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PRODUCTION FUNCTIONS WITH FACTOR ORIENTED SCALE SENSITIVITY 

Abstract 

The analysis of economic phenomena at the wholistic (aggregative) level 
11l8intains a long tradition that assumes the neoclassical production func-
tion Q-f(K,L) (i.e., output as a function of capital and labor) satisfies 
the condition of constant returns to scale. The assumed absence of any 
(dis-)economies of scale renders the production function useless, when 
the scale effect is as pronounced as is typically found at the less aggre-
gative levels of individual firm or industry analvsis. . . 

The purpose of this paper is to deduce new classes of production 
functions that are not limited to the constant returns to scale characte-
ristic. Hore specifically, the scale effect is described by an arbitrary 
function of one of the factors of production, capital in this paper. 

·This class of production functions exhibi-ts scale sensitivity with 
respect to capital (SSWK). 

The paper shows how different fmidlies of production functions can 
be ·derived from two basic .. building blocks," a :wage share function and a 
scale functitm. The Cobb-])ouglas, CES and VES production fmu:tions are 
special cases. ~e Cobb-Douglas and CES functions can be expanded to 
incorporate non-constant returns to scale. 

A smnple of firms from Taiwan is used to test among various derived 
functional specifications. An interesting diversity of preferred speci-
fications was found among three industries. 

- ·-' -·· ,:.. . - ·--. ,: ... -· .:•-·- ,;._ . 



* PRODUCTION FUNCTIONS WITH FACTOR ORIENTED SCALE SENSITIVITY 

0. Introduction and Sunnnary 

The analysis of economic phenomena at the wholistic level {e.g. 

general equilibrium, income distribution, international trade, and growth 

theories), maintains a long tradition that assumes the "Neo-Classical" 

production function Q = f(K,L) (i.e. output as a function of capital 

and labor) satisfies the condition of constant returns to scale (CRTS). 

The assumed absence of any economy or diseconomy of scale renders the 

production function useless when the "scale effect" is as pronounced as 

is typically found at the less aggregative levels of individual firm 
1 or individual industry analysis. The purpose of this paper is to deduce 

new classes of production functions with non-CRTS. 

Intuitively scale effects can be traced either to the size of labor 

(L) or capital (K). In the celebrated needle factory of Adam Smith, 

the efficiency of large scale production is brought about mainly by the 

"division of labor", i.e. functional (or.task) specialization rendered 

possible by a larger labor force (L) using simple tools (K) • Rural 

industries in contemporary less developed countries share this feature 

of SSWL (scale sensitivity with respect to labor) with industries of 

pre-industrial days. 

A modern factory in an industrially advanced country is rather 

different. According to Prof. Kuznets, the "modern epoch" is a scientific 

epoch characterized by the extended application of science to problems 

of economic production. 2 It is not atypical that a large number of 

* Comments received from participants of the Trade and Development 
Workshop, Yale University, are gratefully acknowledged. 
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engineering principles, drawn from various sciences, is embodied in 

an industry's capital stock K (e.g. in the refinement of petroleum 

from crude oil). A firm with a less sophisticated K stock will not be 

as efficient, nor even as feasible, from the engineering standpoint. 

This characteristic of production may be referred to as SSWK (scale 

sensitivity with respect to capital). This paper derives a new family 

of production functions -- i.e. t:he SSWK family -- incorporating this 

characteristic • 

. · When the production function is given, the construction procedure 

begins with a scale. index_, or scale function. s • s (K)., defined . for ev~ry 

point in the input space, such that s > 1 (s•l, or s<l) implies IRTS 

(CRTS or DRTS) in the ordinary sense. The definition of a SSWK function 

is that the scale function is a function of the capital stock alone (i.e., 

s • s(K)). The basic theorem, which will be proved in section 2, is that 

the necessary and sufficient condition for SSWK is that the wage share 

~L • fLL/Q is a function of capital per head, k* • K/L. Notice that 

'L is the "labor elasticity of output," which becomes the wage share 

when real wage w is equated with the marginal productivity of labor (fL) 

{i.e., w • fL). Under this assumption, both k* and ~L are statistically 

observable, and hence, whether or not a production function is SSWK, can 

be verified empirically. 

Let W be the set of all SSWK functions. Many production functions 
i 

familiar to economists (e.g., the Cobb-Douglas, the CES and VES functions) 

are homogeneous functions, which, in turn, are members (i.e., special 

cases) of w. Using group theoretic concepts, we shall show that W can be 

partitioned, or classified, into subsets Zi, such that each subset 
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contains members that are a constant multiple of each other, and they all 

have the same share function h(k*) and scale function s(K). Moreover, 

when the pair (h(k*) ,s{K)] is given, we can construct the SSWK function 
i in any subset Z (see corollary 3). Using this method, we can construct 

not only the familiar functions mentioned above, but also new classes of 
3 production functions in parametPic form. 

In addition to scale economies or diseconomies, the interests of the 

economists in the neoclassical production function naturally center on 

factor substitutability (e.g., as measured .by c, the elasticity of sub-

stitution) or the severity of the law of diminishing returns to labor 

(e.g~, as measured by eLL' the elasticity of fL with respect to L). 

Almost all wholistic economic theories (e.g., population pressure, income 

distribution theory, etc.} emphasize these properties to reach meaning-

ful conclusions. If any preconceived knowledge is postulated for £ 

and/or eLL' restrictions are imposed on W, Le.,· subfamilies of W can 

be identified. We shall show how to construct the pair [h(k*),s(K)), 

and hence, as indicated above, the associated SSWK function, when suitable 

£ and/or eLL are postulated. 

One suitable way to postulate the elasticitv of suhstitution is to 

assume that it is a function of k* (i.e., £ • c(k*)), rather than a 

function of K and L separatelv. For example, the existing literature 

has deduced the CES function (i.e., when c'(k*) = O) and the VE~ func-

tion (i.e., when c'(k*) ~ 0 with a specific form). (See section 3.1). 

These specifications are special cases of homogeneous functions. In 

our paper, we shall deduce stronger results by showing that .!!!!Y. func-

tion £ • c(k*) will lead, generally, to a homogeneous function. 

The only exception is a constant£ (i.e., c'(k*) • O), which 
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4 may lead to a particular type of nonhomogeneous functions. In other 

words, when £ is constant, the production function need not be Cobb-

Douglas or CES, but will take on a particular parametric form given 

in the text. Thus, statistical tests of scale economies under the 

assumption of constancy of £ are incomplete when Cobb-Douglas or CES 
5 are postulated. 

In section 3.2, we shall first show, that, for every SSWK. function, 

eLL' measuring the severity of the law of diminishing returns to labor, 

is a function of k*, i.e., eLL • e(k*). Furthermore, when a suitable 

specification of eLL • e(k*) is postulated, a share function h(k*) can 

be· deduced, and hence a subset of W carrying arbitrarily specified scale 

functions is fotmd. We should note here, that the specification of 

£ • £ (k*) or eLL • e (k*) provide different entry points in the construction 

of a production function, but these entry points are n.ot ccJ:.Itpletely 

independent of each other. 

In section 4, we outline the empirical investigation on basis of 

a particular specification of a SSWK. production function. It is an 

application of the basic idea that an empirically observed functional 

relation between +t and k* constitutes inductive evidence that the 

production function is SSWK. But information on the scale function is 

necessary as well to determine the exact shape of the ~roduction f unc-

tion. While scale s is unobservable, estimating the production function 

yields estimates of the parameters of the scale function. The methodo-

logy of section 4 uses the assmnption that random variation of quantity 

produced Q around a deterministic amount as dictated by the SSWK. function 

is correlated with the random variation of the observed labor share +L 

around a deterministic value h(k*) derived from that SSWK. function. 
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In other words, the production fllllction and the share function must 

be estimated simultaneously. 

This estimation procedure is implemented using data obtained from 

firms in Taiwan in three different industries: agricultural machinery, 

electronic equipment, and cotton textile. While the sample size in 

each industry is not large, and the quality of the data set could be 

better, the empirical results reported in section 5 are encouraging in 

regard to the validity of the SSWK methodology explored in this paper. 

It appears that the production processes of these three industries are 

characterized by different types of production functions, one of them 

being non-SSWK and another being a new non-homogeneous specification 

derived in section 3.2. Nevertheless, these results are illustrative 

only, and form no solid basis for ri~orous conclusions. 

We now turn to a technical discussion of the issues above. 
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1. The SSWK Production Function 

Let a production function 

(1.1) Q = f(K,L) 

be given. The partial elasticities of Q with respect to K and L will be 

denoted by: 

(1.2) ~L 
fL L 

0 ' and 
fK K 

0 =--> ~ =--> Q K Q 

where f =.!Q.> 0 
L OL ' and f = 1..Q_> K aK o. Let s, defined as: 

(1.3) s = ~L + ~K > 0 ' 

be referred to as the scale index, which can be defined for every point 

in the input space. The basic definition of a SSWK function is that the 

scale index s is a function of K alone, i.e., 

(1.4) s = s(K) > 0 , 

which will be referred to as the scale function. 

To see the meaning of s, let R K denote the percentage increase of x, 
a variable x, when both K and L increase by one percent, i.e., 

(1.5) R dx K 
x,K = dK x where L = A K for any A > 0. 

In other words, R is the elasticity of x under a radial expansion of x,K 
the input space. In this notation, it follows immediately that: 

(1.6) a) 

b) 

RQ,K = s 

R = s - l p,K 



where P = _g_ L • 
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Thus, under a radial expansion, output Q and labor pro-

ductivity p increase by s and s-1 percent respectively, when K and L 

increase by one percent. 

If a production function is SSWK, then: 

(1.7) a) 

b) 

(Proof: Partially differentiating s(K) Q = fK K + f1 L with respect 

to L yields: 

(1.8) 

which implies: 

fLK K 
s-1=--- + 

fL 

dfL K dL . K fLK. K fLL L 
But RfL,K = dK fL = (fLK. + fLL dK) fL = fL + fL 

= s - 1. 

Here we used the fact that L = A K. 

Q.E.D) 

Thus the impact of a radial expansion on f1 is the same as the impact on 

labor productivity~· This implies (l.7b), which states that the value 

of ~L is uniquely determined by capital per head, k* • K/L. In this paper 

WQ &hall refer to any function X(K,L) as SI (scale insensitive) if it 
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is. homogeneous of degree 0 (i.e., X(K,L) • X(XK,XL) • V(k*) for any X > 0), 

so that X(K,L) is a function of k*. Thus: 

(1.9) For any SS'WK production function, the share function is SI, i.e. 

' - h(k*). L 

A homogeneous production function of the n-th degree is defined as: 

(1.10) for all l > 0 

· • We have the following lemma: 

Lemma 1: A production function isa hnm.ogeneous function, if and only 

if its scale function is a constant n, · ·i.t?. if and only if 

(1.11) 

(Proof: "only if" part: 

Differentiate (1.10) with respect to X, and apply definitions 

(1.2) and (1.3). 

"if" part: 

For every K and L: s(K) • n • 'K + ~L 

or: 

fK(K,L)K/f(K,L) + fL(K,L)L/f(K,L) c n 

Then for every K, L, )., the following holds: 

which can be written as: 

d ). d).{in f().K,).L)} • n 
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Integration yields: 

in f(A.K,A.L) =.nin A. +tn A 

or 

f(A.K,A.L) = AA n 

To find A, set A. = 1 

A = f(K,L) 

Thus f(A.K,A.L) = A.nf(K,L) Q.E.D.) 

Let!!Illa 1 shows that every homoreneous fucntion has a constant scale function, 

s(K) = n, a special case of s = s(K). Let W be the set of all SSWK 

functions and J( be the set of all homogeneous functions. Then J,el!!tna 1 

implies Corollary 1: · 

Corollary 1: All homogeneous functions are SSWK, i.e., )( C w. 

>{ contains the well-known (in economic analysis) Cobb-Douglas, CES and 

VES functions, which are special cases of SSWK functions. The share 

function of each of these is a function of k*, and their scale functions 

are constant. Furthermore, any nonhomogeneous function ft wnij has a 

scale function s(K) which is not a constant (i.e., s'(K) ~ 0). 6 In section 

3.1, we shall derive nonhomogeneous versions of the Cobb-Douglas and CES 

functions in W f\ ~ • 
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2. A Classification of SSWK Functions 

Let W be the set of all SSWK functions. Let f• { Z} be a family 

of non-empty subsets Z of W. ~ is a classification of W if 

(2.1) a) 

b) 

w • z"l1 z 
zi n zj - 0 

In this section we shall show that W can be classified such that all 

;. ·, f belonging to the same subset Z not only have the same share ftmction 

·but take on a particular prQduct form: 

(2 .. 2) Q - £(K.L) • C(K)H(K,L) 

This result leads to a method for the construction of SSWK functions 

in parametric forms (see section 3.1 and 3.2). 

In order to classify W, we shall make use of group theoretic 

concepts. Notice that f (K,L) • 0 and f (K,L) • 1 and f (K,L) • C(K) 

are all special cases of SSWK functions. This is summarized as: 

Lemma 2 : O, 1 and C(K) are SSWK functions 

(Proof: The scale functions of f (K,L) • 0 and f (K,L) • 1 are 

s(K) • O, and the scale function of f(K,L) • C(K) is 

s(K) • C'(K)K/C, which is a function of K. Q~E.D.) 

We shall exclude f (K,L) • 0 from W. 

W can be considered as a multiplicative Abalien group. Conditions 
7 for this to be true are : (i) W must be closed under multiplicative 
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operation; (ii) W must contain a group identity element, which is 

f(K,L) • 1: (iii) if ff W, its inverse must be an element of W, which 

is -1 1 
f • I : (iv) for an Ahalien (or connnutative) group, f.g - g·f. 

Since (ii) and (iv) are satisfied, we only need to prove (i) and (iii). 
f f f If f ~ W, we shall use the notation (+ , + , s ) , with a superscript L K 

f, to denote its share functions +L' its +K and its scale function s. 

The following lemmas prove (i) and (iii) and thus establish the fact 

that W is an Abalien multiplicative group. 

Lemma 3: W is closed under multiplicative operation, i.e., if f ,g ~ W 

then f · g E-W. Moreever: 

(2. 3) a) 

b) 

c) 

(Proof: 
3 ~f • g ;~ + f if 

. fg <lf 1g_ L f g 
So: •t "" (g aL + f 3L) fg • •t + +L 

This proves (2.3a). The proof for (2.3b) is similar. 

(2.3c) follows from (2.3a) and (2.3b) by definition (1.3). 

Since sf and sg are functions of K, their sum is a function 

of K, and the function fg is SSWK and a member of W. Q.E.D.) 

-1 Lemma 4: For any f E- W, the inverse f E W. Moreover: 
-1 

(2.4) a) +f • - +f L L 
-1 

b) .f ... -.f K K 
f-l f 

c) s • - s 
af-1 -2 cif (Proof: • -f ~ , from which (2.4a) follows. Similar for 3J, <lL 

(2.4b). (2.4c) follows from these by definition (1.3). n.E.D.) 
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8 
Lemmas 2, 3 and 4 imply that W is a multiplicative group. 

Next, we seek a suitable classification 1B of W. If B is any sub-

group of W (i.e. BC W and B is a group), then for any f ~ W, the coset 

determined by f relative to B is defined as: 

(2. 5) 

Note that ZB (f) C. W. Let TB be. the set of all co sets determined by B. 
It is well-known, 9 that W is l>.artitioned (or classified) by 1 B' i.e. 

Thus eveTy subgroup B induces a clasrificat:ion nf W, .where a coset: 

represents a particular class for this classification. 
-· 

As an &l>plication, let B• { C(K)} be the set of all functians of 

K. A member C(K) of B can be considered a production function. The 

economic interpretation of Q•C(K) E B is that of a l>roduction function in 

a "labor surplus~' economy, where output depends only on the capital 

stock. For example, the well-known Harrod-Domar production function 

Q • ; K is a member of B, where k is a constant capital-output ratio. 

Lemma 5 establishes the fact that B • {C(K)} is a subgroup of W: 

Lennna 5: Bis a subgroup of w. Moreover, if C(K)~B: 

(2. 7) a) 

b) 

c) 

cf>c • 0 
L 

cf>c • dC K 
K dK C 

dC K 
8 

• dK C 

(Proof: The proof of (2.7a) to (2.7c) is trivial. That Bis a 

subgroup of W follows readily from: (i) f(K,L)- • 1 E- B; 
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(ii) for any C(K) ~ B, C(K)-l t- B; (iii) for C(K), D(K) f' B, 

C(K)•D(K) ~ B. Q.E.D.) 

Thus B induces a classification Ts of Win the sense of (2.6). If f • H(K,L) 

is any member in a coset ZB(H), all the production functions in the coset 

ZB(H) take on the form! 

(2.8) Q • C(K) H(K,L) 

where H(K,L) ' ZB (H), and C(K) E- B. 

(2.7a) and (2.3a) imply Lemma 6: 

Lemma 6: All SSWK production functions f in the same coset ZB(H) have 

the same share function 

Now we can formulate the basic theorem of this section. 

Theorem 1: If Q c f(K,L) has a share function which is SI (i.e., 'i c h(k*)), 

then: 

(2.9) a) f(K,L) E W, i.e., f is a SSWK function, 

and if, in addition, the scale function of f(K,L) is S(K), then 

f (K,L) takes on the form: 

b) Q • f (K,L) • C(K)•H(K,L) 

where H(K,L) ~ W and can be calculated from h(k*) by: 

c) H(K,L) • eR with R ·J h(~*) dL 

and C(K} is a solution of the following differential equation: 

d) dC K • s(K) - h(k*) - K ~ dK C 3K 

(Proof: Rewrite the expression 'L • h(k*) as: 

~ • h(k*) dL 
Q L 
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Integrate both sides while treating K as a constant: 

tn Q • tn C(K) + R 

or: Q • f(K,L) • C(K)·H(K,L), 

where R and H(K,L) are as defined in (2. 9c). Since C(K) E W, 

f E W if H E W, by Lemma 3. That H E W, follows from: 

sH • +H + '41H. • h(k*) + K ]! 
L K aK 

so: asH. ah(k*) + K a(aR/aL) 
aL 3L aK 

.. _ h' K+ K 3(h(k*)/L) • o. 
L2 3K 

So ff W. (2.9d) follows, using (2.3c), (1,3) and (2.7c), from; 

s(K) - Sc + SH - dC K + h(k*) + K ]! 
dK C aK Q.E.D.) 

The following corollaries follow: 

Corollary 2: Q .. f (K,L) is SSWK, if and only if its share function is SI. 

(Proof: by (1.9) and Theorem 1) 

Notice that, ideally, k* ' capital per head, and +L' wage share, are obser-

vable.lO If there exists a high correlation between observed values of k* 

(rather than Kand L separately) and +t (e.g., across firms, industries, 

or reRions), then there is a strong presumption that a production function 
11 is a member of the ~SWK family. 

Corollary 3: Two SSWK functions f, g belong to the same coset ZB' if and 

only if they have the same share function (i.e., +i • +~). 
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(Proof: Lemma 6 implies the "only if" statement. The "if" 

statement is implied by (2.9b), for f and g can be written 

as f • C(K)H and g • D(K)H, where C(K), D(K) ~ B. Thus 

f and g belon~ to the same coset. Q.E.D.) 

Let 7 · { h(k*)} be the set of all functions of k*. Then corollary 3 

implies that there is a one to one correspondence between "f B and 7.12 

Thus, every coset is characterized by a distinct share function. 

Theorem 1 suggests a computational procedure of SSWK. functions of 

a particular parametric form from the share function and the scale 

function, i.e. from the pair {h~k*), s(K)j, as summarized by the 

following corollary. In this corollary, B • {s(K)} is now interpreted 

as the set of all scale functions while 7 • {h(k*)} is the set of all 

share functions. 

Corollary 4: From the pair {h(k*), s(K)] (i.e. s(K) ~ B, h(k*) f-1) 

a particular SSWK function Q • C(K)H(K,L) can be constructed 

from equations (2.9c) and (2.9d), which is unique up to a 

multiplicative constant. 

J=B classifies W according to the set B of functions of K and thus 

leads to cosets that all have unique share functions. A still finer 

classification is possible. Consider the set r of constants, excluding O. 

f is a subgroup of W. Similar to our discussion related to B above, r 
induces a classification of W into cosets Zi, where functions in each 

cosets Zi have the same pair (h(k*), s(K)j and differ only by a multi-

plicative constant. These Zi cosets are subsets of the cosets under the 

f B classification. Corollary 4 indicates how the production functions in 

each coset Zi are computed. 

I 
I 
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This computational procedure is applied in section 3.1 and 3.2, where 

we consider production functions that have particular characteristics 

in relation to the elasticity of substitution between K and L, and the 

strength (severity) of the law of diminishing returns. As we shall see, 

these characteristics pose certain restrictions on the form of the 

functions h(k*) and s(K) which, by corollary 4, determine the parametric 

form of the production function. Using the same methodology one can 

derive still other subfamilies of SSWK functions. 
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3. Two Applications 

In the previous section it was shown that a particular SSWK function 

can be constructed from the pair [h(k*), s(K)j. In this section we 

consider production functions that have particular characteristics in 

relation to the elasticity of substitution between K and L, and the 

strength (severity) of the law of diminishing returns to labor. These 

characteristics pose certain restrictions on the f ortn of the functions 

h(k*) and s(K), which, by corollary 3, determine the parametric form 

of the production functions. Using the same methodology one can derive 

still other subfamilies of SSWK functions. 

Given a neoclassical production function f(K,L), economists are 

interested in its behavior for three types of variations in the input 

space (see figure 1). Starting from point E, a radial movement (arrow 1) 

K 

Figure 1 

'Q • f(K,L) 

L 

focuses on the scale (dis-}economy as measured by the scale index s. For a 

horizontal (vertical) movement of arrow 2 (3), the interest is on the law of 

diminishing returns to labor (capital), the strength of which is measured 

by eLL(eKK)' which is defined in section 3.2. A pivotal variation, i.e. 
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a variation of k* (arrow 4), focuses on factor substitutability as 

measured by the elasticity of substitution £. In short, scale economy, 

the laws of diminishing returns, and factor substitutability are the 

maior engineering characteristics that have a bearing on all the social-

economic problems envisioned by the neoclassicists when a production func-

tion f(K,L) is postulated. Our purpose in this section is to construct 

SSWK ftmctions, of particular parametric forms, when certain "desired" 

properties are postula.ted for £ or eLL. Needless to i:;ay, what is "desired," 

can only be a matter of econometric usefulness and/or analytical convenience, 

a fllll justification of which is beyond the scope of this paper. 

The following schedule, containing certain definitions, is: a class!-

fication device with 14 cells (indexed by (A), (B), ••• , (N) for convenience 

(2) 

(1) Desired SSWK function 

Index Characteristic of Index Homogeneous Non-homogeneous 

£ SI SI-C £ - 1 CDH (A) CDNH (r.) 

£ ~ 1 CESH (B) CESNH (D) 

SI-V 
(E) (F) 

Ex: VES~ VESfi 
CED VE~ 

non-SI (G) Ex: ACI>rru (H) 

CEDRrffi VEDRNH 

~L SI SI-C CED11t (I) CEDI\rn (J) 

SI-V Ex: VEDI)I (K) Ex: VEDI\rn (L) 

non-SI (M) (N) 

Schedule 1 
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of reference), that provides a guideline of the analysis in this section. 

Column l describes the index, r: and eLL' while column 2 distinguishes 

homogeneous from nonhomop,eneous specifications. 

Let us start with r:, the elasticity of substitution, in row 1. In 

the first column, £ mav be specified to be SI (scale insensitive) or 

non-SI (scale sensitive), as defined in section 1. Intuitively, the 

former implies the simplifyin~ assumption that factor substitutability 

is the same for large and small production units, and hence the scale 

of production is irrelevant for factor substitutability. Economists 

routinely take advantage of this simplifying asstll!lption when they work 

with Cobb-Douglas, CES or VES functions. These familiar functions will 

naturally enter into our analysis (cells (A) through (F)), but we shall 

also construct production functions, for which £ is non-SI. There is 

a whole family of production functions; we can only give some examples 

in cell (H), one of which is given the name Augmented Cobb-Dour.las (ACDNP)' 

and we prove that the entire family consists of nonhomogeneous functions, 

i.e., cell (G) is empty (see Lemma 7 below). Moreover, we derive a 

condition which an arbitrary specification £ ,.. £ (K,I,) must satisfy in 

order to yield a SSWK function in cell (H). 

In this section, we shall refer to f(K,L) as SS! (substitution scale 

insensitive) when £ is SI. The family of SS! functions includes two 

classes: a SSI-C class for which E: is _£onstant, and a SSI-V class for which 

E is y_ariable. The first (SSI-C) class contains both homogeneous and 

nonhomogeneous Cobb-Douglas and CES functions (cells (A) to (D)). 13 The 

second (SSI-V) class is more col'lplex, because the simplifying assumption 

of the constancy of £ is dropped. We prove that this class contains only 

homogeneous functions (cell (F) is empty), and we give some examples, 
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one of which is the familiar VES function, in cell (E). 

The same construction procedure and classification device is applied 

when "desired" properties are Sflecified for eLL' which measures the stren~th 

of the law of diminishing returns to labor (row 2 of Schedule 1). To our 

knowledge, this is a new exercise in economics, which is worthwhile in 

view of the fact that probably more social-economic problems (e.p,., popu-

lation pressure and determination of rent) are directly traceable to this 

"law," which, in anv case, has a much lonr-er history than factor suhstitut-

abi.lity. We shall 1>Tove that eLJ. is SI for all SSWK functions (J.etllllla 11) , 

so that cells (M) and (N) are empty. Two examples are presented, one 

whe'!'e the I.aw of diminishing returns operates 'at: a constant strength (eLL 

is constant7 CEDR in the schedule), and one where it varies (V'EDR), in 

cells (I) to (L). Notice that these functions also enter in cells (E) 

and (H), testifying to an it1terdependence between E and ·eLL' which, 

however, we do not explore further. 

3.1 Elasticity of Substitution 

In this section, the relationship between the concept of elasticity 

of substitution (E) and the pair [h(k*),s(K)] will be investigated. c 

measures the substitutability between K .nnd·L. Let m • fL/fK. Then, in 

this paper, E is defined as: 14 

(3.1) dm k* E .,. __ 

dk* m for Q a Q or dK/dL • -m 

We have the followinr, lemma: 

Lemma 7: E is SI for all homogeneous functions. 
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(Proof: Write m = ~L k*/~K. Since homogeneity implies SSWK by 

Corollary 1, ~L = h(k*). Then $K = s - ~Lan - h(k*) implies 

that $K is also a function of k*. Thus, m is a function of k* 

and hence~ is SI by (3.1). Q.E.D.) 

This proves that cell (r.) in Schedule 1 is empty. 

Within the class of SSWK production functions, the relation between 

E and the pair [h(k*), s(K>) can he expressed in terms of the share elas-
dh k* ds K ticity (i.e., Eh= dk*~), and the scale elasticity (i.e., Es= dK 9): 

(3.2) E = h 
~K 

(E - 1) s 

The proof of (3.2) is somewhat lengthy and is given in Appendix A. For 

a homogeneous function, s(K) • n and E ""' O, so that s 
For this special case, in a capital deepening process, where k* increases, 

the labor (capital) share •L (~K) increases (decreases) when E > 1. 15 

However, for nonhomogeneous SSWK functions, the value of E cannot unarnbi-

guously determine the direction of the change of these shares, as (3.2) 

contains an additional term, involving E • Whether£ is positive (i.e., s s 

rising scale economies) or negative (i.e., falling scale economies), 

apparently makes a difference in income distribution theory that needs 

to be explored. (3.2) points out that the effect of capital deepening 

during a growth process contains a scale economies effect and a substitution 

effect on the functional income distribution. 

Equation (3.2) is used for the following basic theorem of this section 

on the important class of SS! functions, which is proved in Appendix B. 

Theorem 2: Within the class of SSWK functions, if f EW is SS! (i.e., 

substitution scale insensitive, so that £ • £(k*)), then: 
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(i) if f is SSI-V, then f is a homogeneous function (i.e., ff ){), 

with a general form (2.9b), where C(K) and H(K,L) are constructed 

(3.3)a) 

_b) 

from the pair 

h(k*) • n A exp(J0)/(l +A exp(J0)) 

s(K) • n 

where A is an integration constant, and where 

c) J 0 • J { (c (k*) - 1) /k*} dk* 

using Corollary 4, 

(ii) if f is SSI-C, then four specification are possible: 

Homogeneous production Non-homogeneous production 
function function 

4> = n - a= 1 (A) 1 (C) 
4>L = ·A -btn k* L Al 1 

1 
e: = 1 s = n s = A4 - b tn K 

Q AI(1- n-a Q = A { Al-b&n k* } l/b = L . A4 - b&n K 

~l -e:2/b (B) = ~l-e:2 /b (D) 
4> = 

(k*)l-£ /A 4>L - 1-e: L l+ 1 - A *(k*) 2 1 

e: =I- 1 (1 -e:) /b = n s = ~1-e:}/b s = 
1 - A *Kl_e: 

n 2 l/b 
Q = A {L l-e: + .!. Kl-e:}'FE 

e:-1 
Q =A{ k* - A,*} 

A2 Ke:-1 - Ai* 

Notice that theorem 2i implies, that cell (F) in Schedule 1 is empty. 

Furthermore, the functions formulated in the above schedule are the 

homogeneous and nonhomogeneous Cobb-Douglas and CES functions indicated 

in cells (A) to (D) in Schedule 1. 

The con~truction procedure of Theorem 2i allows us to construct a 

large number of homogeneous SSWK functions when the.elasticity of substi-

tution is suitably specified (but not constant), so that the integration 
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problem in (3.3c) can be solved. The following are merelv examples: 

(3.4)a) 

b) 

c) 

~ -L 

Q -

where, for ease of notation, A2 • (n-~)/nB. 

(3.S)a) E • 
y 

Bk*+y 

b) 't"" 
~ 

1+$k* 

c) Q - AK..n._~L ~(!+Bk*)~ 

where y • (n-~)/n 

The specification in (3.4c), labeled VES1 in this paper, is the 

familiar VES function (Lu and Fletcher, 1968). (3.Sc) is called VES2• 

On closer examination, VES2 is a special case of VES 1, by setting A1 = -1 

in (3.4), but we shall see why VES 2 is of special interest. 

Theorem 2 is "constructive" in the sense that an SSWK production 

function can be constructed when the elasticity of suhstitution is 

arbitrarily specified as a function of k*, i.e., e: = e:(k*). The question 

still arises whether a SSWK function can be derived from a non-SI speci-

fication of e:, i.e., E = e: (K,L). Lemma 7 already shows that the SSWK 

function must be nonhomogeneous. The following lemma states the restriction 

on the function e:(K,L) necessary to derive a SSWK function from the pair 

Lemma 8: If f (K,L) is a given SSWK function and its elasticity of 

substitution e: = e:(K,L) is non-SI, the function e:(K,L) must be 

such that ~L is SI, where ~L equals: 
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(3.6)a) ¢ = - + (~(e: - e: + 1) - - --8 )/(!!S.. + k* 2-£)1-r 1 e: k* ae: " " 1 
L s L s s aK aL aKj 

or in elasticity form: 

b) 

where: 

c) Cle: K =--3K e:' 

(Proof: If f is SST-lK., then ¢L c h(k*) is SI, so e:h is SI. Then 

differentiate (3.2) with-respect to Kand L, realizing that 

"We see that when e:(K,L) satisfies the TestTietion, (3.6) il!tl!lediately 

yields a solution for h(k*), from which, combined with s(K), a production 

function can be constructed, by Corollary 4. Thus, Lemma 8 characterizes 

the family of SSWK ftmctions for which e: is non-SI, cell (H) in Schedule 1. 

We close this section with two econometric notes. Theorem 2ii 

implies that a constant elasticity of substitution and homogeneity are 

two distinct, separately testable assumntions. While not a new conclusion, 

it is significant, nonetheless, in the light of much empirical research 

(e.g., some studies cited in footnote 1). When e: is constant, and 

perfectly competitive input markets are assumed, one can integrate (3.1) 

to obtain: 

(3. 7) 
1 w 1 

tn k* • £ tn(r) - £ in A2 

If (3.7) is estimated and the value of! is found significantly different 

from unity, that is not evidence that CESH is obtained, but rather, at 

least within SSWK, that some member of SSWK is found with e: ~ 1, which 
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may or may not be homogeneous. For example, testing for IRTS under the 

assumption that CESH is obtained (e.g. Griliches and Ringstad, 1970) may 

lead to false conclusions. 

As a final note, VES 1 reduces to CESH when n • 6. VES 2 reduces 

to CDH if S • O. A straightforward generalization of VES2 is obtained 

by specifying a variable scale function (3.8a) and retaining the share 

function (3.5b): 

(3. 8) a) s(K) "" 
n 

l+ aK 

b) ~ - n 
L 1+ Sk* 

c) Q"" AKn-6L6 (l+Sk*) 6 (1-klK)-n 

This specification, which is non-SSI, is an alternative in testing the 

relative importance of the homo~eneity and £ • 1 assumptions for the often 

used Cobb-Douglas form (and hence is called ACDNH): if a is more 

significantly different from 0 than ~' the homogeneity assumption is 

shown to be more restrictive than the £ • 1 assumption in the CDH 

specification, and vice versa. 

3.2 Diminishing Returns to Labor 

A second application of the method to construct SSWK functions 

relate to the "law of diminishinft returns" to labor. The potential 

severity of this law is essential to most production-related social 

issues, such as population pressure, and pressure on wages and interest 

rates. A measure of the severity of the law can be developed as follows. 

For a general production function Q • f(K,L), a number of reasonable 

properties are usually postulated for the elasticities defined i (3 9 ) n • a : 
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afL L 
-aL°fL 

HK L ----
dL f'K 

df L K ----aK fL 

dfK K 
- aiC fK 

:ff fLL < 0 

c) ~ - eLK 4>L/4>K > O if fKI.. • f LK > 0 
if fKK < 0 d) ~ > 0 

eLL '> 0 is t:he labor elasticitv of fi 9 depicting the severity of the l:iw 

···of dimnishing returns to labor. ·1n (3.9c), ~1 .and ~Kare l)ositive 9 

depicting ~he laws of factor complementarity. 

Using (3. 9) 9 ,.1e obtain the following lemma. 

Lemma 9: For any SSWK function f, i.e., ff W: 

(3.10) s - 1 • eLK - eLL 

(Proof: see (1.R) and the definitions of eLK and ~L· Q.E.D.) 

Thus, under SSWK, the case of IRTS (s > 1) is assured by the fact that 

the law of complementarity overwhelms the law of diminishing returns to 

labor (~K > eLL). 

To investigate the behavior of h(k*), let Eh denote the elasticity 

of the share function, as before in equation (3.2). Then: 

Lemma 10 For any SSWK function: 

(3.11) where Eh • (dh/dk*)k*/h 

(P.roof: Differentiating ln 4>L • ln f1 + ln L - ln Q 

yields: 

But: 

dQ/Q • 4>LdL/L + 4>KdK/K 
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dk* • d(K/L) • (LdK - KdL)/r,2 

dL/L - dK/K • - dk*/k* 

d~L/+L • (1 - eLL - ~L)(dL/L) + (eLK - ~K)(dK/K) 

• (1 - eLL - +L)(dL/L - dK/K) 

by (3.10) and (1.3). So: 

0.E.D.) 

Lemma 1() implies that thP. i:;hRTf' ftmct:lon increases with k* if 

+L > 1 - eLL' and decreases if +L < 1 - ~L· In the former (latter) case, 

the wage share increases (decreases in a capital deepening process. In 

view of Lemmas 9 and 10, eLL' as a measure nf the severity of the law of 

diminishing returns to labor, is a crucial characteristic of th SSWK family. 

Notice from (3.11), that eLJ, is SI, because both Eh and dlL are SI. 

This is summarized in Lemma 11: 

Lemma 11: For any SSWK function; tho lahor elasticity of the marginal 

product of labor (fL) is SI, i.e., eLL = e(k*). 

Therefore, in the SSWK family, eLL and ~L determine each other. Moreover, 

Lemma 11 implies that cells (M) and (N) of Schedule 1 are emnty. 

Now for a given eLL • 0(k*), +L • h(k*) is the solution to the 

differential equation (3.11). Then Corollary 3 and 2 imply that eLL s e(k*) 

determines a coset carrying an arbitrary scale function associated with 

e (k*). 

(3.12) 

where 

The solution to (3.11) is: 16 

• - -N { I (!!.....) dk*}-l 
L k* 

N • exp { f 0(k*)-1 dk*} 
k* 
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Many SSWK functions in particular parametric form can be generated. 

Here we shall give two examples. The first is the SSWK function with 

constant eLL • e, called the Constant Elasticity of Diminishing Returns 

(CEDR) function. It is given in (3.13): 

(3.13)a) 

b) 

c) 

eLL ,.. e 
1 - e 4' - -----,,-

J, 1 + B k*l-e 

Q • A eJ (k*e-l + B) 

·--L-ere J • J sK(K) dK. Th t i ti th t d i wu ere are res r c ons on e parame er oma n: 

.!. if·O < e < 1 and B > o, then O ~ tf>L ~ 1-e; 

k* < <- !)(1/1-e). 
- B ' 

b if 0 < e < .. 1 and B < o, 

and c if e > 1, then ~ < 0 then 1-e ~ tf>L ~ 1 and 

and k* ~ (- :)(l/l-e). The scale function can he chosen freely; if 

s(K) c n and B • O, CEDR reduces to CDH. One can easily check that E 

is not a function of k* unless s(K) • n. 

The second example is intentionally chosen to link up with CESNil" 

Now, eLL varies with k*, and hence this function is called VEDR: 

(3.14)a) 

b) 

c) 

1 - E - A2 e "'------+ ... LL 1 "" 1 + Al k* -E 

A2 
di - ------

L 1 + A k*l-E 
1 

J Az/1-E 
Q • A e (k*£-l + A ) 

1 

A more general form than (3.14a) seems to present difficulties when solving 

the integrals in (3.12). Ap,ain, one may generate homo~eneous as well as 

nonhomor,eneous functions from (3.14c) by specifying appropriate scale 
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functions. If one chooses s(K) • A5 (1 + A4 Kl-o)-l , the production 

function, called VED~, becomes: 

~/1-c -A /1-o 
(3.14)c') Q •A (k*E-l +A) (K&-l +A) S 1 4 

If one restricts A2 • A5 and c • 6. CESNH returns. Thus, one can 

test whether the particular scale function necessary in obtaining a 

constant £ (see box in Theorem 2ii) is restrictive in a statistical 

sense. 
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4. Empirical Specification 

So far, we have derived analytical expressions for the production 

function under alternative assumptions. The next step is to subject 

these specifications to an empirical investigation. When e is constant, 

four specifications can be tested against each other, namely the homo-

geneous and non-homogeneous CD and CES functions. As seen in the previous 

section, the difference between the most elaborate function, CESNH, and 

the simplest function, CDH' is two parameters. 

·~ .• 
· .. -.· .. £need not be constant, however. When£ varies with k* (i.e.,.is 

·s1-V), the scale function s{K) is constant, according to Theorem 2i, and 

examples of resulting production functions are VES 1 and VEs2• Looking 

at characteristics of ~L' we found the CEDR and VEDR specifications. 

All these specifications are linked together by simple parameter restric-

tions. This section puts forth a framework that allows testing the statis-

tical significance of these parameters. The maintained assumption is 

that the production function is one within the class of SSWK functions, 

which can be challenged, of course, at the cost of more elaborate speci-

fications. 

At the start of empirical analysis, we are faced with the question 

why observations do not follow one of the specifications perfectly. Since 

we consider the production function as a product of buildinp, blocks, the 

share and the scale function, a logical approach would be to assume 

random variation around the value of these functions. But scale (i.e., s) 

is an unobservable variable. Quantity produced on the other hand is 

observable, and its random variation around a deterministic value f 

. -:. 
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~'111 depend in part on random variation in the share of labor and the 

scale of nroduction. In this way, we are led to the behavioral model 

of Zellner, Kmenta and Dr~ze (1966) with the assumptions that the entre-

preneur maximizes eXT>ected profits at a time that random variation in 

production is still unknown, and that the realized demand for labor 

contains managerial errors due to inertia, ignorance, etc. 

To be more precise, let u1 and ui enter exponentially into the 

production relation and the marginal-product-of-labor relation respectively: 

(4.1) 

(4.2) 

ul 
Q = f e 

u' 2 
w = fLe 

Equation (4.2) can be written as a share equation: 

' u'-u 
(4.2)' ~L • wL/Q • fLLeu2/Q = (fLL/f)e 2 l • heu2 

Let us take the logarithms of (4.1) and (4.2)': 

(4.3) tnQ • tnf + u 1 

(4.4) tn¢1 • ~nh + u2 

The wage share is a variable in the interval ( O, l]. Thus ...., ~ tn¢1 ~ o. 

This imposes a restriction on u2 : 

(4.5) u2 ~ - tnh 

As suggested above, the errors u1 and u2 will be correlated. We 

assume that (u1,u2) are jointly normally distributed with mean (O,O) an<l 

covariance matrix r where: 

(4.6) r .. ( 
011 

0 12 
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Using these assumptions, it is straightforward to write the log-

likelihood functionl as: 

where u1i a tnQi - tnfi; u2i • tn¢Li - tnhi; g is a bivariate normal 

density function with mean (O,O) and covariance matrix£; and~ is the 

standard normal cumulative distribution function. The second sum in 

(4.7) represents the truncation on u2i as given in (4.5). 

Maximum likelihood estimation appears the most suitable estimation 

_ ~echnique. in the face of· the nonlinearity in the parameters, the cross-

t ·-:or· equation parameter restrictions evident in every specification, and ·the 

.distributional assumption (4.6). This allows straightforward testing of 

restrictions on parameters: if hypothesis n1 leads to a log-likelihood 

valuelCH1), and if hypothesis H2 restricts one parameter compared to H1 
and gives a log-likelihood value a((H2), then ). • -2 clCH2) - .tCH 1)) is 

2 . 
distributed (asymptotically) as x (1), and significance of ). can thus be 

tested. 

.,. - .: ~ ~-. 
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5. Empirical Results 

5.1 Data Description 

We now turn to a discussion of empirical results obtained from 

estimating the SSWK production functions constructed in the previous 

sections. For this estimation, we have used a set of data collected 

by the Census Bureau of the government in Taiwan during 1981. From 

this Census material, the largest three industries were chosen: agricul-

tural machinery (industrial code DN•OO), electronic equipment (DN=ll) 

and cotton textile (DN=22). Variables used for this study are: value 

added (•Q), total wage cost (-wL), value of fixed assets (•K), and number 

of employees (•L). 

The main disadvantage of these data is a problem in the measurement 

of wage cost and value added. For a number of firms, total wage cost 

exceeded value added, so that the wage share exceeded unity. For others, 
17 value added was negative. Our interpretation is that presumably wage 

cost is overstated and/or value added is understated, as firms would h~ve 

an incentive to do so in·view of the hi~hly conpetitive environment in 

Taiwan (for fear of taxation a~encies and information sharin~ with comne-

titors). Observations with a measured wage share outside the interval from 

0 to 1 are therefore excluded from the sample, but nevertheless one may 

doubt the quality of the remaining data. While the results reported here 

are mainly meant as an illustration, they must he interpreterl with caution. 

In table 1, some st.mm1ary statistics are given. In terms of mean 

value added, the electronic equipment industry operates on the largest 

scale, followed by cotton textile, and agricultural machinery. The 

same ranking would appear, when we look at the average number of employees 
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per firm. The last row shows the capital-labor ratio for the "averaRe 

firm" in each industry. It proves that cotton textile is the most 

capital-intensive industry, followed by agricultural machinery. 

Electronic equinment is the most labor-intensive. Finally, one may note 

that wage shares are roughly comparable across industries. 

5.2 Estimation Results 

The first step in the empirical investigation of SSWK production 

functions is to see whether the share function in each industry is SI. 

'" .... i.e., requiremen~ (1.9). Table 2 reports on the estimated relationships 

."·:<. between ~L and k*. Linear and log-linear specifications lead to the same 

Tesults, ~o only linear regressions aTe discussed here. The re~ression 

gives poor results for DN•OO, and somewhat better for DN•ll and DN•22. 

To check for scale insensitivity, one may add K, L and 0 to the regression • 

. F-statistics show the. joint significance of these variables: adding K 

and L yields a better fit for DN=OO, but not for DN=ll and DN•22, and 

adding Q is significantly better in each case. 

The latter result is not surprising in view of the definition of 

$Las wL/Q. Moreover, when random errors of $Land Q (i.e., u2 and u1) 

are strongly correlated, as we shall see to be the case, the significance 

of Q in these regressions may be caused merely by simultaneitv of the 

variables. The lack of significance of K and L in the regressions is 

thus a better indicator that the production function is SSWK. Therefore 

we conclude that the production processes in the electronic equip~ent 

and cotton textile industries are SSWK, while that in agricultural 

machinery is not. 
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The specifications given in section 3 were estimated for the SSWK 

industries DN=ll and DN=22. As emphasized before, most of the specif!-

cations are nested within each other. Rather than listing results of 

all variants, we compare in Table 3 the values of the log-likelihood 

functions. In addition to the values, this table lists the number of 

parameters, including the covariance matrix r, for each specification, 

and shows arrows pointing toward the preferred specification according 

to the likelihood ratio test between pairs of specifications. 

A few notes are in order. First, the CED~ function uses a scale 

function that is linear in K. Nevertheless, the homogeneity assumption 

of CDH appears not as objectionable as the £•1 assumption, in view of 

the acceptanc~ of CED1lru and VES2 over CDH and the rejection of ACD~TH 

in favor of VES2• Second, CDNH is somewhat better than CDH for DN•ll, 

but for DN=22 nonlinearity presents problems for estimation, due to the 

fact that b decreases steadily toward 0 during iterative steps of the 
. .· 1 

maximization routine and thus b' which appears in the exponent of Q (see 

Theorem 2ii), increases tom. We have assumed, that b•O yields the 

maximum, i.e., CDNH reduces to CDH. 

Third, the CES assumption, embodied in CESH and CESNH' is accepted 

for DN=22. For this industry, there is no evidence in favor of a varying 

elasticity of substitution, nor of scale being a function of K. CESH is 

most preferred. Fourth, the elasticity of substitution is definitely 

variable of DN•ll. VES 1 and VEDI)rn are both preferred over CESH and 

CESNH' suggesting, moreover, that scale s(K) may be constant (s'(K) • O) 

rather than variable (s'(K)·~ O). 

Table 4 reports the parameter estimates of these preferred specif!-

cations. For the meaning of each parameter, one is referred back to 
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section 3; similar parameters in different columns have different meaning. 

The first column shows results of the VES 1 specification for DN•ll. 

Significant economies of scale exist: n equals 1.0374 and is significantly 

different from 1. The elasticity of substitution £(k*) increases with 

k*. · It rises from .548 for k* • 38 (=.5 k* for this industry) to .604 

for k* • 152 (• 2 k*). Note that since £(k*) is the inverse of the corrunon 

definition of the elasticity of substitution, capital and labor are rela-

t~vely ~ood substitutes for each other. As can be expected ~n such case, 

the wa~ share ¢1. falls with the capital-labor ratio; its elasticity £h 

at the mean of k*· 76 equals -.205. 

The second COll.DDil of Table 4 shows VED~ Tesults foT 'DN•ll. Scale 

i.s now a function of K, and is found to decrease withK. 1'orthe smallest 

firms (K.•1000), s(K) equals 1. 050, while for the average firm (K = 129361) 

s(K) equals 1.036, which is remarkably close to the estimate of n in the 

VES 1 specification. CRTS is reached at K = 903156. Onlv a few firms 

in the electronic equipment industry operate at DRTS; for the largest, 

s(K) equals .888. This shape of the scale function implies a U-shaped 

long run average cost function. The elasticity of substitution is now a 

complicated function of K and L, but it can easily be calculated from 

equation (3.2): from £h = -.213, ~L • .529, and £s • -.009 follows 

£ • .574. Notice that these numbers correlate well with the ''E~l results, 

so that the two sets of estimates are quite comparable. 

The third,column considers estimates for DN=22. The scale function 

is constant, at a value of (1-£)/b • 1.058. A test of CRTS involves 

setting b equal to 1-£· This restriction is rejected at the .5 percent 

significance level by these data for this industry. The elasticity of 

substitution £ is quite small, indicating a "regular" elasticity of 
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1/£ = 4.097, which imvlies good capital-labor substitutability. Accor-

dingly, the wage share falls during a capital-deepening process. 

Finally, the estimates of the covariance matrix r in all three 

columns reveal a high degree of correlation between thP. errors in the two 

equations, u1 and u2 • The correlation coefficients vary between -.850 

and -.900. This substantiates our claim that one should not test for 
18 SSWK. by including Q in the regression (see Table 2). 
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6. Concluding Remarks 

What motivated our research for the SSWK-function in general and 

the specified functions in particular are certain basic issues in dis-

aggregate (i.e. individual firm and individual industry) production 

analysis. On the one hand, the familiar U-shaped long and/or short 

nm average cost curves testify to a long tradition of non-CRTS study. 

On the other hand, the "law of diminishing returns" is a basic "law"9 

:the severit:y of which underlines the gravity of most production rela1:ed 

-.,_'social issues (e.g. population pressure, and pressures on interest 

rates or wage rates) • 

A systematic analysis into the characteristics 1ead ·to an 

identification of basic elements of the speci£ication of any production 

function, namely the scale flmction and the share function. Several 

commonly used specifications fitted in this categorization, but those 

specifications all exhibited CRTS. Two of them, the Cobb-Douglas and 

the Constant-Elasticity-of-Substitution (CES) specifications, can be 

expanded within the SSWK framework. This study is not limited to these 

specifications, however. Suitable functional forms for the scale and 

share functions have yielded other specifications that are both parsimo-

nious in their parameters and rich in the variety of characteristics. 

An empirical investigation with firm level data from Taiwan showed 

interesting diversity in the characterization of the production processes 

among the three industries considered. One should view these results as 

not much more than an illustration of the richness of the SSWK class of 

production functions. We look forward to using more suitable data in 

order to continue this promising avenue of research. 
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Footnotes 

(1) CRTS was rejected by Berndt and Khaled (1979) using time series data 

for the U.S. manufacturing as a whole from 1947 to 1971. Lopez (1980) 

rejected the implications of CRTS for systems of input demand equations 

for Canadian agriculture, with time series data from 1946 to 1977. 

Early cross-sectional studies surveyed by Walters (1963) often indi-

cated more or less constant returns, with the exception of Klein (1974), 

who found large significant IRTS for the 1936 U.S. ~ailway industry. 

CRTS was rejected by Griliches and Ringstad (1970) for manufacturing 

as a whole, as well as many individual industries, from steel to diary, 

in Norway in the mid 1960' s. Lovell (1973) and Christensen and Greene 

(1976) reject the hypothesis of homotheticity, which includes CRTS, 

for the U.S. transportation equipment and the U.S. power industry, 

both leading to U-shaped average cost curves. Lau and Tamura (1972) 

also reject homotheticity for the Japanese petreochemical industry 

and find that increasing returns to scale are concentrated in the 

labor input. 

(2) Kuznets (1966, p. 9). 

(3) Arrow et al. (1961) define the class of CAP (capital-augmenting 

production) functions, and search for the CES function. The VES 

function (Lu and Fletcher, 1968) may be a generalization of the CES 

function, but is not a member of the CAP family. In our paper, we 

search for special members in the family W of SSWK functions. 

(4) These non-homogeneous functions are the only members within the SS~~ 

class with the characteristic that £ is constant. They are special 

cases of the most general class of CES functions ~xamined by Sato 

(1975, 1977). 
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(5) Early tests of scale economies employed Cobb-Douglas specifications. 

Later on, CES specifications were used. Recently, several flexible 

functional forms, such as translog, were estimated and tested for 

scale economies and homotheticity. Such flexible forms generally 

do not have particular properties regarding £ and/or ~L· Examples 

of these three methods are given in footnote 1. 

(6) i{, is the complement of )( and consists of all nonhomogeneous functions. 

Then W n I( is the set of all nonhomogeneous SSWK _functions. 

(7) See Birkhoff and MacLane (1950, p. 130). 

(8) It becomes clear at this point, that some •embers of W do not have 

economic significance, e.g., those with negative share functions. 

When conducting an economic analysis, such members should be excluded, 

as they do not satisfy basic conditions for production functions. 

(9) See Birkhoff and MacLane (1950, p. 146). The cos~ts ZB are disjoint: 

they do not have elements in common. 

(10) Since we do not assume constant returns to scale, the equality of 

wage rates with value of marginal product prevails only in the short 

run. 

(11) As mentioned in section O~ the same method was employed by Arrow et al. 

(1961) to establish the empirical validity of the capital-augmenting 

production functions, of which CES is a special case, when wage rates 

show a high correlation with labor productivity (p • Q/L). 

(12) One can readily show that the multiplicative quotient group W/B is 

isomorphic to the additive group 1. See Birkhoff and MacLane (1950, 

p. 158). 

(13) Thus Sato (1975, 1977) studies the family of SSI-C functions. 
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(14) The common definition of the elasticity of substitution is the 

inverse of£ as defined in (3.1)~ 

(15) We emphasize again that E is the inverse of the regularly defined 

'elasticity of substitution. So if dE/dk* > 0 (<O), then as capital 

intensity (k*=K/L) increases, substitutability between capital 

and labor decreases (increases). The fixed proportions production 

function would be characterized by E = m, the perfect substitutability 

production function by E • O. 

(16) Equation (3.11) is the so-called Bernouilli's equation. See Boyce 

and Dippine (1967). 

(i7) Such problems were most severe in the cotton textile industry. 

Frequency distributions in the three industries were as follows: 

DN•OO DN•ll DN•22 Total % 
~ < 0 L- 16 4 43 10.2 

0 < +L ~ 1 83 144 145 60.2 

+L > 1 22 15 146 29.6 

(18) For the interested reader, we note that CDNH was the preferred speci-

fication for DN•OO, the industry we have excluded from further discus-

sion, after we found no evidence in favor of the SSWK characteristic. 

The estimates were: A•264.5218 (2.61), A1ml.3143 (15.98), A4•27.9913 

(12.96), b•.0486 (8.42), a 11•.3A98 (5.17), 0 12--.3973 (-5.61), and 

a 22•.5028 {6.44), with a log-likelihood value of -45.919. 

r 

I 
I 

I 
t 
I 
~ 
I 
I i . 

I 
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Table 1 

Definitions and Descriptive statistics 

Industry code:a DN=OO DN=ll 

Q = value added (NI'$) mean 10143 281105 
st.dev. 30090 1396508 

«l>r, = wage share in value added rrean .5910 .5194 
st.dev. .2178 .2045 

K =value of fixed assets (NI'$) rrean 9914 129361 
st.dev. 35226 594482 

· · · L = nunber of enployees rrean 38.9 851 
st.dev. 82.4 2524 

k'* ~·= capital -labor ratio rrean 174.9 76.0 
st.dev. 144.9 54.2 

· limber of cbservations 83 144 

Note: aThe industrial codes stand for the following industries: 
DN=OO agricultural machinery 
DN=ll : electronic equipment 
DN=22 : cotton textile 

DN=22 

131774 
311076 

.5690 

.2336 

203414 
664804 

551 
1434 

192.8 
163.5 

145 
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Table 2 

Analysis of SSWK relationsbipa 

Linear Regression 

Intercept 

F - equation 
F - add K, L 
F - add K, L, Q 

Log-Linear Regression 

Intercept 

In (K/L) {*10) 

{ln {K/L))2 {*10) 

F - equation 
F - add In L 
F - add In L, In Q 

DN=OO 

.614 
(9.08) 

-.061 
(-0.09) 

-.292 
(-.022) 

.012 

0.47 
3.60 • 
6.34 • 

DN=OO 

-.635 
{-1.50) 

.987 
{0.49) 

-.183 
{-0.74) 

.017 

0.68 
17.34 • 
59.12 • 

Note: at-statistics in parentheses 

DN=ll 

.611 
(15.19) 

-1.507 
(-1.68) 

2.646 
(0.65) 

.068 

5.14 • 
.51 

4.80 • 

DN=ll 

-.460 
(-3.75) 

.093 
(0.21) 

-.191 
{-2.27) 

.065 

4.93 • 
1.23 

111.06 • 

DN=22 

.643 
(14.80) 

-.342 
(-0.89) 

-.135 
{-0.22) 

.088 

6.87 • 
1.58 
9.05 • 

DN=22 

.-.380 
{-2.43) 

.408 
(0.92) 

-.195 
(-2.82) 

.069 

5.18 • 
1.03 

159.46 

F-values marked with • are significant at S percent level 



Tab1e 3 

Corrparison of Log-Likelihooa Valuesa 

CED%g (8) 
11: -128.762 
22: -124.914 ~ --

CDa (6) a:>m! (7) 
11: -139.196 ~ 11: -136.321 

- 22: -129.299 <- - - - - - - - - - - 22: -129.299::> 
1Dlm (8) // 11· -128.719~ / 

22; -123.806 ',, VES2 (7) , , 

/ 
/ 

'" 11 • -128. 775 lo( 

'.::l 22; -124.034 
I 
I 

"" /, ,,-"' 
VES1 (8) V: /"' 

11: -112.265 // 
22: -121.698 

/ 
/ 

I 
'IV 

CESa (7) 
11: -118.669 

,, 22: -122.238 

" ' 

/ 

' t------------

I 
I 
..v 

CESNH (8) 
11: -118.592 
22: -121.468 

-If 
/ 

,~ E/ ' / ' . / 

' ' VEDRm (10) · / / 
' ' 11: -111.932 / / 

22: -120.691 

Notes: aThe first value under each specification acronym is the log-likelihood value for DN=ll, the 
second refers to DN=22. The nunber next to the acronym is the nunber of i;ararreters estinated 
under this specification. The solid arrow points to the preferred specification for DN=ll, 
the dashed arrow does so for DN=22. 

brrhe value for ~ appears to be the same as for CDa fot DN=22. See discussion in the text. 

I 
.i::-
.i::-
I 
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Table 4 

Preferred Parameter Estimates for DN=ll and DN=22a 

DN=ll b VES1 VEDRNH 

A 8.2550 A 8.8187 
(0.76) (3.53) 

n 1.0374 Ai .3942 
(59.93) (6.21) 

& 1.4364 A! 4.2326 
(6.98) (8.26) 

Ii .4197 8 .6617 
(1. 87) (19.88) 

At -.3251 A4 .47•10-5 
(-3.93) (0.78) 

A~ 1.5521 
(43.65) 

& .3232 
(0.99) 

a11 .3466 a11 .3490 
(6.43) (6.62) 

a12 -.2827 a12 -.2848 
(-5.50) (-5.80) 

a22 .3193 a22 .3206 
(5.83) (6.18) 

£. -112.265 ~ -111.932 

N 144 N 144 

Note: &Asymptotic t-statistics in parentheses 
b 
~ • ~/1-£ ; Ag • A5/1-5 

DN=22 
CE Su 

A 52.2074 
(9.10) 

A2 .0097 
(1. 63) 

b .7147 
(6.85) 

8 .2441 
(2.07) 

a11 .5716 
(6.02) 

a12 -.4689 
(-5.62) 

a22 .4749 
(5.89) 

ol. -122.238 

N 145 
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.Apoendix A: Proof of equation (3.2) 

(A.l) 

Let us define an operator E as 

az k* 
E (z) = ak_i!:Z subject to 

In other words, E (z) is the elasticity of z with respect to k* subject 

to the condition that the total output is constant. The following 

relations are generally valid. 

(A.2) a) E($L) = E(s) + llK(e-1) 

b) .· E(4>K) = E(s) - llL (e-1) 
4>K 

c) where . µK= --; • ··: · 
4>L 

µ =- and L s 

on 'the other hand 
4>K fL 

E{(4> /4> )+l) = - E(4> /4> ) = -JL.cE(-lk*) = -PK(e-1) • . K L s K L r fK' 

·Thus 

E(s) - E(4>L) = -µK(E-1) 

or E(4>L) = E(s) +µK(E-1) 

The proof of (A.2b) is similar •. Q.E.D.) 

~quation (3.2) is valid for SSWK functions only. So s • s(K) and therefore: 

E( ) • as(K) k* • as(K) K ~ ~ • Es E(K) 
s ak* s aK s ak* K 

Since: dk* • .! dK - !_ dL 
J. L2 

and: dK • -(fL/fK) dL-• -m dL 

E( ) 1 K/L 'L 
K - l + ..!.... • K - s - µL 

L mL2 

we have: 

Since E(4>L) • Eh for SSWK functions, this completes the proof of equation 

(3. 2). 
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Appendix B: Proof of Theorem 2. 

Proof of (i): 

By applying equation (3.2) in the text 

we have 

(B.l) 

Define f(k*) = e:h/~L + (1 -e:)/~L 

Differentiate equation (B.l) with respect to L: 

Which is 

af(k*)/aL = af(k*) ak* = f'(k*)(- K/L2) ak* aL 
1 ae: ak* =----= s ak* aL 

(B.2) f'(k*) l ae: = - s ak* 

Differentiate equation (B.l) with respect to K: 

(B. 3) 

where 

f'(k*)/L = a(e: /s)/aK + a(l/s)/aK - a(e:/s)/aK s 

a(e:/s) 
3K 

1 ae: 1 as 1 -----e:--6 3k* L 3K 2 s 

By substituting (B.2) into (B.3) we can get 

(B.4) a(e: /s)/aK + a(l/s)/aK + (e:/s2)(as/aK) = o s 
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Since (B. 4) is a differential equation in K; e: is one of the 

"parameters" of the differential equation, and so will enter into the 

solution. The solution of s thus contains e: • e:(k*). The function is thus 

not SSWK. We thus conclude that: "if e: = e:(k*) , then (B.4) is true 

if and only if as/aK = O". 

So we have proved: "If e: = £ (k*) with Cle: (k*) /Clk* :f 0, and the 

J)roduction function is SSWK, tllen s(K) is a constant i.e. s(K) = n". 

To get a general production form we need to know h(k*), because 

as -equation (2. 9) in the tex"t indicates, .a J>roduction £unction can be 

constructed ttrough {h!k*)., s(K)). By equation (:B.1), -we :have 

~ ~ - n-h (E-l) 
dk* h h 

which is 

n db • t:-k*l dk* 
b(n-h) 

Integrate 

I c-L + l> dh - J !.::!. dk* n-h h k* 

we can get 

h/(n-h) = AJ1 
where J J 1 = e 0 , 

Since e:(k*) does not have explicit form, a general production form is 

constructed. 

Q = C(K)H(K,L) 

where H(K,L) R = e , R • ./'(h(k*)/L)dL and C(K) is found through 

the equation: 

s(K) = n = h + K(ClR/ClK) + (dC/dK)(K/C) 
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Proof (ii): 

When e is constant (i.e. ae/ak* = O), equation (B.2) is 

(B.2)' f I (k*) = 0 

It implies that f(k*) = b is a constant. Therefore (B.l) can be re-

expressed as sh = e - e +1, i.e. s 

(B.5) e = (as/aK)(K/s) = sb + e -1 s 

According to the property of s (i.e. constant or not), there are 

two possible solutions. 

Case 1: (as/aK) (K/s) :f O 

Equation (B.5) can be re-expressed as 

(B.6) (l/(s(sb-l+e))ds = dK/K 

(i) £ :f l 

Since b = eh/h + (1 - e)/h, as the definition indicates in the 

beginning of this proof, we have 

(ah/ak*)(k*/h) = bh -1 + e 

which is 

dh/((bh-l+e)h) = dk*/k* 

i.e. 
1 1 1 

(e-1) (h - bh-l+e)dh = dk*/k* 

By integration we have 

which is 

in h - in(bh+e-1) = (e-l)in k* + i~ 

h/(bh+E-1) =A k* e-l 
1 
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The share function is thus obtained, 

(B.7) 

where 

h =((1-£)/b)/(l-A*'k*l-e:) 1 

A* = l/bA 1 1 

In order to get the scale function, equation (B.6) can be expressed as: 

l ( l b )ds = dK/K (E-1) S - E+sb-1 
By integration 

.tn s - .tn (sb+E-1) = (E-1).tn K + .tn A2 

The .. scale function is thus obtained, 

.. (:B. 8) . 1 l~ 
- s = ((1-E) /b) I (1 - bf-IC ) 

2 

Since we have h(k1). and s(K), we can construct the ]>TOduction function 

by using equation (2.9) in the text. 

R = J (h(k*)/L)dL = .! .tn (L1~ - ~l-E) + .2.n A
3 

· 
b b~ 

and 

In order to obtain C(K), equation (2.9d) has to be used. It can be 
H H C readily shown that s = (1-E)/b. Putting s , s , and (~.8) together 

we _ have 

1 dK dC/C =-((1-€)/b){l- }-
I- Kl-E/bA K 

2 By integration: 

in C =((E-1)/b)tn K + ~ .tn (Kl-E/(1- b! Kl-€))+ .2.n A4 2 
We thus get 

C{K) 
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The production function is 

Q = C(K)H(K,L) = A5( 
k*E:-l - At 

- ) 
KE l - A* 

2 
A* =l/bA 2 2 

(ii) E: = 1 

In this case, .b = eh/h. The share function can be easily calculated 

· (R. 9) 

And equation (B.6) is, in this case, 

2 ds/s • b dK/K 

The scale function is thus 

By applying equation (2.9) in the text, a production can be constructed. 

A1 - b in k* l/b 
Q = A6{A

4
. - b inK } 

Case 2 (as/aK)(K/s) = O 

In this case s(K) = n is a constant. By lenuna 1 in the text, the 

production must be a homogeneous one. 

(i) E: :I 1 

By equation (B.l), we have 

(dh/dk*)(k*/h)=((n-h)/n)(e-1) 

The share function is calculated: 
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The scale function is, by equation. (.B.5) / 

s = n = (1-e:)/b 

By equation (2. 9), a production function can be constructed through 

[h(k*), s(K)]. According to (2.9c): 

R= J(h(k*)/L)dL = (n/(1-e:))R.n (Ll-e: +kl-e:) +R.n A3 AZ 
aild 

·;.As to C(K), we calculate 

and 

According to equation (2.9d), dC K 
dK c = o. C(K) is thus a constant c. 

The production is thus 

Q = C(K)H(K,L) 

where A4 = cA3 

By defining A2 = a/(1-a), and e:= l+p, it can be shown easily 

that this production function is exactly the same as the CES function. 

(ii) e: = 1 

According to (B.5), either s orb equals to zero in this case. 

Since s=O is excluded in this paper (see equation (1.3) in the text), 
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• b must be zero. By definition, b = Eh/h + (1-E)/h = Eh/h = O, h is thus 

constant. 

Leth= n-a, ands= n. By applying equation (2.9), 

R = ~(h(k*)/L)dL = (n-a) tnL + !n A 

and 

H(K,L) R n-a = e =AL 

H H ·dC K Calculating s , which is s = n-a, we get dK C = a. 

C(K) = A Ka 1 

The production function is thus 

Q = C(K)H(K,L) = A KaLn-a 2 

C(K) is thus 
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