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1. INTRODUCTION 

The development of the techniques of analyses for discrete choice models 

has proceeded rapidly over the last decade. Original work by McFadden (1976) 

and others concentrated on static choice frameworks and were developed and 

applied in the context of cross-section data. More recent work by Heckman 

(1981) focuses on general dynamic discrete choice models in the context of 

panel data. In this paper we attempt to provide a firmer theoretical base for 

this recent literature by specifying the explicit dynamic stochastic 

optimization problem that underlies the decision rules which are the starting 

point for the analysis by Heckman. Moreover, we offer two methods of 

estimating the funaamental taste and constraint parameters of the optimization 

problem and provide an application. 

A general dynamic discrete choice model for panel data is carefully 

described by Heckman (1981) as follows: 

i = 1, ••• ,1, t = 1, ••• ,T, 

i where mt is the discrete cho~ce variable for person i (i = l, ••• ,I) for his 

lifetime period t(t = 1, ••• ,T) such that 

1 if i yt 1. 0 

" m' t = 

0 otherwise, 
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the initial conditions of m1 and y1 are assumed to be fixed outside 

the model, rt(L) = y~ + ylL + ••• + y~Lk, G(L) =GO+ G1L + ••• + Gqlq and 

ct is a normally distributed error with mean zero. The distribution of the 

V Ct 1 ( i i ) I • f 11 h t • d b th t • e or £ = £ 1, ••• ,cT is u y c arac erize y e assump ion 

~ 

£I .. N(O, r> 

where I is a T x T positive definite covariance matrix. 

The ci's are independent across people and components of the vector 

Z~ are independent of ci. zi is a vector of exogenous 

variables. Tnis is the most general linear discrete choice model that is · 

described in the literature. 

In this model vi represents the difference between the lifetime 

utility of a person at t~me t. given an action (m~ = 1) is taken and 

the lifetime utility of the person given the action (mi = O)is not 

. taken, under the assumpt~on that the decisions in the future are optimal. 

These types of problems ~nclude labor force participation (Heckman and Willis, 

1977), fertility (Heckman and Willis, 1975) and purchase of a durable 

~ (Mcfadden, 1976). In each application of this general model a set of specific 

·issues are raised both of a practical and more abstract nature. For example: 

what is the lifetime opt~m~zation problem that is behind this intuitively 

appealing moae~ Z What ~s the lag length for each term in the model and what . 
do these lags represent 1 What are the underlying sources of the stochastic 

' 
term, of state dependency and of heterogeneity 2 

' 
The stochastic model does predict the change in the probab~lity of 

m~, ;ts, given a change in the exogenous variables at time t and/or a 

,:_ y 

.-
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change in the parameters in the model. However, it is impossible to interpret 

the particular change in terms of a policy experiment unless the individual's 

lifetime problem is carefully described {Marschak, 1953, Lucas, 1976). 

One way of providing at least a partial answer to the above questions is 

to consider the explicit dynamic stochastic optimization problem that the 

person is supposed to solve. This paper formulates explicitly a lifetime 

optimization problem that a person faces at each period t and suggests two 

methods of estimating the underlying parameters of the preferences and the 

constraints. Some of the issues that are raised above are solved immediately 
. . . . ·~ 

by the assumptions made about the preferences· and the constraints. Given the 

important empirical issues of state dependency and he~erogeneity we emphasize 

these dynamic stochastic aspects in the context of the three behavioral 

.examples, fertility, schooling, and labor force participation. Some other 

issues, such as the length of the endogenous lags, are not solved except by 

computational limits, but they can be interpreted in terms of the economic 

model. 

Estimation of our model's parameters depends on the ability of the 

econometrician to find an algorithm that can be used to calculate the 

probabilities of m~ (t = 1, ••• ,T) conditional on past realizations, and 

which is consistent with optimization. In this way the likelihood function of 

each sequence of m's can be computed as a product of conditional 

probabilities. Heckman's statistical model is formulated in a way that 

enables a straightforward calculation of the conditional probabilities that 

form the likelihood function, but that. formulation is not necessarily 

consistent with any optimization problem of content. The focus of our work is 

,:·. w 
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on building a Dridge between the individual optimization problem and a 

decision rule that for the econometrician can be stated as a conditional 

probability for the discrete choice at each t. 

We provide two ways of calculating these conditional probabilities. The 

first is based on the way Heckman (1981) motivates his model, that is, given 

optimal decisions in the future the probability of m~ = 1 can be ... 
.. -~alculated from the difference between the lifetime utility level of a person 

where. m~ = 1 and the lifetime utility where mi = 0. We refer to 

this method as "Full Solution Method", since it requires.that we solve 

completely the dynamic optimization problem of each agent at each time in 

order to calulate the liklihood function. The computational burden of this 

method is obvious. 

The second method is based on the fact that the optimal individual 
4 

program for mt should satisfy-certain first order conditions. 

Therefore, we call this estimation procedure the "Necessary Condition 

Method". Here we demonstrate a method for calculating the cond~tional 

probabilities w~thout fully characterizing the future decisions. We assume, 

however, that these decisions are made optimally and are predicted optimally 

by the person (rational expectations). 

Since the f~rst method has been used recently (Wolpin, 1982) for 

est~mating a fertility model using Malaysian data, we compare the estimation 

methods by a Monte Carlo experiment conducted on the Malaysian fertility 

model. Using this Monte Carlo data on fertil~ty we estimate the parameters of 

the model with the necessary condition method. 

The remaining parts of the paper are organized as follows: In Section 2 

we present the model and the three examples. In Section 3 the two est~mation 

;~ . 



5 

methods are discussed. The results of the Monte Carlo experiment are 

presented in Section 4 and some remarks are given in Section 5. 

2. THE MODEL 

In this section we describe a class of estimable dynamic models of 

behavior in which the individual makes a discrete (zero-one) decision in each 

life cycle period and where the cumulated values of previous choices may 

affect current welfare and/or costs. An individual is assumed to choose a 
i T 

lifetime cont~ngency plan ·for the sequence {mt} , where i refers to the 
t=O 

individual and t to the life cycle period, so as to maximize 

subject to: 

. (2) 
4 .; + mi 4 

Mt = Mt-1 - dt t 

(3) mi 
t t {0, 1} t 

;. i (mt, dt) t {(O, 0), (1, 0), (1, 1)} 

·(4) ci = NY; (Ml-1' 
; i t) t mt, ht, 

(5) Mi 
-1 given 

In (1) e is the discount factor, 0 < e < 1, and preferences are a function 

of the stock of the control variable i (Mt), and a composite consumption 

good (Ci), w~th ai a vector of exogenous preference shifters 

,:.. v 
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that may vary across individuals and over the life cycle of the same 

individual. The stock of the control variable (Mi) evolves according 

to (2} with i mt, the 

discrete decision variable, and di a discrete exogenous variable 

realized after the decision on mi - has been made; the set of feasible 

values of (mi, di} is given in (3). The budget cons~raint is 

described in (4); NY(·} is net income, i.e., income less expenditures on 

m~~ Net income may depend upon the stock of the control variable, the 

value of the current decision variable, life cycle period (t), and a set of 

exogenous individual and/or life cycle characteristics (hi). The 

initial value of the stock is given and is non-stochastic. E(•) is the 

expectations operator and Ei(•) = E(• l If) where If is the 

information set of individual i at life cycle stage t 1• 

Dynamics are incorporated· into the model both through the utility 

function and thtough the net income function. It would, of course, be more 

general to permit each prior period discrete choice to enter current utility 

and net income rather than the stock, but that complete generality does not 

appear tractable to estimate. A feature of the model, due to computational 

tractability, that is not particularly satisfactory is that we consider only 

one decision variable. Most econometric applications do so. However, in 

doing this we are forced to assume that the individual is unable to transfer 

physical resources between periods. Introducing savings requires solving for 

an additional decision variable and creates further dynamic interactions. 2 

We view this as an important limitati6n and as a challenge for future work. 

Both U{·)_ and NY(•) are assumed to be continuous and differentiable 
i i in the decision variables (mt, Ct) at all points on the real line 

,:-. v 
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even though m~ is dichotomous.3 Existence of a maximum for (1) is 

guaranteed by the discrete nature of the decision variable, but uniqueness 

requires some additional regularity conditions on the preference and net 

income functions. Uniqueness is guaranteed if, upon substituting (2) into (4) 

and the result into (1) the function 

Et I~ a tui {M ~ + i di i i i j)' a~) m. - ., NY(Mj-l' m ., hj' J-t J-1 J J J J 

is strictly concave in mi 
t for all t = 1, .•• ,T. 

~,..-

To motivate the above structure, we now provide three examples which have 

been of major interest to researchers. The reader can doubtless provide many 

others. 

1. A Fertility Model with Exogenous Infant Mortality 

Equations (1)-{5) correspond to a model of fertility choice over the life 

cycle under the following definitions: 

'Mi 
t s:: . the stock of surviving children at the end of period t 

mi 
t ~ unity if a child is born at t, and is zero otherwise 

di~ unity if a child born at t dies at t with some probability n, 

and is zero otherwise. 
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exogenous household income (possibly random), 

a fixed cost of child bearing at period t, 

a maintenance cost of a child during its first period of life that 

arises only if the child survives. 

Thus, at any period t, given its stock of surviving children, the 
":..• 

household decides whether or not to augment its stock of children by one, 

based upon future survival prospects, future (uncertain} income, and future 

child costs. This model has been estimated by Wolpin {1982) and is capable of 

generating child spacing and in distributing children over different life 

cycle stages {timing). It is also capable of generating alternative 

replacement patterns, i.e., reactions to child deaths. 

2. A Model of Schooling Attainment 

The theoretical analysis of schooling attainment has, since Ben-Porath 

(1967), been conducted in a life cycle framework as a component of a complete 

human capital accumulation model. Empirical implementation of human capital 

models have. been concerned mostly with estimation of parameters of the human 

capital production (cost) function {Haley (1976), Brown (1977), Heckman 

(1976)) using earnings data. School achievement models have not generally 

been implemented with as careful a connection to underlying theory, though the 

Wallace and Ihnen (1975) simulation model and the work by Orazem (1982) are 

except ions. 

,: •• w 
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The discrete choice dynamic prograrrming framework presented above 

provides a natural setting within which to consider the schooling choice. To 

see this, define the variables as follows: 

i Ht c the stock of schooling (schooling attainment) at the end of period 
i mt c unity if the individual attends school during period t, zero 

otherwise 
i dt c unity if the individual fails to complete the school period due to 

unforeseen factors, e.g., exogenous illness. 
i i i i i NYt = Y(Mt-l' mt, t, ht) - e_tmt where 

et c the direct cost of a period of schooling at time t 
i Yt c gross income during period t 

The gross income generating function Y(•) depends positively on the stock of 

schooling and negatively on current school attendance (foregone earnings). It 

is also perm~tted to have an age gradient as well as to be influenced by 

individual and/or calendar time characteristics (hi) some of which may 

be viewed as random by the individual. 

Given that Mt enters into (1), this specification captures both 

investment and consumption components of schooling choice. The model can 

clearly generate alternative schooling patterns. In particular, individuals 

will optimally accumulate schooling as rapidly as possible given either a 

large enough positive return to schooling at low initial) levels 

( 6y is large at Mt-l small), or a large enough consumption value of 
tiMt-1 

schooling. The individual in making a current schooling choice considers 

t 
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the current attainment level, and current and {anticipated) future direct and 

foregone earnings costs. 

3. A Model of Labor Force Participation and Wage Determination With 

Endogenous Experience 

Economic models of labor force participation arise naturally from labor 

supply models in which hours are freely variable. (Heckman and Willis, 

1977). With fixed hours, labor force participation models closely resemble 

job search models, although with costl~ss wage offers during periods of 

employment. However, the latter models are based on income maximization. The 

preceding framework with the following definitions can be interpreted either 

as a labor force participation model or as a job search model. Unlike 

previous examples, we assume that it is current participation rather than the 

stock of past leisure that enters preferences. Thus, we modify (1) to: 

(6} 

AU where ~; < O. In addition, 
Amt 

Mi c the number of years of labor force experience 

mi c unity if the individual participates in period t, zero otherwise 

di c unity if the individual is (exogenously) laid off, zero otherwise 

NYi = Y{M~-l' m~ d~, h~, t) - etm~ 

,:. v 
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where income Y(•) (or the wage rate given fixed hours) is increasing in 

experience (Mi_1} and in current participation (mi - di). ···.•I. 

There is a fixed cost of work et (Cogan (1980)). dt may be viewed by 

· the individual as a random {exogenous) variable. The participation or job 

acceptance decision at any period depends, therefore, on the stock of 

accumulated experience, on (expected) future income or wage rate determinants, 

and on (expected) future layoff propensities. 

We have presented these examples to illustrate the applicability of the 

basic model. It is interesting to note that each of the models contains some 

form of state dependence (Heckman (1981)) in that current decisions are 
• - . ..... #i-

affected by past states {decisions) in a ·struc-~urzfl sense. There are major 

simplificatfons in each example, but extensions are best explored in the 

context of the specific problem. It is probably unnecessary to point out that 

few sequential decision-making models have been estimated directly from 

. theoret i ca 1 foundations. 

3. ESTIMATION STRATEGY 

The objective of the empirical work is to estimate the parameters that 
i T 

determine the individual choice of {mt}t=o· These parameters consist of the 

discount factor (e), the paramet~rs of the preference function {U( ·)) and of 

the income generating function (Y( ·)), and the parameters of the distribut~ons 

of the random variables that affect preferences and income. Estimation 

obviously requires choosing a particular parameterization of the preference 

and income functions. 

,:.. w 
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One strategy involves choosing a specification that enables the 

researcher to solve for the complete characterization of the optimal decision 

under uncertainty. Assuming that some variables are observed by the 

individual but not by the researcher {e.g., the preference shifter a{) 

allows for an error in predicting the individual decision. In this way, 

maximum likelihood estimation can be integrated into the solution of the 

optimization problem. This procedure corresponds to a full ~elution 

estimation method. 

Alternatively, as we show below, it is possible to specify a set of 

necessary conditions which must be satisfied at the maximum of problem (1). 

Although the decision variable is not continuous, the derivative of the 

objective function evaluated at an appropriate point can be used to form a set 

of inequality restrictions that determine the discrete choice. We demonstrate 

a method for transforming these restrictions into probability statements about 

any arbitrary sequence of decisions, which leads naturally to a maximum 

likelihood approach. 

3.1. The Full Solution Method (Wolpin, 1982) 

The full solution method utilizes Bellman's (1957) principle. We first 

solve for the last period decision and work backwards to the initial period. 

Using Bellman's equation, at any period t, the expected utility from the 

choice mt= 1 is given by (we omit the index i): 



·. 
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Similarly, the expected utility for the opposite choice is 

where 

~.e. lUt is lifetime utility at t subject to the conditions (2), (3) and 

·(4) and Mt-l is given. t is determined by the difference between (7) and 

(8), namely: 

(10) mt= 1 iff Jt = Et(LUt\mt = 1, Mt-l) - Et(LUt\mt = 0, Mt-l),?. 0 

mt c 0 otherwise 



' 
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Jn general, calculating (7) and (8) for t = l, ••• ,T is, even 

numerically, an intractable task. An enormous simplification is achieved if 

the utility function is assumed.to be quadratic and the constraint (7) is 

· linear {see equations (24} and (25) below). In this case all quadratic terms 

in random variables in Jt (10) vanish, so that knowledge of conditional 

means alone is required. Even more important, if the random preference 

parameter (at) is in the linear term~ in the utility function (see 

equation {24}) it turns out that it is additively separable and monotonically 

increasing in at. Since at is a real number, there always exists an 

* at such that Jt = 0. The importance of this result for estimation 

will become apparent. 

Estimation proceeds in the following manner. for each t (for a given 

individual) one can find the unique value a; for which Jt = 0, i.e., 

for which the individual is exactly indifferent between mt = 1 and mt = 

0. Given a distribution for at, the probability of the event occurring is 

(11} Pr(mt = 1IMt-l) = Pr(at >a:) 

The joint probability of any given sequence of events 

mt,k = (iiit' mt+l' ••• ,mt+k) is 

and the sample likelihood function for any set of individuals is the product 

of the probabilities of sequences such as (12) over the individuals. Notice 

that for each set of parameters, a new set of •• at's are found by solving 

,:._ ~ 
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the dynamic programming problem; each evaluation of the likelihood function 

requires resolving the dynamic program. Optimization must preceed numerically 

since decision rules are not analytic even in the linear-quadratic case. 

3.2. The Necessary Conditions Method 

Any viable alternative to the full solution estimation method should 

mitigate some deficiencies of that method, namely (1) the necessity for 

simplified structures i~ order to permit economical numerical solution, and 

(2) the large computational burden of even the simplest of models. The 

necessary condition approach formulated in this section meets both of these 

criteria, although not without cost. 

To demonstrate this estimation method it is useful first to define the 

•desired" stock as 

which implies that Mt= Mt - Mt-l + dt-l" Substituting (2)-(4) into (1) the 

problem can now be written as (ignoring the i superscript) 

- T by choice of {Mt}t=o· 

Differentiating (14) with respect to Mt at any arbitrary life cycle 

period t yields: 
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(15) 

where U~ and NY~ are the partial derivative of the jth element of the 

utility function and net income functions respectively, at age k. Let 

and define the random variable 't as 

from wh~ch it is clear that 

Using (17), it is possible to write (15) as 

(19) 

Now, if the V function is syrrunetric, it should be clear that an individual 

will wish to augment the stock, i.~., to choose mt= 1, if and only if 

(19) is positive when ~valuated at mt = 1/2 and all other variables are 

evaluated at their actual realizations.
5 

Thus, 



' .. 
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One can ask about the exact distribution of •t given the distributions 

of ht and at. This distribution is not easy to find and there is no 

need, in fact, to explicitly. calculate it. It.is assumed that ht and 

at come from the same distribution over all individuals and in all 

life-cycle periods. The distributions of ht and at are independent 

over all individuals and periods. Therefore, •t is also independent over. 

individuals and time. Using a particular distribution for •t we can write 

the following probability statement for the choice mt = 1: 

(21) Pr(mt = llmt+l' Mt-l' other exogenous variables) 

c Pr(Zt(mt = 1/2) 2. - •t) t = O, ••• ,T 

The inequality sign in (2) is reversed for the mt = 0 probability 

statement. Note that at T, mT+l = 0 (terminal condition) so that we can 

calculate from (21) 

(22) Pr(m1 = jJM1_1, other exogenous variables) j = 0,1. 

,:-. v 

.... ~ . 
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For any given observed sequence of choices for an individual, m = (mo, 

m1, ••• ,mr), the probability of observing that sequence may be written as 

(23) 

where we ignore other exogenous variables and where we use the fact that in 

the current model only the cumulative value of past Qecisions are relevant for 

the current choice.6 Unfortunately, our necessary conditions lead to 

probability statements that, except for the last period, are different from 

those required to form the probability statement given in (23). For all 

periods other than T, the probabilities we directly derive are conditional on 

the one-period ahead choice, i.e., mt+l for the tth period choice. We 

prove in Appendix A, however, that (23) can be derived from (21) and {22) 

which are themselves calculable. The sample likelihood function can thus be 

formed as products of probabilities of choice sequences over individuals. 

3.3. A Comparison of the Two Methods 

The two models differ with respect to the restrictions that are imposed 

on the conditional probabilities that are calculated for each mt. In the 

full solution method the dynamic programming problem is completely solved such 

that there ~s no error involved due to future decisions. The .2!l!.r source of 

·uncertainty in calculating the probability of mt is due to the unobserved 

. preference shifter at t~me t, ai. Hence, all the restrictions of the 

theory are imposed in calculating the likelihood value of observing the 

,:·. v 
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particular sample. Theref-0re, it is the most efficient method of estimation. 
~~-:~+. 

As ·long as the model is correctly specifi~d;·.:the maximum likelihood 

estimates should be consistent for both the full solution and the necessary 

condition approaches. However, the second method is not as efficient as the 

first. Using the necessary conditions method we do not calculate optimal 

future decisions. In fact we calculate only their conditional probabilities 

and we do not use all the information from the theory. The uncertainty that 

is included in the forecast error of the future endoge~ous variables depends 

upon the parameters of the model and the distributions of the exogenous 

variables. Hence, .the likelihood value of the second method should be higher 

than the likelihood value of the full solution, if everything else is the 

same. However, we cannot map this difference into a statistical test, since 

there is no clear way to specify the asymptotic likelihood ratio test. 

Hence, there is~no way to make a formal comparison or to measure the closeness 

of the estimated parameters using the two methods. 

The full solution method does not, however, easily admit to extensions. 

Since it is necessary to solve for all conditional expectations, nonlinear 

functions create extreme computational difficulties. The necessary condition 

approach avoids that problem by exploiting the information from the 

first-order conditions and the rational expectation assumption that is 

implicitly imbedded into the solution of the dynamic programming problem. In 

addition, as we will see in the example presented below, the full solution 

approach is several times more computationally burdensome. 

,:._ ~ 
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4. A MONTE CARLO ESTIMATION USING THE NECESSARY CONDITION METHOD 

In order to compare the two methods we performed a Monte Carlo experiment 

with the necessary condition method, using as a basis the fertility mode1 

discussed· in section two. That model was chosen as it has been estimated by 

Wolpin (1982) using the full solution method on Ma1aysian data on ferti1ity 

and child morta1ity, and so we have some know1edge about the properties of 

that model. That data (1976 Malaysian Family Life History) is described in 

Wolpin (1982) and is used in this exercise as well. 

As noted in the previous section, numerical solution of the dynamic 

programming prob1em is greatly simplified in the linear-quadratic case. We 

therefore use the following functional forms: 

(24) 

where in addition to the previously defined terms (see section 2.1), si is 

the schooling level of the mother and 

(25) 

Fol1owing Wolpin (1982) we assume that e1t (the fixed cost of a birth) has 

the time profile: 
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where d1 and d2 are equal to unity if it is the first and second 

period in the life cycle respectively and zero otherwise.7 The income 

generating function (for the husband alone as the wife is assumed not to work) 

is 

(27} 

i i where Etvt = Evt = O for all i and t; it is estimated for 

each household in the sample. 8 The exogenous survival probability is 

assumed to be related only to calendar time and is given by the logistic 

formulation 

(28) 

i i with Etut = Eut = 0 for all. i and t; it is estimated from time-series 

observations on infant mortality for each of the eleven states in Malaysia. 

Households are assumed to know the parameter vector 
0 1 

~2, al, 61, 62' yl, Y2' el, el, ell' el2' at} but do 

not know the current draws (at t} on v~, nor the future 

. · draws on ai. Given the assumption that are 

1.i.d., the household revises its decision at each period t on the basis only 

of the mortality outcome ai and the random preference parameter 
i i at. The researcher observes the state variable Mt-l at t as does 

the household, but does not observe ai. Except for ai the 

researcher would predict the fertil~ty decision without error. As discussed 

1n the previous section, the full solution estimation 

,:-. v 
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method proceeds by finding critical values 

the household indifferent between mi = 1 

given a distribution for ai, can be used 

for a1 at each t which makes t 
and mi = 0 and which, 

to formulate the likelihood of 

observing any particular sequence of choices. 

The data on the exogenous variables used in the Monte Carlo experiment 

was obtained from actual Malaysian data for 188 women and their husbands. 

Income and survival probability data came directly from the sample data (~.e., 
~ 

the b's and n's). Fertility outcomes were generated by the dynamic 

program~ing solution in the following manner~ For a particular set of 

parameters, taken to be the "true" parameter values (those actually used are 

shown in Table 1), in each period and for each household an i.i.d. random draw 

for ai was obtained from a standard normal density. If, given 

a~, it was optimal to have a child at t as a result of the dynamic 

optimization, an infant death was randomly generated using the sample death 

probability. This determined the number of surviving children entering the 

subsequent period. In this way, we generated a sequence of births (and 

deaths) _for each household over the number of periods each household was 

actually observed in the Malaysian sample. Together with the life cycle 

income and survival probability forecasts, the fertility and mortality 

.outcomes comprised the data available to the researcher. The are, 

of course, observed only by the ~ousehold (at t). 

We then used this data to estimate the parameters with the necessary 

condition approach of the previous section. With the linear-quadratic 

structure, equation (15) becomes 

... • ~ -·· ,:._ v 
... ~ .: ; .:.. ,: ... ~ .: ~ .:.. ,-. 
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where the e's are defined in terms of the fundamental parameters as 

... ~ 

.• 

Equation (19) now becomes 
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(31) 

with tt given by e2tt corresponding to the term in equation (21}. 

Table 1 shows the "true" parameter values (column 1) and the estimated 

parameters using the necessary conditions estimation approach. A.single 

experiment amounts to choosing an ai for each household over its life 

cycle. There are 3086 household periods in all. We performed two such 

experiments for the given "true" parameter values. They are reported 

separately in columns 2 and 3. Ideally, one would like to perform many more 

such experiments at alternative sets of "true" values, but the computational 

burden of such an exercise is prohibitive. 

It is difficult to obtain a summary measure of the "closeness" of the 

approximate approach to the full solution method. Although the former model 

·is nested in the latter, the actual restrictions imposed are not apparent. 

Restrictions that are automatically taken into account in the full dynamic 

programming solution are not used in the necessary condition solution. Thus, 

although the ln likelihood value in the full solution is -1920.3 which is 

substantially h~gher (in absolute value} than the ln likelihood values 

reported in Table 1, we do not know the number of restrictions and so cannot 

perform the usual likelihood ratio test. 9 

It is evident, however, from Table 1 that the discount factor is not 

particularly robust to the estimation method; in the first 11 experiment 11 its 

estimated value is outside any reasonable range. Eyeballing the differences 



,. 

25 

suggests that the necessary condition approach is possibly quite inaccurate. 

In both experiments parameters are often orders of magnitude different than 

the true values. On the -0ther hand, we can evaluate the results independently 

of the value of the true parameters. Given the data, that by assumption have 

been generated by optimal dynamic programming, one can ask whether the 

estimated parameters fit these data well The answer is that the results are 

mixed. In the first estimation (column 2)) a2 has the wrong sign and the 

discount factor e is negative. In the second estimation {column (3?) ~e2 
and e2 have the wrong sign. However, the model under the necessary 

condition method is being much better than a pure chance model since the 

latter ln likelihood value of -2059.5 (see Wolpin (1982)). Hence, the 

hypothesis that all the parameters (besides a1) are zero. is rejected by any 

level of significance. 10 
:-.~ 

Table 1 to be Inserted here 

CONCLUDING REMARK 

Jn this paper we have suggested a way of formulating a general estimable 

dynamic discrete choice model. Due to the computational limits of the 

approach that explicitly specify the individual choice problem, we developed 

new estimation methods. The full solution method has already proved to be 

successful in estimating a complicated dynamic fertility model (Wolpin 

(1982)). Here we have tried to evaluate an alternative method which was 
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designed to accommodate more complicated dynamic discrete choice models. The 

estimation results are not very encouraging and the burden of computation has 

been reduced only by 1/3 to 1/2. At this stage of our research we suggest 

using the full solution method but would encourage the interested researchers 

to continue the search for estimable models that can accommodate more complex 

behavioral assumption~., 

;.. -
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TABLE 1 

Maximum Likelihood Estimates of the Fertility Model: 
The Necessary Condition Method 

(1) (2) (3) 
True Values 

Cll 3.432xl0-2 • 9.905xlo-1 3.606xlo-1 -
- .!::11: Cl2 2.939xl0-l .:'. 2.277xlo-5 3.390x10-6 

81 6.162xlo-5 l.178xlo-5 l.145xlo-4 

82 l.074xlo-16 -1.376xlo14 -l.03lxlo15 

"1 2.421xlo-7 4.607xlo-7 ·l.64xlo-6 

"2 -5.419xlo-3 -6.788xlo-2 -4.0SOxlo-2 . 

e2 , l.474xl03 5.200xl03 -3.554xl0 3 

eo 3 5.39lxlo3 5.83lxl03 
1 -l.947xl0 

el 2 5.926xlo2 -l.915xlo2 
1 -2.861.10 

e2 6.417xl01 2.978xlo1 6.982xl01 
1 

ell 1. 769xl04 l.023xl06 l.834xl05 

el2 8.093xl03 l.533xl04 1.062xl04 

·8 9. 21sxio-1 -2.895 5.0llxlo-1 

ln L -1829.7 -1837.0 

.:. ~ 
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APPENDIX A 

In this appendix we demonstrate a method to transform the conditional 

probability statements derived from the necessary conditions (see (21) and 

(22) into the probability statements that are used ·to form the likelihood 

function. 
We need to derive Pr(mt-l = j Mt_2 =~.0, ••• , T-2) for j = 1, 0, which 

·we ·will denote by ljlt-l and 1-ll't-l respectively. To do so, first write 

....... ,,. 
(A.l) Pr(mt-l = 1 l mt= j, Mt_2) = Pr(mt-l \mt= j, t\_2). 

If we sum A.1 over j = 1, 0, we get the marginal probability for mt-l in 

the following form 

(A.2) Vt-l = Pr(mt-l = 1 \ mt = 1, Mt_2) [Pr(mt = 1 1 mt-l = 0, 
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Solving for 't-l' we get 
····~ 

1 + Pr(mt-l = 1 ( _mt = 1, Mt_2) [Pr(mt = 1 \ mt-l = 0, Mt_2) 

- Pr(mt = 1 I mt-l = 1, Mt-2)] 

+ Pr{mt-l = 1 J mt = O, Mt_2) [Pr(mt = 0 r mt-l = 0, Mt_2) -

Now, consider working backwards from T. ~ is known directly from the 
• 

terminal necessary condition (22). From 'T• one can find 

(A.4} Pr(mT = 1 ( mT-l' MT_2 = x) = Pr(mT = 1 mT-l = 1, dT-l = 1, MT_2 = x) 

Pr(dT-l = 1) 

+ Pr(mT = 1 l mT-l = 1, dT-l = 0, MT_2 = x) Pr (dt-l = 0) 

~ Pr(mT = 1 I MT-l = x) Pr(dT-l = 1) + Pr(mT = 1 J MT-l = x+l) 

and similarly for Pr{mT = 0 \ mT-l = 0, MT_2), Pr(mT = 1 ) mT-l = 0, MT_2) 

and Pr(mT = 0 I mT-l = 1, M1_2). Thus, one can find 1'1-l from A.3 given A.4. 

Given 'r-l one can follow the same procedure as in (A.4) to find "T-2 from 

(A.3) etc. 

;. v ,:._ v .:. v 
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APPENDIX B 

The following table contains some information on the Monte Carlo experiment. 

The starting values are 10 percent below the true values. The cost 

information is given below the table. 

·e 2 

'Y2 
eo 
1 

el 
1 

e2 
1 

ell 

el2 
ln 

True Values 

3.4 x 10-1 

2.9 x 10-1 

6.1 x 10-5 

1.1 x io-16 

2.4 x 10-1 

1467 

.92 
' 3 -5.4 x 10-

1942 

-285 

63.7 

17610 

8062 

-1912.5 

L • Likelihood 

Number of Iterations = 19 

Convergence criterion ~lnl = 10-lO 

Starting Values. 

3.1 x 10-1 

3.3 ~ 10-1 

5.5 x 10-5 
.. 

.9 x 10-16 

2.1 x 10-1 

1600 

.84 

-5.9 x 10-3 

1700 

-310 

58.0 

19300 

7200 

-1950.2 

Final Values 

3.1 x 10-1 

3.2 x 10-1 

5.9 x 10-5 

.98 x 10-17 

2.3 x io-1 

1880 

.92 

-5.8 x 10-3 

1726 

-322 

64.5 

21000 

7816 

-1904.1 

.55 min per evaluation 25-30 evaluations per iteration 

IBM 4341 
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FOOTNOTES 

1. Here t refers to life cycle period (age) rather than calendar time per 

se, although for different cohorts t will also correspond to different 

calendar time. We ignore here any calendar time aspect that affects the 

indiv<duai decision. 

2. Note that the no savings assumption is equivalent to assuming a utility 

function that is linear in consumption which is common to some dynamic 

estimate model, such as in search models (e.g., MiJler, (1983) and 

Heckman's statistical model that we present. in the Introduction). 

3. Actually U(•) and NY(•)· need be differentiable only at one point in 

the (0, 1) interval of the m~ variable, as will be discussed later. 

4. Strictly speaking, this is only true if at is i.i.d. or if it follows 

a permanent-transitory scheme. For a more detailed discussion of these 

issues see Wolpin (1982). 

5. Note that in (16) we ignore the unobservable taste elements at and 

at+!• Those elements, if they exist, cannot enter except additively 

in Zt, in order to preserve the validity of the method. 

6. That is, Pr(ni- "1-1, ••• ,m0) = Pr("1_1) for the special case we are 

considering, and similarly for other periods •. 

7. A period is taken to be eighteen mohths and the first decision period is 

age fifteen. 
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-~~~ 

8. The assumption that v: is seri~l!~_uncorrelated greatly simplifies 
.. -~~~,~ 

the dynamic programming solution since households do not have to update 

their forecasts each period. 

9. The number of restrictions is likely to be large since there is on 

average sixteen periods per woman and separate restrictions for each 

period. Twice the difference in the likelihood is 181.2 and the null 

hypotheses that the parameters in column 1 are the same as those in 2 or 

3 would be accepted at the standard sig~ificance level, only if the 

member of restrictions exceeded 150, which seems unlikely. 

10. Additional information on the cost of the estimating the model using the 

necessary condition method is given in Appendix B. 
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