight line, we say that there are no adjustment costs. 

Why the term "adjustment costs?". Consider one situation where at time 

1 we want to put a lot of effort and resources in the production of physical 
cl c2 

capital so that u v is equal to, say, 10, and at time 2 we do not want to 
cl c2 

invest in that sector at all so u v =O. If there are adjustment costs the 

total flow of final and human· output will be lower than in an alternative· 
•t t• h l-IX IX . l t 5 . b th . d Th t . . Ab 1 s1 ua ion w ere u v is equa o m o per10 s. a is, as m e 

and Blanchard (1983), firms want to . smooth investment over time. It is in . 

8 See Heckman (1976) for an 
relevance of such production function. 

empirical 
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this sense that we will think of a strictly convex production possibility 

set as reflecting installation or adjustment costs. 

How do the parameters c1, c 2, 1/11, and 1/12 relate to the convexity of the 

production possibility set at a point in time? Algebraically, it is quite 

complicated, but we build a lot of intuition by discussing some special ·. 

examples. 

EXAMPLE 1: Constant Points-in-Time Returns and Identical technologies. 

Consider the. case ·when c1=1-a, c 2=a, 1/11=1-(3, 1/12={3 so all the 

point-in-time technologies exhibit constant returns, and a={3 so that the two 

sectors use the same production functions. That is, in the absence of 

externalities, the two capital accumulation constraints are 

a l-a 
·· ,. k(t) = A [v(t)k(t)] [u(t)h(t)] - okk(t) c(t) 

a l-a 
h(t) = </> [(1-v(t))k(t)] [(1-u(t))h(t)] - ohh(t) 

The production possibility frontier in this case is a straight line and 

looks like figure 2b 9• 

Interesting Result #1: If all . the point-in-time technologies exhibit 
constant returns to scale AND the production functions in the two sectors 
are the same, then the point-in-time production possibility frontier is 
linear. 

EXAMPLE 2: Constant Point-in-Time Returns and Different Technologies. 

Suppose now that c1=1-a, c 2=a, 1/11=1-(3, 1/12={3 so all the point-in-time 

9 We should note . that the linearity of . the PPF depends on the fact that 
the exponents on u's and v's are the same in f() and in e() Cc1 = l-c2 and· 

1/11 = 1-1/12 and c1 = I/Ji) rather than on the ·fact that the exponents on k and h 

are the same. in both technologies (a={3). For instance, we can get a linear 
PPF with decreasing point-in-time returns in hf Cie, c1<1-a), but only if 

there are offsetting increasing point-in-time returns in kf (ie, c 2>a) and 

the same is true for h and k . Note also, that whether there are e e 
externalities or not has nothing to with the convexity of the PPS. 
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technologies exhibit constant returns, BUT ex=*f3 so that the two sectors use 

different technologies. 

ex 1-ex 
k(t) = A [v(t)k(t)] [u(t)h(t)] - '1ck(t) 

1-fj 
- c(t) 

(3 
h(t) = </J ((1-v(t))k(t)] ((1-u(t))h(t)J - ohh(t) 

In this case the PPF looks like · Figure la so we say that there are 

adjustment 

category: 

10 costs. Note that the Lucas (1988) model falls into this 

it is a constant point-in-time returns model with· a strictly •· 

convex production possibility set due to different production functions for: 

the two sectors. Thus, the Lucas model entails adjustment costs. 

Interesting Result #2: 
constant returns to scale 
are different, then the 
strictly concave. 

If all the point-in-time technologies exhibit 
BUT the production functions in the two sectors 
point-in-time production possibility frontier is 

CASE 3: Decreasing Point-in-Time Returns. 

Third, suppose that e1 ::5 l-e2 and 1/11 ::5 1-1/12, with one inequality 

strict. That is, suppose that there are decreasing point-in-time returns 

somewhere. 11 The PPF is .in this case strictly concave (as in Figure la) so 

we say there are adjustment costs. 

Interesting Result #3: If the point-in-time production functions in the two 
sectors exhibit nonincreasing returns to scale and at least one of the 
sectors exhibits strictly decreasing returns, then the point-in-time 

10 Again, we should note that the convexity of the PPS depends on the fact 
that the exponents on the effort variables NOT the exponents of the capital 
stocks are different in the two sectors (ie, what matters is that e1 * "11 
and not ex * (3, or whether there are externalities or not). 

11 With our Cobb-Douglas production functions, decreasing point in time 
returns impose another condition· on the PPF. If the decreasing point in 
time returns are in the physical capital sector, then the marginal rate of 
transformation must be infinite at u = v = 0. If they are in the human 

·capital sector then (the inverse of) the marginal rate of transformation 
must be zero at u = v = 1. This extra restriction is peculiar to 
Cobb-Douglas. 
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production frontier is strictly concave. 

To summarize, non-increasing point-in-time returns are sufficient to 

generate adjustment costs when the production functions are different. If 

the production functions are the same,. then we require decreasing point in 

time returns somewhere. 

(III) First Order Conditions, State-like, and Control-like variables; 

Agents choose .. the paths for c(t), • u(t), v(t), k(t) and h(t) so .·as· to 

maximize utility in · (1) subject .to (2)' and (3)', taking . k(O), h(O), k(t), 

and h(t) as given. The first order conditions are well known and, 

therefore, are confined to the appendix (see, for instance, Sala-i-Martin 

(1990) for a detailed derivation). 

To simplify notation, we define the following parameters 

(?) «1 = « + ~2' «2 = (l-a.) + ~1' - -131 = 13 + ~4' 132 = (1-13) + ~3 

The tilded variables are the elasticities for the social production function 

when an aggregate consistency condition is imposed. They are the sum of 

the corresponding private elasticity and externality parameter. 

The first order condition (A8) is a relation between the fraction of 

physical capital, v, and the fraction of human capital, u, used in the final 

output, 

u(t) 
(8) v(u(t)) = -----

b. + u(t)(l-b.) 
for all t 

Notice that equation (8) 

implies that when u=l, then v=l, when u=O, then v=O, and· the ,derivative of v 

with respect to u is positive for all u between zero and one 

(v'(u)=l/[/J,.{1-(1-(1/b.))u}2 J>O). If e/e2 = l/J/1/12, b. is equal to one all the 

time and therefore v is always equal to u. That is, if the technology. for . 

producing final output is "similar" to the production for producing human 

capital, then the fraction of physical and human capital used in the 

production of final goods will be the same. The relation between the growth 
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rate of u and v is r (t)=r (t)/[l-u(t)(l-l'.l-1)]. v u 
Note that (8) can be thought of as a static optimality condition. One 

could call v(u) the contract curve in a production Edgeworth box shown in 

figure 3. The dimension of . the box is one by one, with the southwest and 

northeast .. corners corresponding to (u,v) = (0,0) and (1,1) respectively. 

The contract curve is the locus· of points at which the isoquants ·for both 

sectors are tangent. Thus, if. v(t) *: v(u(t)), then output in both sectors 

could be increased by moving to a point on the contract· curve where (8} is 

satisfied. In terms of the production possibility sets in figure 2, those 

allocations of effort which· satisfy (8) specify the frontier; the other 

allocations are in the interior of the production possibility set. 

The monotonic relation between u and v indicates that economic agents 

never choose to increase human capital in one sector and reduce physical 

capital in that same sector. In other words, we can think about them 

deciding .how much overall resources to spend in either sector and not worry 

too much about the exact resource (whether physical or human capital) spent 

.since they will both move together: an extra research assistant without a · 

computer is not good and an extra computer without a research assistant is 

not good either. In practice, this means that we can use either one of them 

as a control variable, since the other one is immediately and uniquely 

determined by equation (8). 

Interesting Result #4: The optimality conditions require that the two 
effort variables be monotonically related. We can therefore eliminate one 
of the control variables of the problem. 

After eliminating v(t), the rest of the first order conditions entail 

four non-linear differential equations (u, c, k, h) in four variables: two 

controls (c and u) and two states (k and h). To solve for the transition, 

our goal is to find some figures with steady state points and trajectories 

· displaying movement .towards or away from them (just ·like the phase diagram 

in the one-sector neoclassical growth model). In order to achieve this goal 

we face two problems. First, we are dealing with four-dimensional .spaces 

which are hard to graph. Second, because we want to allow for the 

possibility of positive steady state growth rates, some of the four 

variables may not be stationary. 

In order to solve the problem of an ever growing steady state, it will 
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be convenient to define what Mulligan (1991) calls state-like and 

control-like variables. State-like variables will be transformations of 

state variables only, with the property that, unlike the state variables h 

and . k, they remain constant and finite in the steady state. In the present 

model we use the following two state-like variables 

(9) z1Ct) = k(t) h(t) 
a 2/ca1-1> 

(10) z2Ct) = k(t) h(t) 
(~2-l)/~1 

Both z1 and z2 are increasing in k and (if «1 <1 and {32 <1) decreasing in 

c« -1> . h. One way to think about them is the following: z1 t is the output to 

capital ratio f(. )/k, when all the capital (both physical and human) is 

employed in the final output sector, that is when u=v=112
• So in some sense, 

(a -l) · h · f t . 1 . 1 z1 1 · is t e ratio o po entia output to capita . 
~ 

Similarly, z131 is the 
1 

education output to human capital ratio g(. )/h, when all the resources are 

employed in that sector. 

education sector. It 

~ 

Hence, zf31 is the average potential output in the 
1 

is interesting to note that in the absence of 

externalities (so al=<X, a2=l-<X, ~1={3 and ~2=1-{3), both zl and z2 are equal 
to the ratio of physical to human capital, k/h. 

It will also be convenient to use control-like variables as 

transformations of control variables that, unlike c(t), do not grow in the 

steady state. For most models, the ratio of consumption to physical capital 

will work. Thus, we just need to define a as 

(11) a(t) - c(t) / k(t) 

. The steady state growth rate of the ·other control variable u (and v) is 

zero so we can use it as the second control-like variable. 

12 A "-" on top of f and g indicates potential output for that sector. 
That is, the instantaneous flow of output that the economy could get if all 
the resources were employed in that sector. 
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Our next step is to rewrite the whole dynamic system using state-like 

and control-like variables only. To get the growth rates of the newly 

defined state-like variables, take logarithms and time derivatives of (9) 

and (10) and get 

Rewrite the growth rate of work effort (A9) in the appendix in terms of 

coritrol-like and state-like variables only 

(15) Q = u 
= 

denominator 

(1-u)c2+ulfJ2/f1 

where denominator = (1-u)-1(c1-c1)+u(c1-lfJ1)- _1 ) and e is 
1-(1-f1 )u 

defined in (3). Finally, the growth rate of the new control-like variable a 

is given by 

where 

and where 
~ 

cl c2 cx.1-1 
(18) ak(t) = A u(t) v(u(t)) z1(t) - a(t) - ok 

~ 

l/Jl l/J2 1\ 
(19) ah(t) = </> (1-u(t)) (1-v(u(t))) z2(t) - oh 

(equations (17) and (18) are found by dividing the constraints (4) and (5) 

by k and h respectively). 
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Interesting Result #5: The dynamic solution to our model can be transformed . . . 
into a system of four ordinary differential equations (z1(t), z2(t), u(t), 

a(t)) with two control-like variables (a(t) and u(t)) and two state-like 
variables Cz

1
(t) and z

2
(t)) with . the property that, in the steady state 

z1 (t)=z2(t)=u(t)=a(t)=O. 

Equations (12), (14), (15) and (16) ··plus the transversality conditions. 

(A6) fully describe the ·transitional dynamics and the steady state of the 

. model.· The next section characterizes the steady state . Section (V) 

studies the transition. 

(IV) STEADY STATE ANALYSIS. 

(IVa). Necessary Conditions for Endogenous Growth. 

Define steady state (or balanced growth path) as the state where all 

the variables grow at a constant (possibly zero) rate. Thus, we rule out 

paths with ever increasing growth rates, but we allow for the possibility of 

zero steady state growth rates. 

Define "Endogenous Growth Models" as those models that can generate 

positive steady state growth rates of the level variables k, h, c, and y. 

Equation (17) says that, 
* constants. Hence, z
1 

is also 

in the steady state, z1 is equal to a bunch of 
* constant and 0 (the steady state growth rate 
zl 

* Equation (18) then says that a is * equal to constants so 0 a 
is equal to zero. This of course implies that the steady state growth rate 

* * of consumption is equal to that of physical capital o =ok· 
* c 

Equation (19), 

on the other hand, implies that, z2 is also equal to a bunch of constants so 
* its value is constant and therefore, 0 is·· equal to zero. That is, we see 
z2 

that, in fact, the ·growth rate of the . control-like and state...: like variables .. · 

is zero 

* (20) oz = 
1 

* oz 
2 

* * = 0 = 0 a u = 0 
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* * 

* * 
The steady state condition r =r =O means that (12) and (14) form a 

zl z2 
homogeneous system of linear equations in r k and r h 

* * A necessary condition for it to have positive solutions for rk and rh 

is that the determinant of the system be zero.. In other words, a necessary 

condition for the model to display endogenous growth is13
' 
14 

Note that this condition involves the elasticities of both capital 

goods in both social production functions (each social elasticity involves 

both the private elasticity and the externality parameter). In particular, 

it is ·independent of the level of technologies (A and </>), the taste 

parameters (p and 0), and the existence of adjustment costs (reflected in 

el' e2, t/Jl' and "12). 

Interesting Result #6: If we want the two-sector models to display positive 
steady state growth rates (endogenous growth) the social capital shares of 
the two production functions must be related according to condition 22. 

Condition (22) restricts the technologies we are allowed to use if we 

•want the model to generate growth endogenously. To gain some intuition on 

what are the restrictions imposed by it, let us highlight some models that 

satisfy it: 

(a) If there are social constant returns to physical capital in the 

13 The sufficient conditions and the bounded utility conditions will 
entail further restrictions on · the size of the parameters. They will 
require the economy to be sufficiently productive so as to generate 
permanent growth but not so productive that there is no scarcity. 

If we substitute using the definitions of the tilded variables, we get: 

(22)' 
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final output sector Ca1=1), then we must either have the production of 

education independent of physical capital (~1=0) or the final output sector 

independent of human capital Ca2=0). This latter case corresponds to the 

linear Ak technology used by Rebelo (1991). or Romer (1986), where output is 

linear in k and independent of human capital. 

(b) If there are constant returns to human capital in the education 

sector C~2=1), then we must either· have the. final. output sector. depending on .. 

physical capital only Ca2=0) or the education ·sector depending· on human.· 

capital only C~1=0). Notice that this latter case corresponds to the Lucas 

(1988) production function in equations (4)' and (5)'. We should also 

realize that in this case, there may be increasing, constant or decreasing 

returns to scale in the production of output since the conditions C~2=1) and 

(~1=0) impose no restrictions on al or «2. 
(c) If both capital stocks are used in both sectors 

there are constant returns in one sector Ca2=1-a1), then there must be 

constant returns in the other sector C~1=1-~2). 
~ ~ 

(d) If both capital stocks are used in both sectors ( O<cx1,(3
1 
<1 ) and 

there are diminishing returns in one sector Ca2<1-a1), then there must be 

exactly offsetting increasing returns in the other one C~1>1-~2). 

In terms of the Inada conditions, we know that a necessary and 

sufficient condition for the one capital good model to display endogenous 

growth is that the marginal product of capital be sufficiently bounded away 

from zero (Jones and Manuelli (1990)). Our analysis of the 

two-capital-goods models suggests that the marginal product of either 

capital good on either sector can approach zero as capital grows without 

bounds and still get endogenous growth. Condition (22) indicates, however, 

that the marginal product of at least one of the sectors must be bounded 

away from zero as physical capital tends to infinity and human capital grows 

at the corresponding optimal rate. That is, the marginal product of a 

"broad measure of capital" is bounded above zero. 

More importantly, the necessary condition for endogenous growth (22) 

imposes some restrictions on the relation between z1 and z2. Namely, 

(23) = z 
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This condition means that any two-sector model that is to display positive 

steady state growth rates can be expressed in terms of ONLY ONE state-like 

predetermined variable, z=z1. 

Interesting Result #7: The dynamic solution of· any two-sector model of .. 
endogenous growth of the class considered in this paper can be written in 
terms of ONE state-like variable and TWO control-like variables. 

The imposition · of condition (22) .is probably the main difference 

between the early · neoclassical multi-sector , neoclassical models (such as 

Kurz (1968), Ryder (1967), Srinivasan.··· (1962), or .Burmeister · (1980, chapter 

6)) and ours: it allows us to reduce our analysis by one. dimension so our 

models are simpler. 

(!Vb) Steady State Comparative Statics. 

The Lucas (1988) Model. 

We now want to analyze the steady state behavior of some particular 

cases of our general two-sector model. The first one is the one proposed by 

Lucas (1988). As mentioned above, the main simplifying assumption is that 

the production of education exhibits constant returns to scale to its only 

., input, human capital. This simplification allows for closed form solutions. 

The externalities in the human capital sector are set to zero (as condition . 

(22) requires when /3=0). Following Lucas, however, we allow for positive 

externalities from the average stock of human capital in the production of 

final output, <:1>0. The steady state growth rates are 

* a- =«t>-p-o Hl-a)/(e(l-a+<: >-<: ) h h 1 1 

* * a- =a- =a- (1-a+<: )/(1-o:) c k h 1 

and the steady state work effort is given by 

To quantify these steady state rates, let us imagine that the 
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parameters of the model are the following: A=l, (3=0, </>=.l, 0=2, p=.065, and 

ok =oh =O. The steady state growth rate implied by these parameters is 1. 75% 

a year. The steady state fraction of human capital devoted to the final 

output sector is . 825 and the consumption to physical capital ratio is 

.1825. In Table 1 we report the signs of the derivatives of relevant steady 
* state variables (ie, the growth rate of per capita consumption15

, . '¥ , the 
* .. fraction of human capital . employed in . the final output sector, u , . and .the 

* · consumption to physical capital ratio, a ), with· .respect to any of · the 

parameters of the model. We observe, for instance, that an increase in the 

··productivity·. parameter· of the final. output sector leaves the growth rate· 

unchanged. The growth rates, on the other hand, depend positively on the 

level of technology of the human capital sector, and the savings parameters 

(negative effects of both 0 and p). An increase in the size of either 

externality increases the growth rate of consumption and physical capital as 

the private incentives to save increase. Of course all these effects can be 

seen directly from the closed form formulas above. 

The two-capital-goods benchmark. 

The second benchmark model we want to study is one where both capital 

stocks are used in both sectors, and where there are no adjustment costs or 

externalities. The baseline parameters used are A=l, </>=.1, ex={3=.5, 0=2, 

p=. 065, and ok =oh =O. Notice that, by equation (8), the assumption that ex 

equals (3 implies that u and v are equal at all points in time. In other 

words, the accumulation constraints for the second benchmark model can be 

written as follows: 

• 1-ex ex 
k(t) = A u(t) (h(t) k(t) ) - c(t) 
. 1-ex ex 
h(t) = <P (1-u(t)) ( h(t) k(t) ) 

If we reinterpret u(t) as the fraction of output that is left _after 

15 The steady state growth rates of consumption and physical capital will 
always be the same because our formulation assumes perfect substitutability 
between consumption and investment. In the presence of externalities, the 
growth rate of human capital may be different from that of c and k. 
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government taxes (so -r(t)=l-u(t) is the income tax rate) and h and k are 

public and private capital respectively, this benchmark model can be 

interpreted, as a planner•s problem in a model similar to Barro (1990a) where 

the public input is a stock of public capital that needs . to be accumulated · 

rather· than instantaneous public services (see Mulligan and Sala-i-Martin 

(1991) for a model of this type). 

, The steady state growth rate of consumption and capital is cr=.0466 (or· 

4.663 a year). In . this particular parameterization with no ,,externalities,· 

the steady state growth rate of both capital stocks equals that · of 

consumption. The steady state work· effort or fraction, of labor resources., 
* used in the production of physical goods, u , is .8528 and the consumption 

* to physical capital ratio, a , is .2231. 

Table 2 shows the partial derivatives of the main, endogenous variables 

with respect to the exogenous parameters. The main difference between this 

and the Lucas model is that here the steady state growth rate depends 

positively on the productivity parameter of the final output. 

(V) A METHODOLOGY TO STUDY TRANSITIONS: THE TIME-ELIMINATION METHOD. 

Here we look at the two-sector growth models outside of the steady 

state. The basis for our analysis is the Time-Elimination Method. It 

provides us with a practical and efficient algorithm for solving these 

models numerically. Time-Elimination is discussed in detail in Mulligan 

(1991). Judd (1990) considers numerical techniques more generally. The 

Euler equations (A7) and (A9) and budget constraints (4) and (5) describe 

the solution for the dynamic optimization problem (1)-(5). Optimal c(t), 

u(t), v(t), k(t) and h(t) are the solutions to a boundary value type system 

of ordinary differential equations in time. The system is (4), (5), (A7), 

(A9) and the boundary conditions are the Transversality Conditions (TVC) 

described . in the appendix. Numerical solutions to boundary value problems 

can be found by. shooting. For example, this is the methodology employed by 

King and Rebelo (1989) and Jorgenson and Jun (1990) to examine one-sector 

growth models. 

Numerically, boundary value problems are much more difficult - both 

conceptually and computationally to solve than are initial value 
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16 problems . In fact, the shooting method becomes unwieldy for more than a 

few dimensions. One key advantage of the Time-Elimination method is that it 

transforms the boundary value type problem described by (4), (5), (A7), (A9) 

and the TVC's into an initial value problem. 

The Time-Elimination method is a four step algorithm. First, as in 

section II, we define the state-like variables, z1(t) and z2(t), and 

, control-like variables, a(t), u(t), and v(t).. As ·we showed in section III, .. 

the original ·Euler equations can be expressed in terms of z1(t), z2(t), 

a(t), u(t) and v(t) only. But as we showed in section IV, the condition for 

balanced growth (condition 22) requires z2· to be equal to z1=z. The three 

relevant dynamic equations (12), (15) and (17) can be written as 

(24) z(t) = K1(a(t),u(t),z(t)) 

u(t) = K 2(a(t),u(t),z(t)) 

a(t) = i<
3

(a(t),u(t),z(t)) 

where K. are complicated nonlinear functions. 
1 

Second, we argue that for (interesting) optimal solutions state-like 

·and control-like variables will be constant and finite in the steady state. 

This was shown in the last section. 

Third, since the Euler equations describing the state-like and 

control-like variables only depend on these variables, we think about policy 
functions for the control-like variables: 

(25) a(t) = a(z(t)) 

u(t) = u(z(t)) 

Using (25), the transformed Euler equations in z, a and u can be 

16 On a more pragmatic Jevel, · computer.- math packages are much more -likely 
to include routines that solve initial value problems than to include 
routines that solve boundary value problems. We use MATLAB's ODE23 routine 
to solve initial value problems. We can therefore worry about economics 
rather than numerical mathematics (we believe that we have a comparative 
advantage in the former). See Press, et al (1990) for a comparison of 
initial value and boundary value problems. 
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manipulated to eliminate the time component as follows: 

(26) a'(z) = ci(t) / z(t) = K.3(a(z),u(z),z) / "1(a(z),u(z),z) = ~l(z) 

u'(z) = u(t) / z(t) = "2(a(z),u(z),z) / "1(a(z),u(z),z) = ~2(z) 

The equations ·in (26) yield the slope of the policy functions or stable arms 
* .. , for all values of z (except z ). From step .. two ·we know the value of the 

policy function . at the steady state (that is, the transversality conditions · 

imply that the policy function must go through the steady state): 

* * (27) a = a(z ) 
* * u = u(z ) 

With one modification, (26) - (27) is an initial value problem. The 

required modification is to specify the slope of the policy function at the 

steady state (notice that at the steady state a=u=z=O so equations (26) 

· ·cannot be applied directly. If one .· can easily distinguish stable from · 

unstable arms, these slopes can be found by applying L'Hopital's rule to 

(26). 17 Alternatively, one can linearize (26) around the steady state. The 

eigenvectors are tangent to the true (nonlinear) arms at the steady state 

and the eigenvalues can be used to distinguish stable from unstable arms. 

Because we did not know a priori whether the models are saddle path stable 

and we did not know the · slope of the stable arms at the steady state, we 

used this second procedure. 

The fourth step consists of using MATLAB's subroutine ODE23 to solve 

the two differential equations in (26), subject to the initial values in 

(27), and the steady state slopes just described. That is, 

(28) a(z) = J a'(z)dz + cl 

u(z) = Ju' (z)dz + c2 

where c 1 and c 2 are integrating constants. As mentioned above, these 

17 It is important to distinguish stable from unstable arms since all of 
them satisfy (26)-(27). 
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constants are determined by the fact that the policy function must go 

through the steady state point. 

Additionally, we may be interested in finding the time path for z. 

This can be done by substituting the policy functions into (10) and 

(numerically) integrate with respect to t. 18 Most interesting economic 

questions, however, can be answered from knowledge of the policy function 

alone. 

Two of the beauties of the method used in this paper are the speed at 

which the computer vomits the answers and the simplicity of the programs 

needed: on an IBM 16 MHz 386SX, we usually · can find policy functions for · 

the problem (1) to (5) in less than 30 seconds!. We do not have the 

patience to try shooting, but guess that shooting would take somewhere on 

the order of one hour to solve the same models. 

As we argued above, the dynamics of the system are fully determined by 

·one· state-like variable, z, and two control-like variables, u and a. The 

evolution of the economy can be described by a phase diagram. The stable 

arm (the models do turn out to be saddle-path stable) will be a one .. 

dimensional curve in a three dimensional space. This curve goes through the 

steady state. In order to simplify the figures, we will report the 

projections of this curve onto the [u,z] two dimensional space and the [a,z] 

two dimensional space separately (i.e., the policy functions u(z) and a(z)). 

(VI) TRANSITIONAL DYNAMICS IN THE LUCAS MODEL. 

(Via) Stability 

We start by applying the methodology just described to study the 

transition of the Lucas (1988) model. From (9) and (10), the only 

state-like variable z is equal to the ratio of the two capital stocks, k/h. 

As part of the time-elimination method just described, we need to compute 

the eigenvalues of the linearization of the system • around the steady state. 

We always find that there is one negative and two positive eigenvalues so 

that the model is locally saddle path stable. This is true even when we 

include positive externalities . in the final output sector · so · that it .· 

18 The integration of (10) subject to some z(O) is another initial value 
problem. 
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We then apply the time-elimination method and we are able to calculate 

the policy functions for any value of k/h between zero and any (arbitrarily 

large) positive number. This means that the model is globally saddle path 

stable20
• 

·Interesting. result #8: .. The· Lucas (1988) model of endogenous growth .is. 
globally saddle path stable. 

(Vlb) Transition. 

But interesting as they are, the stability properties of the model are 

not our ultimate goal. We want to find out what are the economic forces 

that lead the economy from any arbitrary initial ratio (k/h)0 to the steady 
* state ratio (k/h) . 

'Consider an·-- initial condition where physical capital is relatively 
scarce -(k/h)0 low. Obviously, if the economy has to go to the steady 

.·.state, ··economic agents must invest in physical capital more intensively. In· 

this model there are two ways of doing that: first, they can reduce 

consumption (because consumption is a substitute for physical capital 

investment). Second, they can work harder in the final output sector 

(physical capital is produced out of final output). Since agents like to 

smooth consumption, they don't like the first choice. This is a wealth or 

· · consumption smoothing effect. Low k/h, on · the other . hand, implies low 
21 wages and low willingness to work (low k/h times are times to go to 

school). This is a substitution or wage rate effect. If agents really want 

19 When there are externalities, the state like variable, z(t) is no longer 
the ratio k/h (see equation (9)). 
20 We never find a vertical asymptote in the policy functions either. 

·Note that, since the policy functions are unit-valued, . this implies that the· 
steady state· is unique. The policy functions are unit-valued because . the 
Hamiltonian is concave in the choice variables. 

Through independent research and drastically different methodologies, 
Faig (1991) and Caballe and Santos (1991) have arrived at the same 
conclusion. 
21 The wage differential cannot be reduced by reallocating capital between 
the sectors because, for the Lucas model, physical capital is not used in 
the h sector. 
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to smooth (large 8) or if the wage rate for low k/h is not very low (small 

ex), the wealth effect dominates and physical capital is rebuilt with larger 

work effort. The policy function u(z) is downward sloping. Low k/h are 

therefore be associated .with, high consumption ratios -c/k=a- so the policy .. 

function a(z) is also downward sloping. . The opposite is true if the 

willingness to substitute intertemporally is large. 

Figure 5 confirms. these . results. _The key determinant of . the · slope . of _ 

the policy functions is the · size of 8 -the coefficient of · intertemporal 

substitution - relative to ex - the physical capital share in the output 

sector, which reflects how low the real wage rate is for· low levels- of k/h. 

There are three possibilities depicted in Figures Sa, b and c. 

Figure Sa shows the case when 8>ex. As we just argued, the two policy 

functions are downward sloping. Note also that if k/h is sufficiently low 

(far away from the steady state), u is larger than one. This means that 

there may be disinvestment of human capital (u>l). The stable arm for c/k 

is downward sloping; this reflects the agent's willingness to smooth 

consumption and the anticipation of increasing capital. 

Figure Sb considers the case 8<ex: low willingness to smooth 

consumption and/or very low wages for low k/h. The two policy functions in 

this case are upward sloping, which means that physical capital is restored 

through savings rather than through hard work in the final output sector as 

the substitution effect dominates the wealth or consumption smoothing. 

effect. When 8=ex, the two effects cancel out so both stable arms are flat. 

This is reflected in Figure Sc. 

Interesting Result #9: In the Lucas (1988) model, the transition from LOW 

k/h ratios involves high or low work effort and consumption depending on the 
relative size of 8 and ex. If 8>ex, the wealth effect dominates and physical 
capital is restored through high work effort (and the two policy functions 
are downward sloping in k/h). If 8<ex, the substitution effect dominates so 
physical capital is restored through low consumption (and the two policy 
functions are upward sloping). If 8=ex, the two effects offset (and the two 
policy functions are flat). The symmetric result applies for transitions · 
from HIGH k/h ratios. 

Since, empirically we tend to think that 8>1 (and therefore 8>ex), we · 

believe that the case of downward sloping policy functions is the most 

(only?) empirically relevant. 

26 



(VII) TRANSITIONAL DYNAMICS IN THE GENERAL MODEL: THE ROLE OF 

ADJUSTMENT COSTS. 

(VIia) Same Production Function in Both Sectors. 

, -The Lucas (1988) model is a particular case where the, education sector .· 

does not use physical capital as an· input of' production. We now want to . 

analyze the transition of the more general model. We start with the 

- benchmark model #2, "where the two production functions are the same, where 

there· are constant point-in-time returns in all sectors, and where there are 

no externalities. From the analysis above, these assumptions imply that the 

two effort variables are equal at all points in time -u(t)=v(t) for all 

t-. The absence of externalities implies that the only state-like variable 

is the ratio of the two capital stocks, z=k/h. 

The main finding here is that the policy functions u(k/h) and a(k/h) 
* are vertical lines at the steady state ratio (k/h) (See figure 6). Thus, 

if the initial ratio is smaller than the steady -state one, agents choose to 

invest (disinvest) at an infinite rate in the physical (human). capital 

sector by setting u=oo. The economy immediately jumps to the steady state 

capital ratio. Conversely, if the initial ratio of capital stocks is above 

the steady state ratio, agents want to invest (disinvest) in the human 

(physical) capital sector at an infinite ·rate by setting u=-oo. 

jumps to the steady state level immediately. 

take no real time. 

The transition, 

The ratio 

therefore, 

The result of instantaneous transition (or no transitional dynamics) 

applies to any model that yields a linear production possibility frontier 

regardless of a:: and (3. Remember from section II that parameterizations that 

satisfy c1 = "11 = 1-c2 = 1-1/12 yield linear PPF's; 

. Interesting Result #10: If . the point-in-time production possibility 
frontier of a two-sector model is linear, the model entails no transition 
(ie, the economy 'jumps' to the steady state at time zero). Thus, in order 
to get transitions in real time, we must have strictly convex production 
possibility sets22

• 

22 This result comes from extensive experimentation with all kinds of 
parameters and is not based on a formal proof. Strictly speaking, 
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(Vllb) Models with Strictly Convex Production Possibility Sets. 

Our finding of optimal infinite investment rates resembles the 

Jorgenson (1963) one capital good neoclassical model of investment where 

lower than steady state capital stocks are also eliminated by infinite rates 

of >investment. The q-theory of . investment shows' that the · existence of . 

adjustment or installation ·costs eliminates these. jumps in the capital stock 

by introducing some incentive to smooth investment over time. Hence, we 

introduce adjustment costs (strictly convex production possibility sets) in 

the · benchmark model just outlined to see whether we can get some sensible 

t •t• 1 d . 23 rans1 iona ynam1cs . 

We know from the Interesting Results 2 and 3 that there are different 

ways to get strictly convex PPS's. We study these different possibilities 

separately. One common thing about them, however, is that the linearization 

around the steady state always gives one negative and two positive real 

eigenvalues. . Hence, all the models are locally saddle path stable. This is 

true, even when we allow for social increasing returns to scale in one 

sector (and, in order to satisfy condition (22), offsetting decreasing 

returns to scale in the other sector). Since we are able to calculate the 

policy functions u(z) and a(z) for any value of z between zero and any 

arbitrarily large positive number, the models are globally saddle path 

stable. 

Interesting Result #11: All two-sector growth models of endogenous growth 
with strictly convex point-in-time production possibility sets (concave PPF) 
are globally saddle path stable. This is true even when there are 

interesting Result #10 should say "We have been unable to find a model with 
a linear PPF which does implies immediate transitions. Thus, in order to 
get transitions in real time we had to introduce strictly concave PPF's". 

23 In the neoclassical growth models, jumps in the capital stock are 
eliminated by the assumption . that agents have concave preferences and, 
therefore, like to smooth consumption. In the two capital goods . models 
considered in this paper, jumps in the physical capital stock · that are 
accompanied by jumps in the stock of human capital are consistent with 
consumption smoothing. 
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increasing returns to scale in one of the sectors24
• 

(Vile) Adjustment Costs From Different Production Functions. 

One way to get a strictly. convex PPS is for the two sectors to have 

different production functions. . Consider the case where there are constant 

point-in-time returns everywhere BUT the two production functions are 

different. ·We know from . Interesting Result #2 that the production 

possibility frontier is strictly concave and the marginal rate of 

transformation is positive and finite everywhere. 

The two policy functions for the case a=. 6 and {3=.4 are depicted in 

figure 7. As expected, we find that they both have finite slopes. Contrary 

to the Lucas (1988) example, we can no longer find upward sloping policy 

functions (not even for El arbitrarily close to zero). We believe that the 

reason is that the substitution or real wage effect is no longer important: 

In the Lucas model, all the physical capital needs to be used in the final 

output sector. In the general model, on the other hand, agents can choose 

how much physical capital to have in each sector. Hence, to a certain 

degree agents can choose the wage rate by shifting capital from the 

education to the final output sector. Hence, the real wage rate effect is 

unimportant and the wealth effect dominates. 

therefore, downward sloping. 

Both policy functions are, 

Finally, for z' s sufficiently below the steady state, the optimal value 

of u is above one: it is optimal for agents to actually disinvest some · 

human capital and install it as physical capital. For z's sufficiently 

large, on the other hand, the optimal value of u is below zero, which 

indicates a willingness to uninstall physical capital and install it as 

human capital. 

24 Again, this result comes from extensive experimentation with all ··kinds 
of parameters and is not based on a formal proof. Strictly speaking, 

. Interesting Result #11 should say "We have been unable to find a model with 
strictly convex PPS which does not display saddle . path stability and vice 
versa. This includes models with social increasing returns to scale in one 
of the sectors." 
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(Vlld) Adjustment Costs via Decreasing Point-in-Time Returns. 

Another way to generate a strictly convex PPS is to introduce 

decreasing point-in-time returns in . any of the sectors (see Interesting 

Result #3). In Figure 8(a) we display the policy functions associated with 

decreasing point-in-time returns in the physical capital sector only. 

We: see that both stable arms are downward sloping. As in the previous 

section, (and again contrary to the Lucas model) we have been unable to find 

parameters that generate upward sloping policy· functions, not even for very 

small values of 0. · The main difference from the previous. section. is. that·.··· 

u(z) never takes values below zero (it asymptotes to zero as the physical to 

human capital ratio approaches infinity). The reason is that, in the Cobb 

Douglas framework, decreasing point-in-time returns in the final output 

sector implies infinite marginal rates of transformation at u=v=O. 

.. optimizing agents never choose u=O. 

Thus, 

The introduction of decreasing point-in-time returns in the education 

sector only yields similar results (see figure Sb). The only difference is· 

that u does not go above one but goes below zero. The reason is that we are 

assuming that the instantaneous marginal product of work effort when all the 

effort is employed in the human capital sector (u=l) is infinite. Hence, 

agents never choose u's above one. 

Of course, when we introduce decreasing point-in-time returns in both 

sectors (figure Sc) we find that the stable arms are downward sloping and 

the u is bounded between zero and one. Note that this is true, no matter 

how small the departure from constant returns is. In other words, strictly 

decreasing but very close to constant point-in-time returns entail a u(z) 

policy function close to horizontal at u=l for z below the steady state, 

close to horizontal at u=O for z above the steady state, and close to 

vertical for z close to the steady state. The reason for such a big 

difference for small departures from constant returns (recall that constant 

returns entail a· vertical policy function u(z)) is that the marginal . product 

of u is some finite number if the point in time technology is hf=uh, .but it 

is infinite if h =u~h for ~ strictly smaller than one (no matter how ·close· f 
to one). In other words, the PPF for constant point-in-time returns is 

linear at all points (including u=l and u=O). An arbitrary small departure 

from constant returns implies a PPF close to linear everywhere but with an 
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infinite slope at u=l and a zero slope at u=O. 

Finally, in the right hand side panels of figures 8 a, b and c we see 

that the shape of the other policy function a(z) is independent of these 

adjustment costs. 

Interesting Result #12: models with strictly convex production possibility 
sets (whether they are achieved through different production functions or 
through decreasing point-in-time returns) entail transitions in real time.· 

Along the transition, the wealth effect always dominates the 
substitution effect so the transition from LOW k/h ratios involves· high work 
effort and high consumption-capital ratios. Thus, unlike the particular 
case of Lucas (1988), the policy functions a(z) and. u(z) are always downward_ 
sloping. 

If, in addition, the marginal products of effort in both sectors are 
infinite when effort is zero, the policy function for work effort u(z) is 
bounded between zero and one. In the Cobb Douglas framework, decreasing 
point-in-time returns imply infinite marginal products of effort at zero 
effort. 

(Vile) Irreversible Investment. 

One could plausibly argue that the effort variables should be bounded 

between zero and one. As we just showed, one way to get this result is to 

impose infinite marginal products of effort at zero effort in both sectors. 

Alternatively we can impose a technological constraint to u, say ue[O,l]. 

This technological constraint would . apply when investment is irreversible. 

When the constraint is binding at u = l, human capital grows at rate -oh and 

production looks like A'kCd~:-l, until k/h reaches its steady state value. 

This looks a lot like a one-sector growth model with exogenous labor 

augmenting technological change at rate -oh. The equations of motion are 

the same, although the boundary conditions are different. An important 

difference is that, here, the steady state is reached in finite time after 

which the level of work and the consumption to capital ratio are the ones 

depicted in Table 1. Because one-sector dynamics have already been analyzed 

elsewhere and in order to limit the scope - of our paper, we do not examine · 

such one-sector dynamics resulting from constraints on u. 

(VIII) AN ANALYTICAL ANALYSIS OF THE TRANSITION 

The policy functions we have found in the previous sections can be used 
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to derive some empirical implications of the models. Following Mulligan 

(1991), we arrive at a formula for consumption by making two observations. 

First, numerical analysis of consumption policies reveals that, for many 

growth models (including · those in . this paper), the consumption to capital 

ratio is very nearly a linear function of the average product of physical 
. l 25 capita: 

(30) a(y/k) "" a(y/k) = D + E· (y/k) 

This of course implies that consumption is very nearly· a linear function of ·. 

capital and income: 

(30b) c(k,y) ""c(k,y) - D·k + E·y 

Second, we do not see a secular trend in savings rates. One way to explain 

this second observation is to argue that the economy is always in the steady 

state. ·Another possible explanation is that the parameters of. the model are ' 

such that agents optimally choose constant savings rates along the 
't" 26 trans1 ion. For our ·two-sector models, it seems desirable, at least for 

special cases, that D = 0 and E = 1-s. Before specifying D and E, we 

therefore look for special cases of human capital endogenous growth models 

that predict savings to be constant during the transition to the steady 

state. Actual policy functions satisfy the system of differential equations 
(25) and (26). If actual policies are to exhibit constant savings rates (at 

rate s), it must be true that: 

(31) 

equivalently, 

c(k,y) = c(k,y) = (1-s)·y 

a(y/k) = a(y/k) = (1-s). (y/k) 

25 Actual policies are denoted without a ~. The approximations are 
denoted with a ~. Mulligan .. (1991) discusses consumption policies for three · 
growth models:· Ramsey(l928)-Cass(l965)-Koopmans(1965),. Jones and -Manuelli 
(1990) and Lucas (1988). 
26 Kurz (1968) shows for the one-sector neoclassical growth model that if 
the production function is Cobb Douglas and the utility function is CIES, 
then there is value of 0 (the coefficient of elasticity of substitution) 
that makes optimal savings constant along the transition. 
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In terms of z, we want a(z) = (Au c1v c2z <X-l) . Substit~tion of this 

particular form into the system (25) and (26) reveals that a() does not 

satisfy the system for all sets of parameters. 

savings rate is constant if: 

Cp+ok)<X 
(32a) 9 = ~~~~~~~~~-

<XO k - (1-<X)(</>+ok) 

and the constant savings rate is 

(32b) s = 1 - (9-l)<X/9 

For the Lucas model the 

Assuming 9, </>, <X, and ok are all nonnegative, it is clear from (32) 

that <X must necessarily be greater than .5 and ok must necessarily be 

positive if. <savings. rates are to be constant in the transition and utility 

is to be concave. 

Interesting Result #14: There is a set of parameters that yield constant 
savings rates along the transition of the Lucas model. The parameters must 
satisfy condition (34). 

A constant savings rate benchmark suggests some choices for D and E: 

E = (9-l)<X/9 

The linear approximation a(y/k) - with D and E chosen as in (33) -

exhibits four desirable properties that suggest that it is a good 

approximation to the true policy function a(y/k): 

(i) a(y/k) is exactly correct when savings rates are constant 

ie, a(y/k) = a(y/k) 
(p+o )<X 

k when 9 = ~~~~~~~~~ 
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(ii) a(y/k) passes through the steady state 

Even when the savings rate is not constant, a(y/k) should be a very 

good approximation near the steady state. 

(iii) a(y/k) is linear in (y/k) 

This is a nice property because numerical analysis has shown a(y/k) to 

be very nearly linear in (y/k) 

(iv) a(y/k) is increasing in (y/k) for 9 > 1 

For the Lucas model, a(y/k) is increasing for 9 > a 

Interesting Result #15: Consumption is very nearly a linear function of 
capital and income so c(k,y)= D·k + E·y, where D and E are the following 
constants: 

D -
E = 

(cf>+okHl-a)/a + 

(9-l)a/9 

(VIIIb) Conditional Convergence. 

- 0 k 

Some of the empirical growth literature has reported cross section 

growth regressions where growth is shown to depend negatively on initial 

income after some measures of human capital and/or savings rates are held 

constant. The one-sector . neoclassical model is consistent with this 

empirical evidence while the one-sector linear-technology endogenous growth 

model is not. In this section we want to ask what is the prediction of the 

transition of the two-sector endogenous growth models studied in this paper. 

We first derive a closed form growth expression that depends on two 

assumptions: that a(y/k) is very nearly linear in (y/k) and that its slope 

is less than a. Either an examination of the a(y/k) suggested in the 

previous section or numerical analysis supports these assumptions. 27 Using 
1-a a 1-a the production function y = u k h , the Euler equations, budget 

constraints and a linear approximation to a(y/k), one finds that output. 

27 The slope of a(y/k) is not always less than a when a is small and 
is small (in such cases constant savings is not possible). Since 
convergence implications which follow depend on this assumption about 
slope of a(y/k), they are questionable for small a and small y/k. 
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growth is a linear function of (y/k). 28 

where G1 = (<f>+ok)(l-a)/a - ok - D and G2 = a-E are constants. Note that 
output growth is increasing in (y/k) for E < a. This is certainly true when 

D and E are chosen so as to yield constant savings rates (condition (33)). 

As an example, for . constant savings · rates parameterizations, output growth 

in (34) is: 

(35) '¥ = (ay/k - (p+o ))/e y k 

Naturally, if savings rates are constant, the growth rate of output is 

the same as the growth rate of consumption. Since many empirical studies do 

not have data for (y/k), a substitution for (y/k) (derived from the 

production function alone) yields an expression that may be more useful for 

empirical analysis. 

(36) 
[ 

u·h ]l~a 
'¥ =G +G·--y 1 2 y 

That is, output growth is an increasing function of human capital augmented 

·by labor supply and a decreasing function of initial output. For a broad 

28 For some definitions of h, it may be the case that activities in the h 
sector are included in measured GDP. Rather than considering final output, 
y, one may want to think about "full output", Y, which could be defined as 
the sum of outputs in both sectors, weighted by relative prices: 

y = y + e· (o·(l-u)·h) 

where i\. and v are the shadow prices defined in the appendix. For this 
alternative definition of output, one obtains a similar growth expression: 

Here, G1 and G2 are not constant but are functions of u. G2 is still· 

positive, which means that all of the qualitative results that were obtained 
for y still hold for Y. 
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sample of countries, Barro (1991) finds that the simple correlation between 

output growth and initial income is zero. Once he holds constant some 

measure of human capital, however, he finds that the partial correlation 

between growth and initial ·output is negative. This .. is consistent with the 

Lucas model since,.·· if the initial stock of human capital is corr.elated with 

initial income, its omission from the regression tends to . bias the· 
29 coefficient· on income towards .zero . · Borrowing terminology .from_ Barro, 

(1991), the Lucas model ·predicts "Conditional Convergence" in that the 

simple correlation of growth with initial income will be zero but it will 

turn negative after holding constant human-capital-augmented work effort. 

·· If the latter variable is not very correlated with income · within · the sample· 

of countries, then the simple correlation will be negative. This could be 

why similar countries display absolute convergence (see Dowrick and NGuyen 

(1989) for evidence across OECD countries or Barro and Sala-i-Martin (1991, 

1992) for. evidence across states of the United States and regions in 

Europe). 

Interesting Result # 16: The Lucas (1988) growth model predicts conditional 
convergence in that, in a cross section of countries that differ by initial 
conditions, the growth rate should be negatively related to initial income 
only after a measure of human capital is held constant. Thus, the model is 
consistent with existing empirical evidence. 

Savings and Growth 

Other empirical studies suggest that the sign of the convergence 

coefficient changes once the savings rate is held constant (see Barro (1991) 

.and Mankiw, Romer and Weil (1990)), even without holding proxies for human 

capital. We want to check whether the Lucas model is consistent with this 

evidence also. 

First, let's think about a data set for which all observations approach 

the same steady state but differ in the "distance" from that steady state -

29 The question is. whether ·the variable actually used by Barro (1991) 
"school enrollment" is a good measure of uh. School enrollment in our model 
is (1-u). To the extent that current school enrollment is correlated with 
past school enrollment, it is also a measure of the stock of human capital. 
If most of the variation in uh across countries is due to variation in h 
rather than u, school enrollment will be a good proxy for uh. 
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the taste and technological parameters (ex, </J, 9, p, etc.) are the same for 

each observation but z (=k/h) varies. To do so, it helps to know something 

about the policy functions a(z) and u(z). We know from previous analysis 

that these are downward sloping. Thus, when z .is high, both work effort,. u,. 

and consumption-capital ratio, a,· are low.· However, u and a have ·opposite 

effects on savings. These offsetting effects can be seen analytically by . 

substituting the expression for output growth (36). into a linear 

approximation for a(y/k) and solving for the savings rate: 30 

(37) 
G2 

s = 1 - E - D • 0 -G 
y 1 

where G1 and G2 are defined as above. We have argued that G2 > 0. 

Therefore s is a positive function of output growth if and only if D > 0. 

To examine D, look at the value suggested in (33).For parameters consistent 

with micro studies, D is positive; savings rates are positively related to 
growth . in the transition. 

Second, let's ·think about economies with different intertemporal 

elasticities (i = 1/9). . Some countries can be near the steady state, others 

may be at various distances from it. These economies will have different 

steady state growth rates, savings rates, and output-capital ratios. Since 

it can be shown that savings rates are decreasing in 9, we write the 

intertemporal elasticity of substitution as an increasing function of the 

savings rate: 

(38) i(s) - 1 I 9(s) i'(s) > 0 

We can therefore express the growth rate as a function of s, (u · h) and y: 

(39) u·h ex 1/ex [ ] 1-ex] 
ex·A · -y-

For growth rates that are (on·. average) positive, the Lucas model predicts 

30 Of course, the savings rate is constant when D 
(32) holds). 
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that output growth depends positively on s and (u · h) and negatively on y. 

Mankiw, Romer and Weil (1990) run this type of regression and find a 

positive coefficient on savings and human capital and a negative coefficient 

on initial income. Hence, the Lucas model of endogenous growth is 

consistent with their findings. 

What if all economies are in the steady state and, in addition to 

different ·. intertemporal ·· elasticities, have different . human · capital" 

productivities (</>)? It can 'be seen from the expression for steady state· 

growth that the simple correlation between savings and growth will be 

positive: 

However, is it true - if all economies are in the steady state - that, 

, holding . constant savings rates, (u · h) matters positively and y matters 

negatively? Yes, to the extent that (u · h) and y are proxying for <f>. </> can 

. be written as a function of (steady state) (u · h) and y: 

(41) </> = [ 
u. h l*l:<X 

<X' --- -y 

When (41) is substituted into the expression for steady state growth, we get 

a steady state version of (39). 

Interesting Result #17: The Lucas (1988) model is consistent with the 
cross-section empirical finding that growth is negatively related to initial 
income and positively related to savings rates and measures of human 
capital. Thus, the existing cross-sectional empirical evidence does not 
distinguish between the transition of the Lucas model and the transition of 
the standard neoclassical model. 

In Mulligan and Sala-i-Martin · (1992) we show that the general two-sector 

. models have similar empirical predictions. .. Since these cross country tests 

do not allow us to distinguish between the neoclassical one-sector model and 

the two-sector endogenous models we also develop further empirical tests. 

Interest Rates, Capital Mobility and Growth. 

Growth theory's predictions for the relationships between growth, 
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interest rates and income have been of questionable empirical relevance. 

First, as Lucas (1988) and others have noted, capital should flow to poor 

countries because their interest rates should be much higher. This is not 

an empirical regularity.··· . Second, interest rates. should be declining over• 

time. King and' Rebelo (1989) argue that this is not true in the U.S., at 

least as is required by their parameterization of the neoclassical model. 

Barro (1990b) notes that interest ·rates have- declined since the Civil War. ··/ 
Before addressing these issues in the Lucas model, we first derive an 

expression for interest rates Cr == 8y/8k - ok): 

(42) r = a:· (y/k) - o k 

Using the approximate expression for growth (37), growth can be written as a 

function of the interest rate: 31 

(43) r = Cr - pl / e y 

Therefore, for economies in transition, we should see a trend in 

interest rates and growth (both should show a trend in the same direction). 

As argued above, such trends may be consistent with U.S. data. We also 

predict that growth and interest rates are positively correlated. However, 

because we cannot say anything a priori about the relationship between 

·. income and growth, income and interest rates are not necessarily related .. 

Capital should not necessarily flow to poor countries, capital should flow 

to high growth countries. 

Interesting Result #11: The two-sector endogenous growth models prqposed in 
this paper predict that high growth countries tend to have larger marginal 
products of capital and real interest rates. On the other hand, it has no 
prediction on the relation between the level of income and interest rates. 
Thus, (unlike the neoclassical model) this model predicts that if we open up 
international capital -markets, we should observe capital flowing from low · 
growth to high growth regions and NOT from rich to poor regions. 

31 As discussed above, our ·approximate output growth expression is exactly 
equal to consumption growth because D and E were chosen as in (33). 
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(IX) CONCLUSIONS. 

In this paper we studied -the ·>transitional dynamics of two-sector models -

of endogenous growth. We found that the necessary condition for endogenous 

growth allowed us to express the model in terms of one state variable only 

(Interesting Result #6). Thus, endogenous growth models are· simpler .·to 

study than neoclassical models. ·This alone is a good reason for using them. 

We found that if the point-in-time production possibility frontier 

· across the two sectors is linear, the transition takes no real time 

(Interesting Result #10). If, on the other hand, the point-in-time 

production possibility set across the two sectors is strictly convex 

(strictly concave PPF), there is transition in real time (Interesting Result 

#11) . In this latter case, the models are ALWAYS globally saddle path 

'stable (Interesting Result #12). 

The transition involves two effects: A substitution or real wage 

effect that lead people to-_·. reduce work effort when physical capital is 

relatively low (low wages); and a wealth or consumption smoothing effect 

that lead people to high consumption relative to physical capital, when 

physical capital is low. We find that the wealth effect dominates: when 

physical capital is relatively low, agents invest in physical capital 

through large effort in the final output sector and NOT through high 

savings. In other words, the two policy functions u(z) and a(z), are 

downward sloping (Interesting Result #12). The only exception to this 

finding is the particular case of Lucas (1988) and only when the elasticity 

of intertemporal substitution is implausibly large (0<a) (Interesting Result 

#9). 

Finally, we found a bunch of interesting empirical implications. The 

most important is the finding that the two-sector models predict conditional 

convergence in that in a cross section of economies, the growth rates should 

be ·negatively related to initial income, but only after some measure of 

- human capital and/or savings ·is held constant (Interesting Results #16 and 

#17). Thus, the models are consistent with the existing empirical evidence 

for a variety of data sets. 

We would like to conclude with an important question: how long does it 
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take for our two-sector economies to reach the steady state?32
. We can gain 

some intuition about the speed of convergence in the Lucas model by 

considering the case when a = a. Since, as we showed in the analysis above, 

u(t) is constant · along ·the transition, ·the human capital accumulation,. 

constraint says that hlh=x for all t so h(t)=h(O)ext. By substituting this 

expression into the production function of final output -we get 

k(t) = Bk(t)o:(ext)l-o: - c(t) - ok(t) 

which is exactly the accumulation constraint . of the one-sector neoclassical 

growth model. The speed of convergence will therefore be close to that of 

the neoclassical model: with a physical capital share close to .4 (as it is 

under a narrow view of physical capital in the absence of externalities) the 
33 speed of convergence is fast (half lives of 5.5 to 11 years) . If we think 

of capital in a broad sense and/or if there are capital externalities, the 

capital share will be larger. For instance, if the. physical (or non-human) 

capital share a is about .8, then the speed of convergence is close to . 23 

per year with a half life of 35 years. 

As we allow a to depart from a (say a > a), there are two effects that 

could modify this conclusion. First, u(z) becomes downward sloping, which 

tends to accelerate convergence as people work harder in the final output 

sector when physical capital is scarce. But, second, a(z) also becomes 

downward sloping which tends, to decelerate convergence as people save 

relatively less when physical capital is low. Qualitatively, we cannot 

evaluate the net effect. Yet it seems plausible that if u(z) is "fairly" 

flat, than the consumption effect may dominate; convergence would be slower 

than in a similarly parameterized one-sector model. 34 We have argued that 

large adjustment costs lead to flat policy functions for work effort. 

32 Note that we are not asking whether transitions are important. 
· believe that if transitions are long, they are certainly important. 
they may be (empirically) important even when they are not very long. 

33 See, for instance, Barro and Sala-i-Martin (1992). 

We 
Yet 

34 By similarly parameterized, 
intertemporal elasticities, capital 
growth rates are the same. 

we mean 
depreciation 

that the capital shares, 
rates, and steady state 
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Therefore, convergence speeds can be slower than in a comparable one-sector 

model if adjustment costs are large enough. 

By log-linearizing the dynamic solution around the steady state, we can 

estimate the local speed of convergence. The state-like variable follows. 

the following process: 

(29) * -A.t * In z(t) - ln z = e On z(O) - In z ) 

where A. is the speed of convergence. Note that z to any power will have the 

same speed of convergence as z. Therefore the potential-output-to-capital 

ratio (in either our model or a comparable one-sector model) also has a. 

speed of convergence A.. So does output in a comparable one-sector model. 

In our model, output grows without bounds, so (usually) we can not think 

about convergence of output in the same way. 

For the benchmark parameters of Table 1 (capital share of .5), we find 

the (local) speed of convergence to be 103 per year. This corresponds to a 

half-life of about 7 years. . If the social physical capital share ·is .. 8 the. 

speed of convergence is A.=.025 with a half-life of 28 years. The 

introduction of decreasing point-in-time technologies (reflecting the 

difficulty to transform human capital from one sector to the other at a 

point in time) reduces the speed of convergence even further. For instance 

if we let 1/11 be . 7 rather than 1 (and if we adjust the productivity 

. parameter </> so as to keep the steady state growth rate constant) the speed 

of convergence is .0149 with a half life of 47 years. 

We do not need to assume such large physical capital shares to get long 

transitions. For instance, with a=.6 and 1/11=.5 (and, again, adjusting the 

productivity </> so as to get similar steady state growth rates) we get a A. 

equal to .028 and a half life of 25 years. 

Similar results are true for the more general model. We already know 

that, if the production functions in both sectors are identical and if there 

are no adjustment costs, · the speed of convergence is infinity. If the 

physical capital share in the final output sector is set to .6 (a=.6) and 

the share in the human capital sector ·is .2 ([3=2), with decreasing 

·point-in-time returns in all sectors Ce:1=.2, e:2=.3, 1/11=.1, 1/12=.4), the speed 

of convergence is .036 with a half life of about 20 years. Of course, the 

larger the adjustment costs, the longer the transitions. Thus, for very 
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plausible parameterizations, the two-sector economies under our 

consideration take a long time to reach the neighborhood of the steady 

state. 
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APPENDIX: FIRST ORDER CONDITIONS FOR THE GENERAL MODEL 

The first order conditions to the general program with respect to c, k, h, 

u, and v are . respectively: 

-pt -e 
(Al) e c = i\ 

. ( cx-l+l,:2 1-cx+l,:l cl c2 ) ( /3-l+l,:4 l-[3+l,:3 l/Jl 1/12) 
(A2) -i\ =i\ Acxk h u v - ok + v </>/3k h (1-u) (1-v) 

· ( cx+l,:2 -cx+l,:l cl c2) ( /3+l,:4 -[3+l;3 l/Jl 1/12 ) 
(A3) -v =i\ Ak (1-cx)h u v + v <f>(l-[3)k h (1-u) (1-v) -oh 

( 
/3 1-/3 l/J -1 l/J ,. < ,. < ) 

= v </> k h 1/110-u) 1 (1-v) 2 h 3k 4 

( 
/3 1-/3 l/J l/J -1 ,. < ,. < ) 

= v </> k h (1-u) 11/12 (1-v) 2 h 3k 4 

,. ,. 35 
where the aggregate consistency conditions h=h and k=k have been used . The 
two limiting transversality conditions are 

(A6) lim i\(t)k(t) = 0 
t-+ (I) 

and lim v(t)h(t) = 0 
t-+ (I) 

We can substitute the ratio of shadow prices in (A4) into equation (A2) 
to get an expression for the growth rate of the shadow price of physical 

capital i\li\. Also, by taking logarithms and derivatives of (Al) we get the 

growth rate of consumption as a function of i\/i\. If we put the two together 
we get an expression for consumption growth 

( 
cx-l+i,:2 1-cx+i,:1 c1-l c 2 ) 

(A7) r c =(110) Ak h u v (cxl/J1u+c1[3(1-u))/l/J1 - (ok +p) 

where r is defined to be the growth rate of consumption, r =c/c. c c 
To find a relation between the fraction of physical capital used in the 

final output sector and the fraction of human capital used in the final 
output sector between the shares of capitals employed in each sector (u and 
v), divide equation (A4) by equation (AS) and get 

u(t) 
(A8) v(u(t)) = ----- for all t 

fl + u(t)(l-ll) 

35 The representative agent has the representative or av~rage amount of 
both types of capital goods. Hence, it must be the case that h=h and k=k. 
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where ll=c11fJ2/Cc21fJ1) is a constant. This is equation (8) in the text. 

Take now logarithms and time derivatives of both sides of equation (A4) 
and use (A8) to get a relation between the growth rate of the relative 
shadow price of the two capital goods (eri\.-erv), the growth rates of the two 

capital stocks and work effort (erk' erh' and eru) and the level of work 

effort, u. We can also plug the relative shadow price from (AS) into (A3) . 
to get · a value · for . the growth .rate of the shadow price of . human capital, 

v/v. Using these last two equations and (A7) we get 

(A9) er = u 

denominator 

(1-u)c2+ulfJ2/ll 

where···denominator = (1-u)-1(c1-c1)+u(c1-lfJ1)- _1 ) and g is defined 
1-( 1-/l )u 

in (3) in the text. Equation (A9) corresponds to (14) in the text. 
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BASELINE 

AA 
A</> 
A9 
Ap 
Aa 
A/3 
Ae1 
Ae2 
b.t/Jl 

b.t/12 

Ai;:! 

Ai:;:2 

Ai:;:3 

* u 

TABLE 1: BENCHMARK MODEL # 1 

STEADY ST ATE ANALYSIS 

* '¥ a * 
.8528 .0466 .2231 

+ + 
+ + 

+ + 
+ + 

+ 
+ + + 
+ 

+ 

+ 

+ 

+ + + 

+ 

Notes to Table 1: the baseline parameters are: e1=1-a, 

t/12=/3, p=. 065, 9=2, a=.5, /3=.5, A=l, <f>=.l, <1=<2=<3=<4=0, ok=O, 

TABLE 2: BENCHMARK MODEL # 2 (LUCAS 1988) 
STEADY STATE ANALYSIS 

* * * u '¥ a 
BASELINE .8250 .0175 .1825 

AA 0 0 0 
A</> + + 
A9 + + 
lip + + 
b.a 0 0 
Ai;:! + + + 

b.i:;:2 + + + 

* z 
10.0 

+ 

+ 
+ 
+ 

+ 

+ 

+ 

+ 

+ 

+ 

e2=a, t/11=(1-{3), 

oh=O, n=O. 

* z 
20.625 

+ 

+ 
+ 
+ 

Notes to Table 2: the baseline parameters are: e1=1-a, e2=0, t/11=1; t/12=0, 

p=.065, 9=2, a=.5, {3=0, A=l, </>=.l, i:;:1=<2=<3=i:;:4=ok =oh =n=O 
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Figure 1: Point-in-Time Technologies 
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Figure 2a: Adjustment Costs 
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Figure 3: Optimal Static Sectoral Allocation 
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Fig 5(a). u(z) in the Lucas model. theta>alpha. 
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Fig 5(b). u(z) in the Lucas model. theta<alpha. 
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Fig 5(c). u(z) in the Lucas model. theta=alpha. 
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Fig 6. u( z) in the absence of adjustment costs. 
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Fig 7. a(z) when production functions are different. alpha=.6, beta=.4. 
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Fig 8(a). u(z) when decreasing point-in-time returns in final output sector. 
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Fig 8(b). u(z) when decreasing point-in-time returns in human capital sector. 
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Fig 8(b ). a(z) when decreasing point-in-time returns in human capital sector. 
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Fig 8(c). u(z) when decreasing point-in-time returns in both sectors . 
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Fig 8(c). a(z) when decreasing point-in-time returns in both sectors. 
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