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Abstract 

This paper considers two models for analyzing the dynamics of firm behavior that 

allow for heterogeneity among firms, idiosyncratic (or firm specific) sources of uncertainty, 

and discrete events (exit and entry). Models with these characteristics are needed for 

empirical analysis of the causes and effects of the dispersion in the distribution of outcome 

paths among firms, and for correcting for the self-selection induced by liquidation in the 

empirical analysis of firms responses to alternative policy and environmental changes. It is 

shown that the two models have different nonparametric implications, and that these are 

rich enough to enable the construction of both testing, and selection correction, procedures 

that are both, fully consistent with the theoretical model, and easy to implement. The 

paper concludes by checking for the implications of the two models on an eight year panel 

of Wisconsin firms. We find one model to be consistent with the data on manufacturing, 

and the other to be consistent with the data for retail trade. 



I. Introduction 

The paper considers the empirical implications of two models for the dynamics of 

firm behavior that allow for heterogeneity among firms, idiosyncratic (or firm-specific) 

sources of uncertainty, and discrete events (exit and/or entry). Our reasons for 

investigating the empirical implications of models with these features are twofold. First 

many phenomena of interest are intricately tied up with the nature of firm specific 

differences in outcome paths, and a detailed analysis of these phenomena requires a choice 

among models that generate, or at least allow for, such idiosyncratic differences. Examples 

include the analysis of; default probabilities, of the extent of job turnover generated by the 

growth and contraction of individual firms within larger aggregates, and of changes in 

market structure (or in the size distribution of firms in an industry). The second reason for 

studying such models is that without a framework for empirical analysis that allows for the 

(appropriate) source of firm specific differences in outcome paths, we will often be unable 

to obtain a meaningful picture of firms' responses to any policy or environmental change. 

Table 1 illustrates one reason why this is so. 

The table provides information on the fraction of firms operating in Wisconsin in 

1978 that were liquidated by 1986 (more details on the data will be given in Section 5). 

Firms are classified as liquidated only if they physically closed down (changes of ownership 

are treated separately). If we were to use these data to build a panel of firms to follow the 

impact of some (say) policy change, we would, at least traditionally, start from the 1978 

cross-section and then construct the panel by eliminating those firms not in operation over 

the entire eight-year period. Column 5 shows that this procedure would lose a third of the 

firms due to liquidations, and column 6 shows that this third would account for about a 

fifth of the jobs in 1978. If we decided to consider only the larger of the 1978 firms, say 

those with more than 50 employees (and as column 7 shows, this is a selection which, by 

· itself, omits over a third of the 1978 jobs), liquidation would be somewhat less prevalent, 

1 



" Tsble t. Llquldstlon tn the 1978/R6 \lhconeln Panel 

Ii 
l 2 ) 4 ~ 6 

Sector I Ptr•• % of t..,toy- % of att % of Plrm11 % of 1978 
Active all Ptrt11 ment E•ploy- Active In E111ploy111ent 
ln 1978 tn 1978 ln 1978 111ent 1978 In flr111B 

tn 1978 Llqttld•ted Ll'111I dtt ted 
by 1986 by 1986 

Vhole1111lt 7,251 17 85, ll5 8 29.5 16.0 

Re tall 22,568 51 316,498 30 39.5 26.0 

H11nu-
facturf.n1 6,987 16 550,200 52 24.0 IJ.O 

!atlng 
•nd 
Drln1c.tng 7,466 17 lOl,192 10 44.5 29.5 

Total 44,272 100% 1,055,205 100% :16.5 19.0 

Sub•tltuJe •tran•J•rred oatj for •ttquJdated• 
ln colu•e 5, 6, and 8. 8.5 11.l 

Sub•tltut• •etther traneferred oat or llquldated• 
for •ttquldated• ln c:olUllfte 5, 6, and 8 45.0 30.l 

7 8 
% of 1978 % of 1978 
E•ployment 1'ln11 wt th 

ln flr.a• > 50 E21> loyee• 
vtth > 50 Liquid• ted 
E11ployee11 by 1986 

)5 10.S 

l5 17.0 

87 13.0 

36 18.5 

. 
65 14.5 

io.5 

25.0 

• lf a flrt1 eYer aader1oe• a ct.n1e In legal etatu• (a cban1e tn Olfner•hlp) lt vlll not be c:ouated •• a 
llquldatton thereafter (even though the re•ultlng flr• .. , hllve liquidated). Plr:t• ln the con•tructlon 
and .. rYtc• •ector• In 1978 have been excluding fro• thte 1s111ple. Theee flrtt• 11ccounted for about 
340,000 jobe. 

... - ~ , 

N 



3 

but would still cause an attrition rate of about 15 percent. The last two rows of the table 

give an indication of the extent of changes in ownership in this data (this includes mergers 

and acquisitions). To the extent that the pre and post change firms cannot be spliced 

together, changes in ownership also generate attrition. It is a relatively more important 

source of attrition among larger firms, but even if we confine ourselves to firms with over 

50 employees, and assume that all the changes in ownership result in attrition, changes of 

ownership would still only account for 40 percent of total attrition (liquidation accounts for 

the rest ).1 Note that, when taken together, liquidations and changes of ownership would 

cause the attrition of almost half the firms in the 1978 sample, and of about a quarter of 

those with more than 50 employees. 

If liquidation decisions were independent of the economic phenomena typically being 

investigated, then the omission of the liquidated firms from the sample might lead to an 

imprecise, but would not lead to an inconsistent, description of the phenomena of interest. 

This is, however, hardly likely. Firms terminate their activities when they perceive 

adverse changes in the distribution of their future pNfit streams. The phenomena we 

typically want to investigate involve the actual profitability (and productivity) changes 

resulting from alternative policy and environmental changes. If there is any relationship at 

all between perceptions and realizations we will, by eliminating those firms which 

liquidate, omit precisely those firms for whom the events in question are likely to have had 

a particularly negative impact. That is, we will tend to omit one tail of the distribution of 

responses we set out to study. 

To either control for the selection problems induced by the liquidation process, or to 

analyze any of the phenomena that involve the determinants (or the effects) of the 

characteristics of the distribution of sample outcome paths, we need a model that explains 

1Changes of ownership, however, become the major source of attrition in data sets 
constructed from information on (the typically much larger) publically traded firms, see 
Hall (1988). 



4 

why firms operating in similar environments develop differently - a model with 

idiosyncratic outcomes that allows for exit. At least two such models are currently 

available, and each will, no doubt, prove more useful in approximating the characteristics 

of different industries in different time periods. This paper provides a simple set of 

procedures which enable to the researcher to determine whether either of them might be 

relevant for the problem at hand.2 

The first model considered here is a model with passive Bayesian learning. Firms 

are endowed at birth with an unknown value of a time-invariant profitability parameter 

which determines the distribution of its profits thereafter. Past profit realizations contain 

information on the value of the parameter which determines the distribution of possible 

future profit streams, and this fact is used by management to form a probability 

distribution over future net cash flows (see Jovanovic, 1982). The second model is a model 

of active exploration. It assumes that the firm knows the current value of the parameter 

that determines the distribution of its profits, but that the value of that profitability 

parameter changes over time in response to the stochastic outcomes of the firm's own 

investments, and those of other actors in the same market (see Ericson and Pakes, 1989). 

2For a review of the economics literature on models of firm behavior that allow for 
idiosyncratic uncertainty, see Ericson and Pakes (1989). There is also a large related 
econometric and statistical literature on the analysis of selection bias in models of 
individual and household (in contrast to firm) behavior; for details and references see the 
articles in Heckman and Singer (1985); in particular Heckman and Robb (1985). Our 
analytic approach to both the selection, and to the model choice, problem is more similar 
to that of the recent econometric literature on analyzing stochastic control models with 
discrete outcomes (see below), in that all our assumptions will be placed on the primitives 
of the environment underlying the agent's optimal control problem (and not on the form of 
the function determining current choices), and all implications will be derived from the 
characteristics of the solution to that agent's control problem (the underlying models used 
here also ensure the consistency of the interactions among firms in the sense of proving the 
existence of a dynamic stochastic equilbrium for the industry). We differ from the control 
literature in that our assumptions do not restrict the primitives of the analysis to 
particular parametric families of functional forms. In this respect our analysis is most 
similar of that of Frydman and Singer (1985), which, though it does not begin with an 
agents control problem, does derive tests for the qualitative characteristics of various 
dynamic processes. 

I 
I. 

I 
I 
I 
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Both models are traditional in that a firm is treated as a single decision maker faced with a 

set of profit opportunities who acts so as to maximize the expected discounted value of 

future net cash flow, and in both cases optimal behavior generates a set of stopping states; 

i.e. outcomes which, if realized, would induce the firm to exit. Moreover, both models are 

complete in the sense that if we were willing to append a set of precise functional form 

assumptions to them they would produce frameworks rich enough to take directly to data. 

The strategy of appending precise functional form assumptions and then using their 

implications to structure the data, is the strategy taken in all of the recent econometric 

literature on analyzing stochastic control models involving discrete outcomes (see Miller, 

1984; Wolpin, 1984; Pakes, 1986; and Rust, 1987). Its success depends upon, among other 

diverse factors, the extent of prior information on the relevance of alternative assumptions. 

We eschew it here because there is not a great deal of a priori information on either which 

of the models (if any) is appropriate for different data sets, or on the relevance of 

alternative functional form assumption. Moreover, just as in all the previous literature on 

discrete choice optimal stochastic control models, were we to estimate fully parametric 

versions of these models we would have to build a different estimation algorithm for each 

form estimated. This makes it difficult, if not impossible, to examine the robustness of the 

major empirical results to changes in the specification of the model. 

The alternative strategy we choose is to look for empirical implications of the 

different models that depend only on the models' basic behavioral assumptions, and 

interpretable regularity conditions on the relevant functional forms. Precisely because 

these implications have to be valid for a variety of functional forms, they cannot require 

functional form specific estimation and testing algorithms. Consequently, there are 

computationally simple ways of checking whether they are consistent with the data. 

Therefore, in addition to being less dependent on particular functional form assumptions, 

our strategy is easy to implement. On the other hand, the nonparametric procedures 

provided here do not produce precise values for alternative response parameters. Their 
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goals are more limited. They are meant only to provide an interpretable characterization 

of the data which: 1) aids in distinguishing which, if either, of the alternative models 

seems relevant for the problem at hand, and 2) acts as a basis for building a procedure for 

correcting for the selection problem induced by the liquidation process when one of the 

models seems appropriate. 

One of the differences between the two models corresponds to the distinction 

between heterogeneity and state dependence that has played so large a role in labor 

econometrics (see Heckman, 1981; Chamberlain, 1984; and Heckman and Singer; 1984). In 

particular the passive learning model implies that the stochastic process generating the size 

of a firm is characterized by a generalized form of heterogeneity, while the model with 

active exploration implies that this stochastic process is generated by a quite general form 

of state dependence. Theory restricts the state dependence in the active learning model to 

have ergodic characteristics; i.e. the effect of being in a state in a particular period erode8 

away as time from that period lapses, and we develop a test for the distinction between 

heterogeneity and ergodic forms of state dependence based on ;-mixing conditions. The 

test is simple, intuitive, and seems to be able to distinguish between the two models on 

panel data sets the size of the.ones used here (these follow about 400 observations over 

eight years). 

The data analyzed are obtained from the unemployment insurance (UI) account 

records of firms. UI account data have the advantages that they are available for all firms 

(regardless of their size and of whether or not the firm is in manufacturing), and that they 

allow the researcher to both distinguish between attrition due to liquidation and attrition 

due to changes in ownership and to assign a birth date to the firm (see section 5). These 

characteristics of the UI account data make it particularly useful for the analysis of the 

initial stages of the development of firms in different sectors of the economy. We find both 

the ;-mixing test, and an analysis of the evolution of the size distribution of firms in a 

cohort, suggest that one model is consistent with the data for manufacturing, while the 
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other seems consistent with the data for retail trade. 

Section 2 of the paper outlines the passive learning model and then derives its 

nonparametric implications. Section 3 does the same for the model wfth active exploration. 

In Section 4 we develop appropriate estimation and testing procedures. Section 5 begins 

with a description of the Wisconsin panel, and then examines various subsets of it for the 

implications of the two models. Section 6 summarizes and considers further implications of 

the empirical results. 

Notation 

The distribution of any random variable, say x, conditional on any event, say z, is 

denoted P x( ·I z), and its density (with respect to the implied dominating measure) by 

Px( ·I z). Superscripts denote a particular value, so xt = (xl' ... ,xt). Weak vector 

inequalities are interpreted element by element, but a strong vector inequality means only 

that at least one of the element by element inequalities is strong. Z will be used for the 

generic set, and z for a member of that set. Lemmas, theorem, examples, etc. will be 

numbered in one consecutive ordering with each section. They are referred to in the 

following sections with a section prescript. 
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Section 2. Innate Ability Differences of Unknown Value. 

This section considers models in which each firm is endowed with a time-invariant 

characteristic which determines the distribution of its profits, but whose value is not known to 

management at the time the firm begins operation. Models of industries composed of firms 

which learn about an unknown profitability parameter have been provided by Jovanovic 

(1982) and Lippman and Rumelt (1982). Following Jovanovic (1982), we consider a 

competitive industry of firms who learn about their ability parameters in a Bayesian fashion. 

There are a large number of ex ante identical potential entrants each of whom believes the 

value of its parameter, say (},is a random draw from some known distribution. Entrants pay 

a sunk cost of entry. Each period the firm is in operation thereafter it obtains a realization 

from the distribution of profits conditional on the true value of its (}. These realizations are 

used to compute a sequence of posterior distributions. The posterior available in each period 

is used as a basis for decision making in that period. The decisions of interest are whether to 

produce at all and, if so, at what scale. If the firm does decide not to produce it sells off its 

assets and exits, never to reappear again. In this model the firm is a value of(}, and the role 

of management is to make inferences on the likelihood of alternative possible values of(} and 

then determine optimal behavior conditional on those inferences and the state of the industry. 

One possible analogy is to the operation of a retail outlet. The outlet learns whether its 

neighborhood will support its product, and, if so, at which scale of operation. 

Jovanovic (1982) focuses on establishing the existence of a perfect foresight equilibrium 

for a homogeneous product competitive industry composed of firms which operate in this 

manner. We focus on the implications of the nature of the learning process on the evolution 

of cohorts of firms, where cohorts are defined by entry dates. In particular we shall look for 

empirical implications that rely only on the learning process and interpretable regularity 

conditions on the functional forms of interest. Later we compare these implications to data in 

an attempt to identify those sectors in which this form of learning process seems relevant. 

I 

I 
I 
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2.1 The Model 

It will be assumed that each entrant is endowed with a value of 0 which, in turn, 

determines the distribution of a sequence of payoff relevant random variables, say {7Jt}. To 

motivate our assumptions, consider the example of a homogeneous product industry of 

price-takers whose production efficiencies are subject to random perturbations so that profits 

in period t are '"t = alt 'It F(lt) - °2tlt where ; lt is a vector of input quantities, F( ·)is a 

concave production function, at = ( alt'°2t) is a price vector, and ht} is a sequence of 

independent and identically distributed (i.i.d.) random variables, with distribution, 

conditional on 0, given by P 'f/( • I 0). Assume 'flt is known at the time lt is chosen. Then 

where 7r( 'f/i at) is an increasing function of 'I· In a perfect foresight equilibrium future prices 

will be known, so that if () were also known the distribution of future profits could be 

calculated directly from P 'f/( ·I 0). Since management does not know 8 it is assumed to 

summarize its beliefs about that parameter in terms of a probability distribution over the 

possible values of 0. At entry, management only knows that Ois a random draw form G0(0). 

The first period produces an 'f/ which management uses, together with Bayes law, to update its 

prior [G0( O)] and form a posterior which is then used to make second period decisions. If the 

firm stays in operation, this updating process continues and decisions are made on the basis of 

the sequence of updated posteriors. 

As the example illustrates, the model will require at least four primitives; a sequence of 

payoff relevant random variables (a stochastic process), a family of distribution functions for 

those sequences (one for each value of 0), a prior distribution for (),and a function giving the 

payoffs for different realizations of 'f/· The example assumed that conditional on a particular 

value of 0 the sequence, {'flt}, was i.i.d. over time. Though the i.i.d. assumption simplifies the 
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analysis, it produces a host of very strong empirical implications that are entirely a result of 

the i.i.d assumption and not of the logic of the passive learning model per se. Our 

assumptions will, therefore, allow for dependence in the stochastic process generating {17t} 

conditional on 0. 

This necessitates defining an ordering over stochastic processes; that is we need an 

interpretation for the statement that one value of () generates a better stochastic process than 

another. The ordering we define below is designed to insure that the family of Bayesian 

posteriors for both 0, and for future realizations of 1J, generated by alternative past histories of 

rf, say of nt = (n1 ... ,nt), will be partially ordered (in the stochastic dominance sense) by the 

natural partial order of n t. That is, if n1 ~ n~ (component by component), then the posteriors 

for both 0, and for future values of 'f/, generated from the n1 history will stochastically 

dominate those generated by the n~ history. To be more precise we need the following 

definitions. 

1. Definitions (likelihood ratio ordering, or ~ lr, and stochastic dominance, or ~ s) 

Let P 1 ( ·) and P 2( ·) be two distributions possessing densities p1 ( ·) and p2( ·) (with 

respect to some dominating measure), and with support, if, a compact subset of IRk, 

k-dimensional Euclidean space. We will say that P 1 strictly likelihood ratio dominates P 2 
and write P 1 ~ lrp 2, if and only if, 

whenever z1 > z2, and p1 (z1) or p2(z2) > 0, zl'z2 e if. If weak inequalities replace the 

strong inequalities in this definition, we will say that P 1 weakly likelihood ratio dominates 

P 2, and write P 1 ~ lT"l.O P 2. Similarly, say P 1 weakly stochastically dominates P 2, and write 

P 1 ~ sJ' 2, if and only if for every increasing function, h( · ), such that /h( ()P 1 ( d() < ro, 

I 
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Jh( ()Pl (d() ~ Jh( ()P 2(d() 

If P 1 ~ sw P 2, but P 2 ~swP1 we say that P 1 strictly stochastically dominates P 2, and write 

pl ~ s P2. [] 

Note that if P 1 ~ lr P 2 then, for any two possible values of z, the ratio of the 

probabilities of a larger to the smaller z value is always higher for P 1; i.e., P 1 is more likely to 

have generated the higher z value. This insures that the Bayesian posterior for 0 generated 

from a higher z value will lr dominate the posterior generated from a lower z value (no matter 

the prior for 0, see, for eg. Milgrom, 1983).3 Also P 1 ~ ll 2 impliesP1 ~ sp 2 when the 

underlying state space is totally ordered (as is the case when univariate random variables are 

being compared), however neither ordering need imply the other when the state space is only 

partially ordered (as is the case when the relevant random variables arc vector valued; on 

these points see Whitt, 1980 and 1982). 

Assumption 2 provides the primitives of the passive learning model and endows them 

with some regularity conditions. (2.i) formalizes our stochastic assumptions. Higher values of 

0 are assumed to provide better, in the lr sense, distributions for the vector r/ Moreover 

conditional on a Oe 9 , the natural partial order of the histories of 1J, i.e. of n t-l, is assumed to 

partially lr order the distributions of future 1J (histories which are larger in every past year are 

at least as likely to generate larger future values of 1J ). 4 (2.ii) provides the prior distribution 

3The following counterexample shows that the posteriors for 0 need not be ordered in 1/ 
realizations if we were to assume only a first order stochastic dominance ordering of 
P ,,J · I 0) in 0. Let 0 = ( 0 ,0 ) with 0 > 0 and consider the following family of densities 

., 1 2 2 1 
(with respect to the counting measure): P(1/ = 210) = p(11=410) = 1/2, and P(1/ = ll (}) 

2 2 1 
= P(1/ = 3 I 0) = 1/2. Clearly P (·I 0) > P (·I 0 ). However, if 1/ = 2 the posterior is (} 

1 7J 2 -s 1/ 1 
= 0 with probability one, whereas if 1/ = 3, the posterior is 0 = 0 with probability one; 

2 1 
i.e., the posterior for 1/ = 2 dominates the posterior for 1/ = 3. 

4We have shown that a sufficient condition for (2.ib) is that conditional on any Oee, all 

r 
I 
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for 0, while (2.iii) provides the profit and size functions. It is important that both be 

increasing in T/ for all possible realizations of the price vector. 5 

2. Assumption (primitives of the model) 

(i) ht} is a sequence of payoff relevant random variables (a stochastic process) 

whose distribution, say P(O), is indexed by a OeH, where His a compact subset of 

IR+. The family 

IP ={P(O) OEB} 

have finite dimensional distributions, P T/t ( • I 0), which have support in INt (a compact subset 

of IRt), and densities with respect to some dominating measure. These densities obey a 

likelihood ration ordering in fJ, i.e. 

(a) 

finite-dimensional distributions for 1/t are totally positive of order two as defined by Karlin 
and Rinott (1980), or Whitt (1982). The weaker condition given in (2.lb) becomes 
equivalent to total positivity if the stochastic process generating { 1lt} conditional on a 0E0 
is a first order Markov process. 

5The interpretation of ?r( ·) and S( ·) as mappings from realizations of T/, would only be 
appropriate for our example if T/ were realized before input decisions were made (Marschak 
and Andrews, 1944). In this case both output and inputs can be determined from Tit' and 
the size measure can be either output produced or inputs purchased. The extreme 
alternative is to assume there is no within-period adjustment to T/ (Zellner, Kmenta, and 
Dreze, 1966), in which case inputs are chosen to maximize at+l E(t) 1lt+l F(lt+l) - wt 
lt+ 1, where Et provides expectations conditional on current information (and will be 
defined more precisely below). In this case ?r( ·)and S( ·)would be interpreted as mappings 
from Et 11t+l to Et ?rt+l' and input demand in period t+l respectively. There are, of 
course, intermediate cases where within period adjustment is either partial, or more costly 
(the appropriate characterization is likely to depend upon the characteristics of the 
industry being studied). We shall come back to some of the alternatives below, but for 
now suffice it to note that the results we focus attention on do not depend on the timing of 
the input decision. 
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whenever o1 ~ 02; and have conditional distributions for future values which satisfy a weak lr 

ordering in the (componentwise) partial ordering of past realizations, of n t-1, i.e. 

for any 0 

t 1 t-1 whenever n1 - ~ n2 

(b) 

(ii) G0( ·)is a (nondegenerate) prior probability distribution, with density g
0

( ·) on 

e. 
(iii) For each a, 7r( ·; a), S( ·;a) are continuous increasing functions from IN into IR+. 

7r( ·) provides the payoff to, and S( · ) the size of, the firm. [ ] 

To complete the specification of the model, we need assumptions on the evolution of 

prices, and on the behavior of management. Jovanovic (1982) assumes constant input prices, 

and that management acts so as to maximize the expected discounted value of future net cash 

flow conditional on current information, where the conditional distribution of future net cash 

flows are formed, in a Bayesian fashion, from the family of 1/ processes (IP), past realizations of 

1/, say nt = (nl' ... ,nt), and the prior for 0 [G
0

( O)]. The implied posteriors for 0 are provided 

in assumption 3 below. Section 5 notes the modification to our empirical implications that 

would be required if different prices prevailed in different periods. 

3. Assumption [posterior distributions] 

Let Jt contain all information available to management in period t. Then 

management's beliefs about its own value of 0 are summarized by the (Bayes) posterior 

distribution 



14 

for zeO. Moreover Pu(· Int) has a density, prJ.. ·Int), with respect to the G0 measure {for nt E 

IN\ and all t ). [ ] 

Now consider the decision problem facing the owners of a firm which has been in 

existence t periods and has had '7 realizations of nt. The owners must choose whether to 

continue in operation over the coming period, or close down and sell the firm at the value, <I>. 

If the owners decide to operate the firm they will obtain the profits over the coming period, 

plus the option of keeping the firm in operation over subsequent periods should they desire to 

do so.6 

t+l t+l 
Assume, temporarily, the existence of a bounded function, say Vt+l(n ; ~,from IN 

into IR, which, for a given equilibrium price sequence, a, provides the value of continuing in 
' -

operation from period t+l given a realization of ,,t+l equal to nt+l. Then, letting ,Be{O,l) be 

the discount factor, we have 

where for any h(· ), the expectation, E[h{'lt+l)lnt] = Jh{(,nt)P 'lt{d(lnt). 

Given ( 4) the optimal liquidation policy is straightforward. Operate the firm if and only if 

Vt(nt;~ ~ <I>. Theorem 5 insures that the value function in {4) exists and then provides 

some of its properties. 

6The assumptions that <I> is the same know value for all agents, and is constant over time, 
are made for expositional convenience. What is required is that <I> not increase as rapidly 
with nt as does the value of continuing in operation at t. Of course, the actual behavior of 
"exit values" is an empirical question. If the process generating the exit we are modeling is 
indeed a liquidation process, and not a process generated by changes of ownership and 
continued operation of the firm in a different guise (see the discussion of the data in section 
5) this assumption ought not to be problematic. 

I· 
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5. Theorem (existence and monotonicity of the value function) 

At each t there exists a unique Vt(·): INt -1 IR+ which provides the value of continuing 

in operation assuming optimal behavior in each future period. Vt(·) fs bounded, satisfies (4), 

and is nondecreasing in nt; i.e., if nl ~ n~, then Vt(nl;~ ~ Vt(n~ ;~ [for nteN\ and all t]. 

Proof See Pakes and Ericson, 1987 Appendix I. [ ] 

Note that Theorem 5 does not depend on : the precise functional form (or even the 

curvature) of the profit function (so the production function could display regions of 

increasing returns); on the form of G0( ·);or on the family IP provided that it satisfy the 

monotone likelihood ratio properties in (2) (in particular the posteriors for 0 need not posses 

simple sufficient statistics). We now move on to consider the empirical implications of the 

passive learning model given only the assumptions reviewed in this section. 

2.2 Empirical Implications of Passive Learning. 1 

We begin by deriving the implications of the passive learning model on the evolution of 

the size distribution of firms. The theorem that underlies our results on the evolution of the 

size distribution is the economist's (far more palatable) version of the Darwinian dictum of 

"survival of the fittest." It states that as age increases the 9-distribution of the surviving 

firms improves (in the stochastic dominance sense). This is a result of self (in contrast to 

natural) selection. As time passes firms with lower O's are more likely to draw lower 'f/'S and 

liquidate. 

7W e have focused the analysis on empirical implications that we thought could be 
investigated with currently available panel data sets. These are characteristically quite 
short in the time dimension, and this fact persuaded us to stay away from implications that 
stemmed from the familiar convergence properties of Bayesian learning models for finite 
dimensional parameter vectors. That is, in this model survivors will, in the limit, know 
there true value of 0 exactly. 

l 
r 
I 
I I 

I 
I 

f 
f 
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6. Theorem (the evolution of the 0-distribution) 

Let At = {nt = (n1, .. .,nt): V 1 (n1;~ > t,. . ., Vt(nt;~ > t}, and 

{

1 if nt EA t 
Xt(nt) = 0 ifnt t At. 

Then a firm is still operating in period t if and only if Xt = 1. Further, for every z E 8 and 

all t let 

Then 

Proof Take an arbitrary (z,t). Then, by Bayes law, 

= [0 ~ z J Pr{xt = 11 O}G0( dO)] / [0 f Pr{xt = 11 O}G0( dO)]. 

We must show that P 0 (zlt-1) ~ P 0 (zit). For this is suffices that 

(6.1) 0JPr{xt = 1 I O}G0 ( dO) 

0JPr{xt-l = 11 O}G0(dO) 

Using the fact that 

Pr{xt = 1 IO} :: Pr{xt = 1 I Xt-l = 1, O}Pr{xt-l = 1 IO}, 

and defining 

Ql(dO) = Pr{xt-1=llO}Go(dO) I ofPr{xt-1=llO}Go(dO), and 
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(6.2) 

(6.1) can be rewritten as 

Since (6.2) implies Q1 ( ·) ~ sw Q2( · ), (6.3) will be true provided Pr{xt=l I Xt-l =1,0} is 

nondecreasing in 0. To see that this is indeed the case write 

{ I { I t-1 } { t-1 , t-1 t-1 } Pr Xt=l Xt_1=1,0} = f Pr xt=l n ,e P ,,,t-1 dn n eA ,e . 

Then, taking 0 ~ 0' 

where the first inequality follows from the monotonicity of V( ·)and the fact that for any nt~l 

(2.i) insures that P ,,t ( · lnt-l,O) is stochastically increasing in ti, and the second from the fact 

that if P "It (·I ti) ~ lr P ,,,t (·Ill'), then, for any AelN\P 'It (·I 1JtEA,O) ~ lr P ,,t( · 1,,,teA,0') and 

recursive application of (2.i). [ ] 

Since ti is not observable we look for the implications of Theorem 6 on the observable 
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size variables. The easiest case to consider is when price is constant over time, and the 

marginal distribution off'/ conditional on (}is either constant, or stochastically increasing, over 

age. Then the twin facts that the distribution off'/ is stochastically increasing in 0, and that 

the 0 distribution of the survivors is stochastically increasing over time, imply that the size 

distribution of the surviving firms is stochastically increasing over time. 

7. Corollary (the evolution of the size distribution) 

Assume that a(t) = a for all t, and that the marginal distribution off'/ conditional on 0 

is either constant, or stochastically increasing, over age. Let Xt be defined as in Theorem 6 

and for all z and t define 

Then, provided t ~ t' 

P $.·It) ?:swp $.·It'). [ ] 

As explained in the empirical section we can, with a little more attention to details, allow 

prices to vary over time and derive a modified version of Corollary 7 with anlogous testable 

implications provided S(qt;!!) = f1 (at)~ ('It) (as would be the case, for example, if f'/ 

represented neutral efficiency differences among firms, the production function was 

homothetic in its inputs, and size were measured either by output produced or by employees 

hired). 

The refutable implication of Corollary 7 (or its modification) that we will take to data 

is that it implies that the proportion of the sample of surviving firms with S( t) greater than 

any given number should be increasing in age (more generally the mean of the survivor 

distribution of any increasing function of size should be increasing over age). Note also that 
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Theorem 6 and Corollary 7 imply that each sequence of distribution functions, {P rf.. · It)}, and 

{P s( · It)}, converges (point wise) to a well defined limiting distribution. 

Implications of the passive learning model that specify a monotonic relationship 

between two or more observables are particularly useful since they can be checked against 

data without imposing undue functional form restrictions. Though the literature on the 

passive learning model seems to have missed Corollary 7, it has associated at least three other 

monotonic relationships with passive learning. These are that: 

i) the hazard rate is nonincreasing in current size; i.e., that 

Pr{xt=Olxt_1=1,St_1=st_1} is nonincreasing in st_1; 

ii) the hazard rate is nondecreasing in age (usually, but not always, conditional on 

size); 

iii) and that the variance in growth rates (again usually conditional on size) is 

nonincreasing in age {These implications are discussed in Jovanovic, 1982; Evans, 

1987a and 1987b; and Dunne, Roberts and Samuelson, 1988 and 1989). 

Appendix 1 provides an example which shows that of these three only the first survives 

our search for nonparametric implication of the passive learning model {the example assumes, 

as did Jovanovic, 1982, that the distribution of { 1lt} conditional on 0 is i.i.d. ). It is true, 

however, that the first implication, that is that hazard rates are nonincreasing in size at a 

given age, both persists and is consistent with the data from every empirical study we are 

aware of [Churchill, 1955; Wedervang, 1965; Evans 1987a and 1987b; Dunne, Roberts, and 

Samuelson, 1988 and 1989]. However, most other models that allow for mortality, including 

Ericson and Pakes' {1989) model of active exploration, also imply mortality rates that 

decrease in size for a given age. Therefore, this property fails to distinguish among the 

alternative models, and we do not pay further attention to it in this paper. 

As to the other implications, though the fact that the passive learning model does not 

necessarily imply that either hazard rates, or the variance in growth rates, decline in age is 

some:what disconcerting, the intuition underlying our counter example is clear enough. For 
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many functional forms it will take time to accumulate the information necessary to ensure 

that exit is optimal, and this fact generates an initial increasing portion to the hazard 

function (actually the example generalizes this intuition and generates· a hazard function 

which oscillates over age). Differences in the variance in growth rates over age, will depend 

upon, among other factors, the relative variances of 'I conditional on (J for different values of B. 

If 6-values which are more likely to induce exit are associated with low variances, the 

observed variance in growth rates may well increase over age. Thus if we are interested in 

other nonparametric implications of the passive learning model we should look beyond the 

implications of passive learning on the pattern of either the hazard or the variance in growth 

rates. 

It is, therefore, fortunate that the passive learning model has some very distinctive 

implications on the underlying structure of the conditional probabilities generating growth 

and mortality. These implications stem primarily from the fact that (J is time-invariant. As 

a result, early realizations of 'I contain information about the parameter that determines the 

distribution of its future values; and this will be true no matter the time that elapses in the 

interim. Put differently, the dependence in the joint distribution of 'It and ,,1 does not erode 

away as t grows large. 

This is seen most clearly in the special case where, conditional on fJ, the {'It} are an 

i.i.d. process. In this case, for any n' and z 

p 'It (z' "k = n') = of P ,,(z I fJ)P o( d(J' "k = n') 

= of P ,,(zl O)P ,,(n' I O)go(O)dO/ of P ,,(nl O)go(O)dO; 

which is independent of t and k. This strong invariance property is ·destroyed when we allow 

0 to index the more general family of stochastic processes permitted in (2). In the general 

case we have, for any zelN, 
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and since P ( z I 'lk = n,, 0) can depend upon t and k, so can P 
11 

( z I 'lk = n>). However, the 
'It t 

passive learning model does imply that the dependence in this latter distribution has two 

sources, one of which will not erode away as t grows large. That is, though the dependence in 

the process generating ·'It conditional on 0 (in the integrand) may erode away with t (it will if 

the process generating 'It is ergodic), the dependence that results from the effect of the 

realization of 1/k on the posterior for 0 will not. 

This argument can be formalized and then used to produce a test for the passive 

learning model based on differences between the marginal distribution of St and the 

distribution of St conditional on s1. Actually we can do better than this and produce tests 

based on a comparison of the distribution of St conditional on St_1, ... ,St-k' and the 

distribution of St conditional on St_1, ... ,St-k' and Sl' for any k ~ 0. With a positive k this 

test is likely to be more powerful against alternatives in which the value of the parameter 

determining the firm's distribution of profits evolves in a Markovian fashion over time (and 

one such alternative is the model of active exploration considered in the next section). 

Theorem 8 defines a notion of dependence for the posterior for 0 which leads directly to 

our test. 

8. Theorem (posteriors for 0) 

Fix any (t,k)ell! with t > k+l, and any set of realizations (St =st,. .. , St-k = st-k). 

Then, letting Xt be defined as in Theorem 6, the family of posteriors 

is lr ordered in s 1. 

I-

I 

I 
I 
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Proof. A simple proof can be obtained by induction on k. To this end assume that for all 
I I I I 

possible (st, ... ,st-k'sl'sl'O,O ) with s1 > s1 and 0 > 0 

I I 

p(Olst, ... ,st-k'Sl'Xt = 1) p(O lst, ... ,st-k'Sl'Xt = 1) 

(8.1) 
I I 

-p(Olst, ... ,st-k'sl'xt = 1) p(O lst, ... ,st-k'sl' Xt = 1) > 0 

By definition 

(8.2) 

p(OI st, ... ,st-k+l'sl'xt = 1) = Jp( OI st, ... ,st-k'sl'xt = 1) p(st-k I st, ... ,st-k+l'sl'xt= l)dst-k 

where, for notational simplicity, we have assumed that the density of Sis with respect to 

Lebesque measure. Consequently 

I I 

p(Olst, ... ,st-k+l's1, Xt = 1) p(O lst, ... ,st-k+l'sl'xt = 1) 
I I 

(8.3) -p(O lst, ... ,st-k+l'Sl'Xt = 1) p(Olst, ... ,st-k+l'Sl'Xt = 1) 
I I 

= JI(st, ... ,st-k'sl'sl'O,O )dst-k 

with I(·) derived directly from (8.2). Inspecting I(·) we find that its sign is equal to the sign 

of (8.1) for every st-k" Since the latter is positive by assumption, the integral in (8.3) is 

positive, which completes the inductive step of the argument. For the initial condition of the 

inductive argument we require 

I I 

p(Olst, ... ,s2,sl'xt = 1) p(O lst, ... ,s2,sl'xt = 1) 

(8.4) 
I I 

-p(Olst, ... ,s2,sl'xt = 1) p(O lst, ... ,s2,sl'xt = 1) > 0, 

I I I I I 

for all possible st, ... s ,s ,s ,0,0 withs > s and 0 > 0 (by possible we mean Xt(st, ... ,s2,s1) = 
. 2 l l l l 

I 

1, which insures that Xt(st 1 ••• ,s2,s1) = 1, and 0,0 ee~. Since Xt( ·)is measureable with 



23 

respect to the u-algebra generated from st, its presence in (8.4) is redundant, and the required 

inequality follows directly from (2.i) and the definitions in (3) and (1). [] 

Corollary (9) is a direct implication of (8), (2.i), and the fact that for univariate 

distributions likelihood ratio dominance implies stochastic dominance. 

9. Corollary 

Assume that conditional on 0 and past history, the distribution of 1lt is Markov of 

order less than or equal to k. Then 

is strictly increasing in sl' for almost every (st_1, ... ,st-k). [ ] 

Though we expect the assumption that conditional on 0 and past history the 

distribution of t'lt is Markov of order at most k to be a reasonable approximation, without it 

the expectation of St conditional on a particular realization (st-1' ... st-k) and s1 = s1 will, in 

general, only depend on s1 and need not be increasing in that variable. s As a result the 

empirical section will provide test results for both monotonity of the regression function in s1, 

and for dependence of the regression function on s . 
1 

This dependence occurs because the parameter which determines the conditional 

BThis is one of several subtilities that result from the fact that our observations are censored 
by the survival process. Firms with a higher s1 will survive on the basis of lower 
subsequent realizations. As a result, by conditioning also on survival, we are conditioning 
on "better" subsets of the state space for years near the first when we start with lower s1 
values. This possible positive dependence between st and the sets of past values of S that 
we are not conditioning on, conditional on any particular value of 0, can reverse the 
ordering of the expectation of St conditional on alternative realizations of S given in (9). 

. 1 
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distribution of size is time-invariant. In models in which these conditional distributions 

depend on a parameter which evolves over time in response to, say, the outcomes of a firm's 

exploratory investment, the distribution of St conditional on a realization (st_1, ... ,st-k) and 

s1 = s1 need not depend on sl" We turn to such a model now. 

Section ~. Active Exploration 

This section considers the empirical implications of a model, orginally developed by 

Ericson and Pakes (revised 1989), in which firms can invest to improve the value of a 

parameter, say"'' which determines the distribution of its profits. In this model firms are 

assumed to know the current value of their wand make all current decisions based on it. On 

the other hand w itself evolves over times in response to the outcomes of the firm's own 

investments, and to the investment's of other firms operating in related markets. These 

outcomes are stochastic; in the model with active exploration the firm invests to explore and 

develop alternative market Iliches which may, or may not, prove profitable. 

Ericson and Pakes begin with a special case in which the firm's profits depends only on 

the difference between the firm's own level of development and an aggregate index of the state 

of the market. Startup is treated as the appearance of an idea at some location on the w axis. 

If the idea requires substantial successful development before it can generate profits, the 

initial w is associated with a distribution of profits which is degenerate, or nearly so, at zero. 

In each period in which the firm decides to remain active it determines a quanitity of 

investment to maximize the expected discounted value of future net cash flows. Successful 

investment enables the idea to be embodied in a more profitable marketable good or service. 

Unsuccessful may well convince the entrepreneur that the whole idea is not worth pursuing 

and lead to liquidation. 

Their general model allows the firm's profits to also depend explicitly on the levels of 

development of all other firms active in the market, endogenizes entry, and then solves for a 
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Markov perfect Nash equilibrium in investment strategies. Here we suffice with a brief 

description of the special case, as it makes it particularly easy to illustrate the empirical 

implications we are after (though, as will become intuitively clear, those implications do not 

depend on the simplifying assumptions used in the special case). Just as in our discussion of 

passive learning, we begin with a brief description of the model, then move on to a listing of 

the assumptions we make on the primitives of that model, and conclude with the empirical 

implications of those assumptions. 

The Active Exploration Model 

We will assume that the state space is countable and index it by the integers so that w 

E7l. Each firm operating in period tis endowed with an wt" Higher values of ware better in 

the sense that the distribution of the payoff relevant 1J is stochastically increasing in w. 

Management has three choices to make in each period, and they are made to maximize the 

expected discounted value of future net cash flows. First the firm must decide whether to 

operate at all. If it decides against it receives a liquidation value oft and exits never to 

reappear again. If the firm does operate management must decide on both a level of current 

input demand, and an amount of exploratory investment, say xt. Given a realization of 1J, 

current input choices will determine current operating profits, say 7r(1Jt). Current cash flows 

are 

where c( ·) > 0, and can be decreasing in w to reflect the possibility that more profitable firms 

may find it easier to raise finance capital. Increases in current investment decrease current 

cash :flow but make higher values of wt+l' and hence higher future profits, more likely. In 

particular, let "t+l = wt+l-wt, and Jt be the information available to management at t. 

Then we assume that for ZE.71, 

I 
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where P .,.( · I xt) is stochastically increasing in x. Hence, to formalize the firm's decision 

problem we will require the following primitives.9 

1. Assumption {primitives of the active exploration model) 

i) IP= {P ,,< · I w):UJE7l}, is a family of distribution functions indexed by w. The family 

has support, IN, a compact subset of IR containing zero, and exhibits a weak first order 

stochastic dominance ordering in w, i.e. 

P ( • I w) > P ( • I w') T/ N SW T/ 

whenever w > w'. It is assumed that lim P 
11
(0 I w)==l. (This, together with the assumption 

w -I -11) 

that 7r{O) = 0, insures that for small enough w payoffs are zero with probability arbitrarily 

close to one). 

ii) IP.,.= {P .,.( · lx):xEIR+} is a family of distributions with support T, a compact subset 

of 7l, exhibiting a weak first order stochastic dominance ordering in x, i.e. 

P{·lx)> P{·lx') 
.,. N SW .,. 

whenever x > x', and satisfying the condition that P {O I 0) = 1, so that the firm's product .,. 

9We omit aspects of the model which do not impact on the empirical implications we are 
after (this includes allowing for price, and other timEHipecific firm-invariant processes). 
Also, just as we did in the last section, we assume here, for expositional simplicity, that 
input choices are made after the realization of TJ, and that liquidation values are a constant 
«). Finally we work with a countable state space and an assumption that current 
investment does not affect the distribution of profits until the following year, to minimize 
the need for technical detail {in particular measureability conditions are satisfied trivially 
in this framework, and are therefore ignored throughout). 



27 

cannot be improved without some investment. The family of densities {p / · Ix): xEIR +}, is 

(pointwise) differentiable in x with derivatives which are decreasing in x for r > 0, and 

increasing in x for r < 0 (this insures that the investment problem is concave and therefore 

has a unique solution), and both P.,(Olx) and P.,(-llx) are strictly positive for all x less than 

any finite upper bound (it is always possible for the competition to advance as much or more 

than the firm in question does). 

iii) 7r( ·) and S( ·) are increasing functions from fJ, and c( ·) is non-increasing function 

from w, into IR+. 7r( ·) provides the profits, and S( ·) provides the size, of the firm; while c( ·) 

provides the cost of a unit of x. 71'(0) = 0, c( ·)is bounded away from zero. [] 

We now consider management's choice of policies. Letting w0 be the initial 

state and x., be the indicator function which takes the value one if the firm is active in period 

rand zero elsewhere, a policy, say d, is a sequence of functions mapping available information 

(J) into operating (x) and investment (x) decisions, that is 

with Xr = x.,(JT) and Xr = 0 implying Xt+r = 0 for tE7l+,xr = xT(JT), and JT = 

{wr,Xr-l'xr-l'wr_1, ... ,w0}. Recall that R(11r,wr,xr,Xr) = 7r(11r)-c(wr)xr if xr=l and zero 

otherwise, so the expected discounted value of net cash flows given the policy dis 

where ,8E(0,1) is a discount factor, and the expectation is taken assuming that the d-policy is 

followed. Note that (1) implies that R( ·)is bounded, and let 
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V(w) =sup V d(w) 
d 

* * for each w. A policy d will be optimal if V d ( w) = V( w) for all w. If an optimal policy 

exists management chooses it, in which case the expected discounted value of future net cash 

flow is V( w). Management will operate the firm if and only if V(w) > ~'the liquidation 

value. The following theorem combines the results from Ericson and Pakes (1989) that are 

used in our derivation of the empirical implications of their model. The theorem is followed 

by diagrammatic and verbal expositions of its contents. 

2. Theorem (properties of the active exploration model). 

A unique optimal policy and associated value function exist and they have the 

following characteristics: 

i) V( w) is bounded and nondecreasing in w. 
* ii) The optimal policy, x/Jr) is bounded, depends only on current w, and is stationary, 

i.e. for all r 

iii) There exists a couple, (;tg, w) with, - m < :Ml~ w < m, such that 

* x (w)=Oifwi{w':w~w'~ w}. 

iv) There exists a second couple ( w,W), with - m < w ~ w ~ w ~ w < m, 

such that 

V( w) > t is and only if w > w, 

and 

I 
I 
I 
I 
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Proof: See Ericson and Pakes, 1989 [] 

Parts (i) and (ii) of this theorem ensure that both the value function and investment 

policy are stationary flinctions of w, the value function being increasing in w. Figure 1 

illustrates this with one special case. In the figure 2,i( w) = J w( 'I )P ,,,< d'f/ I w), provides 

expected profits conditional on w. The value of w below which a firm exits, i.e. the win 

(2.iv ), is determined by the point at which V( w) equals t. In this example w = w, that value 

of w below which a firm stops investment. So positive investment occurs at w + 1, even 

though profits at that point are zero with probability one. The incentive for the investment is 

that it makes higher values of wt+l' and hence higher future profits, more likely. The 

monetary value of an increase in wis V(w+l)-V(w). Since V(w) is bounded, after some 

point increases in w cannot bring with it much of a change in V( · ). It follows that, after some 

w, it will not be in the firm's interest to invest at all. Thew at which this occurs is the w of 

(2.iii). If w > w, no investment takes place and this insures (see 1.ii) that the firm's w does 

not increase (in fact it will stochastically deteriorate as other firms gradually develop goods 

* and services that obsolete the product of this firm). Let r be the largest value of r in T. 
- - * -Then firms with wt < w have wt+l 5 w + r = w, and firms with w < wt~ w have wt+l S 

wt. So if wt ~ w, so must be wt+ 1. This explains the second statement in 2.iv; that is, if w0 
~ w, then, with probability one, so will be the entire sequence {wt}~=o· 
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$ --=----V( w)-

w=w 
~ ;;;:::: 

Figure 1: Policies in the Active Exploration Model 

1 

--'i{w)-; 

.. ···--·--------!!. 
w w w 

Since all values of w ~ w induce permanent exit, there is no need to distinguish among 

them. It is, therefore, convenient to transform the state space by the map f( · ), where 

f(w) = { 0 
w-w 

for w ~ w 
elsewhere. 

Let K = w- w, so that if f( wt)~ K, so is f( wt+l). We shall work only with values off( w) in 

what follows. At the risk of some notational confusion, then, we also label its values by w. 

With this understanding, theorem 2 implies that the sequence, {wt}, together with any 

w0 ~ K, is a finite state Markov chain on n = {0,1,. .. ,K}. Its 'zero' or 'death' state is 

absorbing, so the transition matrix for the chain is given by P, where 

p = [P . .) = [1,0 ... ,0] 
l>J P .. 

l>J 

and for 0 < i ~ K (3) 
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[ 

P .,( r= j-i I x: ( i)) for K ~ j > 0 

E p/r=j-ilx (i)) for j = 0. 
T~-i 

Two remarks are in order here. First, recall that realizations of ware not observable. 

Realizations of {St} are, but S( 'lt) ='S'( wt) + U( 'lt), where 'S'( wt) = JS( 'lt) P( d'lt I wt), and 

U('lt) = S('lt) - 'S'(wt). Since the distribution of U('lt) is also determined by wt, and {wt} is a 

Markov process, St is a sum of two Markov processes. But a process which is a sum of 

Markov processes is not, in general, Markov. So the observable {St} process is not Markov. 

The second point to note concerns the mortality of firms. Assumption (1.iii) insures 

* * that there exists a finite n , such that for n>n 

min {pn
1
. 0: ieO} ~ e > o, 

ieO ' 

where ptj = Pr{wt+n = jl wt= i}. Since Po,o = 1, this implies that all states but zero are 

'transient'. That is, no matter its initial w, a firm will, with probability one, reach zero in 

finite time and stay there. Firms, like people, eventually die. 

Since the passive learning model implies that firms can survive forever there is a sense 

in which this latter result differentiates the model with active exploration from the passive 

learning model. However, in order to make empirical use of this distinction we would require 

a very long time series of data. On the other hand, the passive learning model did have the 

additional implication that the size distribution of surviving firms ought to be stochastically 

increasing in any finite range of ages, so we now consider whether the model with active 

exploration has this implication. 

Let Pi· I t,po) and P s< ·I t,po) be thew and S distributions of the period t survivors 

from a cohort which started with an initial distribution p0eQK(the K-1 dimensional simplex 
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generated by the set of possible densities on the finite set of integers, {l, ... ,K} ). Ericson and 

Pakes show that as t grows large each of these two distributions converge (point wise) to a 

* * unique invariant distribution, say P w( ·)and Ps( ·)(these are invariant to both p0 and to the 

passage of time). In fact, one can go further than this and show that, given some additional 

regularity conditions on the locations of p0 and on the transition probabilities, there will be a 

* * finite t such that for t~t the convergence will be "monotone", and the sequence of survivor 

distributions will be stochastically increasing over age (just as is implied by the passive 

learning model). However, the model with active exploration does not, at least does not 

necessarily, generate the stronger implication that is generated by the passive learning model; 

that is, that the size distribution must stochastically increase from each age. On the other 

hand, the active exploration model does not bar this event from occurring (it does occur in the 

illustrative example carried along in Ericson and Pakes ), and, as noted, it can actually predict 

that the size distribution will be stochastically increasing at later ages. 

There is, however, at least one set of observable implications which differentiates 

between the two models more sharply. Recall that in the passive learning model the 

parameter that determines the distribution of profits is time invariant. This induces a 

dependence between the initial size of a firm and the size at any future date. Indeed the 

passive learning model implies the stronger result that the conditional distribution of size at t, 

conditional on the immediate past sizes and the initial size, will depend on (indeed we expect 

it to be strictly increasing in) the initial size. In the active learning model the parameter 

determining the firm's profitability distribution, i.e. w, evolves over time. Later year size 

realizations are governed by a different value of 111 than those from earlier years and, as time 

passes, the dependence between the later and earlier values of w, and therefore of size, dies 

out. This is also true for the conditional distribution of St; i.e. the distribution of St 

conditional on immediate past values of S should gradually become independent of initial year 

sizes. Moreover, since the dependence of wt on its history is only through the value of wt-l' 

we might expect that if we condition on immediate past sizes the dependence on initial size 
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will die out relatively quickly. Indeed, in the extreme case where St = S'(wt) so that sales is a 

deterministic function of wt, the conditional distribution of St depends only on St-l" In this 

case a three year panel is enough to differentiate the active from the p·assive learning model. 

When there is noise in the relationship between wt and size we must base our 

distinction between the active and the passive learning model on more detailed properities of 

the stochastic process generating size conditional on survival. Let {S:};=l be that process (it 

is described in more detail below). Then, the active learning model implies that as r grows 

large the distribution of (S~+r'S~+r+l'···) becomes, roughly speaking, independent of 

realizations of (S~, ... ,S~). More precisely, we have lemma 4 and its implications (explained 

immediately after the presentation of the lemma). 

4. Lemma (qi-mixing of the {S:} process). 

Let {S:};=l be the stochastic process formed from the distribution of sales conditional 

on survival and any initial w0e{l,2, ... ,K}, and Mi be the u-algebra generated by possible 

realizations of S~,S~+l'···,s;. Then {S:} ;-mixes at a geometric rate, i.e. 

with;< 1. 

Proof. Let Q be formed from P (in 3) by dividing its ith row by 1-P. 
0 

(for i=l, ... ,k) and 
11 

deleting its first row and column. Q is the Markov chain for the process generating the 

w--states conditional on survival. Note that (2.i) insures that Q is irreducible aperiodic and 

* * * hence possesses a unique invariant distribution, say q = [ql' ... ,qk] (see, for eg., Billingsley, 

1979, theorem 8.6). The probability space for the process generating sales conditional on 

survivial is then (~ro,S,IP), where ~ro is the set of sequences on~= {s:s = S(11), 7JEIN}, Sis the 
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a-algebra generated by ~00 , and, for any w
0
e0 and AeS, IP w {A} is calculated from Q and the 

0 

family of probability distributions for fJ conditional on w, IP,,. 

A monotone class argument identical to that given in Billingsley (1968, section 20) 

implies that it suffices to prove 

IP(E IE )-P(E )I < A;T 
2 l 2 -

for any E eMx such that P(E ) > 0, E eM x+-r+l, and (x,l) e 7l:. To this end, fix any 
l l l 2 X+-r 

(E 1,E 
2
,x,l), let ite{l, ... ,K} index realizations of wt, and i 2 index realizations of fe2 = 

(w , ... ,w ). Then 
X+-f X+-f+{ 

P(E21E1) = ~ P(E IE ,i 2,i) P(i ,i IE) l 2 1 N X N2 X l . 2. 
~ ,Ix 

- ~ P(E Ii 2) P( i 21 i ) P(i IE ) l 2N N X X 1 • 2. 
~ ,Ix 

since 

P(E IE ,i2,i ) - P(E I i2), and P(i Ii ,E) - P(i Ii ). 2 l N X 2 N N2 X 1 N2 X 

Use Q = (q. J.] to evaluate P( i Ii ) and substitute to obtain 
1, N2 X 

P(E IE) = ~ P(E Ii , ... ,i )q. . , ... ,q. ,. q? I. P(i IE), 
2 1 l 2 X+-f+{ X+-f 1 ,1 l lx+-flX+-r+l 1 J X 1 

X+-r+[-1 X+-f+ X X+-f 

where the summation extends over i ,i , ... ,i ,and q? ,. 
X X+-f X+-r+[ 1 1 

X X+-f 

- P (w = i I w = i ). 
X+-f X+-f X X 

Now note that 

I 
I 
I 
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P(E Ii ) = ~ P(E Ii ,, ... ,i ) qi i ... ,qi i , 
2 X+-J l 2 X+-J+<.: X+-J l- > l 

X+-J+ 1 X+-J+ X+-J> X+-J+1 

where the summation extends over i , ... ,i , so that 
X+-J+1 X+-J+[ 

P(E IE) 
2 1 - 2 P(E Ii ) q 

1
1· 1· P(i IE ), 

2 X+-J X 1 
XJ X+-f 

i ,i 
x x+ 1 

while 

P(E) 
2 

- ~ P(E Ii ) q: - ~ l 2 X+-J l l 
i X+-J i 

1 
i 

* P(E Ii )q. P(i IE) 
2 X+-J 1 x 1 

X+-f 
X+1 X X+-J 

Thus 

IP(E IE) - P(E )I 
2 1 2 

, * P(E Ii )lq. . -q. I P(i IE) 
2 x +-r 1 ,1 1 x 1 

X X+-J X+-J 
i , i 

X+-J X 

with ; < 1, where the second inequality follows directly from the fact that the Markov chain 

converges exponentially to its unique invariant distribution; that is from the fact that for any 

* r, max (i ,i )lqi ,i _ qi I ~ ; 1 (see, for e.g. Billingsley, 1979, Theorem 8.7) [] 
x x+y x x+y x+y 

Lemma 4 implies that for any fixed k the distribution of (St, ... ,St-k) conditional on s1 

and survival until period t, eventually (as t grows large) becomes independent of s1 (more 

precisely any "dependence" on S1 goes down at a geometric rate). This generates the 

following corollary. 
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5. Corollary. 

Fix any k ~ O, and any realization, St-l = st-1' ... ,St-k = st-k" Then, 

IE[S Is , ... ,s ,x = 1,s] -E[S Is , ... ,s ,x = 1] I ~ A ;t 
t t-1 t-k t 1 t t-1 t-k t k 

on a set of (s , ... ,s ,s ) that has probability one. D 
t-1 t-k . 1 

Recall that in the passive learning model the conditional expectation of S , conditional 
t 

on any realization, (s , ... ,s ), S = s and survival until t, was expected to be strictly 
t-1 t-k 1 1 

increasing ins . Hence corollary (1) differentiates the active from the passive learning model. 
1 

The distinction between the two models is particularly striking in the special case where St = 
'S( wt), in which case Ak = 0 for k > 1. We now consider the econometric techniques needed 

to bring this distinction to data. 

Section 4: Estimation and Testing 

There are two nonparametric implications of the models we are considering that will be 

investigated empirically. The first is whether the size distribution of surviving firms is 

stochastically increasing in age; or whether, for all t 

The assumptions of the passive learning model imply that it must, while the active 

exploration model implies it might, but need not - at least in the early ages. The second 

question posed of the data is whether, for different values of k, 

E[S Is - s , ... ,s = s , s = s ' x = 1] 
t t-1 t-1 t-k t-k 1 1 t 

(1) 

(2) 

I 
I 
I 

I 
I 
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is strictly increasing in s . Again the passive learning model says it must be. But here there 
1 

is a sharper contrast with the implications of the active exploration model. The model with 

active exploration implies that, fort large enough, the regression function in (2) cannot 

depend on s. 
1 

To check whether (1) seems consistent with the data we will simply plot and compare 

the size distributions at different ages. The fact that to examine whether the regression 

function in (2) is strictly increasing ins we have to condition also on alternate realizations of 
1 

(S , ... ,S ) makes it more difficult to rely on a pictoral analysis of that hypothesis. As a 
t-1 t-k 

result we now develop a set of more formal test statistics. 

Indeed, since both models suggest that this regression function is nondecreasing in s , 
1 

we employ a two-part testing sequence. We first test whether (2) is weakly increasing ins . 
1 

If this were not the case we would doubt the relevance of either of our models for the data at 

hand. If, on the other hand, the hypothesis of weak monotoncity is acceptable, we move on to 

test the null of whether the regression function does not depend on s against the alternative 
1 

of it being strictly increasing in that variable. Acceptance of both null hypotheses is 

interpreted as support for the active exploration model, while acceptance of only the first is 

interpreted as support for passive learning (for comparison we will also provide a test of the 

null that the regression function does not depend on s against an unconstrained alternative). 
1 

Note that this testing procedure ignores the fact that the active learning model implies that 

the dependence of the regression function in (2) on s only disappears in the limit. So we 
1 

should be careful about rejecting the null on the basis of small differences that are very 

precisely estimated. 

Verbally, our procedure consists of allocating the data into alternative groups of cells, 

where a cell is defined to include all firms with similar sales histories. We then take two 

groups of firms in the same (s , ... ,s ) cell, but in different s cells, and compare their 
t-1 t-k 1 

average values of s . If the passive learning model is correct, the group with the larger s 
t 1 

values should have a larger averages . 
t 
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More formally, let the function u1t ( • ): Rk + -t [l, ... ,J]k define the required cells by 

setting 

u1t (st-t) = { u(s ), ... ,u(s ),u(s )} 
t-1 t-k 1 

where for all r, (3) 

a"( s r) = j, if and only if 

and £-0 = 0 and !!J = m. Here the intervals (£-0, ![.1), ... ,[!!j-t,uJ), partition the positive orthant 

into J intervals, and the function u(s ) defines which of these J intervals the realization of S T T 

falls into. Similarly, the function uk(st-1) defines which sequence of intervals the realizations 

of S , S , ... ,S fell into. The Jk possible values of uk (·),will be denoted by uk, for p = 
1 t-k t-1 p 

1, ... ,Jk. 

Our testing procedure is based on estimates of the mean and the variance of S 
t 

conditional on the different possible values of uk. The vectors of population means and 
p 

variances will be denoted by µk and yk where 

and (4) 

yk = [vk = v{s I uk(st-1) = uk, x = 1}]. 
p t p t 

In terms of these means our two null hypothesis are as follows. Fix any of the possible values 

* of [ u(s ), ... ,u(s )], say u . Then the null hypothesis of weak monotonicity can be written t-1 t-k 
as 
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whenever u > u , and the null that the realization of S does not effect the mean of S 
1 - 2 1 t 

conditional on (s , ... ,s ), is 
t-1 t-k 

µ[o*,u(S) = u] = µ[o*,u(S) = u] 
1 1 1 2 

whatever the value of the couple ( u ,u ). 
' 1 2 

We adopt the convention that for each o*, the vector µk is ordered by the associated 

value of u(S ) so that each of the weak monotonicity constraints is an inequality constraint of 
1 

the form, l'µk ~ 0, where 1' = [0,0, ... ,0,-1,1,0, ... ,0]. Gathering all such constraints into the 

matrix R, the null hypothesis of weak monotonicity can be written as 

(5). 

Note that R is of full row rank, say C. We test weak monotonicity by testing for (5) under 

the (unconstrained) maintained hypothesis that re IRc. Similarly our test of the null that the 

realization of s1 has no effect on the conditional mean of St given that any effect is 

nonnegative will be a test of 

(6), 

conditional on the maintained hypothesis in (5).10 

10Formally the monotonicity properties that we are building tests for are conditional on a 
given value of (S , ... ,S ). The tests themselves, however, condition only on (S , ... ,S ) 

t-1 t-k t-1 t-k 

being a member of a particular interval. Since the monotonicity property is hypothesized 
to hold for every (s , ... ,s ), it holds over any average of realizations of (S , ... S ) in a 

t-1 t-k t-1 t-k 
given interval, provided the same averaging procedure is used to compare different values 
of s . Our null hypothesis uses the distribution of (S , ... ,S ), conditional on (S , ... ,S ) 

1 t~ t~ t~ t~ 
being a member of the interval, survival, and the realization of S , to average. Under the 

1 
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To obtain tests of these hypothesis we construct estimates of the vector µ, (and 

therefore of r) that satisfy, first just the maintained, and then also the null, hypothesis, and 

then ask whether any difference between the two estimates can reasonably be attributed to 

sampling error. To this end let Jik and ~k be the sample analogues of µ,k and yk (the vector of 

the sample's cell means, and the sample's within cell variances), and Nk be a vector 

containing the number of observations in each cell. Then, letting N =EN(p) and assuming 

that N(p) converges in- probability to a constant, say b'(p ), as N grows large (p=l, ... ,Jk), the 

exchangeability of the observations within each cell guarantees that 11 

strict, (or limiting) form of the mixing condition (lemma 4), this distribuiton will not vary 
withs . Under the alternative, however, it will. A.ny bias caused by this dependence is a 

l 
consequence of the finite sample bias in the (nonoverlapping) kernel regression function 
estimator implicit in our testing procedure, and will, therefore, go to zero with the size of 
the band width used to generate the cell intervals in (3). 

11For I~ p ~ Jk, let SP= {S~, i ~1} be the sequence of observations with sales history in cell 
l 

p. By exchangeable within each cell we mean that for each Po and each permutation of a 

finite number of elements from SP(o), say ?r, S = [SP,p = 1, ... ,Jk] has the same 
* distribution as S , where 

for p = Po· 

Verbally this condition states that the model does not distinquish among observations with 
the same sales history. Note that it allows for dependence between the sales outcomes of 
any two observations, and for different distributions for observations with different sales 
histories. The within cell exchangeability, together with finite variances, quarantee (5). 
To see this, note first that these conditions imply conditional independence among the 
cells, conditional on the random distribution which (from de Finetti's theorem) generates 
the within cell sequences as i.i.d. draws (see Aldous, 1983, Theorem 3.8 and it corollary), 
and then apply standard results on central limit theorems for exchangeable sequences lsee, 
for eg., Aldous, 1983, 2.25, and 2.27). 
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while 

where diag[x] denotes a diagonal matrix with x on the principal diagonal, N( ·, ·) denotes a 
p 

multivariate normal distribution, -1 denotes convergence in probability, and N> denotes 

convergence in distribution. 

and 

We obtain our test of H~ (in 5) by comparing 

r = Rjt, 

rM = argmin {(r-r) 'R[~k]-l R'(r-r)}, 
r~O 

(Sa) 

(Sb). 

(7) 

r is an unconstrained estimate of r obtained from substituting sample for population means in 

the formula for r. rM is an estimator of r that is forced to satisfy the inequality constraint in 

(5). Subject to that constraint it is chosen to minimize a quadratic form in (r-r). This 

quadratic form uses R[~k]-l R', the estimated variance-covariance matrix of r under the 

hypothesis that Rµk = 0, as its weighting matrix. Given (8) our test of whether r and r M are 

significantly different from one another can rely on distributional results for inequality 

constrained estimators that date back at least to Barlow (1959).12 Define 

x~ -
N 

min { ( r-r) I R[Vk]-1R I ( r-r)}' 
r ~ 0 

(9), 

so that large realized values of this statistic are evidence against the null. Then, as is shown 

12For a more recent exposition see Barlow, Bartholemew, Bremner, and Brunk, 1972, and the 
econometric literature which started with the article of Gourieroux, Holly, and Monfort, 
1982. More recent contributions include Goldberger (1987) and Wolak (1989). 

•. 
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by Barlow (1959), for all a~ 0 

c 
TM (a)= Pr {xM: ~ alr=O} -+ EW(c)Pr{x~ ~a} 

c = 0 

as N grows large, where (10) 

W(c) = Pr{rM has exactly c zero components I r=O}, 

and X~ denotes a x2 deviate with c degrees of freedom ( c=O, ... ,C). Thus if X~ is the realized 

value of xM:, TM[x~] provides the probability of type I error (the p-value) of a test that 

would reject the null if xM: = x~ when the true value of r was zero. The p-value when r is 

any value greater than zero is smaller. 

Unfortunately, the orthant probabilities, that is the values of the W(c) needed to 

calculate (10), cannot be expressed as easy to evaluate functions (this will generally be true 

provided, as in our case, the weighting matrix in 6b is not diagonal). As a result we obtain 

simulated estimates of the W(c), say W(c), and use them to provide a simulated estimate of 

N N N 

TM (a) - EW(c)Pr{x~ ~a} - W'X 

and (11) 

W' = [W(O), ... ,W(C)], and X'=[Pr{x6 ~ a}, ... ,Pr{xc ~a}]. 



43 

N 

The W(c) are obtained by taking NSIM draws ~om a C dimensional normal 
N 

distribution with mean 0 and variance-covariance R[Vk]-1 R', passin~ each through the 

estimation subroutine, and then simply counting up the number of times the simulated draws 
N 

for r produce an rM with precisely c zero components (for c = O, ... C). Note that the W(c) 

are, in fact, cell means from repeated draws from a multinominal distribution (where NSIM is 
N 

the number of draws), so the variance of TM( a) about its expected value of TM (a) can be 

obtained from the formula for the variance of the multinomial as 

N 

Var [TM( a)]= X' {diag [W] - WW'}X[NSIM)-1, (12). 

Along with the point estimate of TM( a) given by (11), we provide an estimate ofits variance 

obtained from substituting the simulated for the actual values of Win (12). For comparison 

we also provide the estimate of TM (a) that would be obtained if we were to incorrectly 
I 

assume that R[Vk]-1 R was an identity matrix, since this would allow us to calculate the 

W(c) directly from a simple combinatorial formula (C choose c), and one might like to see if 

this simplification produces a significantly biased estimate of TM(a).13 

The test statistic for the null hypothesis in (6), that is for the hypothesis that the 

regression function does not depend on s , conditional on the maintained hypothesis that the 
1 

regression function is nondecreasing in that variable , is based on the difference between r' 

the estimate of r which satisfies the nonegativity constraint, and zero. Use of the estimate of 

the variance-covariance of r to weight the difference between these two estimators generates 

the test statistic 

13Note that we need only simulate the weights for, and not the entire distribution of, the test 
statistic. Use of the available information on the vector X in this way makes it easy to 
obtain fairly precise estimate of the value of the test statistic with a small number of 
simulation draws (see the next section). 
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(13). 

The results on testing subject to inequality constraint imply that conditional on the null in 

(6), xi also distributes as a weighted average of x2 deviates. That is for any 'a' 

* Tz(a) - Pr{xi ~ alr=O} -+ EW (c) Pr{x~ ~ a}, 

as sample size grows large, where, in this case, (14) 

* W (c) - Pr{rM has exactly c positive componentslr=O} 

* and x~ is defined as above (c=O, ... ,C). We obtain estimates of the W (c) from the same 
N 

procedure used to obtain the estimates of W( c) used in (10), and use these estimates to 

generate an estimated value of T z(x0 z) and its standard error (the p-value for the test of 

r=O conditional on the maintained that r~O). 

We also compare this sequence 'of tests, that is the test for weak monotonicity under an 

unconditional maintained hypothesis coupled with the test of the hypothesis that s has no 
1 

effect on the regression function conditional on the maintained that any effect is 

nondecreasing, to the more familiar test of whether s has no affect on the regression 
1 

conditional on an unconstrained maintained hypothesis. A test of the null in (6) conditional 

on an unconstrained maintained, say x.f, can be built from standard tests for the equality of 

means, that is 

N 

x.f = r'R[vk]-1R'r, (15), 

and has the familiar x2 limit distribution with C degrees of freedom. Note that since the 
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properties of Lagrange multipliers insure that 

(13), (9), and (15) insure that 

with probability one, as will be illustrated in the empirical results which we now turn to. 

Section 5. The Data and the Empirical Results 

The data used in this study were obtained from the Wisconsin Department of Industry, 

Labor and Human Relations' (DILHR's) records for unemployment insurance (UI) coverage. 

The records for the years between 1978 and 1986 (inclusive) were linked together by UI 

account number by David Neuendorf and Ron Shaffer (see Neuendorf and Shaffer, 1987). 

Note that the data covers firms in all (not just the manufacturing) sector. Also, 

as explained below, panels created from UI account numbers can distinguish between the two 

major sources of attrition in firm level panel data sets discussed in the introduction; attrition 

due to liquidation, and attrition due to changes in ownership.14 

Any private employer hiring at least one worker and paying at least $1,500 in a quarter 

is required to file information on the number of workers, wages, and UI tax contributions to 

14We are grateful to D. Nuendorf and R. Shaffer for granting us access to their data, and for 
graciously answering our subsequent queries. More detail on the data can be found in the 
appendix of Neuendorf and Shaffer (1987). The UI account rules allow multiestablishment 
firms to choose to report as a single, or as multiple, units. For consistency the 
establishments of multiestablishment firms that reported separately have been merged into 
single observations in this data. The data should therefore be thought of as firm-level 
data. 

I 
I 
' 
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DILHR. For the purposes of our analysis the first time it does so is treated as the 'birth' of 

the firm. Size in that, and in subsequent, years is measured by the number of employees. 

The unit used to match observations over time was the UI account number. When a 

business changes ownership or legal status, DILHR freezes its current account and either 

creates a new account, or, in the case of an acquisition, merges the employment information 

into another account. When this occurs the old account has a successor code, and a new 

account, if created, will have a predecessor code. New accounts which were a result of a 

change in legal status (and therefore had a predecessor code) were separated out and not 

treated as a part of a birth cohort in this analysis. Analogously we use the successor code to 

distinguish between attrition due to liquidation, and attrition due to mergers (and other 

changes in legal status). 

Tables 2 and 3 provide information on the evolution of the size distribution of the 

surviving firms from the 1979 birth cohort in retail and in manufacturing, respectively (recall, 

from Table 1, that these two sectors account for 80 percent of the employment in our sample). 

The row labelled "count" gives the number of firms active in the column age. The row 

labelled transferring out provides the number of firms which were active in the column year 

but that transferred out (due to a change in legal status) before 1986. This source of attrition 

accounts for about 83 of the 1979 cohort in retail trade, and about 43 in manufacturing. 

These figures should be compared to the extent of liquidation (the figures given in the row 

labelled mortality rates). Over 603 of the 1979 birth cohort in retail liquidated before 1986, 

and the analogous figure in manufacturing was over 503. Since liquidation was 

quantitatively so much more important a source of attrition in these data, we simply omitted 

those firms who subsequently changed ownership from the analysis. (However, almost 

identical empirical results are obtained if we include the firms in the analysis until the year 

before they transfer out.) 

The passive learning model together with the assumption that prices are constant over 

time implies that the proportion of surviving firms with size greater than any X, or the 

I 



~able 2: Evolution of Size Dtetrlbutton Over A~e Retail: 1979 Cohort 
~1es ere proportion of active firms with employment ) X) 

Age Cross Sec ti on a 

x 1 2 3 4 5 6 7 8 1978 

1 67.0 73.3 76.8 77.7 78.2 80.0 80.3 83.9 85.5 
2 47.6 52.0 57. 5 57.8 58.7 62.9 63.1 66.0 72.5 
3 34.6 40.5 42.9 45.7 47.9 51.0 so.s 53.6 61.3 
4 26.4 33.7 34.9 36.5 37.7 41.0 40.1 43.7 52.2 
5 22.3 28.2 29.4 30.7 32.5 35.0 34.2 38.3 45.0 

10 11.1 12.7 13.7 14. 7 . - 17.2 17.5 18.9 21. 7 25.5 
15 6.7 7.5 8.7 ( 10. l 10.0 9.6 I 10.B 14.6 16.9 
20 5.3 6.2 6.4 7.0 7.5 7.9 8.2 9.8 12.2 
25 4.2 4.9 5.4 5.6 5.7 6.0 6.7 7.3 9.3 
30 3.1 3.7 3.7 4.5 4.6 5.3 1 6. 3 6 .21 7.2 
50 1.0 1.0 1.5 1.8 1.8 2.1 2.2 3.2 3.3 

Count 1180 973 816 713 610 571 539 464 22,568 

Hean 5.42 5.98 6.41 6.87 7 .14 7.71 7.85 8.80 14.02 

Mortality 
(60.67 bl Rate 17.54 13.31 8.73 8.73 3.31 2.71 6.27 

Hazard 
Rate 17.54 16.14 12.62 14.45 6.39 5.60 13. 73 

Number Subsequentl! 
"Transferring Out• 

95 72 59 5 3 1 0 

Notes to table 2: 

a. Size distribution of all firms active in 1978 (1986) regardless of birth cohort 
b. Mortality rate over the eight year period. 
c. These are firms active at the relevant age but who "transferred out•, 

due to a ct-.ange in legal status, at some point thereafter. They are not 
included in the aize distribution calculations at that age. 

1986 

82.5 
74.8 
64.1 
55.2 
47.8 
27.5 
18.6 
13.6 
10.6 
8.5 
4.2 

23,435 

15.23 
.j::--
--,J 



Table 3: Evolution of Size Olstrlbution Over A!e Manufacturing: 1979 Cohort 
(Entries are proportion of active firms with employment >-xJ 

~ Croaa Section a 

x l 2 3 4 5 6 7 8 1978 1986 

I 86.9 86.31 1 71.9 78.6 80.9 89.5 90.2 90.9 93.3 92.1 
2 49.9 61.2 65.1 71. 7 73.l 80.8 82.9 82.5 87.2 89.0 
3 38.8 49.6 55.7 63.6 64.3 69.8 75.0 72. 7 80.7 78.4 
4 32.4 40.6 44.3 53.0 55.0 62.8 66.5 65.0 74.9 72.9 
5 25.l 33.7 38.8 45.0 47.8 55.2 57 .9 57.8 70.6 68.4 

10 8.6 18.1 20.9 21.7 23.1 31.4 31.4 34.4 54.l 51.3 
15 4.3 9~1 9.5 13.l 15.4 I 19. 2 18. 91 22.7 43.9 40.3 
20 3.1 3.3 6.0 9.1 9.3 12.2 12.8 15.6 36.8 34.1 
25 I 2.8 2.2 , 3.4 4.6 6.0 9.3 9.8 12.3 31.2 29.3 
30 2.1 I 2.1 2.0 1 5.0 7.6 8.5 9.7 28.0 25.9 1.5 
50 .6 .7 .9 1.5 2.8 4.1 6.1 6.5 19.6 18.3 

Count 327 276 235 198 182 172 164 154 11 6,987 7,789 

Mean 4.92 6.27 7.09 8.10 8.79 10.79 12.38 13.34 II 73.81 61.70 +:--
00 

Mortality 
{52.9lb) Rate 15.60 12.54 11.31 4.89 3.06 2.45 3.06 

Hazard 
Rate 15.60 14.86 15.74 8.08 5.49 4.65 6.10 

Number Subsequentl~ 
-rranaferring Out• 

13 11 10 1 0 0 0 

Notes to table 3: 

Notes a, b, and c, are identical to the same notes in Table 2. 
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numbers in each row in the body of the tables, should increase with age (i.e.,as we move from 

left to right on the table). We have 'squared off' the adjacent transition which do not satisfy 

this condition. On the whole, the consistency of the data with the hypothesis is quite striking 

- particularly in retail trade. Of the seventy-seven possible adjacent transitions, only six are 

decreasing, and none of them indicate a fall of more than 1.03. In manufacturing there are 

nine transitions which decrease; two faJ1 by more than 1.53, and two more by .63. Given the 

possibilities for reporting and recording errors in this type of data (see Neuendorf and Shaffer, 

1987), if the null were true, we would not find these results to be 'surprising'. That is, to us 

these results are quite consistent with the implications of passive learning - indeed amazingly 

so for retail trade. Note also that, in both sectors, the means are strictly increasing in age. 

We now pause briefly to consider whether movements of prices (generated, in part, by 

changing demand conditions) are likely to provide an alternative explanation for the observed 

changes in the size distribution of survivors illustrated in tables 2 and 3. As noted in section 

2, if prices are not constant over time, but the production function is homothetic, then the 

measure of size for firms active in period t,S(t), will be f (t)f (Tit); where f (t) is a function of 
1 2 1 

prices, f (·)is an increasing function, and, as before, the distribution of T/ is stochastically 
2 

increasing in 0. The passive learning model implies that the distribution of, 0, and hence of 

f (·),among the survivors of a cohort, will be stochastically increasing in age. To analyze the 
2 

implications this result on the evolution of the observed size distribution of survivors under 

the assumption that prices can vary over time but that the production function is homothetic, 
A 

we need a consistent estimate off (t), say f (t). Given such an estimate we can use it to 
1 1 

construct S(t) = f (t)-1S(t), and then examine whether the survivor distribution of the S(t) 
1 

=£/'It) is stochastically increasing in age. The model suggests at least one simple way of 

estimating {f (t)}. Firms who are old enough should know their value of 0 almost exactly. 
1 

Thus provided the marginal distribution of 77 conditional on 0 for these firms does not vary 

from year to year, a comparison of the mean sizes of the older firms over time should provide 

a consistent estimate of{£ (t)} (up to a normalization). Though we do not k~ow the age of 
1 
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the firms that were alive in the first year of our sample (1978), an analysis of the 1986 cross 

section indicates that the vast majority of the firms with more than 50 employees are firms 

older than age eight, so we estimated f (t) by comparing the mean size of the largest firms in 
1 

different periods. 

As is well known this was a period of contraction for manufacturing in Wisconsin. The 

contraction was accompanied by a continual "fall" (in the first order stochastic dominance 

sense) in the cross sectional size distribution of active firms over the period (compare, for 

example, the last two columns of Table 3). In particular the average size of firms with more 

than fifty employees fell by about 14% over the period. This implies that were we to plot the 
A 

implied distribution of S(t) (as defined in the last paragraph) for our cohort over time, it 

would be stochastically increasing at an even faster rate than the distribution of S( t) is. Put 

differently the size distribution of survivors was increasing during a period when both the size 

of the market they were in, and the size of the other incumbents in that market, were falling. 

The estimates of {f (t)} for retail trade did not vary much over the period (there was an 
1 

increase of under 63 over the eighth year period). As a result our estimate of the evolution of 
A 

the distribution of S(t) among survivors in retail was very close to that for S(t) plotted in 

Table 2. We conclude that it is unlikely that price variation over the period underlies the 

stochastically increasing evolution of the size distribution of survivors observed in Tables 2 

and 3. 

Further insights into the nature of the evolution of the size distribution of survivors 

can be gleaned from a comparison of the empirical distributions of S(t+l) conditional on 

alternative possible values of S(t) at different ages (that is, from the Markov transition 

matrices at different ages). Table 4 plots these distributions for the retail cohort between 

ages one and two (4A), and between ages six and seven (4B); while Tables (5A) and (5B) 

provide the analogous information for the manufacturing cohort. The figures in brackets 

beside the entries in the table are consistent estimates of the variance of the transition 

probabilities provided in the table, while the last column lists the number of firms underlying 



51 

Table 4. Markov Transition Matrices: Retail * Trade 

Size in t+l 
Shutdown 1-5 6-10 11-15 16-25 26+ N 

Size in t (row) 

4A: t = 1 

1-5 .20(.01) c73( .02)1 .06( .01) .01(.10) 0.0 0.0 917 

6-10 . lL(. 03) .18(.03) [54(.04)] .14(.03) .03( .02) 0.0 132 

11-15 .14(.05) .04(.03) .37(.07) [37(.07)~ .10(.04) 0.0 52 

16-25 .10(.06) 0.0 .13(.06) .20(.07) Q§(-:0-82--~ .27(.08) 30 
'""\ 26+ .06(.03) 0.0 0.0 . 04(. 03) .12(.05) f78(.06)\ 49 

4B:t = 6 

1-5 .05(.01) [~o< .02)} .04(.01) 0.0 0.0 0.0 371 

6-10 .09(.03) .19(.04) r62(.o5)\ .08(.03) .01( .01) .01(.01) 100 

11-15 . 04(. 03) 0.0 .09( .04) [ 71( .o7u .13(.05) . 02 (. 02) 45 

16-25 .05(.05) .05(.05) . 05 (. 05) .10(.07) [~6( .10)\ .10(.07) 21 

26+ 0.0 0.0 0.0 .06(.04) .03(.03) r.?1< .05)\ 34 

* The (i,j) element of these matrices is the fraction of firms with age t size class 
equal to i that have age t+l size class equal to j. Numbers in brackets beside entries 
are there estimated standard errors. N is the number of firms in age t size class i. 

I 
I 
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Table 5. Markov Transition Matrices: Manufacturing I 
I 
I 
! 

Size in t+l 

I 
Shutdown 1-5 6-10 11-15 16-25 26+ N 

Size in t (row) 

4A:t = 1 ! 

I 
! 

1-5 .16 (. 02) [69(.03)] .09(.02) .05(.01) .01(.01) 0.0 245 

[35(.06)1 6-10 .11(. 04) . 24 (. 06) .19(.05) .11(. 04) 0.0 54 
I· 

[21<.11)] 11-15 .14(.09) .07(.07) .14(.09) .36(.13) .07(.07) 14 I 
16-25 0.0 0.0 0.0 0.0 

' ~ t · 8 <. 18) I . 2 (. 18) 5 

26+ .33(.16) 0.0 0.0 0.0 .22(.14) 1. 44 ( .13)] 9 

4B:t = 6 

1-5 .08(.03) l-~~<_:iilli .10(.03) .01(.01) 0.0 0.0 77 

6-10 .05(.03) .15(.06) L?BJ!i2J .05(.03) 0.0 0.0 41 

11-15 0.0 0.0 .19(.09) \~62(.112l -. .19(.09) 0.0 ?1 

16-25 0.0 .06(.06) .06(.06) .24(.08) [.53(.12)] .12(.08) 17 

26+ 0.0 0.0 0.0 . 06 (. 06) .06(.06) [88(.08)1 16 

* See the footnote for Table 4. 
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the empirical distributions given in each of the rows.15 The striking fact evidenced by these 

tables is the increase in the diagonal elements of the transition matrices (the 'squared off' 

numbers) as we move from the age one transition to the age six transiiion (plots of the 

intervening matrices show that these diagonal elements, that is that the fraction of firms 

staying in the same size class, increases from each transition to the next). There is alot more 

movement among size classes in the early, than in the later, ages; just as one might expect 

_ from a learning process if, by the later ages, firm's have already acquired a fairly precise 

posterior on the true value of their ability parameters.16 Also it seems that, conditional on 

survival, the transitions in the later ages are not as weighted towards increases as they are 

among the early ages (and looking back to Tables 2 and 3 we find that the increase in the size 

distribution of survivors from period to period seems more dramatic in the earlier, than in the 

later, ages). 

So far we have noted only the similarities in the evolution of the manufacturing and 

retail cohorts pointed out by Tables 2 to 5. A more detailed look at those tables, however, 

uncovers some revealing contrast. Looking first at Tables 2 and 3, it is clear that the size 

distribution in the initial year is not much different between the two sectors; indeed if 

anything the initial size distribution is slightly "larger" in retail trade (retail has the larger 

initial year mean, 5.4 vs 4.9, and a higher percentage of firms in the largest size classes). 

1swe thank an editor for suggesting plotting the transition matrices. The variances of the 
entries in the table were calculated from the multinomial formula. Note that the elements 
within each row are negatively correlated, with covariance consistently estimated by the 
negative of the multiple of the two row entries divided by N. 
1ewe also plotted the transition matrices generated by the twelve size classes in Tables 2 and 
3. Though these were more cumbersome, they illustrated the same results; the number of 
firms staying in the same size class increased continually from transition to transition 
culminating in an increase of 503 in retail trade (from .41 to .62) and of 403 in 
manufacturing (from .36 to .5). Were we to have presented the transition matrix from age 
seven to eight rather than the transition from age six to seven, the change in the transition 
matrices from the early to the later ages emphasized here would not have been as striking 
(though still quite evident). The age seven to eight transition was the only transition in 
which the diagonal elements of the transition matrix actually fell from the previous 
tranistion, and we attribute this to the fact that the data indicate that 1985 to 1986 period 
seems to be more turbulent than the years preceeding it (look, for example, at the jump in 
the hazard rate in that year recorded in both Tables 2 and 3). 

I 
I 
I 
I 
I 
I 

I 
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However, by age eight the distribution for manufacturing is stochastically larger (even in the 

strict sense) than that in retail (the means are 13.3 vs. 8.8, and manufacturing has over twice 

the fraction of firms with 50 or more employees). The size distribution is stochastically 

increasing in age in both sectors, but it is increasing at a much more rapid rate in 

manufacturing (and this would be true to an even greater extent if we were to make the 

adjustments for price variation detailed above). 

Moreover, though the transition matrices indicate that there is much more jumping 

from size class to size class in the early ages in both sectors, it is also quite clear that the 

diagonal elements of these transition matrices are always lower in manufacturing. That is the 

size class of the manufacturing firms do not seem to stabilize to the extent that those of retail 

firms do (and the difference seems particularly marked, at least in the later ages, in the larger 

size classes). In fact, if we go back to Table 2 we see that by age eight the size distribution of 

the retail cohort is quite close to the cross-sectional distribution of all retail firms active in 

1978 (or in 1986, see the last two columns of the table). Both have about 33 of their firms 

with more than 50 employees (though the cross-sectional distribution still has the larger 

means, 14 vs. 9). In contrast, the age eight distribution in manufacturing is much smaller 

than the 1978 cross-sectional distribution in that sector. In manufacturing the 

cross-sectional distribution has more than three times the fraction of firms with more than 50 

employees (19.6 vs. 6.5), and a mean which is almost six times that from the age eight 

distribution (73.8 vs. 13.3). Thus, if we were to think of the cross-sectional distribution as an 

approximation to the limit distribution (though this is not true, the cross-section is 

dominated by older firms), then we might conclude that by age eight the retail cohort had 

almost reached it, but the manufacturing cohort was still nowhere near its limit distribution. 

Indeed, if we also assumed that eight years was enough time to form a fairly precise posterior 

about a time invariant profitability parameter, then we would conclude that the data from 

retail was supportive of the passive learning model, but the data from manufacturing was not. 

A more formal check of the consistency of the data with the two models can be derived 
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from an analysis of the regression for size at age eight on size in the immediate preceding 

periods, and size at age one. Both models imply that this function will be weakly increasing 

in initial size, but the passive learning model implies that it be strictly increasing in that 

variable, and the active learning model implies that it will not. 

Tables 6 and 7 provide some evidence on the relevant hypothesis. Because there were 

less than half the number of entering firms annually in manufacturing, we aggregated the 1979 

and 1980 manufacturing cohorts and examined the regression for expected sales at age seven 

of the aggregated cohort. The cell size cutoffs were set at the beginning of the analysis and 

not changed thereafter. For the weak monotonicity, and the zero conditional on 

monotonicity, restrictions, we have presented two sets of 'p--values' for each observed value of 

the test statistic. The first column provides the simulated estimates of the true p--values as 

explained in Section 4 (the estimated standard errors of these estimates appear in parentheses 

below their values). The second column provides the p--values that would be obtained if the 

components of the estimator of the vector of constraints being tested had mutually 

independent distributions under the null. In this case the weights required for the calculation 

of the limit distribution (see equation 4. 7) have an analytic form, so there is no need for 

simulation. Though the independence assumption is wrong in our (and probably in most) 

cases, it does provide an easily calculable approximation to the non-analytic true p-value 

which might be of use in (at least) the preliminary stages of analysis if the approximation 

produced numbers that were sufficiently close to those we are after. Comparing columns (1) 

and (2) in the next four tables, it is clear that in the cases where the true p--values were low 

(say less than .10), so that there was some chance of rejecting the null, the approximation did 

produce a value within .05 of the value we were after. 

Note first that none of the tests reject weak monotonicity at traditional levels of 

significance. So both the retail and the manufacturing data are consistent with the hypothesis 

that the regression function is nondecreasing in sl' just as both our models predict. There the 

similarity in the test results on the two data sets ends. In retail it is clear that if we condition 
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Table~=. Tes ts for Hean Independence of the Distribution of st 

Conditional on st-1, ... , St-k' from s 1 

Data: Retail, 1979 Cohort and t-s,• -
Sha Cuto((11 2,5,10,25,50, .._ 

\leak Zero Conditional 
k Monotonicity b on Hon tonic 1 ty b 

Uncondi tion.al 
Zero 

1 

2 

3 

4 

5 

• 

C xg p-values 
(1) (2) 

17 1.1 1.00 .99 
(.OO) 

22 6.5 .88 .so 
( .03) 

25 11.5 .66 .52 
(.05) 

22 19.1 .05 .os 
(.01) 

19 17.6 .os .01 
< .ol) 

C xo p-values 
z (1) (2) 

17 

22 

25 

22 

19 

37.2 .oo 0 
(.OO) 

23.9 .oo .02 
(.00) 

28.0 .oo .01 
(.00) 

19.1 .04 .os 
(.01) 

13.6 .12 .19 
(.02) 

Df x~ p-value 

17 38.2 .oo 

17 30.4 .11 

25 39.5 .03 

22 38.2 .02 

19 31.2 .04 

Cohort dimensions: number in cohort • 1,275; number of firms reaching 
age eight • 464. 

bThe value in column (1) la a l1111ula ted es tlma te of the true p-value and 
the value just below it ts the 1tandard error of this eetiaate. Ten 
eimulation drawe vere used to calculate the e1tiinate1 of the orthant 
probabilities. The value in column (2) 11 obtained by aesuming each 
orthant has equal probabUi ty ( aee the explanation in the text). 
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Table 7. Tests for Hean Independence of the Diatribution of S 
t 

Conditional on St-1, ... , St-k' from s1 

Data: Manufacturing, Combined 1979 and 1980 Cohorta - .for t • i .• 

Size Cutoffs: 2,5,10,25,50, +. 

\leak Zero Conditional Uncondi tion.al 
k Honoto5icity b on Hont5nicity b z5ro b 

C xH p-valuea C x p-values Df XT p-value 
(1) (2) z (1) (2) 

1 16 8.0 .54 .44 16 3.5 .57 .86 16 11.5 .78 
(.06) (.07) 

2 25 17.6 .19 .17 25 5.8 • 79 .91 25 23.6 .55 
(.03) ( .03) 

3 23 14.3 .28 .27 23 4.9 .81 .92 23 19.3 .67 
(.OS) (.06) 

4 15 10 .1 .13 .24 15 5.9 .54 .59 15 16.0 .39 
(.02) (.03) 

a Firm dimensions: number born in cohorts• 737, aumber of firins 
reaching age seven • 353. 

b See note b to Table ~. 
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on one lagged value of S, that is on realizations of s7, and then vary sl' firms with larger s1 
have larger average sales at age 8. There is really no doubt about this point as the p-value of 

the test statistic is essentially zero, so we would~ the null at any-traditional significance 

level. The same is true if we condition on s7 and s6; or on s7, s6 and s5; or even on s7,s6,s5 
and s4; and then vary s1. In all these cases realizations of s1 have an independent effect on 

the expectation of sales at age eight. This dependence only starts to become insignificant at 

five percent significance levels when we condition on five past sales realizations. However, 

this might well be a result of the possibility that, with our limited amount of data, a fifth 

order nonparametric autoregression would provide an adequate approximation to the 

expectation for size generated from any stochastic process - (fl-mixing or not; we come back 

to this point below).17 

The results for the test of zero conditional on weak monotonicity are strikingly 

different in manufacturing. Table 7 indicates that, in manufacturing, once we condition on a 

single lagged value of S, i.e. a realization of s6, any differences in s1 do not effect the expected 

size at age seven. This time there is little doubt about accepting the null as the p-value is 

well above .5. Moreover, the same results obtain if we condition instead on s6 and s5; or on 

s6,s5 and s4; or s6,s5,s4 and s3. 

Table 8 and 9 push the nonparametric analysis one step further and ask what order of 

Markov process provides an adequate nonparametric fit to the (expectation from the) 

17Two points are worth noting here. First the p-values for the tests of zero conditional on 
monotonicity should be treated with caution as no adjustment has been made for the 
sequential nature of the testing procedure. As a result the probability of type I error 
conditional on the null and observing the test statistics given in the table are larger than 
the p-values reported in these columns. Second we have been motivating our two-part 
testing sequence as a way of providing additional information on the relevance of 
alternative models. Inequality tests were originally motivated as providing more powerful 
ways of testing a given null. Table 4 also illustrates this point. Take, for example, the 
case where k=2. The p-value in column 2 for acceptance of the null that realizations of s1 
do not matter under the maintained hypothesis that any effect of s1 is non-decreasing, is 
zero; but the p-value for the test that s1 does not matter under the unconstrained 
maintained hypothesis (the unconditonal zero columns) is a tradtionally acceptable .11. 
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Taole 8. Markov Tests for Proeerties of Retail Regression Fune ti on 
for She at Ase El5ht 

Data: Retail, 1979 Cohort a 

She Cutoffs: 2,5,10,25,50, +• b 

Markov Weak Harkov Conditional Unconditional 
Order Honoto5icity c on Hon tantc 1 ty Ma5kov 

for C ~ p-value C x p-valuec Df Xt p-value 
Tests {l) (2) z (1) (2) 

7 + 6 13 9.5 .13 .20 13 5.0 .48 .58 13 14.5 .34 
( .03) (.05) 

7 + 5 23 18.3 .16 .11 23 5.9 .64 • 87 23 24.2 .40 
(.02) (.05) 

7 + 4 32 18.3 .47 .32 32 96 .oo .oo 32 114 .oo 
( .05) (.00) 

7 + 3 38 18.7 • 56 .48 38 100 .oo .oo 32 118 .oo 
( .05) ( .oo) 

7 + 2 43 19.7 .76 .56 43 107 .oo .oo 43 121 .oo 
( .03) < .oo) 

7 + l 48 20.l .92 .67 48 149 .oo .oo 48 169 .oo 
(.01) < .oo) 

-a Cohort Dimensions: number in cohort • 1275; number of firms reaching 
age eight • 465; number in cells v1th > 2 • 291. 

b Cell Dimensions: possible number • 279,936; number populated 228; 
number with > 2 observations • 54. 

c See note b, Table 4. 
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Table 9. Tes ts for Properties of Hsnuf ac tu ring Regression Fune tton 
for Size at Age Seven 

On ti\: Hnnufnctnrln,R, Combined 1979 And 1980 Cohorts a 

She Cutoffs: 2,s,10,2s,so, +. b 

Markov \leak Harkov Conditional Unconditioual 
Order Honoto51city c on Hont5nicity c Ha5kov 

for C Xtt p-value C x p-value Df xt p-value 
Teats (1) (2) z (1) (2) 

6 .. 5 9 11. 9 .02 .04 9 2.0 .65 • 75 9 14.0 .12 
(.01) (.10) 

6 .. 4 15 13.3 .09 .10 15 11. 7 .07 .16 15 25.1 .os 
(. 02) (.02) 

6 + 3 25 15.5 .24 .27 25 17.6 .11.17 25 33.1 .13 
(.05) (.03) 

6 .. 2 31 16.1 .42 .42 31 61.3 .oo .oo 31 77.4 .oo 
(.04) c .oo) 

6 .. 1 37 16.3 .66 .59 37 76.0 .oo .oo 37 92.3 .oo 
(.04) (.00) 

a Cohort Dimensions: number of firms • 737; number of firms reaching 
age seven • 353; number in cells with > 2 • 179. 

b Cell Dimensions: possible number • 46,656; number populated 217; 
number with > 2 observations 43. 

cSee note b, Table 4. 
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stochastic process generating size conditional on survival in retail and in manufacturing. The 

tests in these tables follow a pattern analogous to that in Tables 6 and 7. That is, we first 

test whether first year size, size in the first two years, ... , have a nondecreasing effect 

conditional on the sizes in all the intermediate years, and then test whether we can accept a 

zero effect conditional on any of the existing effects being nondecreasing. Again the results 

are quite clear. We never reject weak monotonicity. In retail we need a fifth order 

nonparametric Markov process to adequately approximate the data. Recall that this is 

precisely the same "k" we needed before we could accept the null that the conditional 

regression function for size, conditional on st-1' ... ,st-k' did not depend on s1. In contrast, in 

manufacturing we need a third order nonparametric Markov process to provide an adequate 

fit to the data. That is, in manufacturing there is a distinction between the orders needed for 

the ;-mixing and the Markov tests (compare tables 9 and 7). Table 7 implies that 

conditional on realizations of s6 realizations of S1 do not affect the regression function. Table 

9 says that realizations of s5, and of s4, do. The active exploration model explains this 

difference by allowing the parameter that determines the size distribution to evolve over time 

in a 'smooth' fashion, so that its value in year 5 will tend to be closer to its value in year 7, 

and therefore, have a more distinct effect on the regression function for s7, than its value in 

year 1 wm.1s 

18Footnote 2 discussed the possibility that input decisions are either wholy, or partially, 
made before the realization of 11, and concluded by asserting that the various alternatives 
would not affect the results we focus on. Table 7 insures this is so for the very special, but 
important, case which Jovanovic's {1982) original article was based on. His assumptions 
were a special case of the following ones; the process generating {11t} conditional on 0 was 
i.i.d., the posterior for 0 had sufficient statistics (xt,t) with xt = ft(xt-l''7t) for some ft(·), 
and that no input could be adjusted after any information about '7t was available. In this 
case, if input quantities were our size measure, size in period tis determined by (xt_1,t) 
and for a given t, there is a 1:1 correspondence between St-land xt_2. So size is a first 
order Markov process. This conclusion would be destroyed if some, say costly, adjustments 
could be made after 1J were realized, or if there were any dependence in the process 
generating {77t} conditional on 0. However, if Jovanovic's restrictions were true, the 
passive learning model would satisfy the constraint that the regression for St conditional on 
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Section 6. A Summary and Some Further Implications of the Empirical Results. 

Our empirical results can be summarized quite succinctly. The size distribution of the 

firms surviving from a cohort tends to stochastically increase from age to age in both retail 

trade and in manufacturing, but the rate of increase is much more rapid in manufacturing. 

Also, the variance in future size conditional on current size tends to decline over age in both 

sectors, but it tends to be smaller in retail trade at all ages. Both these results suggest the 

importance of learning and selection in determine the dynamic patterns of firms behavior, but 

the nature of the learning process seems to be different in the two sectors. Indeed formal tests 

indicate that, in retail trade, size in the initial years is closely tied to size in all subsequent 

years (even after we condition on intermediate sizes), but that the sizes of the surviving 

manufacturing firms quickly lose their dependence on their early year sizes (at least if we 

condition on size in at least one immediately preceding period). 

Going back to the theoretical section of this paper, we find that, for manufacturing 

these empirical results are consistent with the implications of the active exploration model, 

but not with those of the passive learning model. Conversely, the empirical results for retail 

trade are consistent with the implications of the passive learning model but not with those of 

the model with active exploration. The importance of this distinction is that the two different 

models imply different frameworks for the analysis of phenomena that depend upon the 

sources of :firm-specific uncertainties and, consequently, for the analysis of how different 

factors impact on the distribution of outcome paths among firms within an industry; 

phenomena such as the behavior of capital markets when there are significant failure 

probabilities, and the causes of job turnover (or of the changes in industry structure) 

generated by the growth and contraction of individual firms within industry aggregates (see 

the discussion in Jovanovic, 1982, and in Ericson and Pakes, 1989). 

st-1'"""1 st-k does not depend on sl provided k ~ 1: i.e., it would satisfy the constraint 
used to test for the active learning model. On the other hand Table 7 makes it clear that 
the stochastic ~rocess generating size is not first order Markov, so the special case discussed 
by Jovanovic l1982) is not relevant. 
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The nonparametric results ought also to effect how we account for liquidation induced 

attrition in the analysis of longitudinal firm-level data. As an example of the importance of 

such corrections, consider the following excerpt from Davis, Gallman, ·and Hutchins, 

"Productivity in American Whaling: The New Bedford Fleet in the Nineteenth Century." 

"The age of the vessel (entered as age and age squared) also captures the 
effects of more than a single set of factors. Elements of wear and tear 
that influenced productivity, a technical characteristic that one might 
hope to capture in the age variable, are confounded with the consequence 
of qualitative differences among survivors; ineffective vessels were 
transferred by their owners to other activities, were condemned at an early 
age, or were destroyed in service." 

Davis, Gallman and Hutchins (1987) p.26. 

This quotation illustrates how even one of the most traditional of variables (age), in one of 

the most familiar of settings (productivity analysis), can have its "structural" effects (as a 

measure of the likely extent of physical deterioration) confounded by the self-selection process 

induced by the endogeneity of the liquidation decision (it also demonstrates a great deal of 

understanding of the environment generating the data). Davis, Gallman and Hutchins (1987) 

do indeed find a significant positive first order effect of age on vessel productivity. 

It is worth noting that the nonparametric implications we used to test for the relevance 

of alternative models are rich enough to enable the development of estimation procedures that 

can separate out the structural production function coefficients from the effects of the 

selection induced by liquidation, in examples such as this one. To see this assume that output 

is a parametric function of inputs, say f(xt 1,8), and an .additive disturbance, say et, whose 

value is not known when input decisions are made. Then the expectation of output (y t), 

conditional on the current value of inputs (xt), survival until period t(Xt = 1), and the 

information set available in t-l(Jt_1) is a sum of two functions; the structural production 

function, and the expectation of the disturbance conditional on Xt = 1 and Jt-l' i.e. 
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Now note that both models imply that the decision as to whether to operate the firm in year t 

is determined by information available in t-1 (i.e. Xt is measurable with respect to Jt_1), so 

the last term depends only on variables in Jt-l (though on different variables in each of the 

two models). This implies that none of the determinants of E[yt lxt,Xt,Jt-l1 are determinants 

of both, f( ·;{3) and E[et I Xt=l,Jt_1]. As a result, once we determine which of the dynamic 

models are relevant for the data at hand, and therefore what variables determine 

E[et I Xt=l,Jt_1J, we can, under mild regularity conditions, obtain a (root n) consistent 

asymptotically normal estimator for {3
0 

(the true value of {3) by minimizing a distance 

between Yt and sum of f(xt,{3) and a non parametric estimator for the 'nuisance' function 

E[et I Xt-l =1,Jt-l1 (for details see Robinson, 1988). Note that, just as was the case for our 

testing procedures, this method of correcting for the selection process induced by liquidation 

behavior does not require either the precise functional forms of the relevant dynamic 

processes, nor the (computationally difficult) solution to the problem of finding the optimal 

stopping states as a function of the parameters of the model. On the other hand, these 

selection correction procedures are fully consistent with the structural economic models 

generating them, and can, therefore, be directly integrated into the analysis of any issue 

provided that the framework used in that analysis is consistent with one of these models. 
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Appendix: Example 1 

This example shows that the passive learning model does not necessarily imply that 

either hazard rates, or the variance in growth rates, are nonincreasing in age (and that this is 

true whether or not we condition on size). 

Example ~·; 

Let ?rt - '1r· 1J~, with { 'lt} i.i.d. conditional on 0, 

1/ = {1 with probability 0; and 0 = {6 with probability l. 
t 0 otherwise 0 otherwise 

The posterior for Oin this problem depends only on the couple (xt,t), where xt =max 

(n1 , ... ,nt]. Consequently the value function in {6) has the simple form, 

xt is either 0 or 1. If xt=l management knows that fJ=.6 and a direct calculation shows 

V{l,t) = ?r5/(1-/3} > t, 

where the inequality is by assumption. This inequality ensures that if xt=l management will 

never drop out. If xt=O the firm continues in operation if and only if V{O,t) ~ t. It is easy 

to show that Pr{xt+i=llxt=O,t} = Prht+i=llxt=O,t} decreases int, and converges to 

zero. This ensures that V{O,t) decreases int and converges to zero. Clearly then, there exists 

* * a unique t such that V{O,t) ~ t if and only if t ~ t . Let S{fJt=l) = S,S{fJt=O) = O, H(t,St) 

be the hazard rate for the firms of size St in period t, and H{ t) be the unconditional hazard. 
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Straightforward calculations show that for 

H(t,St=O) H(t,St=S)- H(t) 

* ~ 0 0 0 

* (1-6}t* l+(l-L)]/((1-6}l+(l-L)] ,(1-6)t* l+(l-l) t t 0 

* ~ 0 0 0 

So neither the conditional, nor the unconditional, hazard declines in age. This simply reflects 

the fact that for many possible assumptions on the relevant functional forms it will take time 

to gather the information required to decide whether exit is optimal. 

* Next we consider the variance in growth rates. Provided t > t , any firm that is 
2 * active has fJ = 6, and V(St+l-St I St)= V(St+l I 0=6) = S 6(1-6), regardless of St. If t < t 

and St = S, then 0 still is 6 with probability one, and V(St+l-S I St) is still given by the 

above formulae. So the variance in growth rates conditioned on St= Sis constant over age. 

* However if t < t and St= O, then fJ can equal either 6 or 0 with positive probability, and the 

variance in the growth rate is (6S2(1-l)(l-6}4/((1-l) + (1-6}l]2. Thus 

which can be made as large as we like by choosing l small enough. The variance in growth 

rates need not decline in age. Whether or not they do will depend upon whether growth rates 

associated with high fJ 1s are more variant than growth rates associated with low 01s, an issue 

which the basic passive learning model is silent on. 

To see how this example generalizes, consider the case where 0 has a beta prior 

distribution with parameters (r,s), i.e., G0( ·) = B(r,s), so that 0 can take any value between 
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t 
zero and one. The posterior in this case is another beta with parameters r + Eqi and s+t-Eqi, 

t 
so that the sum, x = Eq., and t, can be used as sufficient statistics. (Note that xt is a 

t 1 -

nonnegative integer.) Using an argument analogous to that given above we find that for any 

* fixed x, V(x,t) declines to zero with t. Thus for each x there exists at (x) such that V(x,t) 

~ Cl according as ~ t * (x) [see Figure 1]. Both the mortality, and the hazard rate will be zero 

* * for a value oft such that t (x) < t < t (x)+l (for x = 1,2 ... ). Moreover, it can be shown 

* * that t (x+l) cannot equal t (x) + 1 for consecutive values of x. That is, the hazard function 

will usually have a zero between any two positive portions, making it oscillate over age. For 

* t=t (x) the hazard and mortality rates will be determined by the precise form of the prior. 

One such sequence of hazard rates is given in the bottom part of Figure 1. Similar pictures 

could be drawn for the variance in growth rates. [] 
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