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Abstract 

It is generally agreed that as income (or expenditure) rises, households 
switch to higher valued foods not necessarily with higher nutrient content. Some 
recent work has suggested that, even among the very poor, as income rises 
households purchase only additional taste and non-calorie nutrients: the calorie-
income curve is very flat. 

In this paper the effect of expenditure on calorie and protein demand is 
estimated with data from a large scale Brazilian expenditure survey. Non-
parametric estimates, which impose very little structure on the relationship 
between nutrient intake and expenditure, demonstrate that the calorie-expenditure 
curve is positively sloped for households in the bottom three quartiles of the 
per capita expenditure (PCE) distribution; it is kinked when per capita calorie 
intake is between 2, 500 and 3, 000 calories per day and is flat at higher 
expenditure levels. The protein-expenditure curve is also positively sloped 
although it does not flatten out as much as the calorie curve, reflecting a 
switch into higher valued foods, richer in protein. 

Using the non-parametric estimates as a guide, the nutrient expenditure 
functions are parameterized. The expenditure elasticities are estimated to be 
between 0.25 to 0.30 for calories and 0.40 for protein at the bottom decile of 
PCE (with standard errors less than 0.05). The hypothesis that nutrient 
elasticities are zero is unambiguously rejected. 
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1. Introduction 

Studies in the early and mid-1970s showed that, for the malnourished, the 

binding constraint on nutrient intake is in calories and that deficiencies in 

other nutrients, especially proteins, were accompanied by deficiencies in 

calories (Sukhatme, 1970). Berg (1973) argued that while nutrient intake in a 

population will depend on many factors, such as the existence of nutrition 

programs, income is likely to be an important determining factor. 

Many studies have attempted to measure the responsiveness of household 

calorie intake (or availability) to income since the seminal work of Reutlinger 

and Selowsky, (1976), which assumed an elasticity between 0.15 and 0.30, based 

on little information. There is, today, considerable disagreement in the 

literature over the size of this elasticity with estimates ranging between zero 

and one (see Table 1 and surveys by Alderman, 1989, and Behrman and Deolalikar, 

1988). 

It is generally agreed that as income (or expenditure) rises, households 

switch to higher valued foods not necessarily with higher nutrient content 

(Poleman, 1981; Behrman and Deolalikar, 1987). It had been thought, however, 

that calories respond positively to income at least at. low income levels. It 

is likely the response declines with income and it has been conjectured that 

there may be a kink in the calorie-income curve. Some recent work, however, has 

questioned this conventional wisdom and suggests that even among the very poor, 

as income rises households purchase only additional taste and non-calorie 

nutrients: the calorie-income curve is very flat (Wolfe and Behrman, 1983; 

Behrman and Deolalikar, 1987; Behrman, Deolalikar and Wolfe, 1988). This is 

consistent with the controversial hypothesis that it is rare for individuals to 

be truly malnourished because of short and long run body adaptation to food 

shortages. 1 If the calorie-income curve is flat, then there are powerful 
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implications for policy. In particular, concern over low calorie intakes of the 

poor has been misdirected and the substantial resources allocated by governments 

and international agencies to alleviate this "problem" have been misspent. 

In this paper, the effect of expenditure (rather than income) on nutrient 

demand (both calories and protein) is estimated with data from a Brazilian 

expenditure survey. We take advantage of the large sample size by doing 

exploratory data analysis and pre-testing on a random sub-sample of households; 

we then present estimates of expenditure elasticities usirig a different random 

sub-sample. Using non-parametric methods, which impose very little structure 

on the relationship between nutrient intake and expenditure, we find the calorie-

expenditure curve is positively sloped for households in the bottom three 

quartiles of the per capita expenditure (PCE) distribution; it is kinked when 

per capita calorie intake is between 2, 500 and 3, 000 calories per day and is flat 

at higher expenditure levels. The protein-expenditure curve is also positively 

sloped although it does not flatten out as much as the calorie curve reflecting 

a switch into higher valued foods, such as meat and milk, which are rich in 

protein. Using parametric functional forms suggested by non-parametric 

estimates, we find that for urban households, the expenditure elasticity of the 

demand for calories is about 0.26 at the bottom decile of PCE and about 0.03 at 

the top decile (with standard errors of 0. 02 and 0. 01 respectively). The protein 

elasticities are higher: 0.47 at the bottom and 0.18 at the top decile of PCE 

(also estimated very precisely). 

The next section describes the data paying particular attention to problems 

associated with estimating the relation between expenditures and nutrients. 

This is followed by non-parametric and parametric estimates of the relationship. 
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2. Data, measurement and estimation 

The calorie-expenditure curve will be estimated with a very large household 

budget survey from Brazil. Estudo Nacional da Despesa Familiar (ENDEF) is a 

broad purpose survey conducted from August 1974 to August 1975 which covered over 

53,000 households in a nationwide random probability sample. 2 Detailed 

information were collected on, inter alia, household consumption and expenditures 

together with demographic characteristics, labor supply, earnings and non-labor 

income of individuals. 3 

Each household in the ENDEF survey was visited on seven consecutive days 

and at each visit, food consumed and wasted4 was weighed, distinguishing over 

three hundred food categories. Food weights were converted into nutrients using 

standard food composition tables and these weights were converted into a per 

capita nutrient intake measure based on a listing of all people present at each 

meal ~ including visitors, lodgers and employees. 5 Since these measurements 

cannot be made for meals taken out of the home, it will be assumed that the 

nutrient content of those meals is the same as meals taken at home. 6 Food 

expenditure is based on the value of food consumed (and wasted) including meals 

away from home; non-food expenditures are based on recall with the recall period 

varying from a fortnight to a year. In all cases the value of consumption from 

own production, gifts and transfers are included. 

Table 1 presents estimates of the calorie-income (expenditure) elasticity 

from 20 recent studies. Most remarkable is the range of these estimates; some 

of this range can, however, be explained by methodological differences. (See 

Bouis and Haddad, 1989, for a discussion of some issues). All the estimated 

elasticities of calorie demand in the first panel are calculated indirectly from 

elasticities estimated in a food demand system. This is a convenient empirical 

strategy as it can be applied to any expenditure survey and does not require 
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knowledge of both quantities and expenditures. In all cases, however, indirect 

estimates tend to be high. Behrman and Deolalikar (1987) point out that this 

may be due to aggregation biases if there is large within group substitution from 
i 

lower valued to higher valued foods, with similar calorie content. Clearly the 

extent of aggregation bias will depend both on the level of aggregation in the 

food demand system and on the scope for substitution. While this may explain 

the very high elasticities for India (Behrman and Deolalikar, 1987), it does not 

explain the high elasticity in Sierra Leone (Strauss, 1984). 7 In this paper, 

we exploit the fact that data are available for over 300 foods and convert those 

to nutrients in order to estimate the nutrient-expenditure function directly. 

Even among the direct estimates, there is considerable heterogeneity. 

Elasticities based on income seem to be slightly lower. than those based on 

expenditure. This is also true in the ENDEF data. Based on a regression of 

(log) per capita calorie intake on (log) per capita expenditure, the elasticity 

is 0.21; using, instead, (log) per capita income as the regressor, the 

elasticity is 0.11; (standard errors are less than 0.01 in both cases). 

If current income measures long run income with random error, then a 

standard errors-in-variables argument predicts a downward bias in the estimated 

elasticity. It is, furthermore, reasonable to suppose that current nutrient 

intakes depend on labor supply in which case income might be endogenous. For 

this case, however, it is hard to sign the bias a priori. If unobserved taste 

for work is negatively correlated with taste for calories, the bias due to 

simultaneity may be downward. On the other hand, for low income households, it 

may be that increased calorie intake raises productivity and/or labor supply8 

in which case the estimated elasticity will be biased upwards and the bias would 

be greater for lower income households. 
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In the modern demand literature, it is often argued that current 

expenditure is a better measure of long-run well-being than current income 

because households are able to smooth consumption more than income. Nutrient 

intakes and total expenditure are, however, likely to be jointly determined. 

In addition, when the data sources for food expenditure and nutrient intake are 

the same - as in ENDEF - there are likely to be common measurement errors which 

will result in biased estimates of elasticities. 9 Pure measurement error in 

both nutrient intake and total expenditure should be uncorrelated with asset or 

wealth measures and, possibly, income in which case they may be used as 

instruments to purge estimates of simultan~ity bias and bias due to measurement 

error. In the ENDEF data, when per capita expenditure is instrumented with 

household income, the calorie elasticity is 0.12 (standard error 0.01). If 

income is endogenous, then it is not an appropriate instrument; the estimated 

elasticity falls to 0.05 (standard error 0.02) when unearned income, a measure 

of wealth, is used as the instrument. These estimates are quite similar to 

those reported by Behrman, Deolalikar and Wolfe. 

there may also be components of measurement error which are systematically 

correlated with income or wealth measures (Bouis and Haddad, 1988) - such as 

gifts of food into or out of the household and food eaten in the household by 

visitors or servants. If these are not accounted for, and they are hard to 

measure so are not always removed, they will lead to systematic overstatement of 

both nutrient intake and total expenditure for households who give away 

relatively more food or have relatively more visitors at meals (typically higher 

income households) and understatement for households who receive food or are 

absent from many meals (typically lower income households). 10 

Fortunately, considerable care was taken in the collection of the ENDEF 

data. Since nutrient intakes are based on actual consumption, gifts, wastage and 
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leftovers (whatever their disposition) are not included in the computation of 

calorie and protein consumption. Each person present at every meal is accounted 

for, including non-family and non-household members, so there is no problem of 

overestimating household per capita consumption on this account. Further, 

since data were collected over a seven day period, random variation from either 

independent measurement errors or daily dietary variation will be partly 

smoothed. 

Nutrient requirements are lower for children than adults and, since poorer 

households typically have more children, failure to account for household 

composition is likely to result in a systematic upward bias in the estimated 

elasticity. There is, however, no correct method of controlling for 

composition. Intakes may be converted to an adult equivalent basis using, for 

example, international weights (FAO-WHO, 1973) and household expenditure could 

be similarly adjusted; it is, however, far from clear what weights should be 

attributed to .each demographic group (Deaton and Muellbauer, 1986). We prefer, 

therefore, to include demographic controls in the regressions and permit the data 

to choose the appropriate weights. Family size and composition might properly 

be treated as endogenous, however, and, without any instruments to explain 

household composition which should not directly enter the demand function, 

estimates including demographic controls will be biased. Estimates will thus be 

presented including and excluding demographic controls as well as estimates based 

on a sample of households stratified on household composition. 

A model explaining calorie intake should also include controls for activity 

levels of each individual; these are hard to measure and should clearly be 

treated as endogenous (Pitt, Rosenzweig and Hassan, 1989). We have no 

instruments with which to predict activity but, in an attempt to account for 

gross differences, examine rural and urban households separately. 
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An issue which has received surprisingly little attention in the nutrition 

literature is nonlinearity. For very poor households ~ many of whom spend 

around 60 to 70 per cent of their budget on food ~ it seems implausible that 

there should be no response of calories to expenditure. As the food share 

declines with income and people switch to higher valued foods and purchase more 

non-nutrient qualities (such as taste), the elasticity will surely decline with 

income. Elasticity estimates reported at the mean (as in Table 1) may be 

c~nsiderably lower than those for the poorest households, who are often of most 

interest. Those studies which do allow for some non-linearity, usually by 

introducing a quadratic term in expenditure or income, typically find 

elasticities do decline with expenditure. 11 

In descriptive studies, Poleman (1981) and Lipton (1983) have argued that 

nonlinearities may be quite sharp and suggest the calorie-income curve may be 

kinked. Poleman (p. 23) plots grouped data from a 1969/70 expenditure survey in 

Sri Lanka; calories rise with expenditure until an asymptote at about 2500 

calories per person per day and then remain constant. He also shows that, 

among the poorest, the composition of foods consumed is essentially unchanged as 

income rises and it is only among the relatively better off that households 

switch into foods with a higher price per calorie. A related, but stronger 

hypothesis postulated by both Poleman and Lipton, is that the budget share of 

foods may actually increase with income for very poor households. There is 

some evidence to support this view (Thomas, 1986) and it is hard to imagine food 

shares rising without a concomitant increase in calorie intake. 
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3. Results 

We shall exploit the size of ENDEF by stratifying in several dimensions. 

The focus in this paper will be on urban households; results for the rural 

sector are qualitatively similar although some differences will be pointed out. 

The sample of urban households is still very large and so we have split it into 

three random sub-samples with about 12,900 households in each. 

The first sub-sample will be used for exploratory data analysis, including 

non-parametric estimation. These results will guide parametric estimation of 

the nutrient-expenditure curve - in particular the specification of the 

functional form and the covariates to be included in the model. The first sample 

will also be used to determine the appropriate choice of instruments in the two 

stage regressions. All the estimated elasticities are reported for the second 

sample; size of tests do not need to be adjusted (Lovell, 1983) since these 

estimates have not been used to guide any further data analysis. 

(i) Exploratory data analysis : non-parametric estimates 

Using the first sample, we begin with a contour plot (or three-dimensional 

histogram estimator) of the bivariate relationship between (log) per capita 

nutrient intake and (log) per capita expenditure (PCE); 

the measures of nutrients in Figures la and lb 

calories and protein are 

respectively. 12 The 

relationships look quite nonlinear - especially for calories - although around 

median inPCE (which is 8.2) non-linearity seems unimportant and the correlation 

between nutrients and PCE is clearly positive. 

Figure 1 presents a lot of detail. One way of summarizing the essence of 

the relationship, while imposing little structure, is to use a two-dimensional 

non-parametric estimator. Our first estimator is probably the best known: mean 

(log) nutrient intake is plotted against (log) PCE where means are defined for 
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each icosohile (5 percentile) of PCE. The shape of the calorie-expenditure 

curve is dramatic. In both the urban and rural sectors, there is a kink around 

the third quartile of PCE (at about 2,400 calories per capita per day in the 

urban sector and 3,000 calories in rural households13 ); the curve is positively 

sloped for poorer households and essentially flat for households in the top 

quartile of PCE. The protein-expenditure curve is positively sloped for all 

households; it tends to flatten out for higher expenditure households although 

the threshold is less dramatic. 

Figure 2 has the force of simplicity. There are, however, a large number 

of non-parametric estimators in the literature which have theoretically more 

attractive properties and can be generalized to a multivariate context. (Hardle, 

1988). A locally-weighted smoothed scatterplot (LOWESS) (Cleveland, 1979) is a 

nearest neighb01;hood-type estimator, in which each observation is replaced by its 

predicted value based on a weighted regression using the observations in a band 

around it . 14 

Figures 3a and 3b present LOWESS estimates of the nutrient-expenditure 

curves using a tri-cube weighting function, or kernel, for about 6000 urban 

households (randomly chosen from the first sub-sample). In addition to choosing 

the kernel, it is necessary to choose the bandwidth; one strategy is to use an 

automatic technique such as cross-validation (Efron, 1982). Since our aim is to 

uncover the shape of the nutrient-expenditure function, we have experimented with 

a range of bandwidths from 60 observations (1% of the sample) to 1200 

observations (20%). In the top left hand panel, the bandwidth is 120 

observations; clearly the curve is undersmoothed. When 300 observations (5% 

of the sample, top right hand panel) are included in each band, the shape of the 

curve is easier to identify and looks much like the icosohile means in Figure 2. 
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Enlarging the bandwidth smooths the curve without affecting its shape. The 

protein curve is similar although it does not flatten out as dramatically. 

Expenditure elasticities of the demand for nutrients are apparently not 

zero~ at least for poorer households. There is also evidence for the kind of 

threshold suggested by Poleman (1981) and Lipton (1981) especially for 

calories. As expenditure rises, poor households purchase additional protein and 

calories in addition to other nutrients and non-nutrient qualities. When 

calories reach some threshold, however, households switch to higher protein foods 

while maintaining an approximately constant level of calorie intake. Failure 

to take account of this non-linearity will result in estimated elasticities which 

are biased downwards for the poorest. Our estimates from a regression linear 

in logs, discussed in the previous section, are almost certainly too low. 

(ii) Parametric estimates 

In addition to expenditure, nutrient intakes are likely to depend on prices 

and household characteristics. Although non-parametric estimates provide very 

useful guidance about the general shape of a curve in two dimensions, it is well 

known that in multivariate models they suffer from the "curse of dimensionality" 

(Huber, 1985) : as the number of continuous covariates increases, the cells over 

which there is smoothing quickly become very wide. Asymptotically, additional 

discrete covariates have no impact on the rate of convergence of local 

estimators, (Bierens, 1987), suggesting that continuous covariates be made 

discrete. It is clear, however, that first order asymptotic results are not 

sufficient from a pract.ical point of view. In almost all currently available 

samples, stratification on many discrete covariates will result in small sub-

samples. We take the view, therefore, that Figures 2 and 3 provide very valuable 
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input into the choice of a parametric functional form and therefore turn next to 

the estimation of parametric relationships. 

A common functional form in the nutrition literature is a regression of 

(log) per capita nutrient intake, 1nN, on (log) per capita expenditure, 1nPCE, 

and, in some cases, a quadratic term in (log) per capita expenditure, including 

a set of other conditioning covariates, W, such as prices or regional dummies, 

seasonal dummies and household characteristics: 

1nN = ~o + ~11nPCE + ~21nPCE2 + W~ + £ [l] 

Since the elasticity is a linear function of 1nPCE, this curve is unlikely to be 

able to pick up the kink in the nutrient functions so that elasticities at low 

expenditure levels may be under-estimated. It is also possible that a quadratic 

function will force elasticities at high expenditures to be negative. One might 

include higher order polynomials, such as cubics in 1nPCE, although it is well 

known that they too may suffer from tail-behavior dictating the shape of the 

curve in other parts of the distribution. 

[2] 

Instead of resorting to semi-parametric methods such as series estimators which 

may also suffer from influential observations in the tails15 , we propose a 

simple parametric form which can, in principle, replicate the shape of Figure 3: 

the log-inverse log model. To add flexibility, we also include a quadratic in 

inverse 1nPCE: 

the elasticity being: 

,, 81nN 
81nPCE 

[3] 
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We shall refer to [3] as the quadratic-inverse model. A two-parameter model may 

not be sufficiently flexible; instead of adding inPCE-3 , the logarithm of inPCE 

is included with the covariates: 

[ 4] 

in which case the elasticity is a very flexible cubic function of inverse inPCE: 

f'/ = 
81nN 

81nPCE 

This model will be called the quadratic-inverse-log. 

Using the second sub-sample of urban households, models [l] thro~gh [4] 

have been estimated for per capita calorie and protein intake. Each regression 

includes an additional 40 covariates (education of the head and spouse, age and 

sex of the head, existence of the spouse, twelve local market food prices, seven 

region dummies and twelve month dummies) which are suppressed from the 

presentation. Since the expenditure coefficients are hard to interpret, Table 

2 presents elasticities evaluated at seven points in the PCE distribution and, 

beneath each estimate, its jackknifed standard error (Efron, 1982) 16 • 

With large sample sizes, it is far from clear that conventional testing 

strategies are appropriate. Holding the probability of Type 1 errors constant, 

then as the sample size 'increases, the probability of Type 2 errors declines and 

so, it may be prudent to adopt a non-classical approach to choosing the size of 

the test. Schwarz (1978) proposed a Bayesian model selection criterion, related 

to the Akaike information criterion, (Akaike, 1978), which will asymptotically 

pick the model that is a posteriori most probable. For a x2 test statistic, the 

critical value is the logarithm of the sample size multiplied by the number of 

restrictions, r; for our sample, which is over 12, 800 observations, the critical 

value is 9.S*r. Since the square of a t variate is asymptotically a xt. the 

critical value of a t statistic is 3.08 according to the Schwarz criterion. We 

shall judge significance by the more stringent Schwarz criterion in the text, 

12 



although, for reference, standard errors and classical probability values are 

presented in the tables. 

It is well known that the performance of high order polynomial models 

estimated by least squares can suffer from influential observations in the tails. 

The addition of high order polynomial expenditure terms in the regressions 

results in poor tracking of the non-parametric estimates in the tails of the 

expenditure distribution. Between the bottom and top deciles of PGE, however, 

estimated elasticities in models with four and five expenditure terms are 

remarkably similar to those with two or three expenditure variables. We restrict 

attention, therefore, to the two and three parameter models [l] through [4]. In 

all the regressions, expenditure has a significant impact on both calories and 

protein (with x2 s over 2000). 

In the calorie regressions, each of the expenditure coefficients is 

individually significant. The two parameter models fail to track the non-

parametric estimates as well as the three parameter models largely because of 

difficulty in replicating the kink. The quadratic polynomial model 

underestimates the elasticity at the bottom of the expenditure distribution; at 

the top, the elasticity is negative (-0.32 at the maximum reported PGE). The 

quadratic inverse model, [3], tracks the non-parametric curve better, especially 

in the lower deciles of expenditure but it is not flat in the upper deciles. 

The cubic polynomial model performs well and is flat at in the top deciles of PGE 

but even it is not sufficiently non-linear around the kink. The quadratic-

inverse-log model, [4], also tracks the non-parametric estimate well, picks up 

the non-linearity better but it declines at the top of the PGE distribution 

displaying the same problem as in the quadratic polynomial model. Informally, 

among the parametric models we prefer the estimated elasticities in columns 2 and 

4. 

13 



At the bottom decile of PCE, the calorie elasticity with respect to 

expenditure is over 0.40. It declines with expenditure to about half (just over 

0.2) at the median and at the top decile of PCE it is quite small (about 0.1). 

In all cases, the elasticities are estimated very precisely and are significantly 

different from zero throughout the expenditure distribution. 

In the protein regressions, each expenditure term is individually 

significant except in the cubic polynomial model: the cubic term is irrelevant 

and this model almost exactly tracks the quadratic model. The estimated 

function declines at the top of the expenditure distribution (with estimated 

elasticities of -0.19 to -0.26 at maximum observed PCE) for all models except the 

quadratic-inverse [ 3] . The estimated elasticities range from 0. 53 at the bottom 

decile to 0.16 at the top, are very precise and are all significantly different 

from zero. 

(iii) Non-parametric instrumental variables estimates 

It was argued in Section 2 that per capita expenditure and nutrient intakes 

are likely to share common measurement errors, in which case the estimates 

discussed above are biased and instrumental variables is the appropriate 

estimator. One might assume that the common measurement errors are uncorrelated 

with errors in household income, since income and expenditure data are collected 

independently. Income will then be a valid instrument, ignoring, for the moment, 

labor supply and efficiency wage considerations. Adopting a proposal of Newey 

and Powell, (1989), we present bivariate non-parametric instrumental variable 

estimates of the relation between nutrient intake and PCE in Figure 4. In the 

first step, the relation between lnPCE and (log) total household income, lnHHY, 

is estimated non-parametrically: 

lnPCE = f(lnHHY) + u 
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The estimated residuals from that regression, u are included in a second stage 

(multivariate) non-parametric regression: 

inN = g(inPCE,u) + E 

Again, the unknown functions f() and g() are estimated by LOWESS with the 

same sub-sample of urban households used in the non-parametric estimates 

discussed above. 17 The results are presented in Figure 4. 18 

The shape of the calorie-expenditure function, in the upper panel, is 

similar to the pictures in Figure 3. The curve is upward sloping for the 

poorest households, there is a kink around the third quartile of PCE (inPCE=8.8) 

and the curve is flatter for households in the top quartile. The curve does not 

completely flatten out although this is mostly due to households with absolutely 

large residuals whose calorie intakes are higher than households with the same 

PCE but smaller residuals; there is a fair amount of noise at the top of the PCE 

distribution. For most households, namely those to the left of the kink, the 

plane of the function is downward sloping as residuals increase. This makes good 

sense if the residuals reflect measurement error in PCE which is not also in 

nutrient intake measures. The protein curve is in the lower panel; it is 

almost linear and, like calories, the plane slopes down in residual space. 

(iv) Tests for exogeneity 

There is a long tradition in economics which argues that household income 

should not be treated as exogenous. Firstly, expenditures are likely to depend 

on labor supply decisions; secondly, the decision to work or, at least, one's 

productivity may depend on nutrient intakes. 

measure of wealth, may be a better instrument. 

Household unearned income, a 

No unearned income is reported 

by 45% of all urban households (and almost two thirds of rural households). This 

puts a (rather high) lower bound on the size of the bandwidth in a local 
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estimator (including all nearest neighborhood and most kernel estimators). We 

turn, therefore, to parametric estimation to test exogeneity assumptions. 

Still using, the first sub-sample of urban households, Table 3 presents a 

series of Wu-Hausman tests for each of the four parametric models. Since we are 

primarily interested in the impact of expenditure on nutrient intake, and since 

Wu-Hausman tests tend to lack power as the dimension of a test rises, we test for 

differences between the expenditure coefficients in the regressions. It turns 

out that these x2s test statistics are very similar to those including all 

covariates; of course, the degrees of freedom are not the same. In each of 

the 2SLS regressions, the identifying instruments are included as third order 

polynomials and the test statistics are based on jackknifed estimates of the 

variance-covariance matrix. 

Classical probability values are reported beneath each statistic. 

According to the Schwarz criterion, the critical value for the two and three 

parameter models are 18. 9 and 28. 4 respectively. Maintaining that unearned 

income is exogenous, then 1nPCE is also exogenous in the protein regressions. 

Exogeneity of 1nPCE is rejected unambiguously in the calorie regressions. 

Still maintaining unearned income is exogenous ~ and that measurement 

errors are uncorrelated with errors in the nutrient-expenditure function ~ is 

total household income a valid instrument? 19 The test statistics are reported 

in the second row of each panel of Table 3. It is impossible to distinguish 

between the estimates using the two sets of instruments and so, on efficiency 

grounds, household income is the appropriate instrument. Under classical 

testing, however, this inference would change in the two-parameter calorie model. 

Assuming that total household income is uncorrelated with errors in the 

nutrient-expenditure function, then the hypothesis that 1nPCE is exogenous is 

unambiguously rejected in all models for both calories and protein with x2s of 
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over 250 and 80 respectively. 

power. 

These results suggest the tests are not without 

(v) Parametric instrumental variables estimates 

Returning to the second sub-sample of urban households, Table 4 presents 

estimates of the expenditure elasticities of nutrient demand based on 

instrumental variable estimates with the same covariates used in the OLS 

regressions. With (log) household income as the identifying instrument, in the 

quadratic models, the expenditure elasticity at the bottom of the PCE 

distribution declines by about a third relative to the OLS estimates. At the 

bottom decile, the elasticity is 0.26; it is halved (0.11) at median PCE and is 

zero at the top of the PCE distribution. Although standard errors are about 

three times larger than in the OLS estimates, the elasticities are significant 

at least for all but the top decile of households. In the three parameter 

models, the elasticities at low levels of PCE are', higher than in the two 

parameter models, and approximately the same as the OLS estimates. The three 

parameter IV estimates decline more rapidly than the OLS ones although at the top 

of the distribution, the IV elasticities increase sharply. The shape of the 

curve at low PCE is almost surely influenced by this positive slope at the top. 

When unearned income is used as an instrument in the two parameter models, 

the elasticities at low levels of PCE are one third smaller than those 

instrumented with total income; these differences decline with PCE. The 

standard errors are much larger over the entire PCE distribution ~· and at low 

levels of PCE the elasticities are not significantly different from zero. 

When a third expenditure term is added to the model, the elasticities 

change drastically and the standard errors become huge. At the bottom decile of 

PCE, the elasticity in the quadratic-inverse-log model is 2.3 but the jackknifed 
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I 
standard error is 9.5. Throughout the PCE dist~ibution, we cannot reject the 

I 

Recall that 45% of households report no unearned income. For low I 
I 

hypothesis that there is no relation between income and calories. 

expenditure households, unearned income is a poor instrument although over the 

entire PCE distribution the first stage regressions appear to perform fairly 

well. 20 

It appears there is a subtle interaction between the quality of the 

instruments and the functional form of the second stage regression. The three 

parameter models instrumented with unearned income are sufficiently flexible to 

allow tail observations to be very influential resulting in their poor 

performance. In contrast, the noise in the tails of the expenditure 

distribution is not as influential in the two parameter models. 

The results for protein are much the same although, relative to least 

squares, the proportionate decline in elasticities is smaller than for calories. 

For the two parameter models, estimated elasticities are about 20% smaller at the 

bottom of the expenditure distribution when (log) total income is the instrument 

and about 40% smaller when instrumented with unearned income. In the latter 

case, the three parameter model estimates display the same behavior as in the 

calorie regressions. 

Since the elasticity of demand for protein is about 0 .1 higher than it is 

for calories, throughout the PCE distribution, all households switch into foods 

with higher protein content as expenditure rises. This results in a rise in the 

proportion of calories consumed from protein, the protein-calorie ratio, which 

has been suggested by nutritionists as an indicator of diet quality (see Pacey 

and Payne, 1985). Its expenditure elasticity, calculated directly, is about 0.20 

at the bottom decile' of PCE and 0.12 at the top decile. 
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Foods with higher protein content, such as meats and dairy products, tend 

to have higher unit prices and so the price of nutrients rises with expenditure. 

In fact, the implicit price of calories, household expenditure on food divided 

by calorie consumption, increases linearly with inPCE; the expenditure 

elasticity is 0.40 at the bottom decile of PCE and 0.30 at the top. 

The shapes of the nutrient-expenditure functions are quite similar in the 

rural sector. Instrumenting with (log) household income, the calorie elasticity 

is 0.32 at the bottom decile and 0.10 at the top; the threshold in the calorie 

curve is around 3000 calories per capita per diem which is higher than in the 

urban sector. With the same instruments, the protein-expenditure function is 

almost linear and the elasticity is around 0. 23 throughout the distribution. As 

a result, the expenditure elasticity of the protein-calorie ratio rises with PCE 

from zero at low PCE to about 0.13 at the top decile of PCE. The calorie price 

elasticities are almost identical to those in the urban sector. 

As expenditure rises, therefore, households purchase more expensive 

sources of calories, demand more non-calorie nutrients and, presumably, more 

taste. They also, however, buy more calories, at least until some threshold 

level of calorie intake. 

(vi) Household composition effects 

Standard demand theory would suggest household composition should ·enter the 

nutrient demand functions; it may be argued, however, that composition is 

endogenous. Since household size declines with PCE and larger households tend 

to have more children who consume fewer nutrients than adults, it is possible 

that the positive nutrient elasticities simply reflect changes in household 

composition. The robustness of the estimates to the inclusion of demographics 

is examined in Table 5. 
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The first column repeats the estimates for the quadratic inverse model 

instrumenting with total income (column 3 of Table 4). Implicitly, through the 

use of per capita expenditure, total household size (and an interaction with 

expenditure) is included in this model. More complicated demographics are 

included in the second column. It is common to include the number of people in 

each of a set of demographic groups in a linear fashion. We prefer to allow a 

more complex structure and include the ratio of the number of people in each 

group to household size (excluding one of the ratios to avoid linear dependence). 

In addition, we include the log of household size. 

10-14, 15-54 and ~55) are distinguished by gender. 

Five age groups (0-4, 5-9, 

Changes in household composition do not explain the positive slope of the 

nutrient functions; in fact, the elasticities rise for poor households as the 

restriction tieing the impact of expenditure and household size is relaxed. For 

calories, at the bottom decile of PCE, the elasticity rises by about 2 standard 

errors to 0.31 and by 1 standard error for protein to 0.42. 

There may also be complicated interactions between the demographic 

variables and expenditure; exploiting the large sample size again, we stratify 

on household composition. In column three, households with two adults (one 

male, one female) and one child (aged less than ten) are included in the sample. 

The elasticities at the bottom of the expenditure distribution are higher: 0.35 

for calories and 0.42 for protein at the bottom decile of PCE. The results are 

essentially the same if the sample is restricted to households with two adults 

and a child less than five years of age. 

ho.useholds with two adults and two children. 

The sample in column 4 includes 

The elasticities are no different 

from those in the first column (which ignores demographics). Changing 

household composition does not explain the positive nutrient intake elasticities. 
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The estimates of the demographic effects are interesting in and of 

themselves. In the lower panel of Table 5, the coefficients from column 5 have 

been converted into "outlay equivalent ratios" (Deaton et al., 1989): 

?rd = 
aN/aX . m 
aN/amd x 

where N is nutrient intake, X is total household expenditure, m the number of 

members in the household and md the number in demographic group d. The ratios 

indicate the amount of expenditure that a household would need to be given in 

order for per capita nutrient intake to remain unchanged when a person of type 

d joins the household; the ratio is divided by per capita expenditure to turn 

it into an elasticity. 

Demographic composition would have no impact on nutrient intake if the 1r 

ratios were zero. Household composition clearly affects nutrient intake; each 

1r ratio is significantly negative and the x2 for joint significance of the 

demographic ratios is 76. 0 in the calorie regression, 43. 3 in the protein 

regression. An additional child reduces per capita nutrient intake more than 

adults and, apart from infants and young children, women reduce per capita intake 

less than men. 21 The implied weights that might be associated with each 

demographic group (or equivalence scales) differ substantially in the calorie and 

protein regressions. Infants are equivalent to about 20% of a prime age male 

adult in calorie consumption and about 30% in protein consumption. Prime age 

women are equivalent to about 30% of a male in calorie consumption and 50% in 

protein consumption. The equivalence ratios for adult females are very small 

relative to international standards based on requirements that reflect only 

nutrient needs. This suggests that converting household information from survey 

data to an adult equivalent basis with these sorts of scales is not a good idea. 
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4. Conclusions 

Both the parametric and nonparametric evidence presented here reject the 

view that among poor households, nutrient intakes do not respond to changes in 

expenditure. In fact, our nonparametric estimates demonstrate that as 

expenditure rises, calorie consumption increases until some threshold level at 

which point households switch to foods with higher calorie prices. 

confirmed by elasticities computed from parametric regressions. 

This is 

The estimated calorie and protein expenditure elasticities are 0.38 and 

0.47 respectively at the bottom decile of per capita expenditure when it is 

treated as either measured without error or exogenous. This hypothesis is 

rejected with the ENDEF data, but while the elasticities decline when PCE is 

instrumented with household income they remain large. The elasticities are 

estimated to be between 0.25 to 0.30 for calories and 0.40 for protein at the 

bottom decile of PCE. 

Clearly some of the heterogeneity in estimates of calorie elasticities in 

Table 1 can be explained by failure to instrument income or expenditure. In 

Section 2, we reported that the instrumented calorie elasticity is 0.12 when the 

calorie-expenditure function is log-linear. Previous studies which have failed 

to take account of non-linearities in the calorie-expenditure function may have 

severely underestimated the elasticity for poor households. 

Methodological differences are probably not the whole story. Food intake 

measurements are likely to be quite noisy especially when households are visited 

only a small number of times. Large sample sizes, on the other hand, may 

compensate for difficulties in measurement. Differences in data quality and 

sample sizes almost surely contribute to an explanation of the heterogeneity of 

the estimates in Table 1. In any case, the view that nutrient elasticities are, 

in general, zero for the poor is premature. 
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Notes 

1Sukhatme (1982), Beaton (1983) and Pacey and Payne (1985) discuss the issue of 
body adaptation to deprivation, which is still unresolved both as to its 
magnitude and to the extent which it prevents functional disabilities. 

2Excluding the sparsely populated rural North. 

3Williamson-Gray (1982) has used aggregated data from ENDEF with cell means for 
9 income classes and 22 regions to examine demand for nutrients and foods. 

4Food waste includes gifts, leftovers, food given to animals and food thrown 
away. 

5Households were defined using a dwelling definition. 

6For poor workers this may understate nutrient intakes if an employer provides 
a disproportionately large share of the worker's nutrients through meals provided 
at work. 

7Food consumption data have been converted to nutrient intakes and the calorie-
expenditure relation estimated directly on the same data; the estimated 
elasticity is about 0.86 when expenditure is treated as exogenous and 0.99 when 
instrumented. The elasticity is essentially constant throughout the expenditure 
distribution. 

8See Strauss (1986), Deolalikar (1988), Sahn and Alderman (1988) and Pitt, 
Rosenzweig and Hassan (1989) for empirical examples. 

9The sign of this bias is a priori ambiguous; assuming the covariance in 
measurement errors is large relative to the variance in the measurement error in 
total expenditure, estimated elasticities will be upward biased. 

10If the absolute magnitude of these errors increases as a function of the 
difference between total expenditure and mean expenditure, then a further upward 
bias is imparted to OLS estimates, which will not be removed by instruments 
correlated with income. A fixed effects estimator, provided panel data are 
available, will remove this source of bias (Bouis and Haddad, 1989). So too 
should netting out these flows - the strategy we adopt. Fixed effects 
estimates have the disadvantage that random measurement error in total 
expenditure, or income, will bias estimated coefficients downwards (Griliches and 
Hausman, 1986). Using income rather than expenditure is likely to exacerbate 
this problem. This may explain the low estimates reported by Bouis and Haddad. 

11See, for example, Timmer and Alderman (1979), Pitt (1983) Chernichovsky and 
Meesook (1984), Garcia and Pinstrup-Anderson (1987), Ravallion (1988) and Sahn 
(1988), but see Strauss (1984) for an exception. 

12The band width for each cell is 0.05 for the log of per capita calories and 
protein and it is 0.2 for the log of per capita expenditure. 
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13If calorie intake were measured per adult equivalent, rather than per capita, 
then the kink would be at a higher intake. Some of the difference between the 
rural and urban sector probably reflects higher activity levels in rural areas; 
it may also be that there is under-reporting of nutrient intake in urban areas 
because more meals are taken away from home. 

14 LOWESS estimates are calculated by creating a band around each observation 
(Yi, xi, say) and estimating a weighted linear regression of the dependent 
variable on the independent variables. Observations within the band are 
weighted by the tricube function, wj=(l-d/) 3 , where dj is measure of the distance 
between observation j and the observation of interest, i. In the simple 
regression case, dj=(xj-xi)/(x~-xi) where x~ is the furthest observation from 
observation i within the band. The weight is positive for each observation 
within the band; the weight is equal to one at the point itself, declines as 
points are further away and observations outside the band are given a weight of 
zero. The predicted value of Yi is then plot against xi to form the LOWESS 
estimates. The estimator is easily generalized to the multivariate regression 
case (Cleveland, Devlin and Grosse, 1987) by defining a distance metric such as 
Euclidean distance. 6000 observations are used in the non parametric estimates 
to reduce computational time. 

15we have attempted to estimate some series estimators. The model is linearly 
dependent if more than six expenditure terms are include in the OLS regressions 
and only five expenditure covariates can be included in the IV regressions. For 
such a large dataset, we would be restricted to a very low order series 
estimator. 

16Jackknifed estimates of the variance-covariance matrix are consistent in the 
presence of heteroskedasticity and unknown forms of mis-specification. They 
are, in addition, more robust to influential observations than the infinitesimal 
jackknife or White (1980, 1982) estimator of variance. 

17Euclidean distance is used for the estimation of g(). 

18The bandwidths for both the first and second stage regressions is 300 
observations; when the bands are increased (to 2400 observations) the shapes are 
much the same. 

19By the Akaike information criterion, the model with total income is preferred 
to including earned and unearned income separately. Taking logarithms of total 
household income further improves the fit. 

20In the inPCE regression, each of the three unearned income coefficients is 
individually significant; they are jointly significant (F=398) and overall 55% 
of the variation in inPCE is explained. 

21The hypothesis that an additional male has the same impact on nutrient intake 
as an additional female is rejected for all age groups except children less than 
10. 
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Table 1 

Estimated income and expenditure elasticities of calorie demand 

Author(s) 
Expenditure 

Year or Income 

.Calculated from Food Demand Equations: 

Pitt 1983 Expenditure a 
Behrman and Deolalikar 1987 Expenditure 
Strauss 1984 Expenditure 
Sahn 1988 Expenditure 
Pinstrup-Anderson 

and Caicedo 1978 Income 

Calculated from Calorie Demand Equations: 

Behrman and Deolalikar 
Alderman 
Timmer and Alderman 

Chernichovsky and 
Meesook 

Raval lion 
Garcia and Pinstrup-

Anderson 
Bouis and Haddad 
Edirisinghe 

Ward and Sanders 
von Braun, Puetz 

and Webb 
Wolfe and Behrman 
Behrman and Wolfe 
Bouis and Haddad 
Trairatvorakul 

Notes: 

1987 
1987 
1979 

1984 

1988 

1987 
1988 
1987 

1980 

1989 
1983 
1984 
1988 
1984 

Expenditure 
Expenditure 
Expenditure 

Expenditure 

Expenditure 

Expenditure 
Expenditure 
Expenditure 

Income 

Income 
Income 
Income 
Income 
Income 

aFood, not total, expenditure is used. 

Country 
studied 

Bangladesh 
India 
Sierra Leone 
Sri Lanka 

Colombia 

India 
India 
Indonesia: 

urban 
rural 

Indonesia 

Indonesia 

Philippines 
Philippines 
Sri Lanka 

Brazil 

Gambia 
Nicaragua 
Nicaragua 
Philippines 
Thailand 

hNot significant at 5 per cent significance level. 
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Elasticity 
at Mean 

0.78-0.82 
0. 77-1.18 
0.82 
0.62 

0.51 

0.17-0.37b 
0.41-0.44 

0.26 
0.51 

0.54 

0.15 

0.12-0.34 
0.05-0.45 
0.56 

0.24-0.53 

0.37-0.48 
0.01 
0.05 
0.06-0.11 
0.27-0.33 
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Table 3 

Wu-Hausman tests for exogeneity 

Functional form ln(Calories) ln(Protein) 
Maintained Alternate 
Hodel Hodel :x.2 :x.2 

Quadratic in lnPCE 

TSLS OLS 22.33 6.76 
Unearned income (0.00] (0.03] 

TSLS TSLS 7.76 5.20 
Unearned income ln(total income) [0.02] (0.07] 

TSLS OLS 272.97 87.88 
ln(total income) [0.00] [0.00] 

Cubic in lnPCE 

TSLS OLS 19.07 2.37 
Unearned income (0.00] (0.50] 

TSLS TSLS 6.21 1.86 
Unearned income ln(total income) (0.10] [0.60] 

TSLS OLS 269.33 85.98 
ln(total income) [0.00] [0.02] 

Inverse-quadratic in lnPCE 

TSLS OLS 
Unearned income 

TSLS TSLS 
Unearned income ln(total 

TSLS OLS 
ln(total income) 

36.37 
[0.00] 

6.63 
income) [0.04] 

276.00 
(0.00] 

15.23 
(0.00] 

3,29 
(0.19] 

100.13 
(0.00] 

Inverse-quadratic in lnPCE & lnlnPCE 

Hotes: 

TSLS OLS 
Unearned income 

TSLS TSLS 
Unearned income ln(total 

TSLS OLS 
ln(total income) 

21.81 
[0.00] 

6.16 
income) (0.10] 

270.29 
[0.00] 

2.06 
(0.56] 

0.91 
[0.82] 

86.11 
[0.00] 

Tests based on first sub-sample of (12,818) urban households. x2 are tests for 
differences in expenditure coefficients using jackknifed variance-covariance matrices. 
40 additional covariates included in each model. Classical p-values in parentheses. 
According to Schwarz criterion, critical values are 18.9 and 28.4 for the two 
parameter and three parameter models respectively. 

30 



Table 4 

Expenditure elasticities of nutrient demand 
Instrumented ln(per capita expenditure) 

Instruments=ln(household income) Instruments = unearned income 

Zile Quadratic Quad Inv Quadratic Quad Inv 
of Quadratic Cubic Inverse Polynom w/ Quadratic Cubic Inverse Polynom w/ 
PCE Polynom. Polynom. Polynanial lnlnl'CE Polynom. Polynom. Polynanial 1.nlDPCE 

(1) (2) (3) (4) (1) (2) (3) (4) 

Calorie intake 

05 0.241 0.418 0.320 0.440 0.140 1. 405 0.223 3.587 
[0.020] [0.064] [0.028] [0.075] [0.076] [5.156] [0.150] [15.491] 

10 0.219 0.331 0.261 0.314 0.129 1.072 0.184 2.292 
[0.017] [0.042] [0.020] [0.038] [0.066] [3. 774] [0.115] [9.547] 

25 0.180 0.203 0.182 0.167 0.109 0.586 0.131 0.837 
[O. 012] [0.014] [0.011] [0 .013] [0.050] [1. 796] [0.067] [2.981] 

50 0.133 0.090 0.113 0.074 0.085 0.162 0.085 -0.013 
[0.007] [0.016] (0.006] [0.022] [0.030] [0.150] [0.029] [0.695] 

75 0.081 0.017 0.061 0.034 0.058 -0.106 0.050 -0.277 
[0.007] [0.022] [0.008] [0.017] [0.012] [0.782] [0.012] (1. 590] 

90 0.029 0.000 0.025 0.033 0.032 -0.157 0.025 -o .138 
(0.012] (0.014] [0.010] [0.010] [0.021] [0.716] [0.025] (0 .631] 

95 -0.004 0.018 0.008 0.044 0.015 -0.078 0.014 0.062 
[0.015] [0.015] [0.012] [0 .021] (0.034] [0.185] [0.033] (0.492] 

Protein intake 

05 0.375 0.505 0.452 0.521 0.251 1.528 0.309 3.732 
[0.021] [0.073] [0.030] [0.081] [0.070] [5.992] [0.144] (18.006] 

10 0.349 0.431 0.390 0.420 0.239 1.191 0.279 2.423 
[0.018] [0.048] [0.023] [0.041] [0 .061] [4.385] (0.110] [11.094] 

25 0.303 0.320 0.304 0.296 0.218 0.700 0.235 0.954 
[0.013] [0.017] [0. 013] [0.015] [0.046] [2.085] [0.064] [3.461] 

50 0.248 0.216 0.227 0.205 0.194 0.272 0.194 0.095 
[0.008] [0.018] [0.007] [0.024] [0.028] [0.170] [0.028] [0.810] 

75 0.186 0.139 0.165 0.150 0.166 0.000 0.160 -0 .174 
[0.007] [0.025] [0.008] [0.018] [0.013] [0.910] [0.013] [1. 849] 

90 0.124 0.104 0.121 0.126 0.138 -0.052 0.133 -0.033 
[0.011] [0.016] [0.011] [0. 011] [0.021] [0.831] [0.025] [0. 731] 

95 0.086 0.102 0.100 0.120 0.121 0.027 0.119 0.168 
[0.015] [0.017] (0.012] (0.022] [0.032] [0.211] (0.033] (0.574] 

:Rotes: 
Estimates based on second sub-sample of 12,898 households. Instruments include 40 exogenous covariates 
and third order polynomials in income. Jackknifed two stage standard errors in parentheses below 
elasticities. 
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%iles 
of 
PCE 

Calorie intake 

05 

10 

25 

50 

75 

90 

95 

Protein intake 

05 

10 

25 

50 

75 

90 

95 

Table 2 

Expenditure elasticities of nutrient demand 

Quadratic 
Polynomial 

(1) 

0.402 
(0.007] 
0.368 

[0.006] 
0.308 

(0.005] 
0.237 

(0.003] 
0.156 

(0.004] 
0.076 

(0.006] 
0.025 

[0.008] 

0.499 
[0.009] 
0.463 

[0.007] 
0.401 

[0.006] 
0.326 

[0.004] 
0.242 

[0.004] 
0.158 

[0.007] 
0.105 

[0.008] 

Functional form for lnPCE 
Cubic Quadratic 

Polynomial 
(2) 

0.437 
(0.010] 
0.387 

(0.007] 
0.308 

[0.005] 
0.223 

[0.004] 
0.141 

(0.005] 
0.074 

[0.005] 
0.040 

(0.008] 

0.500 
(0.013] 
0.464 

(0.009] 
0.401 

(0.006] 
0.326 

(0.005] 
0.242 

(0.006] 
0.158 

(0.007] 
0.105 

(0.010] 

Inverse Polynom 
(3) 

0.451 
(0.010] 
0.383 

(0.008] 
0.289 

(0.005] 
0.207 

(0.003] 
0.142 

(0.004] 
0.096 

(0.005] 
0.074 

(0.005] 

0.530 
[0.013] 
0.468 

(0.010] 
0.379 

(0.006] 
0.299 

(0 .004] 
0.233 

(0.005] 
0.184 

(0.006] 
0.160 

(0.007] 

Quadratic 
Inv w/ lnlnPCE 

(4) 

0.422 
(0.010] 
0.383 

(0.007] 
0.312 

(0.005] 
0.230 

(0.004] 
0.146 

(0.004] 
0.071 

(0.006] 
0.030 

(0.008] 

0.487 
(0.012] 
0.467 

(0.008] 
0.414 

(0.006] 
0.335 

(0.005] 
0.239 

(0.005] 
0.146 

(0.007] 
0.092 

[0.009] 

Notes: Expenditure treated as exogenous. Estimates based on second sub-
sample of urban households (12,898 observations). 40 additional 
covariates included in each regression. Jackknifed standard errors in 
parentheses below elasticities. According to the Schwarz criterion, 
the critical value for the t statistic is 3.08 
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Table 5 

Expenditure elasticities of nutrient demand 
Instrument log(per capita expenditure) with log(household income) 

robustness to inclusion of household composition 
in quadratic inverse model 

Calorie intake Protein intake 

%ile Full S8111ple Household composition Full &811lple Household composition 
of Demographics 2 adults 2 adults Demographics 2 adults 2 adults 
PCE excluded included 1 child 2 children excluded included 1 child 2 children 

(1) (2) (3) (4) (1) (2) (3) (4) 

05 0.320 0.379 0.441 0.306 0.452 0.491 0.596 0.452 
[0.028] [0.026] [0.116] [0.068] [0.030] [0.029] [0.159] [0.093] 

10 0.261 0.309 0.354 0.245 0.390 0.421 0.504 0.377 
[0.020] [0.019] [0.087] [0.051] [0.023] [0.021] [0.120] [0.069] 

25 0.182 0.213 0.238 0.164 0.304 0.324 0.376 0.273 
[0. 011] [0.010] [0.050] [0.030] [0 .013] [0.011] [0.070] [0.039] 

50 0.113 0.131 0.138 0.094 0.227 0.239 0.265 0.184 
[0.006] [0.005] [0.025] [0.019] [0.007] [0.006] [0.033] [0.023] 

75 0.061 0.069 0.062 0.041 0.165 0.171 0.177 0.114 
[0.008] [0.007] [0.025] [0.023] [0.008] [0.008] [0.027] [0.028] 

90 0.025 0.026 0.011 0.005 0.121 0.121 0.115 0.065 
[0.010] [0.010] [0.034] [0.029] [0.011] [0.011] [0.040] [0.036] 

95 0.008 0.006 -0.012 -o. 011 0.100 0.098 0.086 0.043 
[0.012] [0.011] [0.040] [0.032] [0.012] [0.012] [0.047] [0.040] 

--------------------------------------------------------------------------------------------------------
Outlay equivalent ratios 

Calorie intake 

aged 0 - 4 years 
males 

females 

aged 5 - 9 years 
males 

females 

aged 10-14 years 
males 

females 

aged 15-54 years 
males 

females 

aged ;: 55 years 
males 

females 

Hates: 

,. ratio 

-3.867 
[0.161] 
-3.797 
[0.165] 

-2.267 
[0.162] 
-2.804 
[0.159] 

-1.098 
[0.157] 
-1.875 
[0.153] 

-0.695 
[0.249] 
-2.050 
[0.332] 

-1.369 
[0.195] 
-2.687 
[0.139] 

index 

18 

18 

31 

25 

63 

37 

100 

34 

51 

26 

Protein intake 
,. ratio 

-2.165 
[0.089] 
-2.234 
[0.094] 

-1.642 
[0.102] 
-1.872 
[0.098] 

-0.971 
[0 .101] 
-1.556 
[0.096] 

-0.709 
[0.161] 
-1.514 
[0.212] 

-1.075 
[0.132] 
-1. 743 
[0.085] 

index 

33 

32 

43 

38 

73 

46 

100 

47 

66 

41 

Estimates based on second sub-sample. Columns 1 and 2 use all 12,898 observations; column 3 based 
on sample of 2 adult and 1 child aged <10 years (970 observations); colunm 4 based on 2 adult 
2 children sample (868 observations). Demographic,. ratios for full sample including demographics 
(column 2). Jackknifed standard errors in parentheses below elasticities and,. ratios. 
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Figure 4 Non-parametric IV estimates 
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