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PRODUCTION FUNCTIONS WITH FACTOR ORIENTED SCALE SENSITIVITY
Abstract

The analysis of economic phenomena at the wholistic (aggregative) level
maintains a long tradition that assumes the neoclassical production func-
tion Q=f(K,L) (i.e., output as a function of capital and labor) satisfies
the condition of constant returns to scale. The assumed absence of any

. (dis-)economies of scale renders the production function useless, when

the scale effect is as pronounced as is typically found at the less aggre-
gative levels of individual firm or industry analysis.

The purpose of this paper is to deduce new classes of production
functions that are not limited to the constant returns to scale characte-
‘ristic. More specifically, the scale effect is described by an arbitrary
function of one of the factors of production, capital in this paper.
"This class of production functions exhibits scale sensitivity with
‘respect to capital (SSWK).

" " The paper shows how different families of production functions can
" be derived from two basic "building blocks," a wage share function and a
scale function. The Cobb-Douglas, CES and VES production fmmctions are

- special cases, The Cobb-Douglas and CES functions can be expanded to

incorporate non-constant returns to scale.

A sample of firms from Taiwan is used to test amonp various derived
- functional specifications. An interesting diversity of preferred speci-
. fications was found among three industries, '
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PRODUCTION FUNCTIONS WITH FACTOR ORIENTED SCALE SENSITIVITY

0. Introduction and Summary

The analysis of economic phénomena at the wholistic level (e.g.
general equilibrium, income distribution, international trade, and growth
theories), maintains a long tradition that assumes the '"Neo-Classical"
production function Q = £f(X,L) (i.e. output as a function of capital
and labor) satisfies the conditioﬁ of constant returns to scale (CRIS).
The assumed<absence of any economy or diseconomy of scale renders the
pfoduction function useless when thé "scale éffecﬁ" is as pronounced as
is typically fouﬁd at the less aggregative levels of individual firm
or individual in&ustry‘analysis.1 The purposé of this paper.ié‘to deduce
new classes of production functions with non—CRTS.‘

Intuiti&ely scale effects can be traced either to the size of labor
(L) or capital (K). 1In the celebfated needle factory of Adam Smith,
the efficiency of large scale production is brought about mainly by the
"division of labor", i.e. functional (or .task) specialization rendered
possible by a larger labor force (L) using simple tools (K). Rural
industries in contemporary less developed countries share this feature
of SSWL (scale sensitivity with respect to labor) with industries of
pre-industrial days.

A modern factory in an industrially advanced country is rather
different. According to Prof. Kuznets, the "modern epoch" is a scientific
epoch characterized by the extended application of science to problems

of economic production.2 It is not atypical that a large number of

*
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engineering principles, drawn from various scienées, is embodied in

an industry's capital stock K (e.g. in the refinement of petroleum
from crude o0i1l). A firm with a less sophiéticated K stock will not be
as efficient, nor even as feasible, from the engineering standpoint.
This‘characteristic of production may be referred to as SSWK (scale _
sensitivity with respect to capital). This paper derives a new family
of production functions ~- i.e. the SSWK family -~ incorporating this

characteristic.

When the production function is given, the construgtion-procedure

“ begins with a scale.index,'of scale function, 8 = s(x),-defined,for'every
point in the 1npﬁt space, such that s > 1 (s=1, or s<1) implies IRTS |
(CRTS or DRTS) in the ordinary sense. The definition of a SSWK function
is that the scale function is a function of the capital stock alone (i.e.,
8 = s(K)). The basic theorem, which will be proved in section 2, is that
the necessary and sufficient condition for SSWK is that the wage share

¢L = fLL/Q is a function of capital per head, k* = K/L. Notice that

" which becomes the wage share

4y is the "labor elasticity of output,
when real wage w is equated with the marginal productivity of labor (fL)
(i.e., w= fL). Under this assumption, both k* and ¢L are statistically
observable, and hence, whetﬁer or not a production function is SSWK, can
be verified empirically.

Lst W be the set of all SSWK functions. Many production functions
familiar to economists (e.g., the Cobb-Douglas, the CES and VES functions)
are homogeneous functions, which, in turn, are members (i.e., special

cases) of W, Using group theoretic concepts, we shall show that W can be

partitioned, or classified, into subsets Zi, such that each subset




contains members that are a constant multiple of each other, and they all
have the same share function h(k#*) and scale function s(K). Moreover,
when the pair [h(k*),s(K)] is given, we can construct the SSWK function
in any subset Zi (see corollary 3). Using this method, we can construct
not'only the familiar functions mentioned above, but also new classes of
production functions in parametric form.3

In addition to scale economies or diseconomies, the interests of the
economists in the neoclassical production function naturally center on
factor substitutability (e.g., as me#sured.by e, the elasticity of sub-
stitution) or the severity of the law of diminishing returns to labor
(e.g., as measured by €L the elasticity of fL with respect to L).
Almost all wholistic economic tﬁeqries (e.g., population pressure, income
distfibutiop fheofy; etc.) emphasize these properties to reach meaning-
ful.conclusions. If any preconceived knowledge is postulated for €
and/or eL#, restrictions are imposed on W, i.e., subfamilies of W can
be 1dent1fied. We shall show hoﬁ-to construct the pair (h(k*),s(K)],

and hence, as indicated above, the associated SSWK function, when suitable

¢ and/or e . are postulated.

LL
One suitable wav to postulate the elasticityv éf substifution is to
assume that it is a function of k* (i.e., € = e(k*)), rather than a
function of K and L separately. For example, the existing literature
has deduced the CES function (i.e., when e'(k*) = 0) and the VES func-
tion (i.e., when €'(k*) # 0 with a specific form). (See section 3.1).
These specifications are special cases of homogeneous functions. 1In
our paper, we shall deduce stronger results by showing that any func-

tion € = g¢(k*) will lead, penerally, to a homogeneous function.

The only exception is a constant € (i.e., €'(k*) = 0), which




may lead to a particular type of nonhomogeneous functions.& In other
words, when ¢ is constant, the production function need not be Cobb-
Douglas or CES, but will take on a particular parametric form given
"in the tegt. Thus, statistical tests of scale economies under the
assumption of constancy of e are incompléte when Cobb-Douglas or CES
are postulated.5

In section 3.2, we shall first show, that, for every SSWK function,
ey measuring the severity of the law of diminishing returns to labor,
is a function of k*, i.e., ey = 0(k*). PFurthermore, when a suitable
specification of e = 8 (k*) is.postulateds a share fun;tion b(k*)»can
- be deduced, and hence a subaet.ofvw carrying arbitrarily specified scale
functions is found. We should nbte here, that the specification'of
€= e(k*) or e,
; of a production'function, but these entry points are not ccapletely
independent of each other.

In section 4, we outline the empirical investigation on basis of
a particulaf specificatibn of é SSWK production function. It is an
application of the basic idea that an empirically observed functional
relation between ¢; and k* constitutes inductive evidence that the
production function is SSWK, But information on the scale function is
necessary as well to determine the exact shape of the production func-
tion, Wﬁile scale 8 is unobservable, estimating the production function
yields estimates of the parameters of the scale function. The methodo~
logy bf section 4 uses the assumption that random variation of quantity
produced Q around a deterministic amount as dictated by the SSWK function
is correlated with the random variation of the observed labor share ¢L

around a deterministic value h(k*) derived from that SSWK function.

= g (k*) proﬁide different entry points in the construction




In other words, the production function and the share functién must
be gstimated simultaneously.

This estimation procedure is implemented using data obtained from
firms in Taiwan in three different industries: agricultural machinery,
electronic equipment, and cotton textile. While the sample size in
each industry is not large, and the quality of the data set could be
better, the empirical results reported in section 5 are encouraging in
regard to the validity of the SSWK methodology exﬁlored in this p#per.
It appears that the production processes of these three industries are
characterized by different types of production functions; one of them
being non-SSWK and &nother being a new non4hoﬁogeneous specification
defived in section 3.2, Nevertheless; these results are illustrative
only, and form no solid basis for rigorous conclusions.

We now turn to a technical discussion of the issues above.




1. The SSWK Production Function

Let a production function
(1.1) Q = £(X,L)

~ be given. The partial elasticities of Q with respect to K and L will be
denoted by:

f L f K
L >0, and LS

- (1.2)

¢L, Q

: e £ =22 f =29 : ; .
where 'fL Y7 > 0, and fK 5K > 0. let s, defined as:

1.3)  s=gp g0,

be referred to as the scale index, which can be defined for every point
in the input space. The basic definition of a SSWK function is that the

scale index s is a function of K alone, i.e.,
(1.4) s =g8(K) >0,

which will be referred to as the scale function.

To see the meaning of s, let R.x denote the percentage increase of

»K

a variable x, when both K and L increase by one percent, i.e.,

. dx
(1.5) RR,K =K

W

where L=xK for any » > 0.

In other words, Rx K is the elasticity of x under a radial expansion of

’

the input space. In this notation, it follows immediately that:

(1.6) a) RQ,K = g

b) Rp,K =5 -1 -




where p = %-. Thus, under a radial expansion, output Q and labor pro-
ductivity p increase by s and s-1 percent respectively, when K and L
increase by one percent.

If a production function is SSWK, then:

(1.7) a) RfL’K s -1

B Rk

=0

(Proof: Partially differentiating s(K) Q = fK K + fL L with respect

to L yields:

SszfIQK+fLLL+:fL’

which implies:

£ .. K f_ L
. LK LL
(1.8) s-1= : + — .
fL —fL
But R —ﬁx__-:(f 4+ f i)'K_=fLKK+fLLL
fL,K dK fL IX LL dK fL fL fL
=35 - 1. ‘
Here we used the fact that L = A K.
R =R =R - R = Q. .E.D
oK - e £,k " p,K Q.E.D)
»

Thus the impact of a radial expansion on fL is the same as the impact on
labor productivity p., This implies (1.7b), which states that the value
of ¢L is uniquely determined by capital per head, k* = K/L., In this paper

we shall refer to any function X(K,L) as SI (scale insensitive) if it
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18 homogeneous of degree 0 (i.e., X(K,L) = X(AK,AL) = V(k*) for any X > 0),

so that X(K,L) is a function of k*. Thus:

(1.9) For any SSWK production function, the share function is SI, i.e.

8, = Bk,

A homogeneous production function of the n-th degree is defined as:

(1.10)  f(K, AL) = A"f(K,L) for all 1> 0
~*We have the following lemma:

. Lemma 1: A production function is a homogeneous function, if and only
if its scale function is a constant mn, i.e., if and only if
(L.11) 0= s(K) = ¢y + ¢,
(Proof: "only if" part:
Differentiate (1.10) with respect to ), and apply definitions
(1.2) and (1.3).
"if" part:
For every K and L: 8(K) = n = b + op
or:

£ (K, L)K/£(K,L) + £ (K,L)L/£(K,L) = n
Then for every K, L, A, the following holds:
fK(AK,AL)AK/f(AK,lL) + fL(XK,AL)XL/f(AK,XL) = n
which can be written as:

A g-;{zn £OK,AL)} = n




Integration yields:
2n £f(AK,AL) = ntn A +in A
or

f(OK,AL) = "

To find A, set A = 1
A= f(K,L)

Thus  £(AK,AL) = \P£(K,L) Q.E.D.)

Lemma 1 shows that every homogeneous fucntion has a constant scale funcfion,
s(K) = n, a special case of s = s(K). Let W be the set of all SSWK
functions and } be the set of all homogeneous functions. Then Lemma 1

implies Corollary 1l:°
Corollarv 1: All homogeneous functions are SSUWK, 1i.e., )(VC W,

).( contains the well-l;ndwn (in economic analysis) Cobb-Douglas, CES and
VES fmctions,'which are special cases of SSWK functions. The share
function of each of these is a function of k*, and their scale functions
are constant. Furthermore, any nonhomogeneous function f € wnf( has a
scale function s(K) which is not a constant (i.e., s'(K) # 0).6 In section

3.1, we shall derive nonhomogeneous versions of the Cobb-Douglas and CES

functions in wnR .
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2. A Classification of SSWK Functions

‘Let W be the set of all SSWK functions. Let 3:-{'2} be a family

of non-empty subsets Z of W. ;F is a classification of W if

(2.1) 8) W= z%;z

b) z.nZ =@ foranyz,, z, € F

In this section we shall show that W can be classified such that all

. ¥ belonging to the same subset Z not only have the same share function

. but take on a particular product form:
©(2.2) Q= f(KoL) = C(K)H'(KOL)

This result leads to a method for the construction of SSWK functions
in parametric forms (see section 3.1 and 3.2).

In order to classify W, we shall make use of group theoretic
concepts. Notice that f(K,L) = 0 and f(K,L) = i and f(K,L) ; c(K)

are all special cases of SSWK functions, This is summarized as:

Lemma 2 : 0, 1 and C(K) are SSWK functions
(Proof: The scale functions of f(K,L) = 0 and f(K,L) = 1 are
8(K) = 0, and the scale function of f(K,L) = C(K) is

s(K) = C'(K)K/C, which is a function of K. Q.E.D.)

We shall exclude f(K,L) = 0 from W,
W can be considered as a multiplicative Abalien group. Conditions

for this td be true are7: (1) W must be closed under multiplicative
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operation; (ii) W must contain a group identity element, which is
f(K,L) = 1: (iii) if f¢ W, its inverse must be an element of W, which
is f-l -% t (iv) for an Abalien (or commutative) group, f-.g = g-f,
Since (1i) and (iv) are satisfied, we only need to prove (i) and (iii).
If £¢ W, we shall use the notation (¢{ . ¢;', sf), with a superscript
f,‘ to denote its share functions ¢L’ - its ¢K and its scale function s.

The following lemmas prove (i) and (ii1i) and thus establish the fact -

that W is an Abalien multiplicative group.

Lemma 3: W is closed under multiplicative operation, f.e., if f,gé W
then f.g €W, Moreever:

(2.3) &) 6% = o] +oF

B) 65 = of + o8

c) sfg-sf+sg

(Proof: —-aaL 831 + f 3L
or 058 w (g 2f L s 38 L f g
So: ¢ = Bap*+ i "Lt

This proves (2.3a). The proof for (2.3b) is similar.
(2.3¢c) follows from (2.3a) and (2.3b) by definition (1.3).

g

Since sf and s° are functions of K, their sum is a function

of K, and the function fg is SSWK and a member of W. Q.E.D.)

Lemma 4: For any fé W, the inverse f-le W. Moreover:

-1

(2.6) &) of = -0
-1

f £

b) of = - of
-1

c) sf = - sf

£-1 -
(Proof: lal_ = ~f 2 :—f‘ , from which (2.4a) follows. Similar for

(2.4b). (2.4c) follows from these by definition (1.3). 0.E.D.)
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8
Lemmas 2, 3 and 4 imply that W is a multiplicative group.
Next, we seek a suitable classification ?; of W, If B is any sub-~-
group of W (i.e. BCW and B is a group), then for any f ¢ W, the coset

determined by f relative to B is defined as:
(2.5) 2 (f) = {f-g| g€BYC W

Note that ZB(f)C. W. Let ?B be the set of all cosets determined by B,

It is well---‘know.m,9 that W is partitioned (or classified) by }B’ i.e.

" (2.6) W= U Z
- ZEf,

" Thus every subgroup B induces a classification of W, where-a coset
represents a particula‘r class for this classification.

As an anplicati:on, let B= {C(K)} be the set of all -funétibns of
K. A member C(K) of B can be considered a production fimction. 'Thei
economic 1nterprgtation of Q=C(K)€ B is that of a produc;tion function in
a "labor surplus" economy, where output depends only on the. capital
stock. For example, the well-known Harrod-Domar production function
Q= %( K is a xqember of B, where k is a constant capital-output ratio.

Lemma 5 establishes the fact that B = {C(K)} 1is a subgroup of W:

Lemma 5: B is a subgroup of W, Moreover, if C(K)€ B:
(2.7 a) 65 =0 |

¢ dC K
b) ¢y =FKT
dcC

K
© S F<e

(Proof: The proof of (2.7a) to (2.7c) is trivial., That B is a

subgroup of W follows readily from: (i) f(X,L) = 1 € B;
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(ﬂ) for any C(K) € B, c(x)"le B; (i1ii) for C(K), D(K) € B,

C(X)-D(K) € B. Q.E.D,)

Thus B induces a classification 7% of W in the sense of (2.6). If f = H(K,L)
is any member in a coset ZB(H), all the production functions in the coset

ZB(H) take on the form:

(2.8) Q= C(K) H(K,L)

where H(K,L) € zB(H); and C(X) € B.
{2.7a) and (2.3a) imply Lemma 6:

Lemma 6: All SSWK production functions f in the same coset ZB(H) have

the same share function ¢i '-¢§'
Now we can formulate the basic theorem of this section.

Theorem 1: If Q = f(K,L) has a share funcfion which is SI (i.e., ¢i = h(k*)),
then: |
(2.9) a) £(K,L) € W, i.e., f 15 a SSWK function,
and if, in addition, the scale function of f(K,L) is S(K), then
f(K,L) takes on the form:
b) Q= f(K,L) = C(K)*H(K,L)
where H(K,L) € W and can be calculated from h(k*) by:

. *
¢) HEK,L) = e* with R -}-’-‘i%—l dL

and C(K) is a solution of the following differential equation:

dC K 3R
d) dK C ™ s8(K) - h(k*) - K 3K

(Proof: Rewrite the expression ¢L = h(k*) as:

i% - 2R 4,
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Integrate both sides while treating K as a constant:

¢n 0= &n C(K) + R

or: 0 = f(K,L) = C(K)-H(K,L),

where R and H(K,L) are as defined in (2.9c). Since C(K) € W,

f€W if H € W, by Lemma 3. That H € W, follows from:

H

s ,-¢}g+¢§-h(k*)+xan

E3

38" _ 3h(k*) + g 2QR/AL)
3L 3L }®

h' K . 3(hOR) /L) |
T2 + Kk

803

0.

So f€ W. (2.9d) follows, using (2.3c), (1,3) and (2.7c), from:

C. H dCcK R
s(K) =g + 5 = -CE'E-'- hk*) + K 3K Q.E.D.)

The following corollaries follow:

Corollary 2: Q = f(K,L) is SSWK, if and only if its share function is SI.

(Proof: by (1.9) and Theorem 1)

Notice that, ideally, k*, capital per head, and ¢L, wage share, are obser-
vable.10 if there exists a high correlation between observed values of k¥
(rather than K and L separately) and ¢y (e.g., across firms, industries,
or repions), then there is a strong presumption that a production function

is a member of the SSWK family.11

Corollary 3: Two SSWK functions f, g belong to the same coset ZB’ if and

only if they have the same share function (i.e., ¢€ - ¢§).
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(Proof: Lemma 6 implies the "only if" statement. The "if"
statement is implied by (2.9b), for f and g can be written
as f = C(K)H and g = D(K)H, where C(K), D(K) € B. Thus

f and g belong to the same coset. 0.E.D.)

Let 7- {h(k*)} be the set of all functions of k*., Then corollary 3
implies that there is a one to one correspondence between }B and 7.12
‘Thus, every coset is characterized by a distinct share function,
Theorem 1 suggests a computational procedure of SSWK functions of
a particular parametric form from the share function and the séale
function, i.e. from the pair [h;(k*) . s(K)J,. as summarized by ‘the
following corollary. In this corollary, B = {s(K)} is now interpreted
Aas the set of all scale functions while = {h(k*)} 1is the set of all

share functions.

Corollary 4: From the pair [h(k®), s(K)] (i.e. s(K)€¢B, h(k*)€ J)
a particular SSWK function Q = C(K)H(K,L) can be constructed
"from equations (2.9c) and (2.9d), which is unique up to a

multiplicative constant.

TB_ classifies W according to the set B of functions of K and thus
leads to cosets that all have unique share functions. A still finer
classification is possible. Consider the set J° of constants, excluding O.
I 1s a subgroup of W. Similar to our discussion related to B above, |
induces a classification of W into cosets Zi, where functions in each
cosets Zi have the samebpair [h(k*), s(K)] and differ only by»a multi-
rlicative constant. These Zivcosets are. subsets of the cosets under the
}B classification. Corollary 4 indicates how the production functions in

each coset Zi are coinputed.




~16-

This computational procedure is applied in section 3.1 and 3.2, where
we consider production functions that have particular characteristics
in felation to the elasticity of substitution‘between K and L, and the
strength (severity) of the law of diminishing returns. As we shall see,
these characteristics pose certain restrictions on the form of the
functions h(k*) and s(K) which, by corollary 4, determine the parametric
form of the production function. Using the same methodology one can

derive still other subfamilies of SSWK functions.
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3. Two Applications

In the previous section it was shown that a particular SSWK function
can be constructed from the pair [h(k#*), s(KZ]. In this section we
consider production functions that have particular characteristics in
relation to the.elasticity of substitution between K and L, and the
strength (severity) of the law of diminishing returns to labor. These
characteristics pose certain restrictions on the form of the functions
ﬁ(k*) and s(X), which, by corollary 3, detefmine the parametric form
of the production functions. Using the same methodology one can derive
still other subfamilies of SSWK funcfiops.

Given a neoclassical production function f(K,L), economists are
interested invits behavior for three tfpgs of variations in the input

space (see figure 1). Starting from pointvE, a radial movement (arrow 1)

K
/7
/
/
3/
/
4 / 1
’ 2
/'A
,/ E
/
/
/, -
J ‘Q = £(K,L)
L
Figure 1

focuses on the scale (dis-)economy as measured by the scale index s. For a
horizontal (vertical) movement of arrow 2 (3), the interest is on the law of

diminishing returns to labor (capital), the strength of which is measured

. by eLL(eKK)’ which is defined in section 3.2. A pivotal variation, i.e.




(1)

2)
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a variation of k* (arrow 4), focuses on factor substitutability as
measured by the elasticity of substitution €. In short, scale economy,
the laws of diminishing returns, and factor substitutability are the
major engineering characteristics that have a bearing on all the éocial-
economic problems envisioned by the neoclassicists when a production func-
tion f(K,L) is postulated. Our purpose in this section is to construct
SSWK functions, of particular parametric forms, when certain "desired"

properties are postulated for ¢ or e Needless to say, what is "desired,"

LL®

- can only be a matter of econometric usefulness and/or analytical convenience,

a full justification of which is beyond the scope of this paper.
" The following schedule, containiny certain definitions, is:a. classi-

fication device with 14 cells (indéxed by (A), (B),«.., (N) for convenience

(2)
(1) Desired SSWK function

Index Characteristic of Index Homogeneous Non-homogeneous
- = ' A )
€ S1 SI-C e =1 CDy, (4) CDyry (®)

B
c#1 CESH (B) CESyy €1))
(E) ’ ¢

SI-V Ex: VES, VES

CED;{H VE%RH
non=S1 (G) | Ex: ACDyy ()
’ CEDRNH VEDRNH
ey ST SI-C CEDR,, (1) CEDRy, &)
- . K . L
SI-V Ex: VEDR, (K) | Ex: VEDR_,, ¢ )
non-S1 M) @)

Schedule 1
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of reference), that provides a guideline of the analysis in this section.

Column 1 describes the index, € and e L’ while column 2 distinguishes

L
homogeneous from nonhomogeneous specifications.

Let us start with €, the elasticity of substitution, in row 1. 1In
the first column, € mav bé specified to be SI (scale insensitive) or
non~SI (scale sensitive), as defined in section 1. Intuitively, the
former implies the simplifying assumption that factor substitutability

is the same for large and small produétion units, and hence the scale
of production is irrelevant for factor substitutability. Econonmists
routinely take advantage of this simplifying assumption when they work
with Cobb-Douglas, CES or VES functions. These familiar functions ﬁill
naturall& enter into our Analysis (cells (A) through (F)), tut we shall
also construct production functions, for which e is non-SI. There is
a whole family of production functions; we can only give some examplés
‘in cell (H), one‘of which is given the name Augmented Cobb-Douglas (ACDNH)’
“and we prove that fhe entire family consists of nonhomogeneous functions,
i.e., cell (G) is empty (see Lemma 7 below). Moreover, we derive a
condition which an arbitrary specification € = € (K,L) must satisfy in
order to yield a SSWK function in cell (H).

In this section, we shall refer to f(K,L) as SSI (substitution scale
insensitive) when ¢ is SI. The family of SSI functions includes two
classes: a SSI-C class for which ¢ is constant, and a SSI-V class for which
¢ is variable. The first (SSI-C) class contains both homogeneous and
nonhomogeneous Cobb-Douglas and CES functions (cells (A) to (D)).13 The
second (SSI-V) class is more complex, because the simplifving assumption

of the constancy of ¢ is dropped. We prove that this class contains only

homogeneous functions (cell (F) is empty), and we give some examples,
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one of which is the familiar VES function, in cell (E).
The same construction procedure and classification device is applied

when "desired" properties are specified for e ., which measures the strength

1L
of the law of diminishing returns to labor (row 2 of Schedule 1). To our

knowledge, this is a new exercise in economics, which is worthwhile in
view of the fact that probably more social-economic problems (e.g., popu-

-lation pressure and determination of rent) are directly traceable to this

' "law," which, in any case, has a much longer history than factor subhstitut-

ability. We shall prove that e . is SI for all SSWK functions (Lemma 11),

LL

- 50 that cells (M) and (N) are emptyv. Two examples are presented, one

where the law of diminishing returns operates at a constant strength (eLL

. is constant, CEDR in the schedule), and one where it varies (VEDR), in
cells (I) to (L). Notice that these functions also enter in cells (E)

. and (), testifying to an interdependence hetween ¢ and-e which,

LL?

however, we do not explore further.

3.1 FElasticity of Substitution

In this section, the relationship between the concept of elasticity
of substitution (¢) and the pair [h(k*),s(K)] will be investigated. e

measures the substitutability between K and L. Let m = fL/fK. Then, in

this paper, ¢ is defined as:la

(3.1 £ = = — for Q=0 or dK/dL = -m
We have the following lemma:

Lemma 7: ¢ is SI for all homogeneous functions.
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(Proof: Write m = ¢L‘k*/¢K' Since homogeneity implies SSWK by
Corollary 1, ¢L = h(k*). Then ¢K = g5 - ¢L = n - h(k*) implies
that ¢K is also a function of k*, Thus, m is a function of k*

and hence ¢ is SI by (3.1). _ 0.E.D.)

This proves that cell (G) in Schedule 1 is empty.
Within the class of SSWK production functions, the relation between

¢ and the pair [h(k*), s(Ki] can be expressed in terms of the share elas-

ticity (i.e., ©h = FE h ), and the scale elasticity (i.e)., € T F "
¢ ¢
L K

(3.2) £y sttt 7 (- 1)

The proof of (3.2) is somewhat lengthy and is given in Appendix A. For

a homogeneous function,'s(K) = n and es.= 0, so thgt .Eh = ¢K(c - 1)/ﬁ.
for thié special caée, in a capital deépening process, where k¥ iﬁcreases,
the labor (capital) share ¢L (¢K) increases (decreases) when ¢ > 1.15
However, for nonhomogeneous SSWK fﬁnctions, the value of ¢ cannot unambi-
guously determine the direétion of the change of these shares, as (3.2)
contains an additional term, involving es.. Whether € is positiQe (i.e.,
rising scale economies) or negative (i.e., falling scale economies),
apparently makes a difference in income distribution theory that needs

to be explored. (3.2) points out that the effect of capital deepening
during a growth process contains a scale economies effect and a substitution
effect on the functional income distribution.

Equation (3.2) is used for the following basic theorem of this section

on the important class of SSI functions, which is proved in Appendix B,

Theorem 2: Within the class of SSWK functions, if few is SSI ({.e.,

substitution scaie insensitive, so that ¢ = e¢(k*)), then:
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(1) if f is SSI-V, then f is a homogeneous function (i.e., f€ X)),

with a general form (2.9b), where C(K) and H(K,L) are constructed

from the pair

(3.3)a)

h(k*) =n A exp(J;)/(1 + A exp(J;)))
b) s8(K) = n
where A is an integration constant, and where
) 3, TJ'{(e(k*) - 1) /k*} dk*

using Corollary 4,

(i1) if f is SSI-C, then four specification are possible:

Homogeneous production Non-homogeneous production
functiqn function
1 (a) 1 ©)
$; =0 - o~ ¢ e *
L Al L A1 bgn k
e=1f{ s=n A, -bnk
A
= AROLTTC - —1-bgn k* . 1/b
Q L Q=4A{7g — Wn e
6. = (1 -e)/b (B) - »(l-e)/b - (D)
£ . -
L anl 1, Ly —Al*(k*)l
- (1-.)/b
e #1 s=(1=)/b=n s = /1_£
1- A%
n
- P *E-l - * 1/b
Q=4 {Ll € 4 %-Kl €y Q = A{ kg—l A%y
R 2 K - Az*

in cells (A) to (D) in Schedule 1.

Notice that theorem 21 implies, that cell (F) in Schedule 1 is empty.
Furthermore, the functions formulated in the above schedule are the

homogeneous and nonhomogéneous Cobb-Douglas and CES functions indicated

The construction procedure of Theorem 2i allows us to construct a

large number of homogeneous SSWK functions when the elasticity of substi-

tution is suitably specified (but not constant), so that the integration
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problem in (3.3c¢) can be solved. The following are merelv examples:

A

(3.4)a) e =1+ 1 -
1+ A k"1
2
- 8
b) ¢ =
Lo g™

5
&) Q= a8 (14 pamAly AL

where, for ease of notation, A2 = (n-8)/n8.

R A

(3.5)a) € BiAy
s

b % T

-5 8. :
o) 0= a0 (1eskm®
where y = (n=§)/n
The specification in (3.4c), labeled VES, in this paper, is the
familiar VES function (Lu and Fletcher, 1968). (3.5¢) is called VESZ.
On closer examination, VES2 is a special case of VESI, by setting Al = -]

in (3.4), but we shall see why VES, is of special interest.

2
Theorem 2 is "constructive" in the sense that an SSWK production
function can be constructed when the elasticity of substitution is
arbitrarily specified as a function of k*, i.e., € = €(k*). The question
still arises whether a SSWK function can be derived from a non-SI speci-
fication of £, 1,e., € = €¢(K,L)., Lemma 7 already shows that the SSWK

function must be nonhomogeneous. The following lemma states the restriction

on the function ¢ (K,L) necessarv to derive a SSWK function from the pair

[e®,n), s®@].

Lemma 8: If f(K,L) is a given SSWK function and its elasticity of
substitution € = ¢(K,L) is non-SI, the function e (K,L) must be

such that ¢L is SI, where ¢, equals:

L
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-1

3e
1 €s k* s 3E J¢e
(3.6)a) ¢y, = [:* ey e+ D) - FER/GE kD)

or in elasticity form:

€s » : ’ -1
b) ¢ = s [1 + ET;;I;;Y (S(ES -e+1) - nes)]

where:
o n oK 2L S sk
K 9K ¢? L . 3L e? nes 9K €

h is SI. Then

differentiate (3.2) with respect to K and L, realizing that

(Proof: If £ is SSWK, then ¢L = h(k*) is SI, so €

’ash/a'L =—k* 3g, /9K, Solving for ¢, gives (3.6a). 0.E.D.)

We see that when £(K,L) satisfies the restriction, {3.6) immediately

yieids a solution for h(k¥*), from which, combined with s(K), a production

function can be constructed, by Corollary 4, Thus, Lemma 8 characterizes

the family of SSWK functions for which ¢ is non-SI,; cell (H) in Schedule 1;
We close this section with two econometric notes. Theorem 2ii

implies that a constant elasticity of suBstitutiOn and homogeneity are

two distinct, separately testable assumptions., While not a new conclusion,

if is significant, nonetheless, in the light of much empirical research

(e.g., some studies cited in footnote 1), When ¢ is constant, and

perfectly competitive input markets are assumed, one can integrate (3.1)

to obtain:

i
€

1

w
(3.7 fn kx = ﬂn(—;) - = in A2

If (3.7) is estimated and the value of %- is found significantly different
from unity, that is not evidence that CESH is obtained, but rather, at

least within SSWK, that some member of SSWK is found with e # 1, which
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may or may not be homogeneous. For example, testing for IRTS under the
assumption that CESH is obtained (e.g. Griliches and Ringstad, 1970) may
lead to false conclusions.

As a final note, VES, reduces to CESH when n = §. VES_ reduces

1 2
to CDH if R =0, A straightforward generalization of VESz-is obtained
by specifying a variable scale function (3.8a) and retaining the share

funcfion (3.5b):

(3.8) a) () = o

8
b 4t TR ,

o) 0= AR 018 148k ¢ (1) ™

This specification, which is non-SSI, is an alternative in testing the
relative 1ﬁportance of the hoﬁogeneity and € = ] assumptions for the often
vused Cobb~-Douglas form (and hence is called ACDNH): if o is more
'siénificaﬂtly different from 0 than R, the homogeneity assumption is
shown:to be more restrictive than.the € ;‘1 assumption in the CDH

specification, and vice versa.

3.2 Diminishing Returns to Labor

A second application of the method to construct SSWK functions
relate to the "law of diminishing returns" to labor. The potential
severity of this law is essential to most production-related social
issues, such as population pressure, and pressure on wages and interest
rates. A measure of the severity of the law can be developed as follows.

For a general production function Q = f(K,L), a number of reasonable

properties are usually postulated for the elasticities defined in (3.9a):
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. . : of, L af K i} £ L K
LL 1K oL £ 3 £ £ f
(3.9) a) - - L
. . oy L of K frr i £ K
KL KK 3L £ K £ £, £
b) eLL>0 i€ :’LL<0
9) e ™ ek ¢L/¢K >0 : if £ = fLK >0
d) epe > 0 . OAf feg <O

ey > 0 1s the labor elasticitv of fi’

““of diminishing returns to labor. "In (3.9c), e,  and e/ are vositive,

depicting the severity of the law

depirting the laws of factor compleméntarity.

Using (3.9), ve obtain the following lemma.

Lemma 9: For any SSWK function f, i.e., f € W:
(30 10) S -.1 Lt eLK - eLL
(Proof: see (1.8) and the definitions of eI and ey Q.E.D.)

Thus, under SSWK, the case of IRTS (s > 1) is assured by the fact that
the law of complementarity overwhelms the law of diminishing returns to
labor (eLK > eLL).

To investigate the behavior of h(k*), let €y denote the elasticity

of the share function, as before in equation (3.2). Then:

Lemma 10 For any SSWK function:

(3.11) e, = ¢L +e. -1 : where €y = (dh/dk*)k*/h

h LL _
(Proof: Differentiating £n ¢L = 9n fL +2nL-2n0

yields: d¢L/¢L = de/fL + dL/L - d0/Q
But: de/fL = -eLLdL/L + eLKdK/K

dQ/Q = ¢LdL/L + ¢KdK/K




-27~

dk* = d(K/L) = (LdK - KdL)/LZ
or dL/L - dK/K = - dk*/k*

Thus
d¢L/¢L = (1 - e ¢L)(dL/L) + (eLK - ¢K)(dx/K)

= (1l ~e - ¢L) (dL/L ~ dK/K)

LL
by (3.10) and (1.3). So:

d¢L/¢L’= -1 - e = ¢L)dk*/k* 0.E.D.)

Lemma 10 implies that the share function increases with k* if
¢ > 1 - ey and decreases if $; < i - e In the former (latter) case,
the wage share increases (decreases in a capital deepening process. 1In
view of Lemmas 9 and 10, ;s As a measure of the severity of the law of
diminishing returns to labor, is a crucial characteristic of th SSWK family.

Notice from (3.11), that e.. is SI, because both €y and ¢. are SI.

LI L

" This is summarized in Lemma 11l:

Lemma 11: For any SSWK function, tke labor elasticity of the mérginal

product of labor (fL) is SI, i.e., e . = B(k¥*).

LL

Therefore, in the SSWK family, and ¢L determine each other. Moreover,

‘LL
Lemma 11 implies that cells (M) and (N) of Schedule 1 are emnty,.

Now for a given e . = 6(k%), ¢L = h(k*) is the solution to the

LL

differential equation (3.11). Then Corollary 3 and 2 imply that e ., = 6(k%)

LL

determines a coset carrying an arbitrary scale function associated with

8(k*). The solution to (3.11) is:16

(3.12) ¢ = =N { / (—L‘;) diry

%)
where N=exp { [ gﬂ‘—};}—l- dk*}
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Many SSWK functions in particular parametric form can be generated.
Here we shall give two examples, The first is the SSWK function with

constant e = 8, called the Constant Elasticity of Diminishing Returns

(CEDR) function. It is given in (3.13):

(3.13)a) e = )
1 ~-96

I e =

1

) q=ael !4

- where J = { §é51 dK. There are restrictions on the parameter domain:
a2aif-0< 9 <1 and B> 0, then 0~5-¢L~i 1-8; b if 0 <8 <.1 and B < O,
then 1-6 < ¢Li 1 and k* < (- %)Q’_l-e); and ¢ if 8 > 1, then B < D

8, (1/1-8) : .
and k* < (--3) . The scale function can be chosen freely; if

s5(K) = n and B = 0, CEDR reduces to CDH' One can easily check that ¢

is not a function of k* unless s(K) = n,

The second example is intentionally chosen to link up with CESNH’

Now, ey varies with k*, and hence this function is called VEDR:
_ l1-¢- A,
(3.148)a) e, = + €
e a e
A
2
b) ¢ =
Lorea

: o/ 1-¢
c) Q=A eJ (k*c-1 + Al)A2

A more general form than (3.14a) seems to present difficulties when solving
the integrals in (3.12). Again, one may generate homogeneous as well as

nonhomogeneous functions from (3.1l4c) by specifying appropriate scale
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1-8,. -1

functions. If one chooses s(K) = As(l + A4 K™ ) , the production
function, called VEDRNH’ becomes:

[1-¢ -A_/1-8
(3.14)c") Q= A (k71 4 AI)AZ &t eay

If one restricts A2 = AS and ¢ = §, CESNH returns., Thus, one can
test whether the particular scale function necessary in obtaining a
constant ¢ (see box in Theorem 2ii) {is restrictive in a statistical

sense,
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4, Empirical Specification

So far, we have derived analytical expressions for the production
function under alternativg assumptions. The next step is to subject
these specifications to an empirical investigation. When e is constant,
four specifications can be tested against each other, namely the homo-
‘geneous and non-homogeneous CD and CES functions. As seen in the previous
section, the difference between the most elaborate function, CESNH’ and
the simplest function, CDH’ is two parameters.

€ need not be constant, however. When e¢ varies with k* (i.e., is
"SI-V), the scale function s(K) is constant, according to Theorem 2i, and
examples of resulting production functions are VESl-and VESZ. Looking
at characteristics of ey We found the CEDR and VEDR specifications.

All these specifications are linked together by simple parameter restric-
tions. This section puts forth a framework that allows testing the statis-
tical significance of these parameters. The maintained assumption is -
that the production function is one wifhin the class of SSWK functions,
which can be challenged, of course, at the cost of more elaborate speci~-
fications.

At the start of empirical analysis, we are faced with the question
why observations do not follow one of the specifications perfectly. Since
we consider the production function as a product of building blocks, the
share and the scale function, a logical approach would be to assume

| random variation around the value of these functions, But scale ({i.e., s)
{8 an unobservable variable. Quantity produced on the other hand is

observable, and its random variation around a deterministic value f
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will depend in part on random variation in the share of labor and the
scale of nroduction. 1In this way, we are led to the behavioral mpdel

of Zellner, Kmenta and Dreze (1966) with the assumptions that the entre-
preneur maximizes exmected profits at a time that random variation in
broduction is still unknown, and that the realized demand for labor
contains managerial errors due to inertia, ignorance, etc.

" To be more precise, let u, and u! enter exponentially into the

1 2

production relation and the marginal-product-of-labor felation respectively:

(4.1) Q
(4.2) w

]
h
o

L]
h
n

Equation (4.2) can be written as a share equation:

e '_
u u Ul 02

2
A = = = =
(4.2) ¢L wL/0 fLLe /Q (fLL/f)e he
Let us take the logarithms of (4.1) and (4.2)':

(4.3) nQ = anf + uy

(4.4) tng, = tnh + u,

The wage share is a variable in the interval [0,1]. Thus — §_2n¢L < 0,
This imposes a restriction on u2:
(4.5) u, < - ¢nh

As suggested above, the errors Yy and u, will be correlated. Ve
assume that (ul,uz) are jointly normally distributed with mean (0,0) and

covariance matrix I where:

(4.6) £ =
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Using these assumptions, it is straightforward to write the log~
likelihood function  as:

n n

= . -lf
(4.7) f = [ tn gluyg,u,038) = T n 6(-0,, nh))
i=1 i=1
where Uy = ani‘- lnfi; Uy, = £n¢Li - znhi; g is a bivariate normal

density function with mean (0,0) and covariance matrixf; and ¢ is the
standard normal cumulative distribution function. The second sum in
(4.7) represents the truncation on u,, as given in (4.5).

Maximum likelihood estimation appears the most suitable estimation

)

"< technique, in the face of the nonlinearity in the parameters, the cross-

¥ v equation ‘parameter restrictions evident in every specification, and the

~distributional assumption (4.6). This allows straightforward testing of
'restrictions on parameters: if hypothesis Hl leads to a log-likelihood

vvalue.f(Hl), and if hypothesis H, restricts one parameter compared tc Hl

2
and gives a log-likelihood value {(Hz), then ) = —Z(I(Hz) -.Z(Hl)) is

distributed (asymptotically).aé xz(l); and significance of A can thus be

tested.
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5. Empirical Results

5.1 Data Description

We now turn to a discussion of empirical fesults obtained from

estimating the SSWK production functions constructed in tﬁe previous
“sections. For this estimation, we have used a set of data collected

by the Census Bureap of the government in Taiwan during 1981. From

this Census material, the largesf three industries were chosen: agricul-
tural machinery (industrial code DN=00), electronic equipment (DN=11)

and cotton textile (DN=22). Variables used for this study are: value
added (=Q), total wage cost (=wL), value of fixed assets (=X), and number
of employees (=L).

The main disadvantage of these data is a problem in the measurement
of wage cost and value added. For a number of firms, total wage cost
exceeded value added, so that the wage share exceeded unity, For others,
value added was negative.17 Our 1nterpretation is that présumably wage
cost is overstated and/or value added is understated, as firms would have
an incentive to do 8o in'view of the hiphly competitive environment in
Taiwan (for fear of taxation agencies and information sharing with comne-
titors). Observations with a measured wage share outside the interval from
0 to 1 are thefefore excluded from the sample, but nevertheless one may
doubf the quality of the remaining data. While the results reported here
are mainly meant as an illustration, they must be interpreted with caution.

In table 1, some summary statistics are given. In terms of mean
value added, the electronic equipment industry operates on the largest
scale, followed by cotton textile, and agricultural machinery. The

same ranking would appear, when we look at the average number of emplovees
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per firm. The last row shows the capital-labor ratio for the "average
firm" in each industry. It proves that cotton textile is the most
capital-intensive industry, followed by agricultural machinery.
Electronic equipment is the most labor-intensive. Finally, one may note

that wage shares are roughly comparable across industries,

5.2 Estimation Results

The first step in the empirical investigation of SSWK production
functions is to see whether the share function in each industry is SI,

. 4.e., requirement (1.9). Table 2 reports on the estimated relationships

"<, between ¢L and k*, Linear and log-linear specifications.lead to the same

results, so only linear regressions are discussed here. The regression
gives poor results for DNsOO, and somewhat better for DN=11 and DN=22,
To check for scale inseﬁéitivity, one may add K; L and 0 to the regression,
_F-statistics show the joint significance of these variables: adding X
and L yields a better fit for DN=00, but not for DN=11 and DN=22, and
adding O is significantly better in each case.

The latter result is not surprising in view of the definition of

¢

L as wL/Q. Moreover, when random errors of ¢L and Q (i.e., u, and ul)
are strongly correlated, as we shall see to be the case, the significance
of Q in these regressions may be caused merely by simultaneitv of the
variables. The lack of significance of K and L in the regressions is
thus a better indicator that the production function is SSWK. Therefore
we conclude that the production processes in the electronic equipment

and cotton textile industries are SSWK, while that in agricultural

machinery is not.
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The specifications given in section 3 were estimated for the SSWK
industries DN=11 and DN=22, As emphasized before, most of the specifi-~
cations are nested within each other. Rather than listing results of
all variants, we compare in Table 3 the yalues of the log-likelihood
functions. In addition to the values, this table lists the number of
parameters, including the covariance matrix I, for each specification,
and shoﬁs arrows pointing toward the preferred specification according
to.ﬁhe likélihood ratio test between pairs of specifications.

A few notes are in order. First, the CEDRNH function uses a scale
function that is linear in K. Nevertheless, the homogeneity assumption
of CDH appears not as objectionable as the e=1 assumption, in view of

the accéptance of CEDRNH and'VES over CDH and the rejection of ACD

2 NH

in favor of VES,. Second, CDy, 1is somewhat better than CD, for DN=11,

but for DN=22 nonlinearity presents broblems for estimation, due to the
fact that b decreases steadily toward 0 during iterative steps of the
maximization routine énd thus %3 which appears in the exponent of 0 (seé
Theorem 21i), increases to =. We have assumed, that b=0 yields the
maximum, i.e., CDNH reduces to CDH'

 Third, the CES assumption, embodied in CES, and CES is accepted

NH®
for DN=22, For this industry, there is no evidence in favor of a varying
elasticity of substitution, nor of scale being a function of K. CESH is
moét preferred., Fourth, the elasticity of substitution is definitely
variable of DN=11. V'ES1 and VEDRNH are both preferred over CESH and
CESNH’ suggesting, moreover, that scale s(K) may be constant (s'(K) = 0)
rather than variable (s'(K) # 0).

Table 4 reports the parameter estimates of these preferred specifi-

cations. For the meaning of each parameter, one is referred back to
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section 3; similar parameters in different columns have different meaning,

The first column shows results of the VES. specification for DN=11,

1
Significant economies of scale exist: n equals 1.0374 and is significantly
different from 1. The elasticity of substitution e(k*) increases with
k*, It rises from .548 for k* = 38 (=.5 k* for this industry) to .604
for k*x = 152 (= Z'E*). Note that since e(k*) is the inverse of the common
‘definition of the elasticity of substitution, capital and labof are rela-
tively gooa suﬁstitutés for each other, As can be expected in such case,

“:‘the wage.share ¢L falls with the capital-labor ratio; its elasticity €
- at the mean of k* = 76 equals —.205. |

The second column of Table 4 shows VEDR results for DN=11, Scale
1s'now a function of X, and is found to decrease with K. For the smallest

firms (K=1000), s(K) equals 1.050, while for the average firm (K = 129361)
s(K) equals 1,036, which is remarkably close to the estimate of n in the
VES1 specification. CRTS is reached at K = 903156, Onlv a few firms

»in the electronic equipment industry operate at DRTS; for the largest,
s(K) equals .888. This shape of the scale function impliés a U-shaped
long run average cost function. The elasticity of substitution is now a
complicated function of K and L, but it can easilv be calculated from
equation (3.2): from € = -.213, ¢L = ,529, and € = -.009 follows
€ = ,574, Notice that these numbers correlate well with the VESl results,
soAthat the two sets of estimates are quite comparable.

The third.column considers estimates for NDN=22, The scale function
is constant, at a value of (l-¢)/b = 1,058, A test of CRTS involves
setting b equal to 1l-¢. This restriction is rejected at the .5 percent

significance level by these data for this industry. The elasticity of

substitution ¢ is quite small, indicating a "regular" elasticity of
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1/e = 4,097, which implies good capital-labor substitutability. Accor-
dingly, the wage share falls during a capital-deepening process.

Finally, the estimates of the covariance matrix I in all three
columns reveal a high degree of correlation between the errors in the two
equations, uy and uy. The cor?éiation coefficients vary between -,850
and -.900. This substantiates our claim that one should not test for

SSWK by including Q in the regression (see Table 2).18
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6. Concluding Remarks

What motivated our research for the SSWK-function in general and
the specified functions in particular are certain basic issues in dis-
aggregate (i.e. individual fifm and individual :f.ndustry) production
‘analysis. On the one hand, the familiar U-shaped long and/or short
TUD average'cost curves testify to a long traditién of non-CRTS study.

< 6n the other hand, the "law of diminishiﬁg returns" is a basic "law'',
the severity of which underlines the gravity of most production related
~"-social issues (e.g. populatipn.preésure, and pressures on interest
. Tates or wage iates).

A systematic analysis into the characteristics lead to an
identification of basic elements of the specification of any production
function, namely the scale function and the share function. Several
commonly used specifications fitted in this categorization, but those
specifications all exhibited CRIS. 1Two of them, the Cobb-Douglas and
the Constaﬁt—Elasticity—of-Substitution (CES) specifications, can be
expanded within the SSWK framework. This stud& is not limited to these
specifications, however. Suitable functional forms for the scale and
share functions have vielded other specifications that are both parsimo-
nious in their parameters and rich in the variety of characteristics.

An empirical investigation with firm level data from Taiwan showed
interesting diversity in the characterization of the production processes
among the three industries considered. One should view these results as
not much more than an illustration of the richness of the SSWK class of
production functions. We look forward to using more suitable data in

order to continue this promising avenue of research.
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Footnotes

1)

(2)
- (3)

(4)

CRTS was rejected by Berndt and Khaled (1979) using time series data
for the U.S. manufacturing as a whole from 1947 to 1971. Lopez (1980)
refected the implications of CRTS.for systems of input demand equations
for Canadian agriculture, with time series data from 1946 to 1977,

Early cross-sectional studies surveyed by Walters (1963) often indi-
cated more or less constant returns, with the éxception of Klein (1974),
who found large significant IRTS for the 1936 U.S. kailway industry.
CRTS. was rejected by Griliches and Ringstad (1970) for manufacturing

és a whole, as well as many individual industries, from steel to diary,
in Norway in the mid 1960's. Lovell (1973) and Christensen and Greene

(1976) reject the hypothesis of homotheticity, which includes CRTS,

- for the U.S. transportation equipment and the U.S. povervindustry,

both leading to U-shaped average cost curves. Lau and Tamura (1972)

also reject homotheticity for the Japanese petreochemical industry

- and find that increasing returns to scale are concentrated in the

labor input.

Kuznets (1966, p. 9).

Arrow et al. (1961) define the class of CAP (capital-augmenting
production) functions, and search for the CES function. The VES
function (Lu and Fletcher, 1968) may be a generalization of the CES
function, but is not a member of the CAP.family. In our paper, we
search for special members in the family W of SSWK functionms.

These non-homogeneous functions are the only members within the SSWK
class with the characteristic that € is constant, They are special
cases of the most general class of CES functions examiﬁed by Sato

(1975, 1977).
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(5) Early tests of scale economies employed Cobb~Douglas specifications.
Later on, CES specifications were used. Recently, several flexible
functional forms, such as translog, were estimated and tested for

scale economies and homotheticity. Such flexible forms generally

do not have pgrticular properties regarding ¢ and/or e Examples
of these three methods are given in footnote 1.

(6) ;{18 the complement of X and consists of all nonhomogeneous functionms.
Then Wnr( is the set of all nonhomogeneous SSWK functions.

(7) See Birkhoff and MacLane (1950, p. 130).

(8) It becomes clear at this point, that some members of W do not have
economic_significance, e.g., those with hegative share functions;
When conducting an economic analysis, such members should be excluded,
as they do not satisfy basic conditions for production functionms.

(9) See Birkhoff and MacLane (1950, p. 146). The cosects ZB are disjoint:
they do not have elements in coﬁmon.

(10) Since we do not assume constant returns to scale, the equaligy of
:wage fates with value of marginal product prevails only in the shqtt
run,

(11) As mentioned in section 0, the same method was employed by Arrow et al.
(1961) to establish the empirical validity of the capital-augmenting
production functions, of which CES is a special case, when wage rates
show a high correlation with labor productivity (p = Q/L).

(12) One can readily show that the multiplicative quotient group W/B is
isomorphic to the additive group 'f. See Birkhoff and Macl;ane (1950,
p. 158).

(13) Thus Sato (1975, 1977) studies the familv of SSI-C functions.
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(14) The common definition of the elasticity of substitution is the
inverse of ¢ as defined in (3.1).
(15) We emphasize again that ¢ is the inverse of the regularly defined
A ‘elasticity of substitution. So if de/dk* > 0 (<0), then as capital
intensity (k*=K/L) increases,'substitﬁtability between capital
and labor decreases (increases). The fixed proportions production ,
" function would be characterized by ¢ = =, the perfect substitutability
production function by € =‘0.
(16) Equation (3.11) is the so-called Bernouilli's equation. See Boyce
| and Dippine (1967),
(i7) Such problems weré most severe in the cotton textile industry.
Frequency distributions in the'three industries were as follows:

DN=00 DN=11  DN=22 Total %

¢L <0 16 4 43 10,2
0 < ¢L <1 83 144 145 60.2
¢L > 1 22 15 146 : 29.6
- (18) For the interested reader, we note that CDNH was the preferred speci-~

fication for DN=00, the industry we have excluded from further discus-
sion, after we found no evidence in favor of the SSWK characteristic.
.The estimates were: A=264,.,5218 (2.61), A1=1.3143 (15.98), A4-27.9913

(12.96), b=.0486 (8.42), =,3898 (5.17), =-,3973 (~5.61), and

%11 %12

022-.5028 (6.44), with a log-likelihood value of -45,919.

r
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Tab_le 1

Definitions and Descriptive Statistics

Industry code:@ DN=00 DN=11 DN=22

Q = value added (NTS) mean 10143 281105 131774
st.dev. 30090 1396508 311076

¢;, = wage share in value added  mean .5910 .5194 .5690
st.dev. .2178 .2045 .2336

K = value of fixed assets (NI$) mean 9914 129361 203414
st.dev. 35226 594482 664804

1, = nunber of employees mean 38.9 851 551
st.dev.  82.4 2524 1434

- &*-= capital-labor ratio mean 174.9 76.0 192.8
e st.dev. 144.9 . 54.2 . 163.5
 Number of observations ' 83 144 145

Note: @The industrial codes stand for the following industries:
DN=00 : agricultural machinery
DN=11 : electronic equipment
DN=22 : cotton textile
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Table 2

Analysis of SSWK relationship?®

Linear Regression DN=00 DN=11 DN=22
Intercept .614 .611 .643
(9.08) (15.19) (14.80)

K/L (*103) -.061 -1,507 -.342
(-0.09) (-1.68) (-0.89)

(K/L)2 (106) -.292 2.646 -.135
(-.022) (0.65) (-0.22)

R2 .012 .068 .088

F - equation 0.47 5,14 * 6.87 *
F - add K, L 3.60 * .51 1.58

F-eddK, L, Q 6.34 * 4.80 ¢ 9.05 *
Log-Linear Regression DN=00 DN=11 DN=22
Intercept -.635 -.460 ~-.380
(-1.50) (-3.75) (-2.43)

1n (K/L) (*10) .987 .093 .408
(0.49) (0.21) (0.92)

(1n (K/L))2 (*10) -.183 -.191 -.195
(-0.74) (-2.27) (-2.82)

R2 .017 .065 .069

F - equation 0.68 4,93 = 5.18 *
F - add In L 17.34 ¢ 1,23 1.03
F-add InL, In Q 59,12 * 111.06 * 159.46

Note: 8t-statistics in parentheses
F-values marked with * are significant at 5 percent level




Table 3 : v
Comparison of Log-Likelihood Valuesd

CEDRyy (8) ‘ . '
11: -128.762 :
22: -124.914 « , '
_ =~ CDy (6) o : Chyg (7)
=~ 11: -139.196 > 11: -136.321
T 22 ~129,299 ¢ — — — - — — — — — — 22: =129,299
ACDyy (8) ' |
11: -128,719 | |
22: -123.806 _ | 1
N | . ]
\ 2 (7) I [
11 128 7757 . !
*22; -124.034 , ) [
' Vv N \1’
| CEsy (7) ! . CESny (8) L
, 11: -118.669 < 11: -118.592 &
| - — - 22: -121,468
|
<
VES1 (8)

11: -112.265
22: -121.698

VEDRyy (10) K
N\ <1l: -111.932
Y 22: -120.691

Notes: 2The first value under each specification acronym is the 1og—like11hood value for DN=11, the
second refers to DN=22. The nunber next to the acronym is the nunber of parameters estimated
under this specification. The solid arrow p01nts to the preferred specification for DN=11,
the dashed arrow does so for DN=22,

PThe value for CDyy appears to be the same as for CDy for DN=22., See discussion in the text.
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Table 4

Pfeferred Parameter Estimates for DN=11 and DN=222

DN=11 b DN=22
VES; VEDRNg CESyg
A 8.2550 A 8.8187 A 52.2074
(0.76) (3.53) (9.10)
n 1.0374 Aq .3942 Ay .0097
(59.93) (6.21) (1.63)
) 1.4364 A% 4.2326 b .7147
(6.98) ' (8.26) (6.85)
B .4197 € .6617 e .2441
(1.87) (19.88) (2.07)
Ay -.3251 A4 .47¢1075
(-3.93) (0.78)
A% 1.5521
(43.65)
5 .3232
°11 .3466 011 .3490 611 .5716
(6.43) O (6.62) (6.02)
°12 -.2827 012 -.2848 o012 ~-.4689
(-5.50) (-5.80) (-5.62)
G2 .3193 022 v .3206 629 .4749
(5.83) (6.18) (5.89)
L -112.265 £ -111.932 of -122.238
N 144 N 144 N 145

Note: 2Asymptotic t-statistics in parentheses

A; = A2/1-e s A

b

* =
5

AS/ 1-35
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Appendix A: Proof of equation (3.2)

Let us define an operator E as

*
(A.1) E(2) = 2z Ef subject to &._ L

ak* dL 3

In other words, E(z) is the elasticity of z with fespect to k* subject
to the condition that the total output is constant. The following

relations are generally valid.

(A.2) a) E@)) = E(s) + ¥y (e-1)

b) E(4,) = E(s) - ¥ (e-1)

¢ ¢
’ = —I.<. e =.¢_L , mee B
;Am‘c) ?herg,. W= 5 0 i M= and ngL/fK) € E(m), s=¢,+ by

“(Proof: E((4g/6,)+1) = E(s/6;) = E(s) - E(;)

on the other hand

*x £ '
E((¢K/¢L)+l) = E(¢K/¢L) = -vKE(fglk*) = -UK(E-l) .
‘Thus
E(s) = E(¢;) = -up(e-1)

or E(¢L) = E(s) +HK(€-1)

The proof of (A.2b) is similar. Q.E.D.)

Equation (3.2) is valid for SSWK functions only. So s = s(K) and therefore:

3s(K) k* _ 3s(K) K 3K_ k*

Es) = 5+ 5 5K 8 3kF K~ €s E(K)

Since: dk* = + dr - & dL

IJ 2

L
and: dk = -(fL/fK) dL .= -m dL
) IS SRR 7 A
we have: E(K) 1 ; X ° % p uy
i 2
nl

Since E(¢L) =€y for SSWK functions, this completes the proof of equation

(3.2).
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Appendix B: Proof of Theorem 2.

Proof of (i):

By applying equation (3.2) in the text

¢
L
€p T HpEg Fugle-l) = —=(e - +1) + (e - 1)
we have

(B.1)  efop +(1-e)/o, = S (e -+ 1)

Define f(k*) = eh/¢L + (1 —e)/¢L

Differentiate equation (B.1l) with respect to L:

a£(ew) /o1, = AR B2 o g1 gy (- k7LD

o _laedkr_ 12 K,
s 3k* 3L s 9k* L2
Which is
' = .13
(B.2) £ (k*)» iy

Differentiate equation (B.1l) with respect to K:

(B.3) £'(k*)/L = a(es/s)/aK + a(lks)/aK - 03(e/s)/3K
where

3(e/s) _
9K

oe 1 __3s1
3k* L ° 3 o2

By substituting (B.2) into (B.3) we can get

(B. 4) 3(c_/s) /3K + 3(1/8) /3K + (c/s2) (3s/3K) = 0
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Since (B.4) is a differential equation in K; ¢ is one of the
"parameters" of the differential equation, and so will enter into the
solution. The solution of s thus contains € = e(k*), The function is thus
not SSWK. We thus conclude that: "if ¢ = e(k*) , then (B.4) is true
if and only if 3s/3K = 0",

So we have proved: "If £ = g(k*) with 3e(k*)/3k* # 0, and the
Production fuﬁction is SSWK, théh s(K) is a constant i.e. s(K) = n".

To get a general production form we need to know h(k*), because
as equation (2.9) in the text indicates, a production function can be

~constructed througﬁﬂih(k*), s(Kj]. By equation (B.1l), we have

dh_ k* _m;h 1

dk* h
. which is v
- __ = B gux
hem O T e
Integrate

J & +d an= [ E2 e

we can get

AJ

h/ (n—h) 1

where J1 = eJO . and Jo i!k(e(k*) - 1)/k*)dk* , h = nAJ11(1+AJ1)

Since e(k*) does not have explicit form, a general production form is
constructed.

Q = C(K)H(,L)

R = f (h(k*)/L)dL and C(K) is found through

where H(K,L) = e
the equation:

s(K) = n = h + K(3R/3K) + (dC/dK) (K/C)
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Proof (dii):

When ¢ is constant (i.e. 3e/3k* = 0), equation (B.2) is
(B.2)! f'(k*) = 0
It implies that f(k*) = b is a constant. Therefore (B.1l) can be re-
expressed as sb = es -e +1, 1i.e.

(B.5) e, = (3s/3K)(K/s) = sb + ¢ -1

According to the property of s (i.e. constant or not), there are
two possible solutions.

Case 1: (8s/3K)(K/s) # O

Equation (B.5) can be re-expressed as

(B.6)  (1/(s(sb-1+e))ds = dK/K

dA) e #1
Since b = eh/h + (1 - €)/h, as the definition indicates in the

beginning of this proof, we have

(3h/3k*) (k*/h) = bh -1 + ¢
which is
dh/ ((bh-1+e)h) = dk*/k*
T G- mmm - do/k
By integration we have
n h - 2n(bhte-1) = (e-1)&n k* + R,nA1
which is

h/(bh+e-1) = A ks e”l




The share function is thus obtained,

(B.7)  h =((1~)/b)/(1-a%"kx'F)

* =
where Al 1/bA1

In order to get the scale function, equation (B.6) can be expressed as:

)Yds = dK/K

1 .1 _ _b
(e-1)" s = e+sb-1

By integration
4n s - &n (sbte-1) = (e-1)4n X + &n A2

The.scale function is thus obtained,

e o 1. 1-e

"(B.8) - 8= ((l—f:)/b)/(l-];z-K )
2

Since we have h(k?) and s(K), we can cbnstruct the production function

by using equation (2.9) in the text.

R = f(h(k*)/L)dL =don @l™® - 2x1%) 4 gna,
b BA] 3
and
H(K,L) = e = 4, @l - L1x17)
3 BA

In order to obtain C(K), equation (2.9d4) has to be used. It can be |

readily shown that sH = (1-e)/b. Putting sH, sC, and (B.8) together

we . have
1 dK
dc/C =-((1-¢)/b){1- —F¥———}—
1- 1(1'8/1>A2 K

By integration:

fn C =((e=-1)/b)in K + l-zn (Kl-e/(l— S%—Kl-e))+ n A4
2

b
We thus get
_ 1. 1-e, -1/b
cK) = (1 - EK?K ) A4

2
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The production function is

e-1
Q = CHOHK,L) = A ( 4

- *
| K Az
= * = x =
where AS . A3A4, .Al 1/bA., A2 1/bA2
ii e = 1

In this case, b = eh/h. The share function can be easily calculated
- (B.9) h = 1/(A;-b 2n k%)
And equation (B.6) is, in this case,
2 ‘4
ds/s” = b dK/K
The scale function is thus
s = 1/(a, -b %n K)

By applying equation (2.9) in the text, a production can be constructed.

Al - b &n k* 1/b

Q =A6{A4. T

Case 2 (0s/3K)(K/s) = 0

In this case s(K) = n is a constant. By lemma 1l in the text, the
production must be a homogeneous one.
(i) e #1

By equation (B.1), we have
(dh/dk#*) (k*/h)=((n-h)/n) (e-1)
The share funétion is calculated:

h =0/ (%))
2
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The scale function is, by equation (B.5),
s =n= (1-)/b

By equation (2.9), a production function can be constructed through

[h(k*), s(K)]. According to (2.9¢):

R = f(h(k*)/L)dL = (n/(1-€))in (Ll-e + i—Z«K]'_E) + &n A3
and |
HK,L) = A, @1+ Lxl-5)n/Q-€)
3 A
2
' As to C(K), we calculate
3R _ e-1
K Y n/(1+A2k* )
H_ 3R _
and s =h+K Yok
R . dC X
According to equation (2.9d), rri 0. C(K) is thus a constant c.
The production is thus
Q = C(K)H(K,L) a
= A (Ll-e + 1 Kl—e)l-e
4 A,

where A4 = c:A3

By defining A2 = a/(1-a), and €= l4p, it can be shown easily

that this production function is exactly the same as the CES function.
ij) e =1

According to (B.5), either s or b equals to zero in this case.

Since s=0 is-excluded in this paper (see equation (1.3) in the text),




~53-

| .
b must be zero. By definition, b = eh/h + (1-e)/h = eh/h = 0, h is thus
constant.

Let h = n—u, and s = n. By applying equation (2.9),

R =](h(k*)/L)dL = (n-a) &nL + 2n A
and

HK,L) = et = L™

Calculating sH, which is sH = n-o, we get %Kg--l-é- = q, C(K) is thus
- o
C(X) AlK

The production function is thus

Q = C(RK)H(K,L) = AZK“L“_‘“

where A2 = AA1
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