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1. INTRODUCTION

The development of the techniques of analysgs for discrete choice models
has p;oceeded rapidly over the last decade. Original work by McFadden (1976)
and others concentrated on static choice frameworks and were developed and
applied in the context of cross-section data. More recent work by Heckman
(1981) focuses on general dynamic discrete choice models in the context of
panel data. In this paper we attempt to provide a firmer theoretica] base for
this recent literature by specifying the explicit dynamic stochastic '
optimization problem that underlies the decision rules which are the starting

point for the analysis by Heckman.ﬁ Moreover, we offer two methods of

‘estimating the fundamental taste and constraint parameters of the optimization

problem and provide an application.

A general dynamic discrete choice model for panel data is carefully '

described by Heckman (1981) as follows:

i o4 : i
=1Meog P O(LIYL g * e

i e
Yt = Zts + *t(L)mt-l + ijzlxt_jn

1 = 1,.-0;1; t = 1,--0,T,

where m; is the discrete choice variable for person i (i = 1,.;.;1) for his

lifetime period t(t =1,...,T) such that
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0 otherwise,
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the model, vy(L) = vb + yiL + .. + oKL

" {ssues are raised both of a practical and more abstract nature.

the initial conditions of m1 and y‘ are assumed to be fixed outside

kik, g(L) =60+ el + ... + 699 and

€t {fs a normally disfributed error with mean zero. The distribution of the

vector ei = (ci,...,c})' is fully characterized by the assumpfion
¢’ T NO,]) R

where J is a T x T positive definite covariance matrix.
The ¢''s are independent across people and components of the vector
Z: are independent of e, Z; is a vector of exogenous

variables. Tnis is the most general linear discrete choice model that is

" described in the literature.

~In this model Yi represents the difference Setween‘the lifetime
utility of a person at t‘me t. given an action (mz =1) fis taken-ahd
the lifetime utility of the person given the action (mz = 0)is not
_taken, under the assumption that the decisibns in the future are optimal.
These types of prbblems ‘nclude labor force participation (Heckmaﬁ and Willis,
1977), fertility (Heckman and wi]]is,A1975) and purchase of a durable
(McFadden, 1976). 1In each application of this general model a set of specific
For example:
what is the lifetime opt*mization problem that is behind this intuitively
appealing moael Z What is the lag length for each term in the model and what

do these lags represent 2 What are the underlying sources of the stochastic

term, of state dependency and of heterogeneity 2
L}

The stochastic model does predict the change in the probability of

i ¥s, given a change in the exogenous variables at time t andfor a

ms,
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change in the parameters in the model. However, it is impossible to interpret
the particular change in terms of a policy experiment unless the individ&ai's
lifetime problem is carefully described (Marschak, 1953, lucas, 1976).

One way of providing at least a bartial answer to the above questions is
to consider the explicit dynamic stochastic optimization problem that the

person is supposed to solve. This paper formulates explicitly a lifetime

* optimization problem that a person faces at each perioa t and suggests two

methods of estimating the underlying parameters of the preferences and the

constraints. Some of the issues that are raised above are solved immediately

e

by the assumptions made about the preferehééi'and the constraints. Given the

‘fmportant empirical issues of state dependency and heterogeneity we emphasize

these dynamic stochastic aspects in the context of the three behavioral

_.examples, fertility, schooling,_and labor force participation. Some other

1ssdes, such as the length of the endogenous lags, are not solved except by
computatﬁonal 1imits, but they can be interpreted in terms bf the ecbnomic
model. |

Estimation of our model's parameters depends on the ability of the
econometrician to find an algorithm that can be used to calculate the
probabilities of mz (t =1,...,T) conditional on past rea]izafions, and
which is consistent with optimization. In this way the likelihbod function of
each_sequence of m's can be computed as a product of condftiona]
probabilities. Heckman}s statistical model is formulated_in a'way that
enables a straightforward calculation of the conditional probabilities that
form the 1ikelihood functicn, but that. formulation is not necessarily

consistent with any optimizétion problem of content. The focus of our work is




on building a bridge between the individual optimization problem and a
decision rule that for the econometrician can be stated as a conditional
probability for the discrete choice at each t.

We provide two ways of calculating these conditional probabilities. The
first is based on the way Heckman (1981) motivates his model, that is, given

optimal decisions in the future the probability of m; =1 can be

_.galculated from the difference between the lifetime ufility level of a person

i
t

this method as "Full Solution Method“; since it requires that we solve

where m =1 and the lifetime ufi]ity where mz = 0. We refer to

.comp1ete]y the dynamic optimization problem of each agent at each time in

order to calulate the liklihood function. The computational burden of this

method is obvious.

The second method is based on the fact that the optimal individual
i
t
Therefore, we call this estimation procedure the "Necessary Condition

program for m 'should satisfy certain first order conditions.
Method". Here we demonstrate a method for caicu]ating the conditional
probab{]ities without fully characterizing the future decisions. We assume,
however, that these decisioné are made optimally and are predicted optimally
by the person (rational expectations). ‘.
' Sinée the first method has been used recent]y (Wolpin, 1982) for
estimating a fertility model using Malaysian data, we compare the estimation
methods by a Moﬁte Carlo experiment conducted on the Malaysian fertility
model. Using this Monte Carlo data on fertility we estimate the parameters of
the model with the necessary condition method.

The remaining parts of the paper are organized as follows: In Section 2

we present the model and the three examples. In Section 3 the two estimation

’




methods are discussed. The results of the Monte Carlo experiment are

presented in Section 4 and some remarks are given in Section 5.

2. THE MODEL
. L _

In this section we describe a class of estihab]é dynamic models of
behavior in Qgich the indiyidual makes a discrete (zero-one) decision in each
life cycle period and where the cumulated value; of prévious choices may
affect currenf welfare andfor costs. An individual is assumed to choose a
lifetime contingency plan for the sequence {mi] , where 1 refers to the
individual and t to the 1ife cycle period, so zzoto maxim{ze |

i T .t i i
Ep Ligf V(Mes Co a;)

t

(1) Vo

subject to:

(2) L *'ﬁi - ¢

(3) m e 0, 1, (mi‘, a}) £ (0, 0, (1, 0), (1, 1)y
(4) ¢! - ' om0l 1)

(5) Mil.'given —

In (1) 8 {s the discount factor, 0 < 8 < 1, and preferences are a function

of the stock of the control variable (M:), and a composite consumption

- good (Ci), with a: a vector of exogenous preference shifters
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that may vary across individuals and over the life cycle of the same

individual. The stock of the control variable (MZ) evolves according

i
t’

discrete decision variable, and d: a discrete exogenous variable

to (2) with m , the

realized after the decision on mz- has been made; the set of feasible

values of (mz, d;) is given in (3). The budget constraint is

described in (4); NY(-) is net income, i.e., income less expenditures on
N _ .

t° )

value of the current decision variable, 1ife cycle period (t), and a set of

m Net income may depend'upon'the»stock of the control variable, the

exogenous individual and/or life cycle characteristics (hz). The

fnitial value of the stock is given and is non-stochastic. E(+) is the
expectations operator and Ez(-) = E(* f 11) where I: is the
information set of individual {1 at life cycle stage tl.
Dynamics are incorporated into the model both through the utility

function and'through the net income function. It would, 6f course, be more
general to permit each prior period discrete choice to enter current utility
and net income rather than the stock,vbdt that complete generality does not

- appear tractable to estimate. A feature of the model, due to computational
Atractability, that is not particularly satisfactory is that we consider only
. one decision variable. Most econometric applications do so. However, in
doing this we are forced to assume that the individual is unable to transfer
physical resoﬁfces between periods. Introducing savings requires solving for
an additional decision variable and creates further dynamic interactions.2

We view this as an important limitation and as a challenge for future work.

Both U(+) and NY(+) are assumed to be continuous and differentiable

fn the decision variables (mé, C:) at all points on the real line




even though m: is dichotomous.3 Existence of a maximum for (1) is

guaranteed by the discrete nature of the decision variable, but uniqueness
requires some additional regularity conditions on the preference and net

fncome functions. Uniquéness iS guaranteed if, upon substituting (2) into (4)

and the result into (1) the function

i i i S BRI
+m. - ! ., h. !
my d;, NY(M -1 mJ? hJ, J)s aJ)

Tt
fe L2 U (Mg 5 M

is strictly concave in mé for all t = 1,;..,T.

]

To moiivate the above structure, we now provide three exampies which have

been of major interest to researchers. The reader can doubtless provfde many

others.

1. A Fertility Model with Exogenous Infant Mortality

Equations (1)~(5) correspond to a model of fertility choice over the 1life

cycle under the following definitions:

M: = . the stock of surviving children at the end of period t
m1
t = unity if a child is born at t, and is zero otherwise
d: = unity if a child born at t dies at t with some probability m,

and is zero otherwise.

Ny Yi -e m e (m1 - d*) where
t ° 't It T 2ttt th

e
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Y: = exogenous household income (poséibly‘}andom)f
éit = a fixed cost of child bearing at period ‘t,
€, = a maintenance cost of a child during ité first period of life that

arises only if the child survives.

Thus, at any period t, given its stock of surviving children, the

household decides whether or not td augment its stock of chi]dren.:y one,

. based upon future survival prospects, future (uncertain) income, and future
child costs. This model has been estimated by Wolpin (1982) and is cépab]e of
generating child spacing and in distributing children ovér different life

ch]e stages (timing). It is also capable of generating alternative

replacement pattérns, i.e., reactions to child deaths.

2. A Model of Schooling Attainment

The theoretical analysis of schooling attainment has, since Ben-Porath

(1967), been conducted in a life cycle framework as a component of a complete

human capital accumulation model. Empirical implementation of human capital

models have been concerned mostly with estimation of parameters of the humaﬁ
capital productfon (cost) function (Haley (1976), Brown (1977), Heckman
(1976)) using earnings data. School'achievement models have not generally
been implemented with as careful a cénnection to underlying theory, though the

Wallace and lnnen (1975) simulation model and the work by Orazem (1982) are

exceptions.



The discrete choice dynamic programmfng framework presented above

provides a natural setting within which to consider the schooling choice. To

See this, define the variables as follows:

M: = the stock of schooling (schooling attainment) at the.end of period t

m: = unity if the individual attends school during period t, zero
otherwise | -

d: = unity if the individual fails to complete the school pefioé due to

unforeseen factors, e.g., exogenous illness. '
3 . 3 . . _
NYt = Y(M;_l, m, t, h;) - gxml where

ey = the direct cost of a peridd of schooling at time t
Y! = - gross income during period t '

t
‘The gross income generating function Y(°) depends positively on the stock of
schooling and negatively on current school attendance (foregone earnings). It
is also permitted to have an age gradient as well as to be influenced by
individua] and/or calendar time characteristics (hz) some of which may

be viewed as random by the individual.

Given that Mt enters into (1), this specification captures both .
investment and consumption components of schooling choice. The model can
clearly generate alternative schooling patterns. In particular, individuals
will optimall& accumulate schooling as rapidly as possible given either a
large enough positive return to schooling at low initial) levels

bY is large at Mt-l small), or a large enough consumption value of

AMt_l

schooling. The individual in making a current schooling choice considers
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the current attainment level, and current and (anticipated) future direct and

foregone earnings costs.

3. A Model of Labor Force Participétion and Wage Determination With

Endogenous Experience

Economic models of labor force participation arise natﬁra]]y from labor
supply models in which hours are freely variable. (Heckman énd Willis,
1977). With fixed hours, labor force participation models closely resemble
Job search models, although with cost]éss wage offers during periods of
émploymént. However, the latter models are based on income maximization. The
preceding framework with the following definitions can be.interpreted‘either
as a labor force participation model or as a job search model. Unlike
previous examples, we assume that it is current participation rather than the

stock of past leisure that enters preferences. Thus, we modify (1) to:

4 - -
(6) U(mg, €y, ay)
- AU e

where —; < 0. In addition,

am

1
- M: = the number of years of labor force experience

m: = unity if the individual participates in period t, zero otherwise
d: = unity if the individual is (exogenously) laid off, zero otherwise

oyt i i i .1 {
NYt = Y(Mt__l, mt - dt’ ht’ t) - etmt
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where income Y(+) (or the wage rate givenifixed hours) is increasing in
experience (Mz_l) and in current participation (mz - d:). o
There is a fixed cost of work e, (Cogan (1980)). d, may be viewed by
the individual as a random (exogenous) variable. The participation or job
acceptance decision ét any period depends, therefbre,'on the stock of -
accumulated experience, on (expected) future income or wage rate determinants,
and on (expected) future layoff propensities.

He have pregented these ekahples to illustrate the applicability of the

basic model. It is interesting to note that each of the models contains some

form of state dependence (Heckman (1981)) in that current decisions are

affected by pasf states (decisions) in a structural sesse. There are major
'simplificatiohs in each example, but extensions are best explored in the
context of the specific problem. It is probably unnecessary to point out that

few sequential decision-making models have been estimated directly from

. theoretical foundations.

3. ESTIMATION STRATEGY

‘The objective of the empirical work is to estimate the parameters that
. T
determine the individual choice of {mllt=0. These parameters consist of the
discount factor (g), the parameters of the preference function (U{°)) and of

the income generating function (Y(-)), and the parameters of the distributions

of the random variables that affect preferences and income. Estimation

obviously requires choosing a particular parameterization of the preference

and income functions.
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One strategy involves choosing a specification that enables the
researcher to solve for the complete characterization of the optimal decision
under uncertainty. Assuming that some variables are observed by the
_ fndividual but not by the researcher (e.g., the preference shifter az)
allows for an error in predicting the individual decision. In this way,
maximum likelihood estimation can be integrated into the solution of the
optfmization problem. This procedure corresponds to a fu]l'solution
estimation method. R |

Alternafive]y, és we show below, it is possible to specify a set of
necessary conditions which must be satisfied at the maximum of problem (1).
Although the decision variable is not continuous, the derivative 6%‘the
objective function evaluated at an appropriate point can be used to form a set
of inequality restrictions that determine the discrete choice. We demonstrate
a method for transforming these restrictions into probability statements about
any arbitrary sequence of decisions, which leads naturally to a maximum

‘Vikelihood approach.

3.1. The Full Solution Method (Wolpin, 1982)

The full solution method utilizes Bellman's (1957) principle. We first
solve for the last period decision and work backwards to the initial period.

Using Bellman's equation, at any period t, the expected utility from the

choice m. =1 is given by (we omit the index i):
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(7) Eg(u]m =1, M) = £ (U|m = 15 Mey)

+ SEt maX[Et+1(LUt+1l mt+l =1, mt =1, Mt_l)’ ‘

Egag (LUpay|mpey = 0> P = 1 Me_y)]

‘Similar]y; the expected utility for the opposite choice is

(8) Ey(Lu|my = 0. Mg y) = Eg(Ug]me = O Me_y)

+ BE, max[Et+1(LUt+l‘mt+l =1, m =0, M 1)s

Epay (Weay fmiey = 0> Mt = O Me1)]

where

. S B
(9) LU, = I5_¢870Mgs 5o 2y)

f.e. LU is lifetime utility at t subject to the conditions (2), (3) and

-(4) and Mt-l is given. t is detefmined by the difference between (7) and

(8), namely:

(10) my

mt = 0 otherwise

1 iff 9y = E(WUfmy = 1 Meg) - E(LUg|my = 00 My) 20
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- 1inear (see equations (24) and (25) below).

of the probabilities of sequences such as (12) over the individuals.

14

In general, calculatiné (7) and (8) for t =1,...,T is, even

numerically, an intractable task. An enormous simplification is achieved if

the utility function is assumed to be quadratic and the constraint (7) is
In this case all quadratic terms

{n random variables in Ji (10) vanish, so that knowledge of conditional

means alone is required. Even more important, if the random preference

parameter (at) is in the linear terms in the utility function (see
equatxon (24)) it turns out that it is add1t1ve1y separable and monotonically

increasing in 2. Since ay is a real number, there always exxsts an

*
a; 'such that J; = 0. The importance of this result for estimation

will become apparent.

Estimation proceeds in the following manner. For each t (for a given

individual) one can find the unique value a: for which J =0, t.e.,

for which the individual is exactly indifferent between my =1 and my =

0. Given a distribution for t' the probabxlxty of the event occurring is
The joint probability of any given sequence of events

e

mt,k = (mt, mt_’_l,oc.o’mt.‘_k) 15

(12) Pr(mt,k Mt—l) = Pr(mt+k|Mt+k-1)Pr(mt+]-l Mt+k;2) ..o Pr(m, Mt—l)

and the sample likelihood function for any set of individuals is the product
Notice

. %
that for each set of parameters, a new set of 3,'s are found by solving
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the dynamic programming problem; each evaluation of the 1ikelihood function
requires resolving the dynamic program. Optimization must preceed numerically

since decision rules are not analytic even in the linear-quadratic case.

3.2. The Necessary Conditions Method

Any viable alternative to the full soTution éstimation method should
mitigate some deficiencies of tnaf method, namely (1) the necessity for'. "
simplified structures in order to permit economical numerical solution, and
(2) the large computational burden of evén the simplest of mode]s. The
netessary condition approach formulated in this secfion'meets both of these
criteria, although not without cost.

To demonstrate this estimation method it is useful first to define the

*desired" stock as

(13) Mt=M +dt=M +m

t t-1 t

 which implies that M, = ﬁ£ - ﬁi—l *d, ;. Substituting (2)-(4) into (1) the

problem can now be written as (ignoring the i superscript)

T oty
(18) Max Vg = Bg Jy g8 UM - dpy NY(Ry_g=dp g0 Pe-Me g * dpge Nes t)s 2)

. = T
by choice of {Mt}t=0'

Differentiating (14) with respect to ﬁ; at any arbitrary life cycle

period t yields:
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v

]
(1) = —=
]

t t+1, v t*1 t+1
- 2 (NY1 + NY, )11}

te +
£, 6LV} ¢ ubnr$l + st 1y

o*

K are the partial derivative of the jth element of the

.
here U, d

w j an NYJ

and net income functions respectively, at age k. Let

’,

utility function

trot o byt t+1 gt t+l
(16) ZF =8 [U] + UZNYZ] +p0 [Ny - NY, )]

= 2Amgs Meags Mp_ps Mo N 90 Gl t, 8)

and define the random variable 4, as

(17) ¢, = Et(Zt) -1

from which it is clear that

(18) Etot = E¢t = 0.

Using (17), it is possible to write (15) as

avt
(19) —_—= Et(zt) =1, %4
o,

Now, if the V function is symmetric, it should be clear that an individual

will wish to augment the stock, i.e., to choose m, = 1, if and only if
(19) is positive when evaluated at m, = 1/2 and all other yariables are

evaluated at their actual realizations. Thus,
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¢
(20) m =1 iff Z(m =1/2) * ¢, >0
m =0 iff Z,(m =1/2) + ¢, <0

- where as noted, Zi(mg =1/2) = Zy(m. = 1/2, myq, Mt-l"")f

One can ask about the exact distribution of o given the distributions

of ht and a This distribution is not easy to find and there is no

¢
need, in fact, to explicitly calculate it. If'is assumed that ht and

2, come from the.samé distribution over 511 individuals and in all
1ife-cycle periods. The distributions of h, and a, are independent

ovef él] individuals and periods. Therefore, ot is also independent over.

individuals and time. Using a particular distribution for ¢ we can write

the following probability statement for the choice m, = 1:

- (21) Pr(mt = 1‘mt+1, M,_1» Other exogenous variables)

= Pl"(Zt'(mt = 1/2) > - o) t =0,0..,T
The inequality sign in (2) is reversed for the m, = 0 probability
- statement. Note that at T, mp,, = 0 (terminal condition) so that we can

calculate from (21)

(22) .' Pr(m; = j|M;_;, other exogenous variables) j = 0,1.
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For any given observed sequence of choices for an individual, m = (mp,

ﬁi,...,ﬁ}), the probability of observing that sequence may be written as

(23)  Pr(fig,...,71) = Pr(mylMr_1) Pr(@y_1|Mr-2)...Pr(fig[M_1)

ST
BC2ER

where we ignore other exogenous variables and where we use the fact that in
the current model only the cumulative value of past decisions are relevant for
“ the current choice.6 Unfortunately, our necessary conditions lead to

probability statements that, except for the last period, are different from

those required to form the probability statement given in (23). For all

periods other than T, the probabilities we directly derive are conditional on

the one-period ahead choice, i.e., Mey1 for the tth period choice. We

prove in Appendix A, however, that (23) can be derived from (21) and (22)
which are themselves calculable. The sample 1ikelihood function can thus be

formed as products of probabilities of choice sequences over individuals.

3.3. A Comparison of the Two Methods

The two models differ with respect to the restrictiohs_that are imposed

on the conditional probabilities that are calculated for each m, . In the

full solution method the dynamic programming problem is completely solved such

that there is no error involved due to future decisions. The only source of

¢ :
-uncertainty in calculating the probability of my is due to the unobserved

. preference shifter at time ¢, 3. Hence, all the restrictions of the

theory are imposed in calculating the 1ikelihood value of observing the
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particular sample. Therefore, it is the most efficient method of estimation.

As ‘long as the model is correctly specifi;a;iihe maximum likelihood
estimates should be consistent for both the full solution and the necessary
condition approaches. However, the second method is not as efficient as the
first. Using the necessary conditions method we gg_ggg.calcu]ate optimal
future decisibns. In fact we calculate only their condifionallprobabi]ities
and we do not use all the information from the theory. The uncertainty that
is included in the forecast error of the future endogenous variables depends
upon the parameters of the model and the distributions of the exogenous
variables. Hence, thé 1ikelihood value of the second method should be higher
than the likelihood value of the full solution, if everything else is the
same. However,.we cannot map this difference intb a statistical'test, s%nce
there is no clear way to specify the asymptotic likelfhood ratio test.
‘Hence, there is-no way to make a formal comparison or to measure the closeness
of the estimated parameters using the two methods.

The full solution method does not, however, easify admit to extensions.
Since it 1s necessary to solve for all conditional expectations, nonlinear
functions create extreme computational difficulties. The necessary condition
~ approach avoids that problem by exploiting the information from the
first-order conditions and the rational expectation assumption that is
fmplicitly imbedded into the solution of the dynamic programming problem. In

addition, as we will see in the example presented below, the full solution

approach is several times more computationally burdensome.
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4. A MONTE CAQLO ESTIMATION USING THE NECESSARY CONbITION METHOD

In order to compare the two methods we performed a Monte Carlo experiment
with the necessary condition method, using as a basis the fertility model
discussed in section two. That model was chosen és it has been estimated by
Wolpin (1982) using the full solution method on Malaysian data on fertility
and child mortality, and so we have some knowliedge about the properties of |
that model. That data (1976 Malaysiaﬁ Family Life History) is described in
Wolpin (1982) and is used in this exercise as well. “

As noted in the previous section, numerical so]ution of the dynamfc
programming problem is greatly simplified in the linear-quadratic case. We
therefore use the fo]1owfng functional forms:

i2

12 . i i §.4
* 810 = Bl T g CMy v ST

it iy i,, g
(24) U(Mt,Ct,at) = (ol +.at)Mt - °2Mt

where in addition to the previously defined terms (see section 2.1), STgs

the schooling level of the mother and

: i i i i 1
(25) Yt =Cp * 1My * e2(mt - d;)
Following Wolpin (1982) we assume that et (the fixed cost of a birth) has
the time profile: ' ' |
0 1 2,2

(26) €ip = €] T et *eptt T epdy ¥ egpd
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where d, and dé are equal to unity if it is the first and second
period in the 1ife cycle respectively and zero otherwise.7 The income

generating function (for the husband alone as the wife is assumed not to work)

is 4
' A B i,2 , i

(27) LaY; = bg + byt + byt“ + v{

where ¢t i = Evi =0 for all 1 and t; it is estimated for

each household in the sample.8 The exogenous survival probabi]ity is

assumed to be related only to calendar time and is given by the logistic

formulation

=ng * “1t * “;tz * “i

t

(28) log

-%

with Etuz = Euz =0 for all, i and t;' it is estimated from time-serigs
observations on infant mortality for each of the eleven states in Malaysia

Households are assumed to know the parameter vector (bo, bl’ b2, ngs Mps

‘ 1
'Iz, 31’ Bla 32’ Yls 729 e?a 91: ell’ 912, 8, eZ’ at) but do
z, d;’ “Z nor the future
Y. Given the assumption that v{ and u: are

- draws on 3.
{f.1.d., the household revises its decision at each period t on the basis only

not know the current draws {at t) on

of the morta] ty outcome d; and the random preference parameter

:. The researcher observes the state varxable Mt 1 at t as does

the household but does not observe az Except for az the

researcher would predict the fertility decision without error. As discussed

in the previous section, the full solution estimation
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method proceeds by finding critical values for az at each t which makes

the household indifferent between mz =1 and mz = 0 and which,
given a distribution for az, can be used to formulate the likelihood of |
observing any particular sequence of choices.

The data on the exogenous variables used in the Monte Carlo experiment
was obtained from actual Malaysian data for 188 womenAand their husbands. .
Income and survival probability data came directly from the sample data (i.e.,
;he b's and n's). Fertility 6utcomes were Qenerated by the dynamic )
programming solution in the following manner. For a particular set';f '
parameters, taken to be the "true" parameter values (those actua]]y used are

shown in Table 1), in each period and for each household an i.i.d. random draw

for az was obtained from a standard normal density. If, given

i
ti
optimization, an infant death was randomly generated using the sample death

a,, it was optimal to have a child at t as a result of the dynamic
probability. This determined the number of survivfng children entering the
subsequent period. In this way, we generated a sequence of births (and
deaths).for each household over the number of periods each household was
actually observed in the Malaysian sample. Together with the life cycle
{ncome and survival probability forecasts, the fertility and mortality
.outcomes comprised the data available to the researcher. The az are,
of course, observed only by the aousehold (at t).

He then'ﬁsed this data to estimate the parameters with the necessary
condition approach of the previous section. With the linear-quadratic

structure, equation (15) becomes
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Loy x{"#.:.t -

aV . .
t - e g R |
(29— = B 18 * O + o+ e T % oYy * &Y T %!
t |

where tﬁe o's are defined in terms of the fundamental Pérameters as
% = o1 - sl(e}_ + ey )(1-8)
o = =92 +'£ez‘+.e1tl('2’l * By - Bz(ézi 1))
o, = 8ley * eelley * éljc * )
63 = ~ap - *1}e2 + elt)(l;a)
(30) 6y = o * 1182 * (& f ej¢)(Boer * v1(1-8))
o = (ep + e1)8(ep8 * 1)
% = 11 * 82le2 " ey)
& = fﬁéz(ez *egy)
€g = .72

Equation (19) now becomes
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2V -
t
(31) 7ot am ey Tyt oofide T et 417" %EeYy
t |

©

tTeel T o0 Y &4

] . _
with ¢ given by €, &, corresponding to the term in equation (21).

Table 1 shows the “true" parameter values (column 1) and the estimated

-

parameters using the necessary conditions estimation approach. A single
experiment amounts to choosing an az for each household over its fife
cycle. There are 3086 household periods in all. We performed two such
experiments for the given “true" parameter values. They are reported
separately in columns 2 and 3. Ideally, one would like to perform many more
such experiments at alternative sets of "true" values, but the computational
burden of such an exercise is prdhibitive.

It is difficult to obtaiﬁ a summary measure of the "closeness" of the
approximate approach to the full solution method. Although the former model
“{s nested in the latter, the actual restrictions imposed are not apparent.
Restrictions that are automatically taken into account in the full dynamic
.programming solution are not used in the necessary condition solution. Thus,
although the 1In 1likelihood value in the full solution is -1920.3 which is
substantially higher (in absolute value) than fhe 1n likelihood values
reported in Table 1, we do not know the number of restrictions and so cannot
perform the usual likelihood ratio test.9

It is evident, however, from Table 1 that the discount factor is not

particularly robust to the estimation method; in the first "experiment" its

estimated value is outside any reasonable range. Eyeballing the differences
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suggests that the necessary condition approach is possibly quite inaccurate.
In both experiments parameters are often orders of magnitude different than
the true values. On the other hand, we can evaluate the results independently
9f the value of the true parameters. Given the data, that by assumption have
been generated by optimal dynamic programming, one éan ask whether the
egtimated parameters fit these data well The answer'is that the results are
mixed. In the first estimation (column 2)) By has the wrong sign and the
discount factor 8 1is negative. In the second estimation (column (3)) *82:
and -e2A have the wrong sign. However,bthe model under the necessary
condition method is being much better than a pure chance model since the
latter In likelihood va{ue of -2059.5 (see Wolpin (1982)). Hence, the |
hypothesis that all the parameters (besides al) are zero is rejected by any
10 '

level of significance.

- e am ee G em em e o W e e e ar e

CONCLUDING REMARK

In this paper we have suggested a way of formulating a general estimable
dynamic discrete.choice model. Due to the computational 1imits of the
approach that explicitly specify the iﬁdividua] choice problem, we déveloped
new estimation methods. The full solution method has already proved to be
successful in estimating a complicated dynamic fertility model (Wolpin

(1982)). Here we have tried to evaluate an alternative method which was
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designed to accommodate more complicated dynamic discrete choice models. The
estimation results are not very encouraging and the burden of computation has
been reduced only by 1/3 to 1/2. At this stage of our research we suggest

.using the full solution method but would encourage the interested researchers
to continue the search for estimable models that can accommodate more complex

behavioral assumptions.,
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_TABLE 1

Maximum Likelihood Estimates of the Fertility Model:
The Necessary Condition Method

IntL

-1829.7

(1) (2) ?)
True Values
o  3.4321072 " 9.905x1071 3.606x1071
;2 - 2.939x107} f 2.277x1070 3.390x10°6
By 6.162x10° 1.178x107° 1.145x107%
8, 1.074x10716 -1.376x10%% -1.031x101°
1) 2.421x10~7 4.607x10~7 1.64x1075
v, -5.419x1073 -6.788x1072 -4.050x1072
e, - 1.474x10° 5.200x103 -3.554x10°
e ' -1.947x10° 5.391x103 5.831x10°
e] -2.861.107 5.926x10 -1.915x102
e 6.417x10! 2.978x10} 6.982x10!
ey 1.768x10% 1.023x10° 1.834x10°
e;, 8.093x10° 1.533x10% 1.062x10%
8 9.215x107} ~2.895 5.011x107!
-1837.0
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APPENDIX A
b2
In this appendix we demonstrate a method to transform the conditional
probability statements derived from the necessary conditions (see (21) and
(22) into the probability statements that are used to form the likelihood
function. _ |
We need to derive Pr(m _, = j-Mt—z =;0,...,T-2) for j =1, 0, which
"we will denote by  ¥,_; and 1-v respectively. To do so, first write

o

(A.1) Pr‘(mt__1 =1 ‘ m, = j,-Mt_Z) = Pr(mt_1 \ m = J, Mt-z)'
[Pr(m; = 3| my_y = 0, My_p) Prim_y =0 [ Mep)

+ Pl“(mt = j ‘ mt—l = 1, MT"Z) Pl"(mt_l = 1 ‘ MT"'Z)]

If we sum A.1 over j =1, 0, we get the marginal probability for me_y in

the following form Co-

(A.2) vy = Prim_y =1 | m =1, m_,) [rim =1 [ my =0,

Mr_p)(1-¥_q) * Primg =1 | mey = 1f Me_2)¥e1]

i}

+ Pr(mt_1 =1 ' my 0, Mt-Z) [Pr(mt =0 l me_y = 0, mT_Z)(l-wt_l)

+Pr(mg = 0 [my =1, M plv )
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Solving for ¥ _y» We get

-

(A-3) vy =Pr(m_, =1 | m, = 1,>Mt_2) Prim,_y =1, m_; =0 M _,)
+ Pir»(mt__1 =1 l m, =0, M,_,) Pr(m; =0 l m;_l =0, M,_,)
| 1 -*APr(mt__1 =1 l.mt =1, M;_z) [Pr(mt.= 1 ‘ mt;l =0, M _,) -
- Pr(m, o1 | m_y =1, 1) |

+ Pr(mt_l =

1] m =0, M _,) [Prim = 0 [m_y =0, M )=
- Pr(mt =0 l mt—l =1, Mt_z)]

Now, consider working backwards from T. ¥ is known directly from the

terminal necessary condition (22). From ¥r» One can find
(A.4) Pr(mT =1 mr_1» Mo = X) = Pr(mT =1 mry = 1, dT-l =1, MT—Z = X)

Pr(dT_l = 1)

+ Pr(mT =1 l Mr_1 = 1, dT-l =0, MT—Z = X) Pr (dt—l =0)

= Pr(m;

1 | Moy = x) Pr(dg_y = 1) * Pr(m; = 1 ] My = x*1)

and similarly for Pr(mT 0 ‘ miy = 0, MT-Z)’ Pr(mT =1 l L = 0, MT-Z)
and Pr(mT =0 l My = 1, MT-Z)’ Thus, one can find Yol from A.3 given A.4.
Given 7y One can follow the same procedure as in (A.4) to find Y2 from

(A.3) etc.:
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APPENDIX B

The following table contains some information on the Monte Carlo experiment.

The starting values are 10 percent below the true values. The cost

information is given below the table.

True Values

Final Values

Starting Values. -

19

Number of iterations

Convergence criterion alnL =

.55 min per evaluation

18M 4341

10-10

ey - 3ax10l 3.1 x 107} T 31 x 107!
e, o 2.9x107! 3.3 x 1071 3.2 x 107}
) 6.1 x 107 5.5 x 1075 5.9 x 107
6, 1.1 x 10716 9 x 10716 .98 x 10717
v 2.4 x 1071 2.1 x 107} 2.3 x 1071
e, 1467 1600 1880
8 .92 .84 92
Y 5.4 x 1073 -5.9 x 1073 -5.8 x 1073
ed 1942 1700 1726
e -285 -310 -322
el 837 58.0 64.5
o 17610 19300 21000
e, 8062 7200 7816
In ~1912.5 ~1950.2 ~1904.1
L = Likelihood

25-30 evaluaticns per iteration
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FOOTNOTES

Here t refers to life cycle period (age) rather than calendar time per
se, although for different cohorts t will also correspond to different

calendar time. We ignore here any calendar time aspect that affects the

indiv{ghaf decision.
Note that the no savings assumption is equivalent to assuming a utility
function that is 1inear in consumption which is common to some dynamic

estimate model, such as in search models (e.g., Miller, (1983) and

Heckman's statistical model that we present in the Introduction).

Actually U(e) and NY(+) need be differentiable only at one point in

the (0, 1) interval of the m, variable, as will be discussed later.

t
Strictly speaking,Athis is only true if a is i.1.d. or if it follows
a permanent-transitory scheme. For a more detailed discussion of these
issues see Wolpin (1982). | 'A

Note that<in (16) we ignore the unobservable taste elements at'and

) Those elements, if they exist, cannot enter except additively

t+l°
in Zt’ in order to preserve the validity of the method.

That is, Pr(ﬁ% n&_l,...,mo) = Pr(mT_l) for the special case we are
considering, and similarly for other periods.

A period is taken to be eighteen months and the first decision period is

age fifteen.
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is serially uncorrelated greatly simplifies
- R

the dynamic programming solution since households do not have to update

The assumption that V:

their forecasts each period.

The number of restrictions is 1ikely to be large since there is 6h
average sixteen periods per woman and separate restrictions for each
period. Twice the difference in the likelihood is 181.2 ahd-the null
hypotheses that the parameters in co]qmn 1 are the same as those in 2 or
3 would be accepted at the standard significance ]eve],.only if the

member of restrictions exceeded 150, which seems un]ike]yf a4

Additional information on the cost of the estimating the model using the

necessary condition method is given in Appendix B.



33

REFERENCES

Ben-Porath, Yoram, “The Production of Human Capital and the Life Cycle of

tarnings, Journal of Political Economy, Aug. 1967.

Brown, Charles, "A Model of Optimal Human-Capital Accumulation and the Wages

of Young High School Graduates," Journal of Political Economy, April,

1976.
Cogan, John, "Fixed Costs and Labor Supply," Econometrica, July 1981.

Haley, William, “Estimation of Earnings Profiles from Optimal Human Capital

Accumulation,® Econometrica, 1976.

Heckman, J.James, "Statistical Models for Discrete Panel Dats,“'in

. Structural Analysis of Discrete Data (eds.) C.F.Marshki and D.McFadden.

Cambridge Mass: MIT Press, 1981.

Heckman, James, J., "A Life Cycle Model of Earnings, Learning, and

Consumption,” Journal of Political Economy, August, 1976.

Heckman, James, J. and Robert J.Willis, “Estimation of a Stochastic Model

of Reproduction: An Econometric Approach," in Household Production

and Consumption. ed. N.Terleckyj, National Bureau of Economic Research,

Stanford, California, 1975.
Heckman, J. and R.Willis, "A Beta LogisticAModel for the Analysis of

Sequential Labor Force Participation of Married Women," JPE 5, No.l

(February 1977), 27-58.



34

Lucas, Robert, E.Jdr., "Economié Policy Evolution: A Critique" in K.Brunner

and A.H.Meltzer (eds.) The Phillips Curve and Labor Markets Carnegie-

Rochester Conference.
Marschak, Jacob, “"Measurement for Policy and Predictions,", in W.C.Hood and

T.C.Koopman (eds.) Studies in Econometric Method, Cowles Monograph No.l4

(New York: Wiley, 1953).

McFadden, I.P., "Control Choice Analysis: A Survey," Annals of Economic

-

and Social Measurement, 5, No.4, 1976.

Orazem, Pefer, F., "Two Models of School Achievement and Attendance with
Application to Segregated Schools," Ph.D Dissertation, Yale University,

1983.
Wolpin, Kenneth, I., "An Estimable Dynamic Stochastic Model of Fertility

"and Child Morta1ity,“ forthcomfng Journal of Political Economy.

Wallace, T.Dudley, L.A., Ibreu, “Full-Time Schooling in Life-Cycle Models

of Human Capita]'Accumulation," Journal of Political Economy, February,

1976.






