
Sah, Raaj K.

Working Paper

The Effects of Mortality Changes on Fertility Choice and
Individual Welfare: Some Theoretical Predictions

Center Discussion Paper, No. 599

Provided in Cooperation with:
Yale University, Economic Growth Center (EGC)

Suggested Citation: Sah, Raaj K. (1989) : The Effects of Mortality Changes on Fertility Choice and
Individual Welfare: Some Theoretical Predictions, Center Discussion Paper, No. 599, Yale University,
Economic Growth Center, New Haven, CT

This Version is available at:
https://hdl.handle.net/10419/160521

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/160521
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


:> .• 

ECONOMIC GROWTH CENTER 

YALE UNIVERSITY 

Box 1987, Yale Station 
New Haven, Connecticut 06520 

CENTER DISCUSSION PAPER NO. 599 

THE EFFECTS OF MORTALITY CHANGES ON 

FERTILITY CHOICE AND INDIVIDUAL WELFARE: 

SOME THEORETICAL PREDICTIONS 

Raaj K. Sah 
Yale University 

December 1989 

·Notes: Center Discussion Papers are preliminary materials circulated to 
stimulate discussion and critical comments. 

A revised version of this paper is forthcoming in the Journal of 
Political Economy. 



Revised version forthcoming in 
Journal of Political Economy 

-THE EFFECTS-OF-MORTALITY CHANGES ON , ,_, 

FERTILITY CHOICE AND INDIVIDUAL WELFARE: 

SOME THEORETICAL PREDICTIONS 

Raaj K. Sah, Yale University 

Revised: December 1989 

Abstract: The study of the effects of changes in child mortality on individual fertility decisions has 

been a cornerstone of the economic analysis of population. Empirical studies have overwhelmingly shown 

that a lower mortality rate leads to lower fertility. Yet, in even the simplest theoretical models of fertility 

choice, it has not been possible to satisfactorily analyze this relationship. This paper attempts to reduce this 

long-standing gap between theory and the empirical literature. The paper shows that a set of simple and 

plausible conditions is sufficient to yield the typically observed effect of mortality changes on fertility choice. 

Another concern of this paper is to examine the effects of mortality changes on individual welfare. 

Though such welfare assessments are important for certain types of policy evaluations, they do not appear 
; 

to have received attention in the literature. This paper presents some new and robust results on this issue. 

The analysis captures the dynamic stochastic feature of fertility choice, and also subsumes other endog-

enous choices (e.g., the quality of the children). The number of children is treated as a discrete variable; 

this added realism is in fact important for obtaining the results. 

I thank Gary Becker, James Heckman, Marc Nerlove and Paul Schultz for their many valuable suggestions. I also thank 
Alejandro Ascencios, Naomi Zellner and Jingang Zhao for assistance. 
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I. INTRODUCTION 

An ongoing concern in the economic study of population has been to understand .the effects of 

changes in child mortality·-rates on individual fertility decisions. This concern stems. partly from the set -of 

,,__. ·; historically unprecedented ·changes .that have ·been ~observed, at different. times· in. different groups~ of 

· countries, in the mortality rates as well as in the fertility choices of individuals. Empirical studies· have ·over-

whelmingly shown that the number of children produced by a couple declines as the mortality rate declines: 1 

This relationship also appears quite intuitive. 2 Yet, thus far it has not been possible to satisfactorily analyze 

this relationship in even the simplest theoretical models of fertility choice. This paper attempts to reduce 

this long-standing gap between theory and the empirical literature. 

For example, consider the following bare-bones model. An individual (couple) makes a one-time 

decision concerning the number of births. This decision maximizes the expected utility, inclusive of all costs 

and benefits, from different numbers of surviving children. Even using such a simple single-stage choice 

model, and using additional strong assumptions, what has typically been shown is that a decline in the mor-

tality rate can lead, with equal plausibility, to an increase or a decrease in fertility. 

Among the assumptions that previous theoretical studies dealing with this issue have had to make 

are the following: (i) Expected utility depends on the expected number of surviving children (see the early 

and important contribution of Ben-Porath and Welch (1972) and Ben-Porath (1976)). As is explained later, 

this assumption is either inconsistent with individual choice under uncertainty, or it predicts an outcome that 

contradicts the typically observed pattern. (ii) Ex-post utility is quadratic in the number of surviving children. 

The limitation of the quadratic assumption is well-known; there are no special reasons that make this 

assumption less limiting in the fertility context.3 (iii) Only the polar outcomes matter; for example, when all 

children who are born survive; and when none survives. The utilities of other outcomes, when some of the 

""· 1See Schultz (1981) for a review of the economic literature. See Freedman (1975) for a summary and a bibliography of'the 
demographic and sociological literature. · Freedman and Schultz cite scores of empirical studies showing that a lower mortality rate 
lowers the number of births. There are some exceptions as well. For example, Dyson and Murphy (1985) point out that, in some 
cases, a decline in the morality rate might have been accompanied by a brief increase in the economy-wide fertility, primarily due 
to the effects of such contemporaneous changes as more woman marrying or marrying earlier than before, a decrease in widowhood, 
and less intensive breastfeeding. However, this increase was quickly overwhelmed by the direct effect of a lower child mortality rate, 
namely, a rapid decrease in the fertility of couples. The present paper focuses on the direct effect. 

2
See Becker's pioneering paper on the economics of fertility (1960, p. 212). 

3Newman (1988) has recently used this assumption in a theoretical model of fertility. His analysis of the effect of mortality 
· .,, " c · ·' · focuses on the marginal replacement behavior (that is, on the change in the fertility choice due to one extra death of a child) rather 

than on the expected number of total births. 

,: ... 
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children die but others survive, do not matter. As described later, O'Hara (1975) uses this assumption in 

his analysis of fertility. 

Since the theoretical predictability established to date is so weak in as simple a model as the single-

stage model noted above, It ·is not surprising that this predictability is no better in more general models. 

·An important aspect of fertility decisions is that they are dynamic and stochastic. Past fertility choices sto-

? chastically influence, through mortality; the numberand the age-composition of children currentlyalive • .This, 

. in turn, influences current and future fertility decisions. Thus, fertility choice is best modeled as,a stochas-

tic dynamic program. 4 

This paper presents what may be viewed as a more fruitful analysis, so far as theoretical predictabil-

ity is concerned, of the effect of mortality changes on fertility. Using a single-stage choice model, I first 

present a set of simple conditions under which the number of births declines if the mortality rate declines. 

I then analyze some more general models. For example, in a two-stage stochastic dynamic model of fertility 

choice, I examine the effects of a decline in mortality rates on the number of births in each of the two 

periods, as well as on the expected number of total births. I then show how this analysis extends to a multi-

stage choice model. 

Another concern of this paper is to examine the effects of mortality changes on individual welfare. 

I show, for instance, that a lower mortality rate raises individual welfare. Although this result is highly intui-

tive, It is, to my knowledge, new. In fact, the assessment of the welfare effects of mortality changes does 

not appear to have received attention in the literature. This lacuna is noteworthy because such assessments 

are a necessary component of an economic evaluation of government programs aimed at reducing child 

mortality. The welfare results presented in this paper are quite robust: they do not depend on the proper-

ties of the utility function; they are a consequence solely of the optimizing behavior. At the same time, the 

results are not obvious; for example, they cannot be obtained from the envelope theorem or stochastic 

dominance arguments alone. 

In this paper, the. number .of children, born or. surviving, is represented as. non-negative. integers. 

· • ·. ' This is obviously the correct representation of the reality. -~Also.a continuous· representation otan intrinsically 

discrete variable may be a greater source of error in the present context (because, in some cases, none 

or only one of the children born may survive) than in many other contexts (such as a factory producing 

4See Heckman and Willis (1975) for an early formulation and empirical demonstration of this approach. See Wolpin (1984) 
for an estimation which emphasizes child mortality, and also for a useful discussion of some of the limitations that are currently faced 
in the empirical implementation of this approach. 
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millions of widgets) in which the variable has a large value. In contrast, most previous theoretical studies 

have employed a continuous representation, perhaps because of the seeming tractability of such a repre-

sentation. It turns out, however, that a discrete representation yields a crisper analysis in the present 

context. More important, as is shownlater, this paper's results cannot be obtained, using a set of assump-

. · ·' tions comparable to those which I have used, if a continuous representation is employed. This is because 

'' , , a continuous representation leads" to a ~substantial loss· of "usable information .. ~ For:-the,:problem ,at hand, 

· therefore, realism and tractability coincide .. 

To focus on the fertility choice, other individual· choices are kept in the background. -The analysis 

subsumes other endogenous choices (for example, child care and quality, parental human capital forma-

tion, time allocation, and labor market participation) by assuming that these choices are made optimally for 

every fertility choice. Consequently, the results presented in this paper hold if these other choices and the 

associated budget constraints are analyzed simultaneously along with the fertility choice. 

The paper is organized as follows. A single-stage model of fertility choice is analyzed in Section II. 

Section Ill analyzes a two-stage model, and discusses Its extension to a multi-stage model. The last section 

presents some remarks. The advantage of beginning with a simple model is that the key aspects and intui-

tion of the analysis can be understood in an uncluttered context. 

It is important to emphasize the specific aim of this paper. The paper's objective is to use simple 

but realistic models to extract some predictability concerning the effects of mortality changes on fertility 

choice and individual welfare. If no predictability can be established in simpler models, It is unlikely to be 

established in more general models. On the other hand, if some predictability can be established within 

simpler models, as It turns out to be the case, then the same approach might be useful in other models. 

II. A SINGLE-STAGE MODEL OF FERTILITY CHOICE 

The number of children produced is denoted by the integer variable n . The random variable N 

denotes the number of children who will survive. The possible values of N are o, 1, .... n . We assume 

that the survival of each child is an independent event with probability s , where 1 > s > O . ··A larger value 

of s thus represents a regime of lower mortality.5 For simplicity, the present model Is formulated in terms 

5Several modifications of this aspect are possible. One Is to treat the survival of the l·th child as an independent event with 
probability si . In this case, a regime of lower mortality may be represented by positing that si changes to si + Bi , for i = 1 
to n , where ei ~ 0 for all i , and ei > O for at least one i . However, such a distinction among children may not be appropriate 
within the single-stage model under consideration here, where the underlying simplification is that all births take place at the same 
time, and that all deaths take place at the same time in the future. If one wishes to highlight the distinctions among children that 
arise from the time-sequence of births, then it is perhaps better to deal with this issue in a dynamic framework, as is done in the next 
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of the survival probability rather than the mortality rate, 1 - s , but It can obviously be interpreted in either 

way. It is assumed that the mortality rate is an exogenous parameter to the individual. However, the analy-

sis remains unaffected if, instead, the.mortality rate is endogenously determined by the individual through 

a production function. In.this case, one would examine the fertility effects ofa change in parameters (such 

' ,,, as preventive health technology, or the prices of relevant inputs) that could potentially alter the individual 

-. , ·.·, >~·.;.: k ,,,:.lA~"-'choice~-, · Note•thaUhe· exogenouscparameters are specific to the· individual, who is,being··considereddniso• ·· 

· lation from the rest of the economy. -Thus, the probability that N ... out of ~n . children will survive is the 

binomial density 

(1) 

To analyze the individual's optimal choice, we need to describe the expected utility from different 

values of n. It is convenient to begin by considering the ex-post benefits and costs, and by temporarily 

abstracting from ex-ante benefits and costs (such as childbearing costs) that depend on the number of 

births, but not on how many of them survive. Let u(N) denote the ex-post net utility, incorporating all bene-

fits and costs, from N surviving children. One would expect u(N) to first increase and then decrease with 

N . To see this, one may write u(N) as u(N) = w(g(N) - h(N)) , where g(N) denotes the benefit from 

N surviving children expressed in terms of a numeraire (say, dollars), h(N) denotes the corresponding 

cost, and the function w translates the net benefit into utility. The standard assumption concerning the 

benefit g(N) is that it is increasing and concave, if not strictly concave, in N . The cost h(N) includes 

expenditures on children as well as the value of household inputs (such as parents' time) which are available 

in limited supply and which cannot be adequately substituted by inputs bought from the market. The impor-

tance of such aspects of post-birth costs has been pointed by empirical studies (see Schultz (1976, pp. 

102-4), Schultz (1988, pp. 424-37) and references therein). It is thus appropriate to assume that h(N) is 

increasing and strictly convex in N . Next, assuming that the individual is risk-averse or risk-neutral (that 

is, w is concave in its argument), it follows that u(N) is strictly concave in N. We assume this property 

.. · .: ·"'' , oLu(N) in the analysis below, .. .although, as we.shalLsee, .. this assumption can.be.weakened.,, •. ~~"'··=,..,,,,,,,;,,,_ 

The expected utility from n births, for a given s, is denoted by U(n, s) . Thus, 

(2) U(n, s) = ~N b(N, n, s)u(N) . 

section. Another possible modification is to let s depend on the number of births. In this case, a regime of lower mortality may 
be represented by positing that s(n) changes to s(n) + B(n), where B(n)?: O for all n, and B(n) > O for at least one n. Given 
the objective of the paper, described at the end of the last section, we will not deal with such modifications. 

t 
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Throughout the paper, we suppress the range of the index over which a summation is being taken • 

whenever the summation is over the entire range of the index. For instance, in the right-hand side of (2), 

the summation is over N = o to n . The individual's welfare level is described by the indirect utility V(s) . 

That is, 

(3) V(s) = M~ : U(n, s) = U(n(s), s) . 

In (3) and below; n(s) denotes the largest optimal value of . n . 

As was noted earlier,,forexpositional simplicity, .the above.model· abstracts.from the ex-ante· costs 

of producing children. These costs are incorporated in the last part of this section. Also, though this analy-

sis uses the number of births as the choice variable, it can be restated using the conception probability as 

the choice variable. 6 

For later use, denote the marginal utility of a surviving child by uN(N) = u(N + 1) - u(N) . Denote 

the change in this marginal utility due to one more surviving child by uNN(N) = uN(N + 1) - uN(N) . These 

are respectively the discrete equivalents of the first and the second derivatives of the utility function. The 

marginal expected utility of an additional birth is denoted by Un(n, s) = U(n + 1, s) - U(n, s). The change 

in this marginal expected utility due to one more birth is denoted by Unn<n. s) = Un(n + 1, s) - Un(n, s). 

Clearly, Un and Unn are defined for n 2!: O . 

The following relationships, established in the Appendix, play a central role in the analysis. 

(4) Un(n, s) = s ~N b(N, n, s)uN(N) . 

(5) Unn(n, s) = s2 ~N b(N, n, s)uNN(N) . 

(6) a 1 as Un(n, s) = s {Un(n, s) + nUnn<n - 1, s)} . 

(7) a n as U(n, s) = sUn(n -1, s). 

The strict concavity of u(N) in N means that uNN(N) < 0 . Thus, (5) yields 

(8) unn<n. s) < 0 . 

Also, expression (4) has an intuitive interpretation .... , Compare the expected· utility· under two alternatives: 

n + 1 births versus n births. Consider n + 1 states-of-the-world in which, respectively, N = O, 1, ... , n 

6Further, as was remarked earlier, formulation (2) subsumes all choices other than the fertility choice. To see this, let the vector 
x denote all other choices. The decision problem is: M~,n : A(x) + ~ b(N, n, s)a(N, x) , where A(x) is the part of the ex-ante 
utility that depends only on x , and a(N, x) is the ex-post utility that depends on x as well as on N . Then defining 
u(N) = Maxx: A(x) + a(N, x) as the maximized value of the ex-post utility for each N, we get formulation (2). 
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children out of n births survive. Now, If the (n + 1 )st child does not survive, then the individual has the 

same utility in each of the states under the two alternatives. If the (n + 1 )st child survives, then the indi-

vidual has one more child in each of the states under the first alternative than in the second. The resulting 

difference in the utility, summed over all states, is ~N b(N, n, s)uN(N) . Further, since s is the probability 

· ,, that the (n + 1)st child will survive, the marginal expected· utility of the· (n + 1)st birth is given by (4). 

Properties of.the Optimal-Choice 

Expression (8) shows that: The expected utility 'u.- is strictly concave in the number ofbirths; n ; 

In turn, this yields 

PROPOSITION 1. The optimal number of births is either unique, or there are two neighboring numbers 

that are both optimal. 

To prove this result, recall that n(s) denotes the largest optimal value of n. Thus, it must satisfy 

(9a) U0 (n(s) - 1, s) <:!: 0, and 

(9b) U0 (n(s), s) < O • 

Using (8) and the definition U00(n, s) = U0 (n + 1, s) - U0 (n, s) , it follows that (9a) and (9b) respectively 

yield 

(10) U0 (n, s) > O if n < n(s) - 1 , and U0 (n, s) < 0 If n <:!: n(s) . 

Expression (1 O) has the following implication. If the inequality in (9a) is strict, then n(s) is the unique 

optimal choice. If (9a) holds with equality, then n(s) and n(s) - 1 are the only two optimal choices. Note 

that, for brevity, these and several other results below are proven for interior values of n(s) ; that is, for 

n(s) <:!: 1 . 

The Effect of a Change in the Mortality Rate on the Number of Births 

We first show that: A lower mortality rate does not increase the number of births. That is, 

(11) n(s') :s; n(s) for s' > s . 

This result can be established as follows. Since expression (6) holds for any fixed n , we may 

evaluate it at n = n(s) . From (8), U00 is negative for all values of n . From (9b), U0 (n(s), s) < O . Thus, 

the evaluation of (6) yields 

(12) a as U0 (n = n(s), s) < o , 

where "n = n(s)" indicates that the value of n is kept unchanged at n(s) in computing this derivative. 
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Now, let s' denote a survival probability slightly larger than s . Then, (12) implies that Un(n(s), s') 

< Un(n(s), s) . In turn, from (9b), 

(13) Un(n = n(s), s') < O • 

From (8), Un is decreasing in n. Thus, itfollows from (13) that 

(14) Un(n, s') < O , for n 2: n(s) . 

Expression (14) implies that U(n(s), s'). > U(n(s) + 1, s') > That is, U(n, s') is larger-at._ n. = n(s) 

·than at n > n(s) -~ Consequently, a value of n larger than n(s) 'is not optimal at s' . 

We have thus shown that n(s) is locally non-increasing in s . The global counterpart of this result 

is (11), and, as shown in the Appendix, It is obtained from the local result, by using standard continuity 

arguments. 

Next, we rule out the uninteresting case in which the number of births remains entirely unchanged 

throughout the range of mortality rates. Thus, (11) yields 

PROPOSITION 2. The number of births is an increasing integer function of the mortality rate. 

Note that the sole assumption concerning the ex-post utility u(N) employed in the above analysis 

is that It is strictly concave in N . Even this reasonable assumption can be relaxed, since the only role It 

plays is to show that Unn is negative, as noted in (8). For example, Proposition 2 can be shown to hold 

even if u(N) is concave in N , but is strictly concave only at N = o. 
Finally, suppose that the ex-post utility does not have the above concavity property. Even in this 

case, Proposition 2 holds for local changes in the mortality rate. To see this, begin with n(s), which is the 

largest optimal choice at s . Now, consider all those slightly larger survival probabilities s' for which the 

optimal choice changes at most by one. That is, the candidates for the optimal choice at s' are n(s) - 1 , 

n(s) or n(s) + 1 . Then, 

(15) n(s) + 1 is not optimal at s' . 

The proof of (15), which is also used later; is, as· follows. -Recalling-that · u,fo(n, s) =-Ur1(n-+· 1,"s) 

- Un(n, s) , expression (6) can be rewritten as 

(16) a 1 as Un(n, s) = s {(n + 1)Un(n, s) - nUn(n - 1, s)}. 

Expressions (9a), (9b) and (16) imply that ~s Un(n = n(s), s) < O. Therefore, Un(n(s), s') < Un(n(s), s) . 

The preceding expression and (9b) imply that Un(n(s), s') < O. This yields (15). 

I 
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The Effect of a Change in the Mortality Rate on Individual Welfare 

This effect is described by 
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. PROPOSITION 3. Individual welfare does not decrease if the mortality rate decreases. Moreover, individual 

welfare is strictly higher if the fertility choice is non-trivially different at a lower mortality rate. 

· ' -- ,,,:,, __ ,,,<,---- :fo-prove this proposition, note from (7) and (9a) that ~s U(n = --n(s); s) ~;o . Thus;-for a value of 

s' slightly larger than s , 

(17) U(n(s), s') ~ U(n(s), s) . 

Let n(s') denote the largest optimal choice at s' . Then, definition (3) of the optimum implies 

(18) U(n(s'), s') ~ U(n(s), s') . 

Expressions (17) and (18) and the definition of individual welfare, (3), yield V(s') ~ V(s) . That is, V is 

locally non-decreasing in s . Once again, by using continuity arguments, the global counterpart of this 

result is obtained. 

The above proof has an intuitive interpretation. Expression (17) shows that an individual is no worse-

off at a· lower mortality rate if he were to make a choice that was optimal at a higher mortality rate.·. Thus, 

the individual's welfare does not decrease at his actual optimal choice at a lower mortality rate. A stronger 

result is obtained if the choice at a lower mortality rate differs non-trivially from that at a higher mortality rate. 

Here, by a non-trivial difference we mean that a choice that is optimal at s is not optimal at s' . In this 

case, inequality (18) is strict. Thus, individual welfare is strictly higher at the lower mortality rate. 

These results on the welfare effect of a change in the mortality rate are quite robust. They are a 

consequence solely of the optimizing behavior, and they do not depend on the properties of the ex-post 

utility function u(N) . However, the results are not obvious because, for instance, they require the 

relationship in (7). 

· · - By extending this welfare analysis, we can assess the magnitude of the gain to an individual from 

a decrease in the mortality rate. For .. example,Jet.,M denote the current income of the individual, .. and·.let 

.!\M denote a hypothetical increase in his income that has the same value to him as an increase in the sur-

vival probability from s to s' . We know from Proposition 3 that .!\M is not negative, and that it will 

typically be positive. Further, for any particular specification of the individual's utility function, the value of 

.!\M can be calculated from the equality: V(s, M + .!\M) = V(s', M) . The same approach is useful in models 

in which the mortality rate is determined endogenously by the individual, and in which we wish to assess 
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the individual's welfare gain from a change in a parameter such as preventive health technology. 

The usefulness of such welfare assessments is as follows. Governments often undertake programs 

aimed at reducing child mortality. Such programs are common in most developing countries, but they have 

also been undertaken in some developed countries for particular social groups that experience relatively high 

child mortality. In an economic, evaluation of such programs, a necessary component is the assessment 

· of individuals' welfare-gains of the type described above. , -

Ex-ante Costs 

·. · ·• .: :''.To incorporate the ex-ante costs and benefits, leFC(n)·•denote the net utility cost that depends·on 

the number of births, n , but not on how many of them survive, N . Then (3) Is replaced by V'(s) = Maxn : 

U'(n, s) , where 

(19) U'(n, s) = U(n, s) - C(n) , 

and U is given by (2). Define U~(n, s) = U'(n + 1, s) - U'(n, s) and Cn(n) = C(n + 1) - C(n) . Define 

U~n(n, s) and Cnn(n) accordingly. Assume that Cn ~ 0 and Cnn ~ O; that is, the marginal ex-ante utility 

cost of births is non-negative and non-decreasing in the number of births. From (19), 

(20) 

where Unn is given by (5). The optimality conditions, (9a) and (9b), now become U~(n(s) - 1, s) ~ O 

> U~(n(s), s) . However, ~s U~ and ~s U' continue to be described by the right-hand sides of (6) and (7) 

respectively. 

It is then straightforward to verify that Propositions 1 and 3 remain unaffected. To examine 

Proposition 2, we need some additional derivations. First, if 

(21) ~s U~(n = n(s), s) s O , 

then, by going through the steps following expression (12), we can verify that (11) holds, and, hence, Prop-

osition 2 holds. To evaluate the left-hand side of (21), we derive the following in the Appendix: 

(22) ~s U~(n, s) = ~-~0 ¢(N, n - 1, s)uNN(N) + uN(n) , where 

(23) ¢(N, n - 1, s) = (n + 1)sb(N, n - 1, s) - B(N, n - 1, s), 

and B(N, n, s) = I:f=0 bO. n, s) denotes the cumulative probability of N or fewer survivals out of n births. 

To evaluate the sign of (22), we need the signs of the ¢, defined in (23). These signs can be assessed 

numerically for the limited range of possible values of n and s that are relevant in most fertility contexts, 
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or they can be assessed analytically. As an example of the latter, we show in the Appendix that a set of 

sufficient conditions for all of the q, to be positive is: n :s 12 and s > 0.81 . A survival probability smaller 

. than 0.81 and a total number of births larger than a dozen are not particularly relevant in many fertility- con-

texts. Thus, for brevity, we treat the q, as positive in the results presented below. However, analogous 

1results can be obtained under weaker conditions on n and s than those just noted. 

,, .· - .•. ,. . Now; since. uNN(N)· < o·,,. it follows from (22)·that (21)·,is satisfied if'-Uf..i(n)-:s o ;·:That-is::Asufficient 

condition for Proposition 2 to hold is that the marginal ex-post utility- from· an extra surviving child is non-

' positive if all· of the children from an optimally chosen· number of. births survive.· - , 

A related observation is as follows. Since the q, in the right-hand side of (22) are positive, (21) is 

likely to be satisfied if the uNN(N) are sufficiently large negative numbers. Thus: Proposition 2 is likely to 

hold if the ex-post utility u(N) Is sufficiently concave in N . 

It is useful to briefly consider situations In which the result in (11) is reversed; that is 

(24) n(s') ~ n(s) for s' > s . 

Using arguments similar to that employed earlier, it can be shown that (24) holds if we have 

(25) ~s U~(n = n(s) - 1, s) ~ o . 

Now, consider, for a moment, the polar assumption that the ex-post utility u(N) is linear and increasing in 

n (recalling the discussion in the beginning of this section, however, this assumption is not easily justified). 

Then, in the right-hand side of (22), uNN(N) = O , and uN(n) is positive for all n . This yields (25) and, 

hence, (24). 

Next, we look at the role that the ex-ante cost of births, C(n) , plays in whether the result in (11) 

or the result in (24) holds. Recall our assumption that u(N) is first increasing and then decreasing in N . 

That is, uN(N) is positive up to some value of N, and negative beyond that. If the values of Cn(n) are 

larger, then the optimal number of births, n(s) , will be smaller. Since uN(N) is decreasing in N , the 

values of uN(n(s)) and uN(n(s) - 1) will be larger at a smaller value of n(s) • Consider, then, the case in 

which uN(n(s) - 1) is a positive number. If the concavity of u(N) is sufficiently mild (that is, if the uNN(N) 

are sufficiently small negative numbers), then it is apparent from (22) that (25) is likely to hold, and, thus, 

the result in (24) is likely to be obtained. Note, however, that the outcome is critically dependent on how 

concave u(N) is. If the concavity of u(N) is sufficiently strong (that is, if the uNN(N) are sufficiently large 

negative numbers), then, as discussed earlier, the result in (11) is likely to hold. 

Finally, the analysis presented in this subsection can be extended to a formulation in which the ex-
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ante cost is not separable as in (19). In a more general formulation, we would replace the u(N) in the right-

hand side of (2) by a function u'(n, N) . A special case of this formulation is u'(n, N) = u(N) - C(n) , which 

yields (19). ,In the more general case,-we can obtain results analogous to those presented above, by using 

··methods employed in the preceding analysis. For instance, consider Proposition 3. The cost of an extra 

birth is now defined as -{ u' (n + 1, N) - u' (n, N)} which depends on the realized value of N . If this cost 

-·. Y""'' is assumed. to be·.non-negative;:.then~il:is 'easily·verified, thatRroposition.3·remains··unaffected .. : :·:•::·:,~ .. ::~;\:·.:;::r 

Ill. A DYNAMIC STOCHASTIC MODEL 

As noted earlier, the natural formulation of fertility choice is as a stochastic dynamic program. This 

section examines a two-stage model that captures this aspect. A multi-stage model is then discussed. The 

present section has the same objective as the previous one, namely, to extract some predictability concern-

ing the fertility effects of a change in the mortality rate. Naturally, one would not expect the results in a 

dynamic model to be as crisp as those in the preceding section. Yet, as we shall see, a significant part of 

the earlier analysis carries over. 

A Two-stage Model 

Since we are considering a two-stage model, it is useful to assess the effect of a change in the mor-

tality rate on three different but related fertility variables: (i) The number of births in the first period. (ii) The 

number of births in the second period. This is a random number, in general, because it depends on the 

number of surviving children from the first period. (iii) The expected number of total births; that is, the 

number of births in the first period plus the expected value of that in the second period. 

Let the integer variables n1 and n2 denote the number of births in the two periods. The corres-

ponding number of surviving children are denoted by the random variables N1 and N2 , where 

N1 = 0, 1, ... , n1 , and N2 = 0, 1, ... , n2 . The individual observes N1 before choosing n2 . The net ex-

post utility, after the number of surviving children from the second period is observed, is denoted by 

u(N1, N2) • This and other utilities discussed later subsume lntertemporal discounting. Let s1 and ··s2 de-

note respectively the survival probabilities of a child born in the first and second periods. Correspondingly, 

1 - s1 and 1 - s2 are the mortality rates for a first-period and a second-period child. A special case of 

this model is when s1 equals s2 , but this assumption is not employed because it does not simplify the 

analysis. If the individual's welfare level is described by the indirect utility V1(s1, s2) , then 

(26) 
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Once again, this model is highly simplified. It abstracts from those costs that depend on the number 

of births but not on the number of surviving children. It abstracts from the interim costs or benefits of the 

children surviving from the first period, before the outcome of the second period choice is known. In addi-

tion, it abstracts from the potential fertility effects of possible deaths of the first-period children after the 

. second period choice has been made. These aspects are discussed in the last part of this section. 

· · For later use,· let·· u1 (N1,·'N2) and,1 u2(N1; N2) ·"respectively: denote .the:marginal ·utilities of er sur-

viving child from the two periods;:that is, u1(N1,: N2) = u(N1 .+ J,:N2) - u(N1, N2).,. and u2(N1, N2) -•is 

·'defined similarly.' Denote the changes in these marginal'utilities due to one more surviving child by u11 (N1, 

N2) = u1(N1 + 1, N2) - u1(N1, N2), and by u12(N1, N2) and u22(N1, N2), defined similarly. The surviving 

children from the two periods are assumed to be substitutes; that is, u12 = u21 < O . Also, u is assumed 

to be strictly concave in N2 ; that is, u22 < O . 

Choice in the Second Period 

We begin by considering the individual's choice after the outcome of his choice in the first period, 

N1 , has been observed. Define 

(27) 

Denote the maximized value of U2 by 

(28) 

In (28) and below, n2(N1, s2) denotes the largest optimal value of n2 . 

This choice problem is quite similar to the single-stage problem analyzed in the last section; the main 

difference is that the present problem is parameterized by the observed value of N1 • Define U~(N 1 , n2, s2) 

= U2(N1, n2 + 1, s2) - U2(N1, n2, s2) . Define U~0(N 1 , n2, s2) accordingly. Then, analogous to (5), (6), (7) 

and (8) we obtain 

(29) 

(30) 

(31) 

Also, similar to (9a) and (9b), an optimum is characterized by 

(32) 
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The analysis of this optimum closely follows that of the single-stage problem of the last section. To avoid 

repetition, therefore, we only summarize the following three results, which are the analogues of Propositions 

.1, 2 and 3. These results are also used later. 

PROPOSITION 4 

. . (i) The optimal number of births.in the second period is either unique, or: there are two neighboring 

numbers that are both optimal. 

(ii) The number of births.in .the second period ls an increasing ·integer function·ofthe mortality rate 

of a second-period child. 

(iii) If s2 > s2 , then V2(N1, s2) <!::: V2(N1, s2) • The preceding inequality is strict if a change in the 

mortality rate of a second-period child alters non-trivially the second-period fertility choice. 

The effect of the number of surviving children from the first period on.the number of births 

in the second period. A new question that arises in the present case is, how does N1 affect 

n2(N1, s2)? To ascertain this effect, the following expression is established in the Appendix: 

(33) 

Next, using expressions (29), (33) and the second part of (32), we obtain 

(34) 

From (34), a value of n2 larger than n2(N1, s2) is not optimal for N1 + 1 . In other words, n2(N1, s2) 

is non-increasing in N1 . Next, we rule out the case in which the optimal n2 is entirely unaffected by N1 . 

In this uninteresting case, individual choice is completely separable between the periods; the second period's 

choice could be made optimally without observing the number of surviving children from the first period. 

We thus obtain 

PROPOSITION 5. The number of births in the second period is a decreasing integer function of the number 

of suNiving children from the first period. 

Choice in the First Period 

The analysis of the choice in the first period differs from that described above. Let the expected 

utility from a given number of births in the first period be denoted by 

(35) U1(n1, s1' s2) = ~N b(N1, n1, s1)V
2(N1, s2), 1 

where V2 was defined in (28). Then (26) can be stated as 
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(36) 

where n1 (s1, s2) denotes the largest optimal value of n1 • 

Let the marginal expected utility from an additional birth in the first period be denoted by 

U~(n1 , s1, s2) = U1(n1 + 1, s1, s2) "'.'.'.U1(n1, s1, s2). Define U~0(n1 , s1, s2) accordingly. Then, analogous 

to (29), (30) and (31), we obtain 

(37) 

(38) 

(39) 

U~0(n1 , s1, s2) =:(s1)
2 ~N b(N1, n1, s1){V~(N1 + 1, s2) - V~(N1 , s2)}, where 

1 

V~(N 1 , s2) = V2(N1 + 1, s2) - V2(N1, s2). 

a 1 1 1 1 as Un(n1, s1, s2) = s {Un(n1, s1, s2) + n1Unn<n1 - 1, S1, s2)} · 
1 2 

a 1 _ n1 1 as U (n1, s1, s2) - s Un(n1 - 1, S1, s2) . 
1 1 

An. optimum is characterized by 

(40) 

The concavity property of the expected utility U 1 , with respect to n1 , cannot be established at 

the present level of generality. Therefore, unlike Proposition 4(i), the results concerning the uniqueness of 

the optimal n1 cannot be easily demonstrated. For this reason and to keep the paper brief, we will con-

sider only local perturbations in the optimal choice. That is, we will consider those small changes in the 

parameters that alter the optimal n1 by at most one, and then examine whether the optimal choice 

decreases or increases. 

The effect of a change in the mortality rate of a first-period child on the first-period choice. 

The effect of a change in s1 on n1(s1, s2) is described by the proposition below. The proof is omitted 

because it is identical to that of (15). This can be verified using (38) and (40). 

PROPOSITION 6. The number of births in the first period is non-decreasing in the mortality rate of a first-

period child. 

The effect of a change in the mortality rate of a second-period child on the first-period choice. 

To analyze this effect, we need the following two results from an envelope theorem for integer choice vari-

ables (see Sah and Zhao (1989) for these and related results). 

(i) Consider the optimization in (28). If the optimal value of n2 is unique, then the derivative -8
8 V2 
S2 

exists and the standard envelope theorem holds: 
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(41) 

The same theorem holds even if there are two optimal values of n2 , provided 

(42) 

(ii) However, when there are two optimal values of n2 , the standard envelope theorem may not 

'··< · ,·:.·:-' ·· hold because the derivative.in (41) may not exist. 'On the other hand, the right-handed and: the· left-handed 

< - derivatives, denoted respectively by 8;
2
v2+ and 8;

2 
v2-, always exist,_and the corresponding envelope 

theorems are: 

(43) 

Using these two results, the following proposition is proved in the Appendix. 

PROPOSITION 7. The number of births in the first period is non-decreasing in the mortality rate of a 

second-period child if: 

(44) 

(45) 

A unit decrease in the number of suNiving children from the first period does not induce 
more than a unit increase in the maximum or the minimum number of optimal births in the 
second period, and 

Condition (44) has an intuitive interpretation. We know from Proposition 5 that the number of births 

in the second period does not decrease if one fewer child from the first period survives. Condition (44) 

restricts how large the increase in the number of births in the second period can be. This restriction is con-

sistent with most empirical studies, which show that the increase In births per death is considerably smaller 

than one (see Schultz (1981, Ch. 5) and Schultz (1988, pp. 444-5)). 

Condition (45) also has a simple interpretation. Recall that u22 < O and u12 < O . Thus, (45) 

can be restated as 

(46) 

That is, the decrease in the marginal ex-post utility of a surviving child from the second period, due to one 

more surviving child from the first period, is not significantly smaller than the corresponding decrease due 

to one more surviving child from the second period. 

l 

f 
I 
I 

I 

I 
i 
I 
t 
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Note that conditions (44) and (45) are sufficient but not necessary for Proposition 7, and that they 

can be weakened. For example, it can be shown that condition (45) can be omitted if the maximum number 

of births in the second period is two. 

The Effect of a Change in the Mortality Rate on the Expected Number of ,Total Births 

Recall that,. ex-ante, the number of births in the second period, n2(N1, s2), isa random variable 

.' . ,,,,,:.c~,;.-"""''·'''"'~·i'\'·· contingent,upor.i~,N1~,,,,AUhe.begir.inir:ig.<Of,.,fertility~decisionS;:•therefore, tn&.numbei;,.ofJ:otal:Ji>ir.tbs.is.raRdom, 

The expected number of total births, denoted by e(s1, s2) , is 

(47) 
0 1 (s1,s2) 

e(s1, S2) = n1(S1, S2) + ~N1=0 b(N1, n1(S1, S2), S1)n2<N1, S2). 

A question that arises, then, is: what are the effects of changes in s1 and s2 on e(s1, s2) ? This 

question is not fully answered by the preceding analysis. For instance, even though the number of births 

in each of the two periods, n1(s1, s2) and n2(N1, s2) , are non-increasing in s2 , it does not follow that 

e is non-increasing in s2 . This is so because a smaller number of births in the first period can reduce the 

number of first-period children who survive. In turn, this can raise the number of births in the second period. 

The analysis below examines those changes in s1 and s2 that induce local perturbations in the 

optimal choice of n1 and n2 . First consider the effect of a change in s1 on e . Note from (47) that s1 

affects e in two ways: (i) it directly affects the probability density b in the second term in the right-hand 

side of (47), and (ii) it affects n1(s1, s2). The latter effect influences the first term in the right-hand side of 

(47), and also the density b in the second term. 

Consider these two effects separately. The first effect of a larger s1 is to induce a first-order sto-

chastic improvement in the density b. Further, from Proposition 5, n2(N1, s2) is non-increasing in N1 . 

Therefore, a standard result concerning stochastic dominance (see Ingersoll (1987, pp. 137-9)) yields 

(48) _aa e(s1, s2) I ( ) ~ o . S1 n1 =n1 S1,S2 

The second effect of s1 ·on e is through n1(s1, s2) . Proposition 6 shows that the optimal n1 is non-

increasing in s1 . Now, if a change In .... s1 does not affect n1 (s1, s2) , then .·. e _ is not influenced .by the 

effect of s1 under .consideration at present. Therefore, we examine the case where .. n1(s1,-,s2) 

= n1(s1, s2) - 1 , for a value of s1 larger than s1 . ·For notational brevity, denote n1(s1, s2) ·by···. q . 

Then, using (47), it is shown in the Appendix that 

(49) 

· ..... Now, assume that (44) holds; that is, a unit increase in .. N1 .. induces no more than a unit decrease in 
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n2(N1, s2) • Then, the right-hand side of (40) is negative, because s1 < 1 . Putting the two effects of s1 

on e together, we conclude that e is non-increasing in s1 , if (44) holds. 

Next, consider the effect of a change in s2 on e. Recalling (47), s2 has two effects as well: it 

affects n2(N1, s2) and n1 (s1, s2) ; ·The analysis of the first effect is straightforward., Proposition 4(ii) 'Shows 

··.that n2(N1' s2) is non-increasing in s2 • Thus (47) yields 

(50) 

To analyze the"second effect, recall from· Proposition 7 that n1 (s1 i s2) ···is·· non;increasing ·in ·s2 , · provided 

(44) and (45) hold. The analysis of this effect is thus similar to the earlier analysis of the effect of s1 on 

e due to the induced change in n1(s1, s2). Hence, due to this effect, a larger s2 does not raise e if (44) 

and (45) hold. Putting the two effects together, e is non-increasing in s2 , if (44) and (45) hold. 

Proposition 8 summarizes the above results. 7 

PROPOSITION 8. The expected number of total births is non-decreasing in the mortality rate of either a first-

period child or a second-period child, if (44) and (45) hold. 

The Effect of a Change in the Mortality Rate on Individual Welfare 

Recall from (36) that the individual's welfare level is described by the indirect utility V1(s1, s2) . It 

is affected by s1 and s2 as follows. 

PROPOSITION 9. Individual welfare is non-increasing in the mortality rate of either a first-period child or 

a second-period child. Moreover, individual welfare strictly decreases if an increase in either mortality rate 

induces a non-trivial change in either the first-period or the second-period fertility choice. 

The proof of the effect of s1 on V 1 is similar to the proof of Proposition 3. This can be established 

using (36), (39) and (40). 

To examine the welfare effect of s2 , consider (35) and (36). Suppose for a moment that the opti-

., mal choice of n1 ·is left unchanged, although the value of s2 has increased to s2. Then, it is clear from 

(35), (36) and Proposition 4(iii) that V1 does not decrease, and that V1 strictly increases if the higher value 

of s2 alters non-trivially the choice of n2 for even one value of .N1 • Compared to this outcome, the actual 

welfare of the individual is not lower because he will also choose n1 optimally, given the changed value 

7 These results can be strengthened in several ways. For instance, e is strictly lowered by a larger s1 , provided the second-
period choice, n2(N1, s2), is not entirely insensitive to N1 . This is because inequality (48) is strict if n2(N1, s2) is decreasing 

· · in N1 ·for even one value of N1 ,, Similarly, e is strictly lowered by a larger -s2 -provided it lowers n2(N1, s2) for even one value 
of N1 . This is because inequality (50) is strict in this case. 
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of s2 . We thus conclude that V1(s1, s2) ~ V1(s1, s2) , and that the preceding inequality is strict if the 

change in s2 alters non-trivially the choice of n1 , or any one of the choices of n2 that the individual 

might make in the future. 

Extensions 

Interim utility and mortality. A simplification employed in the above two-stage model was that the 

'.>;-" ;.£ .. )."'rf,'~:!'~>t.\;/·moltality· of the children .born in the currentperiod;jnsofar:.asJt.is a critical: determinant of the curr.enUertility 

· decision, is revealed before the next set of decisions is made. This can easily be modified to incorporate 

age-specific mortality.It is also straightforward to incorporate the net utility (once again, inclusive of all costs 

and benefits) that the individual derives in a particular period from the surviving children from a previous 

period, some of whom might die in the near future. As an illustration, let the random variable N1 denote 

the number of first-period children surviving at the end of the period, when the second-period choice, n2 , 

is made. Let the random variable N1,2 denote the number, out of N1 , that survive until the end of the 

second period. Let s1,2 denote the corresponding probability of each survival. Denote the utility beyond 

the second-period by u(N1,2, N2), and the interim (age-specific) utility during the second period by v(N1) • 

Then the second-period choice continues to be represented by (27) and (28), provided the u in the right-

hand side of (27) is replaced by ~N1 •2 b(N1,2, N1, s1,2)u(N1,2, N2) • The first-period choice also continues 

to be described by (35) and (36), provided the V2 in the right-hand side of (35) is replaced by 

v(N1) + V2(N1, s2) . Further, the ex-ante costs of births in each of the two periods can be incorporated into 

the analysis. In this case, as the analysis presented at the end of last section indicates, additional conditions 

will be needed for some of the results. 

Multiple Stages of Choice. Consider, briefly, the following multi-stage extension of the simple two-

stage choice model analyzed earlier. Let t = 1, 2, ... , T denote the different periods of choice, where t = 
1 denotes the first period, and t = T denotes the last. Let '1t = 1 or o denote whether there is a birth 

or not in period t. Assume that, to the extent a child's mortality is critical to future fertility decisions, it is 

·experienced within one period after the-child's birth. Such an assumption is often employed in the context 

of developing countries, because a large portion of child mortality is experienced within the very early phase 

.. ·-- . of the life ... ln any case, this assumption can be modified toJncorporateage.,specific mortality,.as discussed 

in the previous paragraph. Let the random variable Nt denote the number of children surviving out of '1t . 

Let 5t denote the survival probability of a child born in period t. Define the vectors ~ = (N1, •• ., Nt_1) 

and st= (st, ... , S,-) . Then the individual choice is described by 
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(51) 

for t = 1 to T. In (51), vT+ 1 ""'u(NT+ 1) Is the ex-post utility; Interim utilities can be included as discussed 

earlier. The individual's welfare level Is described by the indirect utility 'v 1 CS1) • Let fli(Nt, st) '.denote the 

largest optimal value of "t . 

The foregoing problem can be analyzed using the methods developed in this section. For instance, 

the following results can be established. (i) "t(Nt,- st) is non-increasing in- 8t . (ii) Individual welfare, V 1 ·, 

is non-decreasing in . (s1, .••• , Sr) ,_ and It is strictly increasing in_ each . st if a.llarger, value of s1 ·has a non-

trivial effect on any of the fertility choices. 

IV. CONCLUDING REMARKS8 

Remarks on some earlier models. Ben-Porath and Welch (1972) and Ben-Porath (1976) have 

examined a single-stage choice model with the following specification of the expected utility of n births: 

(52) U(n, s) = G(ns, I - pn) , 

where p denotes the ex-ante cost per birth, I denotes the individual's income, and n is treated as a con-

tinuous variable. A motivation that they suggest for (52) is that the individual is concerned about the 

expected number-of surviving children, ns . Variants of this model considered by them do not alter the 

particular aspects that are of interest in the present discussion. Let '1ns and '1np denote respectively the 

elasticities of n with respect to s and p. Then (52) yields '1ns = -(1 + '1np). This relationship implies, 

in general, an ambiguous fertility effect of a change in the mortality rate (see Heckman and Willis (1975) and 

Schultz (1976), among others, for discussions of this model). On the other hand, the expected number of 

surviving children, denoted by E = ns, is larger if s is larger. To see this, let '7Es and '7Ep respectively 

denote the elasticities of E with respect to s and p. Then, '7Es = 1 + '1ns = -11Ep = -11np > O, under 

the reasonable assumption that E has the property of a normal good (that is, '7ep < o ).9 

81 have benefited from discussions with James Heckman on the material presented below. 
91n a set of important papers, Barro and Becker have analyzed some of the determinants of population within dynamic models 

based on dynastic individual utility (see Becker and Barro (1988) and Barro and Becker (1989)). They focus on the expected number 
of surviving children, E , rather than on the number of births, n , which is the focus of the present paper and of other papers cited 
in this subsection. A part of their analysis deals with the effect of a change in s on E , using a utility function similar to that in 
(52) in which the utility depends on E . They use the effect just noted in the text, that E is increasing in s . This effect, however, 
may arise in other models as well. In our analysis, for instance, n is a decreasing integer function of s . Thus, depending on the 
value of s , E may be locally increasing or decreasing in s . 
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The specification in (52) ls in general inconsistent with Individual choice under uncertainty. The 

version of (52) which is consistent with choice under uncertainty, but which has not been analyzed by Ben-

Porath and Welch, is 

(53) 

where the parameter G1 does not depend on n , and · G2'Js a function. The specification in (53) predicts, 

contrary to the typically observed pattern, that fertility -Increases if the mortality ·rate declines;· that Is, 

'1ns > o .- Also, (53) implies-that the ex-post net utility from N .surviving children-is linear in N . As 

discussed in the beginning of Section II, this assumption is not easily justified. 

O'Hara (1975) has examined a single-stage model, in which the ex-post utility is described by 

u(Z, N, Q) , where Z denotes parental consumption, and Q denotes the quality of the children. The 

quality of the children yields parental benefits only if the children survive beyond some stage; for brevity, call 

this stage -"maturity." His analysis is based on the maximization of the following expected utility: 

p1 u(Z, 0, 0) + p2u(Z, n, 0) + PaU(Z, n, Q) , subject to a standard budget constraint. Clearly the only 

three relevant outcomes, or the states-of-the world, in this specification are: (i) when all n children die after 

birth, (ii) when all n children survive before maturity but none survives to maturity, and (iii) when all n 

children survive to maturity. The respective probabilities of these outcomes are denoted by p1 , p2 and 

Pa . This model assigns no utility to all those outcomes in which some of the children die while others sur-

vive. Another problem with this model is that It treats the probabilities p1 , p2 and Pa as exogenous 

parameters. It overlooks the fact that these probabilities must depend on the number of births, n , which 

is a choice variable. For instance, p1 is (1 - s)" in our notation. 

Remarks on the use of a discrete representation. It is self-evident that a discrete representation 

of the number of children, born or surviving, is more realistic than a continuous representation. We now 

illustrate the reasons why a discrete representation also yields crisper and better results in the present con-

text. For this, we reconsider Propositions 1, 2 and 3, using the simple single-stage model described in the 

beginning of Section II. Let f(N, n, s) · denote the probability density of N survivals out of n births, where 

N and n are now treated - as continuous variables. The - expected utility is now . U(n, s) 

= _ro u(N)f(N, n, s)dN , ""instead of (2). - Let a subscript denote the variable with respect to which a partial 

derivative is being taken. Assume that the optimal value of n , denoted by n(s) , is Interior. Then, instead 

of (9a) and (9b), an optimality condition now is: Un(n, s) = O at n = n(s) . To establish the continuous 

versions of Propositions 1, 2 and 3, we need to show, respectively, the following: 
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(54) (i) unn<n. s) < 0 for all n ; 

(55) (ii) Un5(n, s)/Unn(n, s) ~ 0 at n = n(s) ; and (iii) U5 (n, s) ~ 0 at n = n(s) . 

These expressions are examined in the Appendix; where it is shown that they do not follow from a set of 

assumptions that are either intuitive or comparable to those employed in'our discrete analysis. 

•· · '' ).f.< (•:, ·,A reason;for this. difference between1a .discrete. and a· continuous representationis. as follows.~·-To 

analyze the problem at hand; we need to evaluate the induced changes in the probabilities of various num-

, bers of survivals (and-the induced changes in expressions containing these probabilities) when n and -s 

change. In the discrete case, these induced changes need to be evaluated only at integer values of N. 

In the continuous case, one needs to evaluate these changes on the entire real line representing N . More-

over, the evaluation of these induced changes is greatly simplified in the discrete case when the survival 

probabilities are described by a functional form such as the binomial density. This is because the binomial 

density has highly tractable properties that are lost to a significant degree even when a comparable continu-

ous density (for instance, a normal approximation of the binomial density) Is used. Also, it is apparent from 

the analysis in this paper that a discrete representation can be helpful in other, more complex models of 

fertility choice. Thus, in the present context, tractability and realism go hand in hand. 
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APPENDIX 

Derivation of (4) and (5). The relationship described in (A 1) is used repeatedly below. This "partial 

summation formula" (see Rudin (1976, · p. 70)) 'is the discrete equivalent of integration by parts. Let ~·s 

and yi's denote any set of numbers. Define ~ = ~=O ~. Then, 

(A1) ~~ =O ~Yi = - ~~=6 ~(Yi+1 -yi) + ~Yn · 

Also, for later use, denote the cumulative binomial density by B(N, n,.s) = 2:.~ =O bO, n, s) . 

To derive (4), note that (2), (A1) and the definition B(n, n, s) = 1 yield (A2). In turn, (A3) follows. 

(A2) U(n, s) = -~~:6 B(N, n, s)uN(N) + u(n) . 

(A3) Un(n, s) = -~~:Ms(N, n + 1, s) - B(N, n, s)}uN(N) + {1 - B(n, n + 1, s)}uN(n) . 

To evaluate (A3), we need two identities. First, 

(A4) B(N, n + 1, s) - B(N, n, s) = -sb(N, n, s) ; 

see Sah (1989) for a general version of this identity. Second, by definition, 1 - B(n, n + 1, s) = s"+ 1 

= sb(n, n, s) . Using these, (A3) can be expressed as 

(AS) Un(n, s) = U(n + 1, s) - U(n, s) = s~~=O b(N, n, s)uN(N) , 

which is (4). Next, we use (AS) again, but substitute Un in the place of U . This yields (S). 

Derivation of (6). A property of the binomial cumulative density is 

(A6) a as B(N, n, s) = -nb(N, n - 1, s) . 

Also, (A1) and (AS) yield Un(n, s) = s{-~~:6 B(N, n, s)uNN(N) + uN(n)}. Using (A6) and (S), the derivative 

of the preceding expression, with respect to s, can be rearranged to yield (6). 

Derivation of (7). Expressions (A2) and (A6) yield: ~s U(n) = n~~:6 b(N, n - 1, s)uN(N) . A 

rearrangement of the preceding expression, using (AS), yields (7). 

Proof of (11). For a formal statement of the local result we have just established, define a function 

·· gn(s)(s*) = ~s* Un(n = n(s), s*) 'for· s* e (0, 1) . Consequently, we may state (12) as: gn(s)(s) < o·:· let 

gn(s) be uniformly continuous on (0, 1), and let inf gn(s)(s) be non-zero. If we define e = - i inf gn(s)(s) , 
s s 

then e > O . From the uniform continuity of gn(s) , there exists an h(n(s), e) > o such that gn(s)(s') < 

e + gn(s)(s) < O , if s + h(n(s), e) > s' > s . Thus, recalling the steps in (13) and (14), the local result 
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proved in the text is: (11) holds if s + h(n(s), £) > s' > s. 

There is a finite number of possible values of n(s) ; in fact, the largest feasible value of n(s) is the 

biological maximum number of births. Hence, there Is a finite number of values of h(n(s), £) , no matter 

· what s might be. Therefore, h' • Min8 h(n(s); £) exists and Is positive. In turn, 

(A7) n(s') s n(s) if s + h' <:!:: s' <:!:: s . 

Now, consider a value of s' arbitrarily larger than ·s.~ 'Define· r • (s~-- s)/m > O, where· m····is an integer 

· chosen such that h'. <:!:: r . Then; n(s') - n(s) = ~~01 [n(s' - jr) - n(s' - O + 1)r)] . Given (A7), the expres-

sion in the square bracket inside the preceding summation is non-positive for each j . Thus, (11) follows. 

Derivation of (22) and Evaluation of {23). From (A1) and (A5), Un(n, s) 

= s{-~~-~o B(N, n, s)uNN(N) + uN(n)}. Using this and (5), and recalling that ~s U~(n, s) is given by the 

right-hand side of (6), we obtain (22), where </l(N, n - 1, s) = nsb(N, n - 1, s) - B(N, n, s) . Next, from (A4), 

-B(N, n, s) = -B(N, n - 1, s) + sb(N, n - 1, s) . Thus, (23) follows. 

To evaluate <P , we first show that <P is single-peaked in N . Define <PN(N, n - 1, s) 

• </l(N + 1, n - 1, s) - </l(N, n - 1, s). From (23), <PN(N, n - 1, s) = {(n + 1)s - 1}b(N + 1, n - 1, s) 

- (n + 1)sb(N, n - 1, s). From this and the definition of b, we obtain 

(AB) <PN(N, n - 1, s) ~ O if and only if a ~ ,B(N) , 

where a• {(n + 1)s-1}/(n + 1)s, and ,B(N) • (N + 1)(1 - s)/(n -1 - N)s. Since ,B(N + 1) > ,B(N), 

using (AB), we can show that: <PN(N - 1, n - 1, s) > O if <PN(N, n - 1, s) <:!:: O ; and <PN(N + 1, n - 1, s) < O 

if <PN(N, n - 1, s) s O . Thus, <P is single-peaked in N . 

This single-peakedness implies that </l(N, n - 1, s) achieves a minimum at N = O or N = n - 1 . 

Thus, if </l(O, n - 1, s) and </l(n - 1, n - 1, s) are positive, then 

(A9) </l(N, n - 1, s) > O for N = o to n - 1 . 

-- Our objective now is to find a set of sufficient conditions under which </l(O, n - 1, s) and </l(n - 1, n ..., 1,. s) 

are positive. From (23), </l(O, n :.... 1, s) = { (n + 1 )s -- 1 }(1 - s)"-1 . Thus, since n <:!:: 1 , it follows that 

</l(O, n -1, s) > O if s > 0.5 ... Next, from (23), </l(n - 1, n -1, s) = (n + 1)s" -1, ·Which is positive if.s 

> -y(n) , where -y(n) • exp{-{tn(n + 1)}/n} . Further -y(n) > -y(n - 1) . Hence, if s > -y(n*) ... --then 

s > -y(n) for n s n*. Since -y(12) = O.B1 , it follows that </l(n-1, n-1, s) > O if s > O.B1 and n s 12. 

Derivation of (33). The expression analogous to (AS) for the second-period choice is 

U~(N1, n2, S2) = S2 ~~~=O b(N2, n2, S2)U2(N1, N2) . Hence, the definition of U12<N1, N2) yields 
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(A10) U~(N 1 + 1, n2, s2) - U~(N1 , n2, s2) = s2 ~~~=O b(N2, n2, s2)u12(N1, N2). 

In turn, (A10) yields (33), since u12 < O . 

· Proof of Proposition 7. The ·expression analogous·to (AS) for the first-period choice is 

(A11) 

. ·- Where. V~(N1'. S2) is defined iil (37)' and,· in turn, V2 . is defined in '(28).·. The'former definition .yields~ .H: •' 

8 2t(N ) 8 2t(N ) 8 2±< ) (A12) 852 VN 1' S2 = 852 V 1 + 1, S2 - 8S2 V N1, S2 . 

The two one-sided derivatives, ..E.... VN2± , are obviously identical if the derivative, ..E.... V2 exists. Now, 8s2 8s2 N' 

in Step 1 below, we show that (A 12) is non-positive if (44) and (45) hold. Step 2 completes the proof. 

Step 1. Recall that n2 has either one or two optimal values at N1 . The same is true for the 

optimal value of n2 at N1 + 1 . Thus there are four possible combinations for which we need to show that 

(A 12) is non-positive. Since the proof is similar in these four cases, we analyze here only the case in which 

the optimal n2 is unique at N1 and at N1 + 1 . In this case, using (31) and (41), (A12) becomes 

(A13) 8: V~(N1, S2) = s1 {mU~(N1 + 1, m - 1) - m'U~(N1, m' - 1)}' 
2 2 

where, for brevity, we have used the notations m = n2(N1 + 1, s2) and m' = n2(N1, s2) , and have 

suppressed s2 . Note that (44) implies m' = m or m + 1 . Also, by definition, m ;;::: O . 

Now, if m' = m, then, using (33), we conclude that (A13) is non-positive. Next, consider the case 

m' = m + 1 . Then the right-hand side of (A13) is 

(A14) 

The term inside the square bracket in the above expression can be rewritten, using (29) and (A10), as 

s2 ~~;~o b(N2, m - 1, s2){u12(N1, N2) - s2u22(N1, N2)} . The preceding expression is non-positive if (45) 

holds. In turn, (A14) is non-positive because m ;;::: O , and because, from (32), U~(N 1 , m) 

= U~(N 1 , n2(N1, s2) - 1) ;;::: O . Thus, (A13) is non-positive if (44) and (45) hold. 

Step 2. Since (A12) is non-positive, the corresponding derivatives of (A1.1) with respectto s2 are 

also non-positive. Therefore, .from arguments which are.familiar by now, the optimal n1 . is non~increasing 

in s2 , if (44) and (45) hold. This proves Proposition 7. 

Derivation of (49). Define Y(q) = ~~1 =O b(N1, q, s1)n2(N1, s2) . Thus, using (47), e(s1, s2) 

- e(s1, s2) = -1 + Y(q - 1) - Y(q) . Next, using (AS), but substituting Y(q) in the place of U(n, s) , we 

, .. obtain .Y(q) -Y(q-1) = s1 ~~~o b(N1, q :-1, s1){n2(N1 t: .1, s1) .~ n2(N1, s1)}. Expression (49) follows. 
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Evaluation of (54) and (55). Let F(N, n, s) = fa fij, n, s)dj denote the cumulative density of N 

survivals. Define G(N, n, s) - ,ro F(K, n, s)dK. Thus, GN(n, n, s) = 1 , and GN0 (n, n, s) = GNN(n, n, s) 

= o . Using these expressions, and integration by parts, we obtain 

,,, .. , ·· - ,, ;;Now, consider.(54) . .To establish (54), we need to show that (A 15) is negative.) Note that though the .uNN(N) 

are negative, they can have any magnitude for different values of ~ N ·>Also; depending· onthe'value of n·, 

uN(n) can be a positive or negative number of arbitrary magnitude. Thus, (A15) will be negative, in general, 

only if 

(A16) G00(n, n, s) = 0 ; and G00(N, n, s) ~ 0 for n > N ~ 0. 

Clearly, (A 16) does not represent any intuitive property of the survival probabilities. It does not describe a 

property of stochastic dominance, of any order, for the survival probabilities. Next, an assumption con-

cerning f(N, n, s) that is comparable to the binomial density, (1), is the one in which the binomial density 

is approximated by a normal density. For example, f(N, n, s) = z((N - sn)/(ns(1 - s)) 1/ 2) , where z is 

the unit normal density. It can be easily ascertained that this or other similar approximations do not yield 

(A16). Similar difficulties arise in establishing the expressions in (55). 
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