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ABSTRACT 

This study estimates income and price elasticities for foodgrains in 

India, using a cross-section of time series data across 10 states and for 

20 years. Previous attempts to estimate demand elasticities for India have 

been largely restricted to single equation estimates of income or expenditure 

elasticities based on a limited number of observations. The few studies 

which have attempted to estimate a complete system of equations generally 

deal with broad groups of commodities, using the Linear Expenditure System, 

which makes restrictive assumptions about the underlying utility function: 

This study attempts a more disaggregated analysis; demand elasticities are 

estimated for Rice, Wheat (i.e. the so-called superior cereals), Pulses 

and the so-called "inferior cereals" which form a substantial part of the 

cereal consumption of low income groups. The elasticities are estimated 

from a complete set of demand equations with cross-equation constraints 

on the price and income terms, using three new flexible functional forms. 

INTRODUCTION 

Any system of demand equations must satisfy the following conditions 

of consumer demand theory. 

I homogeneity of degree zero in income and prices 

II symmetry of the compensated cross-price terms 

III adding-up constraint i.e., the weighted sum of income 
elasticities = 1 

In addition, the nature of the data we are using, and the level of 

disaggregation we are attempting, make it desirable to have functional forms 

lf See for example, the work of R. Radhakrishna and K. N. Murthy (1978) 
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which are simple to estimate and easy to interpret. 

The data consists of time series covering 10 states in India and 

twenty years, and 4 foodgrain groups. We, therefore, need to deal with 
and dat~. 

the problem of pooling cross-section/time-series/ Further, not only are 

these commodity groups close substitutes for each other, but one of them, 

i.e., "inferior" cereals may have a negative income elasticity. We also 

need functional forms which allow for decreasing or increasing income 

elasticities (as compared to constant elasticities) since, with foodgrain 

consumption, it is unrealistic to assume that the elasticity will be 

constant. We therefore need functional forms which: 

I are linear in parameters 

II are "flexible" in the sense that income and price terms 
are not constrained to be zero or unitary 

III allow for positive, negative, increasing or decreasing 
income elasticities 

IV allow for estimation of cross-price elasticities with a 
group of close substitutes or complements and do not assume 
different types of additivity. 

In deriving a functional form for the demand equations which 

satisfy both the conditions of demand theory and our special needs, we 

use the results of duality theory as applied to consumer demand theory. 

Their usefulness can be best appreciated with a brief review of the 

historical development of consumer theory. (See also Barten,1~17) 

REVIEW OF CONSUMER DEMAND TIIEORY 

The first attempts to measure demand elasticities were in terms of 

single equations, specified directly and in an intuitive way, to include 

prices and income as explanatory variables. Whenever the prices of substitutes 
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or complements were considered important, they were also included. But 

it is impossible to incorporate any of the restrictions of demand theory 

mentioned above (with the exception of homogeneity) to single equations 

since they refer to a system of demand equations which describe the allo-

cation of a consumer's budget over an exhaustive set of commodities. 

Systems of demand equations have, therefore, been derived from 

specifying a utility function U = f (X1, x2, .. XN) and maximizing it 

subject to a budget constraint. To derive estimation equations, this 

implies inversion of the bordered Hessian matrix, which may be quite 

large and difficult to handle without any (often unrealistic) constraints 

on the utility function itself. Different types of separability of the 

utility function were used such as "block-independence" which means that 

the marginal utility au ;ax. 
l 

is independent of X., where the ith and 
J 

jth commodities belong to different groups of commodities. This allows 

the Hessian matrix to be block-diagonal. The assumption of "preference 

. f h . th d" independence", which means that the marginal utility o t e i commo ity 

depends only on X. allows the Hessian matrix to be diagonal. 2 The underlying 
1 

assumptions of separability have also been necessary to reduce the number 

of parameters to be estimated, given a small body of data. 

Diewert also points out that the form specified for the utility 

function needs to be rather simple, to be able to obtain algebraic 

expressions for the demand functions. If we assume that the utility 

function is of a "flexible" form, such solutions are normally impossible. 
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Three systems of demand equations currently in use, which are 

derived from specific forms of a utility function are (i) the Linear 

Expenditure System (Stone, 1954) (and its extension, the Extended 

Linear Expenditure System (Lluch, et. al. 1977), (ii) the Quadratic 

Expenditure System (Pollack and Wales, 1978) and (iii) the Indirect 

Addilog System (Leser, 1941 , Houthakker, 1960). The detailed features 

of these systems are discussed in Appendix D. It is important to note here 

that they all assume an additive form for the utility function. They 

therefore allow little flexibility in the price coefficients and assume 

that all goods are net substitutes. Further, the Linear Expenditure 

System (and its extensions) do not allow for inferior goods. Therefore, 

these systems are more suited to the analysis of broad aggregate groups 

and are unsuitable for our purpose. 

In recent years, the development of duality relationships (and 

their application to consumer theory) has made it possible to avoid many 

of the problems associated with the traditional approaches. In particular, 

"it enables us to derive systems of demand equations which are consistent 

with maximizing or minimizing behavior on the part of an economic agent, 

consumer or producer, simply by differentiating a function, as opposed to 

solving explicitly a constrained maximization or minimization problem 

(Diewert, 1974, p.106). Specifically, the duality theorems have established 

a one-to-one correspondence between the direct utility functions, expenditure 

functions, indirect utility functions and the system of derived demand 

equations. 

If F(X) is a consumer's utility function, X a vector of connnodities, 

then C(U,P) is the minimum cost of achieving the utility level U, given 

that the consumer faces the commodity prices P. Under conditions discussed 
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below there is duality between the consumer's utility function F(X) 

and the function C which can be called the expenditure function. If 

M is the budget constraint, then G(M,P) is the maximum utility that 

the consumer can attain given P and M, and G is called the consumer's 

indirect utility function which is again dual to F and C. 

The basic optimization problem of maximizing a utility function 

F(X) subject to the budget constraint P.X < M can be written as the indirect 

utility function 

G(V) = max _{ F (X) 
x 

V. X .::_ 1, X _::_ ON} (1) 

Mis given and is positive, and the constraint P.X < M can be replaced 

by V = P/M and V· X < 1 

In Diewert's (1978) r.~tation the duality relationships state 

that if the utility function F(X) satisfies the following set of 

conditions 

A: I 

II 

III 

and IV 

F is a real valued function of N variables, defined 
over the non-negative orthant and is continuous on 
the domain 
F is increasing in X 
F is a quasi concave function 
F is a positive function for X>>ON" 

Then, the indirect utility function also satisfies the following 

set of conditions B. 

B: I 

II 

III 

IV 

G is a real valued function of N variabies defined 
over the set of positive normalized prices V, and G 
is continuous 
G is decreasing in V 
G is quasiconvex over V 

- 3 
G has a continuous extension to the non-negative orthant 
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H is important to note not only that the direct utility function 

completely determines the indirect utility function, but that the utility 

function F can be recovered from G since F(X) for X >>O can be written as 

F* (X) = Min { G(V): v. X:::._ 1, V .:_ ON } v 
(2) 

and G* (V) can be defined as 

G*(V) = Max { F(X) v.x:::.. l, x > 0 } 
x - N (3) 

and therefore G*(V) = G(V) for all V > ON 

If G(V) satisfies the relevant set of conditions B, and in addition 

is differentiable at V»ON with a non-zero gradient vector V G(V) < ON, 

then X*, which is the unique solution to the direct maximization problem, 

can also be found by applying Roy's, identity to the indirect utility 

function, i.e. 

X* ~ VG (V)/V·VG(V) (4) 

These demand equations are homogeneous of degree zero in V and also 

satisfy symmetry and adding up constraints. This approach to specifying 

demand functions is particularly useful when we want to start out with 

"flexible" functional forms for the indirect utility function. The 

flexible functional forms are flexible in the sense that they do not 

!. priori constrain the various income and price elasticities at a base 

point, and they provide a local second order approximation to 

differentiable direct or indirect utility function. · 

an arbitrary 
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The two flexible functional forms (for the indirect utility function) 

used in demand studies have been the generalized Leontief and the Translog. 

The former is due to Diewert (1974) and has the form 

G(V) = 
N 
L 

i=l 

N 
L 

j=l 
b .. 

1) 

N 
+ 2 L 

j=l 
b . v~ 12 

OJ J 
(5) 

where V. = P./M, and b .. = b ... The latter is due to Lau and Mitchell (1970) 
l l 1) J l 

and has the form 

log G(V) = 

where y .. = y .. 
l) J l 

N 
+ L 

i=l 
log V. + 

1 

N 
1/2 L 

i=l 

N 
L 

j=l 
y .. 
l) 

log V. log V. 
l J 

(6) 

Application of Roy's identity to these functional forms (and generally 

to flexible functional forms) gives derived demand equations which are non-

linear in the unknown parameters. Since linearity is a desirable property 

for ease of estimation these functional forms are not very helpful 

in our context. 

For specifying demand equations which are linear in the unknown 

parameters we again use the results of duality theory. It is important 

to note that the one-to-one correspondence established between a utility 

function and an indirect utility fWlction holds here as well, i.e., a 

system of demand equations specified to satisfy the constraints of consumer 

demand theory is consistent with a direct utility function which satisfies 
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the set of conditions A, and with an indirect utility function which 

satisfies the set of conditions B, and where the indirect utility function 

is differentiable. 

In effect, therefore, the problem of estimating a system of demand 

equations consistent with the theory of utility maximiz~tion can also be 

approached by first specifying a functional form for the demand equations, 

which satisfies the conditions of symmetry, adding-up and of homogeneity 

of degree zero in prices and income. 4 

One recently developed linear system of demand equations is the 

Linear Logarithmic Expenditure System (Lau, et. al. 1978) which is derived 

by specifying a homogeneous translog indirect utility function, and applying 

Roy's identity to this indirect function. However, the assumption of 

homogeneity (of degree -1) while making the demand equations linear, is 

very restrictive because it implies that all income elasticities are 
. 5 unitary. 

Another widely used functional form which is linear in the parameter 

is the Rot~erdam model, developed by H. Theil ( 197], pp 330.-333 and 574-580). 

There are two models, the first of which is in terms of share weighted 

logarithms of real income and absolute prices. The model is a modification 

of the familiar double-logarithmic functional form in order to incorporate 

the synnnetry constraint. Specifically, since the double-logarithmic form 

estimates elasticities directly, it is difficult to impose the symmetry con-

straints on the compensated price terms. By multiplying through by the value 

share of the commodity, the symmetry constraint can be directly imposed, as 

can be seen below. 

~ sicijd log pJ .•••••••• 
jlk 

(7) 
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where Sj is the share of commodity i in total expenditures M, m is real 

expenditure, and d stands for discrete changes in the variables. 

It can be seen that in this model symmetry can be imposed globally 

since: 

~ = ClP. 
J 

C .. lJ 
M ---= P.P. 
l J 

ax. 
J 

ClP. 
l 

= c .. Jl 

Therefore symmetry holds as long as C C 
ij J l 

M 
(8) P.P. 

J l 

But it appears that homogeneity can only be imposed at sample means since 

homogeneity in this case means that 

n M 6 
L C .. p p = O· 

j =l lJ j i 

Theil has also developed a second model in real income and relative 

prices which attempts to reduce the number of unknown parameters by 

assuming either block-independence or preference independence for the 

utility function. As mentioned earlier, such assumptions are too restrictive 

for us. For details of this model, see Appendix D. 

"Almost Ideal Demand System" (AIDS) 

Finally, we considered the AIDS which is due to Deaton and Muellbauer (1977) 
) 

n · .:.· which came to our attention after we had derived our functional forms. The 

AIDS satisfies all the axioms of consumer theory and is therefore consistent 

with an (unknown) indirect utility function satisfying conditions B. 

It has the following form: 

"' N 
S. =a. +b. 1 log (M~) + L C .. log P. 

l 1 1 j=l lJ J 
(9) 

where S. = share of commodity i in total expenditures, M is money income 
l 

and P is a price index used to deflate money expenditures. This model 

provides a local approximation to any arbitrary demand systern.(Deaton and 
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Muellbauer also claim that it aggregates perfectly over consumers; 

(see Deaton & Muellbauer, 1977). 

It should benoted that the Rotterdam Model, the AIDS as well as 

the forms developed below are specified in "real income" and nominal 

prices. This is necessary to get compensated price terms on which 

synunetry constraints can be impoased. 
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FLEXIBLE LINEAR DEMAND SYSTEMS IN NOMINAL PRICES AND REAL INCOME 

From the Review of Consumer Theory we retain two ideas: the first 

is that duality between direct, indirect utility functions as well as 

systems of demand equations allows us to specify linear demand equations 

which are consistent with consumer demand theory and be sure that the 

(unknown) underlying direct and indirect utility functions also satisfy 

the requirements of consumer demand theory. 

Second we retain the idea of both the Rotterdam and the AIDS of 

writing the demand equations in real income and nominal prices. This has 

as its effect that the coefficients of the (nominal) prices in the consumer 

demand equations reflect (income-) compensated price effects. This is 

because the income effects of any price changes observed in the data are 

already reflected in changes of the price deflater P, and therefore in a 

change in real income. This "purges" the price coefficients of the effect 

of the price changes on real income. 

ax~ 
1 = aP. 
J 

The key advantage of this formulation is that the synunetry constraint 
ax~ 

__]_ 
aP. 

1 

which relates to the compensated price effects, can 

directly be imposed on the coefficients of the price terms as linear constraints, 

which would be impossible if the coefficients reflected uncompensated 

price effects. 

The key problem of the nominal price - real income approach is the 

choice of a correct price deflater. In principle, to estimate real income 

of a consumer one needs to know the parameters of his utility function, and 

thus needs to know the consumer demand system which one is trying to estimate 

even before estimating it, which is impossible. However, recent advances 
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in index number theory (which are again based on duality theory) show that 

"sufficiently good"approximation exist to true price deflators, to circum-

vent this awkward problem. 

If the utility function were known it could be used to derive exact 

price indexes, which, if used to deflate nominal income, would estimate 

real income changes which correspond exactly to the changes in utility 

levels. 

The following paragraphs depends heavily on Diewert (1976 and 1978b): 

An unknown linearily homogeneous utility function can be approximated to the 

second degree by a large number of'flexible' functional forms. 7 Diewert 

calls those index numbers which are exact for one of the flexible functional 

forms "superlative" index numbers. For arbitrary utility functions,super-

lative index numbers therefore approximate to the second degree the exact 

index numbers corresponding to the arbitrary utility function. Furthermore, 

Diewert shows that all superlative index numbers approximate each other 

closely for small changes in quantities and prices. Chaining of index 

numbers does lead to small changeso Therefore, any chained superlative 

index number can provide a good second order approximation to the exact 

price index corresponding to an unknown homogeneous utility function. 7 

However, these results apply strictly to utility functions which are 

linearly homogeneous. Since one does not want to constrain the utility 

function to be linearly homogeneous, Diewert makes use of the approximation 

results of Kloeck and Theil which do not require the utility function to be 

homogeneous. He shows that any quadratic mean of order r (quantity) index 

can approximate an arbitrary non-homogeneous utility function to the second 

order and any quadratic mean of order r price index can approximate an arbitrary 
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indirect utility function. 8 This implies that: 

(I) we can choose a chained quadratic mean of order r price 
index for deflating nominal income and obtain a second 
order approximation to real income, and 

(II) we can therefore use functional forms in real income and 
nominal prices, even when the utility function us unknown. 

Among the quadratic means of order r index numbers, the Fisher's 

ideal index numbers have certain features which make them the preferred 

pair. Firstly, there is the computational advantage that the price and 

implicit quantity indices (or vice versa) can be obtained by simply 

interchanging the quantities and prices in the same general formula, 

i.e. 
1 

[pl. xop1.x1 I po.xoPo· x1J 
2 

pf = 

1 (9) 

[ P1. x1po.x1 / p1.xopo. xo] 2 
Qf = 

Furthermore, the Fisher's index numbers are the only pair among the 

quadratic mean of order r index numbers which satisfy the factor reversal 
~ __ ... 9 ~ ~ 
l,..t;:;~ \,.. ' .l.. '\;;.' 

We will therefore use these index numbers throughout. 

The discussion above provides an alternative justification for the 

AIDS system. Furthermore, the above reasoning justifies the use of any 

linear-in-parameters demand system which can satisfy the homogeneity, symmetry, 

and adding-up constraint. Three such forms are presented below: 
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10 
Demand Equations (Linear) in Relative Prices (DERP) 

x. 
l 

where m = M/P is real income. 

c .. 
lJ 

i=l, ... ,N (11) 

Homogeneity of degree zero in prices and nominal income is automatically 

satisfied but cannot be tested. Synunetry implies that C .. = C .. and can 
lJ J l 

be imposed for all sample points. The adding-up constraint implies that: 

L: s. 11 iM = 1 
i l 

X.P. ax. M ax. am L: l l l L: P. l 
-M- ™ = am- aM i x. i l 

l 
(12) 

P. ax. P. 
L: 

l l L: l 
(bil 2bi 2m) 1 = -- = + = 

i p am i p 

This constraint depends on the sample values of P., P and m. Therefore, it 
l 

cannot be imposed for all sample values. Instead we choose to impose it for 

the mean of the sample. 

Additionally we know from Symmetry that for a coDDnodity k 

o\ N-1 P. Cl~ CNk = - E ckj 
_l_ = = k -f N 

"a p N j=l p2 )Pk PN N 

Therefore, we have the additional symmetry constraint 

N-1 P. 
CNk = - E ckj 

_l_ 
j=l PN 

It can only be imposed at sample means. 
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Demand Equations in Square Roots of Relative Prices (DESP) 11 

x. 
1 

+ l: 
jfi 

i = 1, ... ,N (13) 

This is also homogeneous of degree zero in prices and nominal income and 

the constraint cannot be tested. Symmetry implies C .. = C .. and can be 
1J J 1 

imposed for all sample points. The adding-up constraint is the same as 

for DERP, i.e. equation No.(12) and can only be imposed at sample means. 

Shares Equations in Logarithmic Prices (SELP) 12 

This is an extension of the Almost Ideal Demand System, i.e. AIDS 

S. + billog m + 
2 i=l, ... ,N-1 = a. bi 2 (log m) + l: C .. log P. 1 1 j 1J J 

(14) 

Since shares add up to one, only N-1 equations are linearily independent 

and for estimation purposes one equation has to be dropped. Adding-up 
13 

constraints cannot therefore be tested. 
for all j, 

Homogeneity of degree zero implies that L C .. = O~ and can be 
j 1J 

tested and imposed. 

Synunetry implies that C .. = C .. for all i,j 
1J J1 

Table 1 gives the formulas for the price and income elasticities 

for each of these functional forms. 

As can be seen, the elasticities not only depend on the estimated 

parameters but also on where in the sample space the formula is evaluated. 

The corresponding standard errors and t-values are calculated as linear 
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combinations of the variances and covariances of the estimated coefficients .. 

For the relevant formulas, see section on estimation procedures. 

All the three systems contain square terms in incomes. This allows 

income elasticities to increase or decline which we wanted to achieve for 

the data sets considered. However, in all three systems this extra flexi-

bili ty implies that one cannot impose the adding-up constraint for all 

sample points. 

In each of these systems, real income could of course, be introduced 

in different functional transformations than the ones proposed here. 

ESTIMATION PROCEDURES 

For SELP, only N-1 equations need to be estimated, and the formulae 

given in Table 1 will give all the parameters of the Nth equation. Note also 

that from the formula for the Nth income elasticity, i.e. 

= 

N-1 
1-L: S. n.M 
i=l 1 1 

we get an estimate of nNM only, and not of bNl and bN2 separately. 

All the systems fonn sets of "seemingly unrelated" regression equations 

(with cross-equation constraints) in the sense of Zellner(l962). As mentioned 

earlier, the coefficients estimated in the system do not make much sense 

themselves, and have to be converted into elasticities for interpretation. 

The formulae for these elasticities are given in Table 1. The corres-

ponding standard errors are also linear combinations of the variances and 

covariance of the estimated parameters. 
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Table 1. Formulae for Price and Income Elasticities 

1. Compensated 
Own Price 
Elasticity 

2. Compensated 
Cross Price 
Elasticity 

for j = N 

3. Income 
Elasticity 

4. Uncompensated 
Own Price 
Elasticity 

5. Uncompensated 
Cross Price 
Elasticity 

DP,P 

c n .. = c .. 
11 11 

P. 
1 

for i=l ... ,N-.1. 
N-1 p• 

=-I C ~ 
j=l Nj N N 

P. 
n ~J. = c. . --1.x P 
-i lJ i N 

for i=l 
j = 1. .• N-1 
i f j 

N-1 c c -L: niN = n .. 
j=l lJ 

N-1 P. 
= _l_ 

c n .... = 
11 

DESP 

-1 

2X. 
1 

p_l/2 
L: C .. (--1.p ) 

·.1.1· lJ . Jr 1 1 

for i=l ... ,N 

c n .. 1, 
.I 

for 

= ! c / j ) 1/2 
2X. iJ. P. 

1 . 1 

i = 1 
j = 1 .. ,N 
i f j 

-L: c .. 
j =1 lJ X/N 

1 
r1iM = x. bilm + 

1 

for i=l. .. ,N 

?1' m ... .,i2'" 
2 

µ c 
n .. = n .. - S.n.M 

11 11 1 1 

c 
n 
ij 

-S. n 
J iM 

SELP 

c .. c 11 n .. = -- + S. - 1 
11 s. 1 

1 

for i=l ... N-1 
N-1 

c . 
nJ 

-I 
c = j=l 

llNN ---- + SK - 1 
SN 

c 

c n .. 
lJ 

for 

C .. 
= _2:1_+ S. 

Si J 

i = 1. .. N 
j ·- 1. .. N 
i 1' j 

'.'<-1 
-I C .. 

l. J j=l 
lliN = + s. 

l. 

for i = 1 , ... N-1 
N-1 
1~=1 Si llil'1 

11 NM = SN 

SN 
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As will be explained more fully in the section on data construction, 

our data consists of 200 observations over 20 years across 10 states. ·In 

general, we can expect that the classical assumptions of normally and inde-

pendently distributed errors with ·zero mean and constant variance will not 

be satisfied when the observations stretch across two variational directions. 

In a balanced sample, one way for accounting for these different 

effects is to transform the variables so that they are expressed as deviations 

from different means, (i.e. the covariance transformation) thus allowing for 

constant region and time effects. In recent years, the error-component model 

has been widely used to pool cross-section and time series data (Wallace 

and Hussain, 1969). The model assumes that the region and time effect are not 

fixed but random, and are independently distributed with zero means and 

(usually po~itive) variances. If the model is 

Y. = a + s. \it + s2 x2it + e:i t' and €it = JJ. + \\ + 11 it' 1t 1 1 

then and have variances 2 2 ,and 2 respectively. µ. ' \) t' 11 it 0 (J (J 1 µ \) 11 

Originally, Wallace and Hussain derived the formulae for the error 

components from the residuals of the OLS regressions fitted to the above 
14 

model. However, the S's estimated by OLS are inefficient, and Amemiya (1971) 

uses the S's from the covariance transformed regression to calculate resi-

duals for the error-components. These error components are then used to 

compute the second round generalized least square estimates. 

Once the error components are estimated for single equations, 

they are used to transform the original data. The transformed data is 

then directly fed into the package for estimating the Zellner type of 

system of equations with cross-equation constraints of symmetry and adding up. 
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RESULTS 

The three functional forms were tested to examine how well they conform 

to the restrictions of demand theory. The results of the F-tests are given in 

Table 2. SELP takes the restrictions of homogeneity and symmetry better than 

the other two functional forms. Homogeneity cannot be tested in DESP, but 

given homogeneity, the F-test would appear to reject the symmetry restriction. 

Homogeneity cannot be tested separately for DERP either, but the imposition 

of the homogeneity restriction through the functional form simultaneously 
th . 16 constrains the cross-price terms of the n equation. This is why the 

homogeneity and symmetry conditions are tested concurrently. The F-value 

indicates that this full set of constraints is just barely acceptable. 

In addition, the DERP and DESP reject the adding-up constraint which is 

imposed at the mean of the sample. Unfortunately it is not testable for SELP. 

Note also that the test (for the functional form) that the second expenditure 

term equals zero is rejected for SELP. The test was not conducted for DERP 

or DESP in view of their relatively poorer performance with symmetry and 

adding up constraints. The regression results for SELP are reported in Table 8 

at the end. Because the coefficients themselves are hard to interpret we will 

instead look at elasticities. But the SELP regression equations are what one 

would use in any projection work. 

Before we look at these elasticities for SELF, it may be appropriate 

to report here the characteristic roots of the matrix of price derivatives 

and thus check for negative semidefiniteness. The matrix of price derivatives 

is derived at sample means since 

ax 
i ----= 

a PJ 
n c 

ij The characteristic roots of this matrix are 

-.000019, -.00165, -.00699, -.01966 and -.04366. 
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Sununary of Test Results 

F-value P> F 

SELP 
i) Test for Homogeneity 1. 337 0.254 

ii) Test for Symmetry given 
Homogeneity 0.236 0.975 

iii) Test for quadratic income 
term = 0, given homogeneity 
and symmetry 6.154 0.0001 

DESP 
i) Test for Symmetry (homogeneity 

is given and cannot be tested) 1. 823 0.046 
ii) Test for adding up constraint, 

given homogeneity and symme-
try 2.940 O.OSJ 

DERP 

i) Test for homogeneity and 
symmetry (_they cannot be 
tested separately) 1. 762 0.056 

ii) Test for adding up constraint 
given symmetry and homo-
geneity 5,636 0.004 

' 

Table 3. Expenditure Elasticities at Predicted Means 

DERP DESP SELP 

Rice 0.652 0.566 0.942 
(4.84) (4.31) (6.58) 

Wheat 0.645 0.822 1.077 
(2.54) (3.15) (5. 91) 

Inferior 
Cereals o. 713 0.629 0.362 

(3.45) (3.24) (1. 89) 

Pulses 0.058 0.058 - 0.097 
(0.20) (0.21) (0.39) 

Other Commo-
di ties 1.194 1.206 1.160 

(25.13) (25.71) 

Note: t-values in parenthesis 
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Expenditure and Price Elasticities from SELP, DERP and DESP 

The test results suggest that SELP is the preferred functional form. 

However, Table 3 gives the expenditure elasticities from DERP, DESP and SELP 

computed with the formulae in Table 1. The elasticities are estimated at 

mean values of the dependent variables (i.e., budget shares in SELP and 

quantities in DERP and DESP) which are themselves predicted by the 

estimated equations when mean values of the independent variables are plugged 

in. The three functional forms give, in general, different expenditure 

elasticities. However, the expenditure elasticity for pulses appears con-
17 

sistently too low and insignificant in all the functional forms. The 

expenditure elasticity for other commodities is consistently high and interestingly 

of about the same value, regardless of functional form. 

Those for rice and wheat are higher in SELP than in the other two forms. 

Tne elasticity for inferior cereals is positive across functional forms 

but appears too high in DERP (where it is even higher than for rice or 

wheat) and DESP. The SELP elasticity for inferior cereals is positive and 

small. 

Table 4 gives the compensated own and cross-price elasticities 

while Table 5 gives the tmcompensatedowri and cross-price elasticities. 

Only the own price elasticities are reported for DERP and DESP since 

these functional forms reject synunetry and adding up constraints. (The 

reported elasticities are only for purposes of comparison with SELP). 

Table 4 and S show that the SELP functional form is the only 

one that gives consistently negative and significant own price elasti-

cities. (The magnitude of SELP elasticities are also more consistent 

with earlier estimates from single equations.) DESP estimates positive 

(although not very significant) own price elasticities for all commodities. While 



Table 4. ~rnpensated own and cross-price elasticities at predicted means 

own 
Inferior Other price elasticities 

Rice Wheat Cereals Pulses Conunodities DERP DESP 
--· 

Rice SELP -0.5273 0.1031 0.1748 -0.0699 0.3193 -0.1424 0.406 
(-6.93) (l.99) (3.25) ( -1. 65) ( 4. 70) (2.36) (0.65) 

Wheat SELP 0.1807 -0.2881 -0.0536 0.2579 -0.0969 -0.0657 0.1774 
( 1.99) (-2.37) (-0.56) (3.45) (-1. 09) (0. 48) (1. 30) 

Inferior 
Cereals SELP 0.2939 -0.0514 -0.6561 0.0454 0.3682 -0.2167 0.2147 

(3.25) (-0.56) (-5.07) (0.56) (3.10) (-1.84) (L68) 

Pulses SELP -0.1923 0.4049 0.0743 -0.5553 0.2684 -0.0822 0.2128 
(-i. 65) (3. 45) (0.56) (-3.74) (1.93) (-0.51) (1. 56) 

Other 
Conunodities SELP 0.0643 -0.011.l 0.0441 0.0196 -0 .1169 -0.0444 0.0346 

Note.-

(4. 70) (-1.09} (3 .10) (1. 92) (-1. 70) (2. 93) 

(i) t-values in paranth.esis 

(ii) synunetry conditions Emsure that th.e price terms are synunetric. But the elasticities 
may be different because of th.e way they are computed. 

N 
N 



Table 5. Uncompensated Own and Gross Price Elasticities at Predicted Means 

Inferior Other 
Rice Wheat Cereals Pulses Commodities DERP DESP 

Rice SELP -0.6530 0.0314 0.1001 -0 .1156 -0.3047 -0.2285 -0.037 
(-8.03) (0.59) (1. 84) (-2.60) (-3.11) (-3.56) (-0.57) 

Wheat SELP 0.0370 -0.3701 -0.1391 0.2057 -0.8107 -0.1112 0.1216 
(0. 39) (-3.01) (-1.46) (2.64) (-6.53) (-0. 80) (O. 87) 

Inferior 
Cereals SELP 0.2457 -0.0790 -0.6848 0.0279 0.1285 -0.2753 0.161 

(2.58) (-0.85) (-5.35) (0. 33) (O. 77) (-2.34) (1. 23) 

Pulses SELP -0 .1794 0.4123 0.0820 -0.5506 0.3326 -0.0853 0.2097 N 
(A 

(-1.48) (3.4 7) (0. 62) (-3.61) (1. 76) (-0.52) (1. 58) 

Other 
Commodi- SELP -0.0904 -0.0994 -0.0479 -0.0366 -0.8852 -0.834 -0.758 
ties (-23.40) (-22.03) 

Note: t-values in parenthesis 
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DERP estimates negative own-price elasticities, they are small in magnitude 

and not very significant in many cases. 

Cross-price elasticities are more difficult to evaluate since there 

is no a priori reason to expect a particular sign. But in general, if there 

is a presumption that these commodities are substitutes, then clearly SELP as 

a functional form does better. Rice and pulses appear to be complements, so 

does wheat and other commodities but neither sign is statistically significant. 

All other cross price elasticities are either positive and significant or 

insignificant. 

We have used SELP to estimate shares and expenditure elasticities 

across different expenditure levels. Aggregate real per capital expenditure 

presented in our data range from 55% (Bihar) to 182% (Punjab) of the mean 

value and we have therefore produced estimates ranging from 40% to roughly 
of 

200%/mean expenditure. Prices are kept constant at the level of the last 
18 

year of the sample, i.e., 1975-76. 

Graph 1 plots the predicted shares. It can be seen that for Rice, 

Wheat and Pulses, the shares first rise and then fall with expenditure while 

the share of inferior cereals declines throughout the expenditure range. 

(Note that this pattern corresponds fairly well to the NSS data reported in 

Table 7 which is an entirely different data set.) The pulse share becomes 

negative at high expenditure levels, a further indication that the Pulse 

equation is not well estimated. Finally note that, as a consequence of the 

quadratic functional form chosen, the shares of Rice, Wheat and Pulses become 

negative if extrapolated very much outside the data range. 
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Fig. Predicted Expenditure Shares using SELP Coefficients 
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expenditure expenditure 
Table 6 reports the elasticities for the same levels, 

using predicted shares. These elasticities vary sharply across expenditure 

ranges except for inferior Cereals and other conunodities. While one would 
expenditure 

expect the elasticities for all cereals to decline with , they 

should not become negative within the data range. One reason for such 

results could be that shares are estimated with large errors using the 

estimation equations, especially since the weighted R2 for the entire 

system is only 0.203. In table 7 we have therefore estimated the 

elasticities using observed shares from 28th round of the National Sample 

Survey. But even here the wheat and rice elasticities turn negative 

within the data range, while the pulse elasticities remain erratic as 

before. 

Expenditure 
Table 6. Elasticities at Different Income Levels 

(Predicted Shares) 
Expenditure 

Level 
as Proportion 
of Mean Rice Wheat 

Inferior 
Cereals Pulses 

Other 
Conunodities 

0.40 

0.53 
0.81 

1.00 

1.13 
1.45 
1.92 

Range 
of 
our 
data 

0.487 

1.650 
1.105 
0.942 

0.743 
0.412 

-0.182 

2.315 

3.023 
1.407 

1.077 

o. 717 

0.083 
-1. 437 

0.485 
0.444 
0.386 

0.361 
0.335 
0.296 
0.253 

1.845 

1.126 
0.285 

-0.097 

-1.135 
-6.842 
7.655 

n ,.... nn v.ooo 

0.843 
1.075 
1.160 
1.246 
1.350 
1.436 

f'ni-HJ btcau.s;;e. 
The pulses elasticities remain unreasonable/ t:he data for pulses, 

i.e. consumption and prices is weak in our state data-set. The state-

level disaggregation is unlikely to be reliable for pulses data, not 

only because the production statistics are poor, but also because inter-state 

movements of pulses occur substantially by road and are therefore not captured 



Table 7. Expenditure Elasticities at Budget Shares and Expenditures 
Corresponding to the USS Survey Data - 28th Round 

---------------------------------------------·-----------------------------------------------------------------------
Income Level Budget Shares 

corresponding to NSS Survey data Income Elasticities 
as proportion Inferior Other Inferior Other 
of Mean Rice Wheat Cereals Pulses Commod: Rice Wheat Cereals Pulses Commod: -- ----

0.40 0.150 0.052 0.165 0.017 0.616 1. 76 3.42 0.59 3.18 0.66 

0.53 0.145 0.067 0.143 0.043 0.602 1.47 2.20 0.57 1. 08 0.85 

0.81 0.135 0.075 0.092 0.043 0.655 0.81 1.14 0.44 -0.15 1.18 

1.13 0.115 0.069 0.062 0.034 0.720 0.67 0.57 0.35 -1.36 1. 26 

1.45 0.105 0.071 0.054 0.052 0.718 0.21 0.05 0.26 -1. 09 1.42 

1.92 0.070 0.066 0.041 0.043 0.780 -0.86 -0.74 0.19 -2.35 1. 54 
N 
--.] 



Table 8. Estimated SELP regressions 

Price terms 
I 

Constant Rice Wheat Inf.cereals Pulses log m (log mr 
---

Rice - 0.117124 0.045261 0.003599 0.012736 -0.015793 0.795855 -0.071172 

(- 2:23) ( 4. 38) (0.51) (1. 75) (-2.74) (2.43) (-2.51) 

Wheat - 0.147969 0.003599 0.048394 -0.010121 0.015942 0. 791344 -0.069564 

(- 3 .17) (O.Sl) (5.14) (-1. 37) (2. 75) (3.29) (-3. 33) 

Inferior 
Cereals 0.054566 0 .12736 -0.010121 0.020991 0.0002478 -0.164532 0.010087 

(O .98) (1. 75) (_-1. 37) (2.01) (-0.04) (-0.69) (0. 49) 

N 
00 

Pulses -0.148049 -O.<H5793 -0.000243 0.539340 -0.052476 0.015942 0.019209 

(-2.42) (-2.74) (2.75) (-0.04) (2. 62) (2.82) (-3.17) 

Number of observations = 200 
.· 2 

Weighted R for the 
system = 0.2031 
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at all. Unfortunately the NSS survey data are also weak on pulses since 

they only record quantities of chickpeas. 

Conclusions 

This study is an attempt to use results from duality theory to 

estimated demand systems using flexible fW1ctional forms. Although several 

such systems have been estimated, SELP appears to conform better to the 

restrictions of demand theory than DERP or DESP. 

The system has been estimated using a cross-section of time series 

data on state-level average consumption. The results are interesting and 

appear convincing (except for the equation on pulses) at the mean values 

of the sample. The data for pulses are less reliable than for the other 

food commodities and this is probably the major reason for the poor results from 

the pulses equation. In view of this for further work we will include pulses 

into "other commodities", which is admittedly a catch-all residual variable. 

The system appears to predict expenditure shares well over the range 

of expenditures covered by the sample. But expenditures elasticities are not 

so well estimated as soon as expenditures deviate substantially from their 

mean. Compared to other studies (see Appendix A) our expenditure elasticities 

for rice are considerably higher at the mean. On the other hand most other 

studies find similar expenditure elasticities for wheat (except for Radhakrishna 

and Murthy, 1978) and coarse cereals. 
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Few studies have estimated price elasticities which are comparable. 

For single equation studies the comparison needs to be made with the uncom-

pensated price elasticities. Compared to table A-2 we find a much higher 

price elasticity for rice but a somewhat lower one for wheat. Our pulse 

price elasticity is very close to that of Chopra and Swamy1/r?fl:omparisons 

with elasticities from linear expenditure systems is not appropriate because 

they are only reflections of income effects. 

A further study is planned using the same techniques with two rounds 

of NSS data which contain quantity and price information, and a much wider 

range of incomes. We therefore expect a better fix on ~xpenditure elasticities. 

However the NSS data set probably has poorer price data and may not give 

us a high quality price elasticities as those reported here. 
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FOOTNOTES 

1. See for example, the work of R. Radhakrishna and K. N. Murthy (1978) 

2. These assumptions are used by Theil ( 1971, pp 575-596) for estimating 

a demand system which uses relative prices rather than absolute 

prices; 

3. This condition is necessary to derive a continuous utility function 

from the indirect utility function. 

4. However, not all functional forms for consumer demand equations 

so chosen will allow us to find analytical solutions for the indirect 

or direct utility functions. Therefore, if the researcher is 

interested in questions of welfare economics where he does need an 

analytical expression for the Indirect Utility Function, he is 

probably better off specifying and starting from an indirect utility 

function which yields such information more readily. Our purpose 

here is more limited, i.e. to basically estimate the demand elasticities 

and we do not wish to be involved, at least this stage, with questions 

of welfare economics. 

5. The only way of admitting the possibility that income elasticities 

are not unitary in the homogeneous generalized Leontif and homogeneous 

translog indirect utility functions is to introduce a vector of 

"conunitted" expenditures. However, this does not eliminate the problem 

of non-linearity and secondly, we then have to address ourselves to the 

whole host of questions on what these "conunitted" expenditures are --

a problem of interpretation that the Linear Expenditure System (and its 

extensions) also faces. 
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6. In general, homogeneity does not appear to be a sustainable 

hypothesis within the Rotterdam System, as its application to data 

has shown. See A. S. Deaton (1972) 

7. The degree of approximation is very close. See W. E. Diewert, 1978b, 

Appendix 2. 

8. In fact, any one of them can be exact for a non-homogeneous utility 
utility 

fW1ction which in turn approximates an arbitrary/function to the 

second degree. W. E. Diewert, (1976) Theorems 2.16, and 2.17, pp 122-123 

and for analogous results for quadratic means of order r~O, see page 134. 

9. The Fisher's index numbers, along with other quadratic mean of order 

r index numbers satisfy (I) the commodity reversal test, (II) the 

identity test, (III) the cornmensurability test, (IV) the determinateness 

test, (V) proportionality test, (VI) the time reversal test. But 

they do not satisfy the circularity test. 

10. This system is analogous to the output supply and factor demand system 

derived from a quadratic normalized profit function. 

11. In production theory, this system is derived from the Generalized 

Leontif FW1ction. 

12. In production theory this corresponds to the Translog System. 

13. For SELP, the adding-up constraint reads 

l: (b. 1 + 2b. 2 log m) = 0. Unless;as in the AIDS,all 
. l. l. 
l. 

bi2 terms are zero, this constraint can also hold only for sample 

means. 

14. M. Nerlove (1971) gives a more elegant derivation. 

15. For the sequencing of these tests, see L. R. Christensen, D. W. 

Jorgensen and L. J. Lau, (1973). 

16. For details, see Appendix E. 

17. In a single-equation estimate made by G. Swamy for cross-section 
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data from family budget data, the elasticity was 0.58 with a 

t-value of 1.98. The estimate was however estimated from 

national data. For details, see K. Chopra and G. Swamy (1975). 

18. Per capita expenditure ranges for individuals are of course much 

larger. According to National Sample Survey (India) data of 

the 28th round, 1973/74, the means of the lowest and highest 

expenditure class are 20% and 486% of overall mean per capita 

expenditure. We feel, however, that it is inappropriate to extra-

polate our results so far out of the estimation range. Also note 

that elasticities can be computed for each state. 
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APPENDIX A 

Income and Price Elasticities for India - Review of Literature 

The earliest studies on demand elasticities in India depended 

heavily on the NSS household consumption surveys to estimate expenditure 

elasticities generally from only one of the several rounds of data 

that have become available in the past 25 years. Much of the earliest 

work is presented in A Gangulee (ed) Studies in Consumer Behaviour, 

Asia Publishing House, Bombay 1960. Subsequently, a large number of 

studies have been made using different Engel curve forms. For a careful 

and comprehensive review of this literature, see N. Bhattacharya (19?g ). 

The number of these studies and the variety of functional forms tried has 

been large and Table A-1 below gives the results from only a few of these 

studies for illustrative purposes. 

These NSS based studies have also explored some relationships 

between consumption on the one hand, and household composition, land 

ownership and other non-price, household characteristics. 

Single equation estimates of price and income elasticities have 

also been obtained by a few authors who have used aggregate average consum-

ption data and/or NSS survey data. One of the earliest attempts seems 

to have been made by the National Council for Applied Economic Research 

(NCAER 1962). Using annual national data from 1948-49 to 1957-58, they 

estimate income and price elasticities. 

Again using national data, A.K. Chakravarty (1961) has estimated 

the following income and price elasticities for wheat1 B.K. Barpiyari & K. 

Chandra (1961) have used data from 1950-51 to 1957-78 on cereal consumption 

to estimate income and own price elasticity. These elasticities are given 
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Table A.l Some EX£enditure Elasticities from NSS data (Rural) 

Rice 0.63-0.50 0.562-0.511 
Wheat 1. 54-1. 20 0.926-1.100 
Other Cereals 0.31-0.10 
Pulses 0.77-0.70 
Cereals 0.436-0.426 
F'.:>odgrains 0.53 0.49 0.514-0.484 
Milk 1.65 1. 78 (Cereals & Cereal Substitutes) 

Other Foods 1.05 0.99 
Clothing 1. 74 1.84 
Fuel 0.63 0.59 
Other Non-

Fuel 1. 75 1. 91 

Year 1954-55 1960-61 1961-62 

Source Pushpam Joseph, Lydall & Ahmad T. Maitra + 

Economic & Poli- ISI mimeo, 1961 ISI technical report 
tical Weekly, Econ. 2/69 April 1968 

+ The first estimate is a weighted average of regional averages while the 
second one is a direct all-India estimate. 
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Table A.2 Income & Price Elasticities from annual time-series data 

Income Elasticity Own Price-Elasticity 

Rice 0.16 -0.19 
Wheat 1.25 0.91 -0.73 -0.35 
Major Cereals 0.46 -0.34 
All Cereals 0.50 - 0-1'1 
Groi.indnut Oil 1. 72 

Mustard Oil 1.02 
Clothing 1. 26 

Time Period 1948-49 1924-25 1950-51 
to 1957-58 1941-42 1957-58 

t t t t 
Source NCAER A.Chakra- B.K. NCAER A.Chakra- B.K. 

varty Barpi- varty Barpi-
yari yari 

t 1hese results are published in V.K.R.V. Rao et. al. eds (1961) 

\ 
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in Table 2. 

There are two studies which estimate expenditure and price 

elasticities using dynamic demand models of the stock-flow variety. 

The methodology is as developed by Houthakker and Taylor (1966). 

The basic model is 

q(t) = a + Bs(t) + yx(t) + Ap(t) + Ut A-1 

where q(t) and x(t) are instantaneous flows of consumption and income 

respectively, P(t) is price and s(t) is the level of the "state 

variable". The sign of B determines whether q(t) is subject to 

inventory adjustment (B < O) or habit formation (B > O). The generally 

unobservable state variable is eliminated by using the relationship 

S(t) = q(t) - oS(t) A-2 

where s·(t) is the time derivative of Sando is a depreciation rate 

assumed to be a constant proportion of the level of the state variable. 

C. C. Maji et. al. (1971) use a time series of a changing 

cross-section of 46 households covering the period 1949-50 tc 1963-64 

on Punjab households collected by the Board of Economic Enquiry, Punjab. 

They estimate price and income elasticities for Rice, Wheat and Maize. 

The results are mixed and not very convincing. 

The dynamic demand function has also been used by S. Tendulkar (1969) 

who attempts to construct a theoritical model of consumer behaviour of 

rural households in a semi-monetized economy where the household decides 

on how much of its produce to retain for self-consumption and how much 

of it to sell. His model therefore differentiates between cash and non-

cash components of total expenditures. The results are given in Table A.3 

but it is interesting to note that cash expenditures appear to have an 
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inventory adjustment process while non-cash expenditures indicates a 

habit-formation process. 

Expenditure 
Table. A.3: Price and Elasticities for food from 

Dynamic Demand Equations 

Expenditure 
Elasticities 

Short-run Long-run 

Price 
Elasticities 

Short-run Long-run 

Substitution 
Effect 

Short-run Long-run 

Cash Expenditure 1.0187 0.5933 
Non-Cash Expenditure 0.2998 0.9497 
Total expenditure 0.5503 0.7702 
Cash Expenditure 1.0589 0.7449 -1. 2703 -0.8940 -0.9811 -0.6906 
Non-Cash Expenditure 0.4480 0. 9977 -0. 2394 -0.5331 -0.0218 -0.3155 
Total Expenditure 0.7440 0.8889 -0.6741 -0.8054 -0 .1095 -0 .1308 
Cash Expenditure 1.2321 0.7344 0.3682 0. 2194 0.7025 0.4187 
Non-Cash Expenditure 0.1879 0.7043 -0.0814 -0.3052 0.0009 0.0369 
Total Food Expenditures 0.6198 0.3910 0.2247 0.1418 

i i i i The substitution effect is given by (np + ai ne ) where np and ne 
are elasticities with respect to price and total expenditure, evaluated 

d d h . f h . th d. at mean, an a. enotes t e proportion o t e 1 expen 1ture group 
1 

in total expenditure. Source: S. D. Tendulkar, 1969 

Note that two alternative price variables are used. They are (i) 

the Rural Retail Price Index of Food Articles (2a-2c) and (ii) the Parity 

Index representing the ratio of the agricultural wholesale prices received 

by farmers to the Rural retail price index of non-agricultural commodities 

bought by them (3a-3c). 
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IV. K. Chopra and G. Swamy, 1975, estimated a demand function for pulses 

using NSS survey data from the 14th round, and national annual data on per 

capita availability. The expenditure elasticity is computed from the cross-

section data and own price and cross-price elasticities are computed from 

a pooled regression using annual time series data. The resulting equation 

is 

log X = 2.51263 + 0.58 log (E/Pb) 0.63307 log (Pp/Pb) + 0.64516 log (Pc/P 
t-values (1.98) (-5.62) (1.83) 

--- A-3 

R
2 = 0.80 

DW = 2.21 

where X = per capita consumption of pulses, E = total per capita expenditure, 

P = price of pulses, P = price of cereals (the substitute) and Pb = a general p c 
wholesale price index. 

expenditure 
It can be seen that the elasticities of pulses measured 

by SELP differ markedly from the one in equation A-3, which appears more 

reasonable given our knowledge of consumption habits. 

Several rounds of the NSS survey data have also been used to 

estimate price and expenditure elasticities using the Linear Expenditure 

system. These provide probably the only consistent set of demand elasti-

cities for India in the sense that they are derived from a system of 

demand equations that satisfies all the restrictions of demand theory. 

Before discussing these however,we may briefly review the work of 
' 

N. S. Iyengar and L. R. Jain (1974) who extend Honthakker's Indirect 

Addilog model to estimate income and price elasticities for food and non-

food commodities (The model is not extended to more than two commodities) 

although this can be done by appropriately restricting the coefficients - see 

AnryendiY D) 
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The reported elasticities are given below. 

Table A-4: Price and Income Elasticities from Extension of Indirect 
Addilog System 

Food Non-Food Food Non-Food 

Income 0.4729 1.8548 0.6669 2.0488 

Own-Price -0.4180 -0.9110 -0.6322 -0.8908 

Cross-Price -0.0549 -0.9438 -0.0347 -1.1580 

The Linear Expenditure System is a convenient system for the esti-

mation of elasticities for broad groups of conunodities. (For the merits 

and limitations of the system, see Appendix D). Although Paul Pushpam and 

Ashok Rudra (1964) had experimented with the functional form and NSS 

survey data, the really comprehensive work using the linear expenditure 

system has been done by R. Radhakrishna and K. N. Murthy (1978). 

In the study, the NSS data from 25 rounds covering the 

period April 1951 to June 1971 have been used. Tne different expenditure 

groups in different surveys have been reconciled by deflating them and 

regrouping them into five consistent expenditure classes, separately 

for rural and urban areas. The linear expenditure system is then fitted 

to each expenditure group. 

The conunodities are classified into nine groups in the first 

instance and into a larger number of more specific food groups in 

subsequent estimations (depending on the availability of data). 
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The expenditure elasticities are reported for each expenditure 

class and for rural and urban areas separately.All the results are not 

reproduced here, but in general the expenditure elasticities for Cereals, 

Edible Oil and Other Food show a clearly declining trend as income rise. 

The trend is not as clear for Milk and Milk Products, Meat and Fish or 

Sugar (and Gur). The expenditure elasticities each for Fuel, Clothing 

and other non-food clearly rise with incomes. The average (Group III) 

elasticities are reported below. 
Expenditure 

Table A.4. I Elasticities from LES 

Rural Urban Rural Urban 

1. Cereals 0.583 0.461 -0.528 -0.348 

2. Milk & Milk Products 2.222 2.055 -1. 234 -0.951 

3. Edible Oil 0.968 1.067 -0.568 -0.515 

4. Meat,Fish & Eggs 1.569 1.589 -0.982 -0.744 

5. Sugar & Gur 1.537 1.302 -0.885 -0.616 

6. Other Food 1.121 1.069 -0.693 -0.584 

7. Clothing 1.468 0 .979 -0.853 -0.470 

8. Fuel & Light 0.814 0.792 -0.495 -0.401 

9. Other non-food 1.763 1.601 -1.007 -0.804 

Note: Pulses are included in O~h~r Food. 

NSS data on 6 rollllds which give the requisite data for a finer 

11-conunodity classification have been used to estimate (for each 

expenditure group) a 11-conunodity LES, which breaks up Cereals into Rice 

Wheat and other Cereals. 
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As mentioned in the text, the LES does not admit inferior goods 

and it may therefore be inappropriate to disaggregate cereals when one 

of them is indeed inferior for higher income groups, a limitation, which 

the authors recognize. They indeed show that the estimated 'y' parameters 
see equation D-I° 
from the first three equations (Rice, Wheat and Inferior Cereals) in the 

II-commodity model do not add up to the 'y' estimate of the first equation 

in the 9-comrnodity model, i.e. consistency is not maintained in a 

number of cases. 
expenditure 

In general the elasticities at the mean of the sample for 

Rice is lower than that for inferior cereals in both rural and urban 

areas. In the urban areas, even the elasticity for wheat is lower than 

for inferior cereals as the following.table shows. 

Expenditure 
Table A.5 Elasticities from LES (11-Commodity model) 

average group (Group III) 

Rural Urban 

Rice 0.399 0.738 
Wheat 0.589 o. 349 
Inferior Cereals 0.511 0.962 
Milk & Products 1.065 1.690 
Edible Oil 0.385 0.574 
Meat, Fish & Eggs 0.977 0.972 
Sugar & Gur 0.090 1.181 
Other Food 2.333 1.141 
Clothing 1. 770 1.584 
Fuel & Light 0.563 0. 753 
Other non-food 3.023 1~389 
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APPENDIX B 

DATA 

The data set consists of time series data on aggregate foodgrain 

availability of 10 Indian States for the period 1956-57 to 1975-76 and 

is called "State Data". 

Period covered: 1956-57 to 1975-76 (agricultural years). 

The data on conswnption is derived as follows. Production figures 

by States are published by the Government of India, in Estimates of Area, 

Production and Yield, Directorate of Economics and Statistics, India. 

1. Rice 

2. Wheat 

3. Jowar (Sorghum) 

4. Bajra (Pearl Millet) 

5. Maize 

6. Ragi (Finger Millet) 

7. Barley 

8. Bengal Gram (Chickpea) 

9. Tur (Pigeonpea or Redgram) 

10. Urad (Black Gram) 

11. Green Gram (Mung Bean) 

12. Masur (Lentil) 

13. "Other" Pulses (or Lentils) 

In Estimates of Area, Production and Yield, production of the 

pulses 10, 11 and 12 is aggregated into "Other Pulses". However, production 

data on these pulses have been put together by K. Chopra and G. Swamy (1975) 

for most of the years. For years not covered by their study, the data 

was gathered from Agricultural Situation in India, various issues. 
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The production data is then adjusted for: 

(I) seed feed (animal) and wastage 

(II) changes in government stocks 

(III) inter-state movements by rail of these grains. 

I. The requirements of seed and feed and the loss from wastage is 

assumed to be as follows for the different crops: 

Rice 7.6% 

Wheat •. 12.1% 

Other Cereals 12.5% 

Chickpea 22.1% 

Other Pulses 12.5% 

II. Changes in Government Stocks. 

In the Bulletin on Food Statistics, Directorate of Economics. and 

Statistics, the Government of India publishes data (on a calender year 

basis) on Internal procurement, Total Public distribution (by State and 

Central Governments) and Closing Stocks (with State and Central Govern-

ments). This data is available for Rice, Wheat and "Other Grains", and 

for all States. 

Changes in government stocks are taken to be the difference between 

closing stocks at the end of two years. When the difference is positive, 

the figure is substracted from consumption since this means a decline 

in what is available for consumption. When this difference is negative, 

the figure is added to conswnption. 

It should be noted that the differences are measured from December of 

one year to December of the previous year, while production figures relate 

to the agricultural year (July to June). Therefore, the time periods are not 

coincident though they overlap for six months. We have, therefore, assumed 
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that the change in stock from any year 't' to 't+l' relates to the 

agricultural year 't' to 't+l'. It should also be noted that the 

category "other grains" is assumed to refer to the most important of 

the coarse cereals produced in that state. 

III. Inter-state movements of foodgrains. 

The Government of India also publishes (Bulletin on Food Statistics) 

data on inter-state movements of foodgrains (and other commodities) by 

rail, (and up to 1968-69 by river). Although movement of foodgrains also 

takes place by road, there is no data on this. Further, rail-traffic 

is still the most important mode of movement, and the Food Corporation 

of India also transfers its stocks by and large, by rail. 

The data is available for each State, and for each cereal from 1956-57 

till current time, and for pulses (chickpea and other pulses) from 1963-64. 

Although most of the States we consider were reorganized by 

1956-57 (so that their geographical boundaries have not altered through 

the period) the data on inter-state movements is not tabulated to correspond 

to the reorganized boundaries till 1960-61. Thus for the years 1956-57 to 

1959-60, data which is available for the pre-reorganization States have 

been added together to approximate to the new boundary lines. Thus, for 

example, for these years, the state of Madhya Pradesh is defined to include 

the old Madhya Pradesh, Madhya Bharat, Bhopal, Vindhya and Vidarbha. 

Two of the states were reorganized after 1956-57, i.e. the old Bombay 

State was divided into Gujarat and Maharashtra, in 1960-61, and the data 

on inter-state movements tabulated according to the new states appears only 

in 1962-63. The old state of Punjab was divided into Punjab and Haryana 

in 1967-68. The data for these states were adjusted to make them conform 

to constant state boW'ldaries. The states which are included in the sample are: 
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1. And.Ina Pradesh 

2. Bihar 

3. Gujarat 

4. Karnataka 

5. Madhya Pradesh 

6. Maharashtra 

7. Punjab (and Haryana) 

8. Raj as than 

9. Uttar Pradesh 

10. West Bengal 

It should be noted that data on inter-state movements are given 

separately for exports and imports from the mainland and exports and 

imports from the ports which belong to these states. However, exports 

from and imports into ports do not either decrease or increase the 

availability of grains in the mainland. The reason is that ports are 

not producing units and exports from the ports can only occur if in fact 

the mainland had previously exported grains to the ports, and the latter 

is already accounted for the in the export figures of the state's mainland. 

On the other hand, since the ports are not consuming units either, any 

imports into the ports must be considered as commodities in transit which will 

reach the mainland as the state's imports. Thus the relevant export and 

import figures for each state are those for the mainland, i.e. excluding 

the ports. The net of these exports and imports constitute the net addition 

on to or subtraction from what is available for consumption in these states. 

Therefore, availability in each state (which is a measure of consumption) 

is estimated as: 

Availability = Production Seed, Feed, Wastage + Change in Government 
Stocks + Net Imports or Exports from States 
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This is divided by population to arrive at per capita availability or 

consumption. 

Nominal Income and Total Expenditure 

The per capita income figures for these states was obtained 

directly from the Central Statistical Organization, India for the period 

1960-61 to 1975-76. For the years prior to this, figures of per capita 

income estimated and published by the West Bengal State Statistical 

Bureau (Estimates of State Income, 1965) were used. These were adjusted 

to conform to the first series by taking the ratio of the two estimates 

of per capita income for the year 1960-61 and splicing the series backwards. 

From these figures of per capita income, "savings" are deducted 

by assuming that the national net saving rate (for the different years) 

as published by the CSO applies to all states. This is necessary since 

estimates of savings in the states are not generally available. The 

resulting series is per capita expenditures. 

Prices 

Month-end wholesale price quotations for many agricultural comrno-

dities are recorded for a large number of "centers" or markets in India. 

This data has been published in the following yearly publications: 

Agricultural Prices in India, 1952-62, Directorate of Economics 
and Statistics, Government of India 

Agricultural Prices in India, 1963-74, Directorate of Economics 
and Statistics, Government of India,_ Comprehensive Volume. 

This forms the basis of our price-data. For each state and for 

each conunodity, the price quotations for the different centers are 

averaged for each month and then averaged over the agricultural years. 
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The number of centers varies, depending on the commodity, and its 

importance in the production pattern of the state. Further, although the 

publications prior to 1963 publish price data for a very large number of 

centres, the number of centres covered is much smaller in the comprehensive 

volume which publishes data for the period 1963-74. Therefore, we have 

worked backwards, i.e. we have included those centres for which data is 

available for 1963-74 and extended the series back to 1956-57, using 

the data on the same centres from the earlier publications. 

For the years 1974 to mid-1976, the data comes from the Bulletin on 

Food Statistics, Directorate of Economics and Statistics, Government of India, 

which again, reduces the number of centres covered to a slightly smaller 

set. We adjust for this by multiplying the average (over the centres 

quoted in the Bulletin on Food Statistics) prices for 1974-75 and 1975-76 

by a ratio of the average price (over the centres quoted in agricultural 

prices in India) to the average price (over the centres quoted in the 

Bulletin on Food Statistics) for the years 1973-74, 1972-73 and 1971-72, 

and splicing the series, 

It is important to note that the price quotations in each centre 

refers to a particular variety of a conunodity. In most cases, the price 

quotation is for the same variety throughout the period. However, in the 

more recent years, starting from the late sixties till 1975-76, price quota-

tions often refer to the new high-yielding varieties of Rice and (particularly) 

Wheat. 1hus, although the average over centres represents, in general, an 

average over different varieties of the commodity, this average tends to 

represent the newer varieties in the later years of the sampfo. 

Another deficiency in the price data cannot be as easily ignored, and 

. that is, that for Rice in particular, but also for Wheat and Jowar to some 

extent, price quotations for some years after 1964-65 refer to "controlled" 
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rates fixed by the State governments. These are not free-market prices in 

the sense that they do not represent the price at which consumers could buy 

as much as they wished, but represent instead the price prevailing in a 

smaller government market where limited amounts could be bought at the 

controlled rate. 

For those years when only controlled rates are quoted for the 

centres, we have made use of Farm Harvest Prices, adjusted to conform 

to the wholesale price series by a ratio of wholesale price to farm-

harvest price in the previous years in that state. We have also used Farm 

Harvest Prices as a complete price series in itself when there is no 

wholesale price data for that commodity in that state (as for example wheat 

in Andhra Pradesh and Karnataka), or when the wholesale price has been 

controlled p~actically throughout the time period (as for Jowar in Maharashtra). 

Only when we have neither a full series on wholesale prices, nor farm 

harvest prices, have we used the All-India wholesale price index to fill 

in the missing values -- but this only happens in a few cases for Pulses. 

The sources for the Farm Harvest Prices are: 

(I) Farm Harvest Prices in India, Directorate of Economics and Statistics, 
Government of India, 1962-63. 

(II) Agriculture in Brief -- various issues, Directorate of Economics and 
Statistics, Government of India 

(III) Agricultural Situation in India various issues, Directorate of 
Economics and Statistics, Government of India 

Price and Quantity Indices 

As discussed in the paper and Appendix C, chained Fisher price and 

Quantity indices have been constructed. The Fisher's index is the geometric 

mean of the Laepayers and Paasche index numbers. The quantity index numbers 

use the same formulas with the price and quantity variables interchanged. 
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Note that all quantity variables are in per capita terms, i.e. the 

quantities derived in the previous section are divided by population. 

Adjustment for Base-year Differences in Quantities and Prices Across States 

The quantity and price indices estimated in the manner are all equal 

to 1 in the base year for all the states and therefore do not take into 

account the differences in base-year prices and quantities. To account 

for this, the following procedure is used. 

A reference quantity for commodity i is defined for the base year 

as an average over all the states, i.e. 

k k 
I NO QOi 
k 

QOi = (B-1) 
L:Nk 
k 0 

where 0 = base year, k = the states and N = population, and ~i = base year 

per capita quantity consumed. 

Then a reference price is defined as: P0 i k k = I w0i Poi' where: 
k 

= (B-2) 

Then reference expenditures are calculated as the expenditures in State k, 

evaluated at the reference prices. 

REFEXPS ~ = I 
i 

k -
%i Poi (B-3) 

The ratio of observed expenditures to reference expenditures is a measure 

of the proportion by which price differences across states account for observed 
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expenditure differences. This ratio is called Reference Ratio (REFRATIO) 

and is an index of the prices in state k relative to the average prices 

in the base year. 

= 

I ok1· Pk 
l 'O Oi 

I 
i 

(B-4) 

If Pkt is the (Fisher's) Price Index in year t for state k and 

Qkt is the (Fisher's) Quantity index of state k in period t, then we define 

the adjusted price indices Pkt and the adjusted quantities Qkt as 

(B-5) 

k = REFEXPS0 x (B-6) 

Note that Pkt is an index number which is dimensionless, but Qkt has the 

dimension of the expenditure series, i.e. it is of the same order of 

magnitude than the expenditures. It thus is a quantity series, and not 

a quantity index. 

The Fisher's chained price indices and quantities are calculated for 

the following sets of commodities for each of the ten states. 

1. Rice 

2. Wheat 

3. Superior Cereals (Rice and Wheat) 

4. Inferior Cereals (Jowar (Sorghum), Bajra (Pearl Millet), Maize and Ragi, 
and Barley) 

5. Pulses (Chickpea, Tur, Mung, Urad and Masur) 
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Note that the system of demand equations is necessarily a system 

that considers the allocation of total expenditure on an exhaustive bundle 

of commodities, and cannot be used to estimate demand functions for a subset 

of these commodities only, without assuming separability. In our study 

therefore, although the primary interest is to estimate demand elasticities 

for the above mentioned sets of corrunodities, the system would not be 

complete without including "other commodities" not mentioned above. 

Admittedly, this category of "other commodities" is a mixed bundle 

which includes non-grain food commodities as well as non-food commodities. 

We do not have specific data on prices and quantities of these commodities, 

but the expenditure on them is derived simply as total expenditure minus 

expenditure on the foodgrain commodities listed above. If we have a quantity 

or price index for these commodities, the other index can be derived because 

the following equation must hold: 

We have used a proxy for the pr.ice index of other commodities and 

this is weighted average of the consumer price index number (for non-food 

commodities) for industrial workers and the consumer price index number 

(for non-food commodities) for agricultural laborers, where the weights 

are the proportion of the population that is urban and rural respectively. 
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These price indices for all commodities and for food commodities 

are estimated for each state and published with 1960 as base year for the 

Industrial Worker's Index, and with 1960-61 as the base year for the 

agricultural worker's index. The former indices are estimated for several 

urban centres in each state, while the latter is estimated for the rural 

sector as a whole. The non-food index is derived from the all commodities 

index and the food-index, using the weights as given by the Labor Bureau, 

Ministry of Labour, which computes t:~ese indices. 

For the period 1960-61 to 1975-76, therefore, this data is published 

in a directly usable form. However, for the period 1956-57 to 1959-60, we 

do not have these indices for either the industrial workers or the Agri-

cultural Workers. However, we do have the "Working class" Price Index 

with base 1950-51, and this index is adjusted to correspond to the Industrial 

Workers Index from 1960-61 to 1975-76, and the whole series is then arith-

metically adjusted to shift the base to 1956-57. To extend the agricultural 

workers price index back to 1956-57, we have used some information published 

in the Pocket Book of Labor Statistics, Ministry of Labour, 1968. This 

gives the agricultural workers' price index (with base year 1960-61) for most 

of the states for the year 1956-57 only. The data for the years 1957-58, 

1958-59 and 1959-60 are filled in by assuming that the agricultural 

worker's non-food price index was proportional to the industrial worker's 

index, the ratio referring to the year 1960-61. 

The weighted average of these two indices is our price index for "all 

commodities" not included in the list above, and is used to derive the 

quantity index for other commodities, which is one of the dependent 

variables in the specifications DERP and DESP. In specification SELP, since 

only N-1 equations need to be estimated, the equation for "other commodities" 

is left out, although the price index for other commodities enters as the 
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deflator to ensure homogeneity. 

Expenditure Deflator 

To deflate the expenditure figures, we use the Fisher's chained 

price index of all commodities, including other commodities. (The 

quantity of "other commodities" is asstDned to equal 1 in the base period). 
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Appendix C: Index Numbers 

This section draws heavily on Diewert (1976, 1978a, 1978b). One of 

the important questions facing econometricians who construct data series 

is the choice of functional form for an index number. If the functional 

form for the utility function is known, then an "exact" index number 

exists in the sense that, if the utility function is U = f(X), then 

the change in utility levels between periods 0 and 1 can be precisely 

measured by a quantity index: 

= (C-5) 

where the term on the right hand side is a quantity index which is 

some function of prices and quantities. Given a quantity index (or 

price index) the other function can be defined by the Fisher's weak 

factor reversal requirement, that the product of a quantity and a price 

index be equal to the ratio of expenditure in the two periods, i.e., 

P(Po,P1,xo,X1) R(PO,Xl;PO,Pl) = PlXl/POXO 

The utility function may be unknown, but a flexible functional 

form may exist which provides a second order approximation to the 

unknown, arbitrary, twice differentiable linearly homogeneous function. 

If an index number exists which is exact for the flexible (approximate) 

utility function, then that index m.nnber has been called "superlative" 

by Diewert. Since the flexible functional form is a second order 

approximation to an arbitrary homogeneous utility function, the superlative 

index nun~er which is exact for the flexible form is a second order 

approximation to the exact index number of the true utility function. 
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Diewert then shows that index numbers of quadratic means of order r 

are superlative for linearly homogeneous utility functions or indirect utility 

functions which are also quadratic means of order r. In particular, the 

Divisia Index is superlative for the linearly homogeneous translog utility 

function, and the Fisher's index is superlative for the linearly homogeneous 

quadratic mean of order 1 function. Similarly the quadratic mean of order r 2 

index is superlative for the linearly homogeneous generalized Leontif utility 

function. Thus a wide choice of superlative index numbers exist. 

However, in another paper Diewert shows that for small changes in 

quantities and prices, all superlative index numbers approximate each other 

to the second degree. Since generally changes in price and quantities between 

successive periods are smaller than changes relative to a fixed base period, 

chaining of indices can bring about extra-ordinarily close approximation 

between all the superlative index numbers. For examples see Diewert (1978). 

Thus, once superlative index numbers are chained one can choose any one of them. 

However, all the results discussed so far about superlative index 

nu.T.bers refer to utility functions which are linearly homogeneous, Since we do not 

want to constrain our utility function (or indirect utility·function) to be 

homogeneous, these results do not apply strictly. Instead, Diewert used the 

results of Kloeck and Theil which do not require the aggregator function 

to be linearly homogeneous. Diewert (by extending their r~sults to have a 

global character) has shown that the Divisia price index is exact for the 

general translog cost function, as well as for functional forms other than the 

translog if the assumption of homogeneity is dropped. A similar result is 

proved for the Divisia quantity index in the context of an utility function 

which is not necessarily linearly homogeneous (Diewert, 1976). Diewert has 

further shown that similar results can be proved for all quadratic means of 

order r index numbers . 
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These extraordinary results imply that chained superlative quantity 

indices can measure utility changes to a very close extent even if the 

utility function is unknown and that chained superlative price indices 

can approximate "true" cost of 1i ving changes to an equally close extent. 

The approximation of chained superlative index numbers to each other 

appears to be so close that any error which could be introduced by not 

choosing the "correct" one must pale into insignificance compared to other 

error in data problems commonly encountered in econometric analysis. 
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APPENDIX D 

Other Demand Systems 

Systems of Demand Equations Derived from Specified Utility Functions 

We review briefly two systems of demand equations which have been 

used widely. The Linear Expenditure System (and its extension, the Extended 

Linear Expenditure System) and the Indirect Addilog Systems satisfy all the 

conditions imposed by consumer theory, but are nevertheless inappropriate 

for our needs. 

The Linear Expenditure System (Stone, 1954) - This is derived 

from a directly additive utility function 

U(X) = Lf. (X.) 
1 1 

and gives the following functional form for the demand equations 
N 

P. X. = y. P. + S. (M- L y. P.) ./.._ = 1, ... N 
1 1 1 1 1 j =l J J 

N 
where M = total expenditure, and L 

i=l 

The assumptions further needed are that 

s. 
1 

M 

= 1 

N 
- L 
j=l 

y.P.> 0 
J J 

(D-1) 

and 0 < S. < 1 hold for all i. The S. are the marginal budget shares, 
1 1 

and since they cannot be negative, inferior goods are ruled out. Further, 

the additive form of the utility function allows little flexibility in the 

adjustment of price coefficients, and all goods are net substitutes. There 

is rigidity in the income responses as well since marginal budget shares 

are constant. Therefore this system is more suited to the analysis of 

broad aggregate groups. 

The Extended Linear Expenditure System (Lluch et.al. 1977) allows 

for the endogenous determination of savings, and hence of total consumption 
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expenditure. It has the same properties as the LES in all other ways, and is there 

fore unsuitable for our purpose. Similarly, the Quadratic Expenditure System 

(Pollack and Wales, 1978) has the following functional forum of the demand 

equation 

P.X. 
1 1 

= Y. P. + S. (M 
l l l 

N 
l: 

j=l 
y .P .) 

J J 

-c. 
+ (C. - S.) ATIP. J 

l 1 J 

N 
(M - l: 

j=l 

2 y. p.) 
J J 

(D-2) 

l:S. = 1, and l:C. = 1. If C. = S. for all i then this reduces to the LES 
J J l 1 

The Indirect Addilog System (Houthakker, 1960) - This system generates 

demand equations for pairs of commodities of the following kind 

(log X.P. - log X.P.) = 
l 1 J J 

M M a. + b. log(-)- b. log(-P). 
1 1 pi d J 

(D-3) 

If these eq~ations are estimated separately, then N-1 distinct 

estimates for each of the b. are obtained and hence the restriction that 
l 

b. take the same value in every equation is used in estimation. The test 
1 

for the equality of the b. can be used to test the compatibility of the 
1 

addilog model and the data. However, like the LES (and its extensions) 

this also assume additivity of the utility function (as does the Rotterdam 

model with block-independence or preference independence). Therefore they 

impose the same kind of constraints on the price coefficients. 

Systems of Demand Equations derived from differentiating a general 

non-homogeneous flexible functional form for the indirect utility function. 

(i) Generalized Leontief Reciprocal Indirect Utility Function. This 

formulation is due to W.E. Diewert (1974) and has this form 

1 

G(V) 
= h(V) = 

N 
r 

i=l 

N 1/2 
r b .. y. 

j=l l.J 1. 

1/2 
y. 

J 

N 1/2 
t 2 r b0 . y. 

j=l J J 
(D-4) 
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where b .. 
lJ 

\ (V l' .... VN) 
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b. . . The i th demand equation is 
Jl. 

N 
b .. v.-112 v.112 I + bOi 

j =l lJ l J 
= 

N 
N 1/2 1/2 

I I bkmvk v + 
k=l m=l m 

-1/2 
v. l 

(D-5) 

N 1/2 
I bOmVm 

m=l 

(ii) The translog reciprocal indirect utility function has the form 

1 
G (V) 

y 

= h (V) = a + 
0 

N 
I 

i=l 
a. log V. + 1/2 

l l 

N 
I 

i=l 

N 
I 

j=l 
y. . log V. log V. 

lJ l J 

= 
y ... 

J l Application of Roy's identity yields, 
ij 

-1 N 
v. (a. +.II y .. log V.) l l J= lJ J 

(D-6) 

X. (V) = (D- 7) l N N N 
I aK+ I I yk log V 

k=l k=l m=l m m 

Both these systems of equations are non-linear. 

The translog indirect utility function can be made to yield demand 

equations which are linear in the unknown parameters if we make the indirect 

function linearly homogeneous (of degree -1) (and the direct function of 1) 

as in Lau, Lin and Yotopoulos (1978). The indirect translog utility 

function 

log W* = a 
0 

N 
+ I 

j=l 
a. log P~ + 1/2 

J J 

N N 
I I 

j=l k=l 
8 log P~ log P* 
jk J k 

(The P* variable are normalized by dividing prices by income M) is 

(D-8) 
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N 
L: 

i=l 
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N 
= 8kj for all j and k, and L: 

i=l 

for all j, and a = 0. However, homogeneity of the indirect utility 
0 

function is a very restrictive assumption since it implies that all income 

elasticities are unitary. As mentioned in the text, the only way of 

admitting non-unitary income elasticities into the ~omogeneous version 

of either the generalized Leontif or the translog is to introduce a 

vector of committed expenditures. Diewert has done this for the generalized 

Leontief form, and Lau and Mitchell (1970) have done this for the Translog 

form. However, this does not eliminate non-linearity, and in addition, 

it is difficult to justify the existence of "committed"expenditure 

a problem that the Linear Expenditure System also faces. 

Systems of Equations Linear in Parameters, but only partially 

consistent with consumer demand theory. 

(1) Linear in logarithms of real income and prices. 

log X. 
1 

2 
= a. + b., log m + b~~ (log m) + L: c .. 

1 ll .Lw • •· 1J 
Jf~: 

1his is homogeneous but again, symmetry can be imposed only at sample 

means, since 

ax. 1 C .. aP. = 
J 

1J 

x. 1 

P. 
J 

ax. 
_J_ = c .. ap. J 1 

1 

x. 
-1... P. 

1 

(2) 1he Rotterdam model discussed in the text is an improvement 

over (1) in the sense that symmetry can be imposed globally. However, as 

pointed out in the text, homogeneity does not seem to be a sustainable 

hypothesis in this syste~. 

...· .:•-·. 

(D-9) 

(D-10) 
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(3) The Rotterdam model in real income and relative prices (Theil, 

pp 574-580) is an attempt to reduce the number of unknown parameters 

in the system by assuming block-independence or preference independence 

for the utility function. The compensated price effect, i.e., the 

substitution effect is written as a sum of two terms 

ax. 
i 

ax. 
i am-

ax. 
_i 
am (D-11) 

aP. 
J 

where A = marginal utility of income, and uij is the element i, j of the 

inverse of the utility function 

a2u 
U .. = iJ ax. ax. 

i J 

The first term is known as the specific substitution effect of the 

h . h .th . h .th . h d h 1 c ange in t e J price on t e i quantity, t e secon as t e genera 

substitution effect, and the sum as the total substitution effect in the 

sense that all commodities compete for the consumer's money. The demand 

function is then written as 
N 

Si log xi = a0 + a1 log m + L 
j=l 

N 
C .. (log P. - L µk log Pk) 
lJ J k=l 

(D-12) 

i.e. the equation is in terms of relative prices in the sense that depending 

on whether the utility function is assumed to be block-independent or 

preference independent, the price term P. is deflated by a weighted average 
J 

(where the weights µk are marginal budget-shares) of those prices which 

are assumed not to affect the demand for the ith commodity, i.e. the genera± 

substitution effect is substracted from the specific one. In the case 

of preference independence, each demand equation contains only one deflated 
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price, i.e. the own price, deflated by all other prices; with the assumption 

of block-independence the number of price terms depends on the number of 

sets and the number of commodities in each set. This system is therefore 

estimable only if, in addition to symmetry, either preference independence 

or block-independence is imposed in the estimation. 

As mentioned earlier, neither of these assumptions are tenable in 

our context. (It may also be noted that the estimation of this set of 

demand equations leads to non-linear procedures since the second term on 

the right hand side is not linear in the unknown parameters. However 

Theil suggests a way of linearising the relationship by using an estimator 

for the marginal value shares). 
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APPENDIX E 

ESTIMATION PROCEDURES 

The demand equations (i.e. DERP, DESP and SELP) are specified 

to incorporate all the restrictions of demand theory. It is worthwhile 

recalling that 

1. The specifications of DERP, DESP and SELP satisfy the homogeneity 

constraint (i.e. that the demand equations are homogeneous of degree zero 

in income and prices) although homogeneity cannot be tested in DERP and DESP. 

2. They satisfy the adding up constraint at sample means. In speci-

fications SELP, if we did not have the squared income term, then the adding up 

property would be satisfied globally since the equation is in terms of shares 

which must sum to unity. However, in DERP and DESP, even without the squared 

income term, we can satisfy the adding up constraint only at sample means. 

3. Symmetry conditions are imposed in the estimation procedure, 

and hold globally for all the specifications. However, in DERP, the 

· h · of the nth · symmetry constraint on t e cross-price terms equation 

are derived from the symmetry condition 

which leads to 

CNi = 

ox. 
i 

-

= 

n-1 
L: 

j =l 

o~ 

oP. 
i 

c .. i] 
p 
J 
PN 

E-1 

E-2 

However this constraint is imposed only at the sample mean. 

4. Conditions (2) and (3) imply that in the specification SELP only 

n-1 equations need to be estimated, the adding-up (at sample means) and 
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synnnetry constraint will ensure that all the parameters of the n'th 

equation are then derivable from the estimated parameters of the n-1 

equations. Symmetry constraints give all the cross-price terms for the 

n'th equation, homogeneity constraints give the cross-price terms for 

any i, with respe.ct to the n'th conunodity, and the own-price term 

for the n'th conunodity. Of course, the income elasticity for the n'th 

commodity will be derivable only at some given value of log m since 

(as in Table 1), 

n-1 bil + 2 bi2 log m 

nnM = - I + 1 E.3 
i=l s. 

1 

Also note that we do not have estimates of bnl and bn2 separately, but 

only of nnM at some value of log m. 

5. In specifications DERP and DESP, however, since the demand 

equations have quantities rather than shares as the dependent variable, 

we can estimate all the n equations with the symmetry and adding up 

constraints imposed on the estimation procedure. The specifications 

impose homogeneity in each equation by using.relative prices. Since 

in DESP each equation uses its own price as a deflator this means 

that for each commodity, the own price term (and elasticity) will have 

to be derived according to the formula given in Table 1. 

All the systems form sets of "seemingly unrelated" regression 

equations in the sense of Zellner and are estimated using the SAS 

package "SYSREG". The system estimated without the symmetry constraints, 

(and the adding up constraint in specification DERP and DESP) will be 
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equivalent to estimation with single equation OLS, if single time series 

are used. 

As mentioned earlier, the coefficients estimated in this system 

do not make much sense themselves, and have to be converted into elasti-

cities for interpretation. The formulae for these elasticities are given 

in Table 1. It is worth noting here that the corresponding standard 

errors and t-values are also linear combinations of the variances and 

covariances of the estimated parameters. In general, if we have a row 

vector of regression coefficients for each equation 

bi = ( bi 1 ' bi 2 ' ' ' ' ' ' b iH ) E.4 

where H = total number of independent variables, and a row vector of 

constraints 

the elasticities are computed as the scalar 

p. = 
1 

where D is a constant. 

T o.b. + D 
1 1 

The variance of P. is 
1 

Var P. = o. EA A o: 
1 1 b.b. 1 

1 1 

E.5 

E.6 

E.7 

where EA A is the variance covariance matrix of the regression b.b. 
1 1 

coefficients. The t-value is given by 

t. = 
1 

P. 
1 

/Var P. 
1 

E.8 

... ~ .. .; ..:. 
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Pooling of Cross-Sections of Time-Series 

The Jata set consists of 200 observations across 10 states in India 

and over twenty years. In general, we can expect that the classical assump-

tions of normal and independently distributed error, with zero mean and 

constant variance will not be satisfied when the observation stretch across 

two variational directions. We can expect for example, that the variation 

in the time direction is more or less than in the regional direction, and 

hence, the error term may also display the same variational characteristics 

as the dependent variable. 

One way of accounting for these different effects and hence cleanL.g 

up the errors has been to introduce dunnny variables for the regions and 

for time. This allows for .constant time and region effects. The same 

thing can be accomplished by transforming the variables so that they are 

expressed as deviations from the means provided the sample is balanced. , 
Specifically, any variable Yit (whether dependent or independent) is 

transformed so that the transformed variable is 

= Y1.t - y - Y. + y ·t 1 • 
E.9 

where the dot-bar notation indicates average over the suppressed 

subscript. The transformed variables can then be used in estimating 

the system of demand equations, using the Zellner procedures. The co-

variance transformation yields estimates of the regression parameters 

without estimating the coefficients of the dummy variables, and thus 

saving on degrees of freedom. 
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The error-component model has been used in recent years for 

pooling cross-section and time series data. This model assumes 

that the region and time effects are not fixed but random, are 

independently distributed, with zero means and (usually) positive 

variances. If the estimated model is 

= a + 

and 

then µi , vt and nit have variances 2 
CJ µ 

i = 1, n E.10 

t = 1, T 

2 2 
CJ and CJ respectively v n 

Basically, therefore, this treats the intercept terms as random 

and is an intermediate solution to treating them all as different (Least-

Squares with dummy variables) or treating them all as equal (OLS). The 

advantage of using the error-component model over the covariance transformed 

regressions is tha·t,while the latter are consistent, we can get more 

efficient estimates from generalized least square estimates of the error-

component model. 

Originally, Wallace and Hussein derived the formulae for the 

error components from the residuals of the OLS regressions. 

"'2 s. S. E 
CJ = E.11 

n (N-1) (T-1) 

"'2 1 e:. t 2 "'2 er =- I: N(T-1) CJ µ N t n 
E.12 

..... ·~ --. 



"'2 0 
\) 

= 
1 

T 
:E 
i 
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e;. 
1• 

T(N-1) E.13 

However, Amemiya uses estimates of the B's from the covariance 

transformed regression to calculate residuals. But in the covariance 

transformed equations, by construction, n and n are zero for all i and 
·t 

t, where n indicates the residuals from the equation. Hence to calculate 

the residuals in the formulas for the error components above, Amemiya 

uses the B's from the covariance transformed equations, but on the original 

X, Y data, not the tr~nsformed data. (According to a simulation study 

by Maddala and Mount, the twO different estimators have virtually the 

same small sample properties and do equally well as several others that 

they examine). 

These error components are used to compute the second round generalized 

least square estimates. Nerlove obtains the inverse of the error covariance 

matrix in a way that allows for transforming the original data. He defines 

the four distinct characteristics roots of the residual variance covariance 

matrix in terms of the ratios of the estimated error components. 

First, if the total error is 
,.. ,.. 
0 2 = 02 + 02 + 0 E.14 µ \) n 

Nerlove defines as ,.. 
p = o2 /o2 , and w = o I 02 

\) µ 
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The four distinct characteristic roots are 

(i) "1 = 1-p-w+wN + pT 

(ii) "2 = 1-p-w+wN 
E.15 

(iii) "3 = 1-p-w + pT 

(iv) "4 = 1-p-w 

The GLS estimates are given by regressing the transformed dependent 

variable on the transformed independent variables, where the variable Yi t 

is transformed in the following manner. 

Y** 
it 

= (1- rt:4 ) y lfi. ·t 

IX4 rt; /A4 
+Cl------P--) Y •• 

IA2 lf3 /Al 
E.16 

The S estimates are asymptotically normal and consistent, and the 

estimated variances are consistent estimators of the variances in the 

limiting distribution. Therefore, all tests are valid asymptotically. 

In general, the variance components are assumed to be positive. 

Wallace suggests that if one of the estimates is negative, then it can be 

assumed to be zero. Further, the gain in efficiency is of course dependent 

on the value of the components. If they are zero, or close to zero, then 

either OLS or the covariance transformed regressions techniques are adequate. 

Fuller and Battese use a "fitting-of-constants" method for estimating 

the variance components. Given the original data, the total sum of squares 
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of errors in E.11 above is computed as the residual sum of squares from 

* the regressions of the covariance transformed variables Y. as before. 
lt 

The sun of squares ~ 2 in E.12 is obtained by regressing the variable 
·t 

transformed as follows: 

= E.17 

and the swn of "'2 squares E 
i· 

is obtained by regressing the variables 

transformed as follows 

++ Y. E.18 yit = yit - 1• 

The SAS Institute does have a package programme for estimating this 

error-component model. However, the package is usable only for the estimation 

of single equations, and at this stage, it is not possible to use this 

for estimating the system of equations. Therefore, we have used the formulas 

suggested by Amemiya to estimate the variance components, and the procedure 

outlined above to transfonn the original variables to get GLS estimates of the S's 

Avery has developed a procedure for extending the error-component 

model to the case where the error components are allowed to be correlated 

across equations (as in the Zellner's procedure). The procedure is very 

complex and given the nature of our data, and our needs, we have decided 

that it is probably not worthwhile to go through the procedure. 


