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TECHNICAL CHANGE IN AN EVOLUTIONARY MODEL 

by 

Richard R. Nelson, 
Sidney G. Winter 

and 
Herbert L. Schuette* 

The heart of this paper is an evolutionary model of the processes of 

technological advance and economic growth, a rough calibration of that 

model with data on U.S. economic growth, and a comparison with neoclassical 

models of the sort initiated by Solow in his classic 1957 paper. But 

before developing the particular model it is important to set a wider 

context. 

Traditional neoclassical microeconomic theory has been subjected over 

the years to a steady and sometimes heavy stream of criticism. By and 

large, it has withstood the challenges well. In part this is because many 

of the challenges were inept, and in part because of the robustness and 

flexibility of the neoclassical perspective. But a major reason is simply 

that no alternative theoretical structure of adequate scope has been put 

forward -- as Thomas Kuhn has shCJVJn, the history of science offers abundant 

support for the generalization that 11 you can't beat something with nothing. 111 

The more salient of the complaints against neoclassical theory remain 

unanswered, but ineffective, because they were not accompanied by a serious 

proposal for reconstruction. 



Among the most serious challenges to the neoclassical perspective are 

those that relate to its treatment of the processes of change. The proto-

typical model in orthodoxy is one of full equilibrium under conditions of 

perfect and costless information. As the theory has progressed {especially 

in recent years), the meaning assigned to "equilibrium" has become less 

restrictive, and it is only (?) the calculation processes of the economic 

actors that remain perfect and costless. However, these improvements fall 

wel I short of removing the aura of artificial tranquility from the theory; 

the phenomena of change appear as mere complications, or imperfections, or 

perhaps as a reflection of a poor choi.ce of units of measurement. 

The elements of an alternative approach to change have long been 

available. They were set forth most clearly by Schumpeter, but they formed 

a part of the broad classical tradition that preceded him. At the level 

of the individual firm, the crucial element is full recognition of the 

trial-and-error character of the innovation process. At the level of an 

industry or an entire economy, it is essential to treat explicitly the 

driving force of transient profits and losses associated with disequilibrium, 

i.e., to allow to price signals a more dynamic role than that of 11 sustaining11 

equilibrium responses. 

In spite of the clear importance of these considerations, and of their 

prominent place in the intellectual history of the discipline, very little 

has been done to incorporate them in formal models. What we offer here is 

an example of such a model, a model illustrative of our app~oach to a 

formal Schumpeterian or "evolutionary" theory of economic change. At its 

present stage of development, this theory is not a fully developed "something" 

that can confront the orthodox position on a wide range of theoretical and 

empirical issues. But it is more than "nothing," and we intend to develop 

it further. 

'· 
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Our Jong run objective is to develop a family of models with the fol low-

ing broadly defined structure. 2 At any given time, the behavior of an 

individual firm is governed by its current decision rules, which link its 

actions to various environmental stimuli. While these rules may be both 

quite complex and quite sensible, they are not typically the result of a 

deliberate optimization over some sharply defined set of alternatives. 

And while the rules may yield considerable variation of behavior in a 

changing environment, the firm's repertory of actions is typically quite 

I imited in relation to what an outside observer would judge to be "possible.'' 

The plausibility of this characterization has, we think, been adequately 

establ ishec:I by the work on the "behavioral theory of the firm'' (see Cyert 

and March). 

In the longer run, two classes of dynamic mechanisms are at work. At 

the firm level, rule change may occur through processes of deliberate 

problem-solving (e.g., research and development), perhaps involving some 

imitation of the observed success of other firms. Or it may ''just happen," 

as particular capabilities in the firm improve through use (learning by 

doing), deteriorate through disuse, or are adapted to changed input 

characteristics. We use the term "search" to denote these rule change 

processes at the firm level. At the level of a market or a whole economy, 

aggregate outcomes change as a consequence of the economic selection 

mechanism -- the change in the weighting of different rules that comes about 

through the expansion of firms with profitable rules and the contraction of 

firms with unprofitable ones. The selection mechanism operates at any 

particular time only on the set of rules actually e~ployed at that time 
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by functioning firms, but this set is modified over time both by the search 

activities of firms in business and by the appearance of new firms, i.e., 

by entry. 

In 11 Satisficing, Selection and the Innovating Remnant" (Winter, 1971), 

a specific model of this type is set forth. A firm's decision rule is its 

productive technique, which can be operated at any scale. It is shown that 

if the number of possible techniques is finite, and any rule that is profit-

able is ultimately tried, then the particular stochastic process defined 

by the model wi 11 converge with probability one to a conventional competitive 

equilibrium state. 3 This result is helpful because it illustrates the 

possibility of subsuming conventional equilibrium results within an alterna-

tive framework, thus indicating that radical changes at the foundations 

of our theories may be accomplished without necessarily toppling the entire 

intellectual superstructure. But, therefore, as an obvious corollary, the 

impetus for a radical shift of the foundations cannot be derived from analysis 

of long run equilibria. Rather, it must be sought in an improved understanding 

of the phenomena of economic change. 

The contrast between an evolutionary and a neoclassical perspective on 

economic change is well illustrated by the analysis in another one of the 

ancestral papers of the present effort, "A 'Diffusion' Model of International 

Productivity Differences in Manufacturing Industry" (Nelson, 1968). The 

orthodox theory assumes universal access to the same technology and that 

firms choose optimally, and looks to factor supply differences for the 

explanation of productivity differences (as in Arrow, Chenery, Minhas, and 

So low). In contrast, the diffusion model treats economic development as 

an adaptive, not a maximizing, process and views both growth and cross-country 
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productivity differences in terms of a pervasive disequilibrium. It is not 

a matter oi different positions on the same isoquants; it is a matter of 

evolutionary change in the mix of firms of very different types. 

In the present paper, we develop the same sort of contrast between an 

orthodox interpretation and an evolutionary one. This time the empirical 

arena in U.S. economic growth is the first half of the 20th century. The 

orthodox analysis employed for purposes of comparison is that presented in 

Solow's classic 1957 article "Technical Change and the Aggregate Production 

Function." The evolutionary model employed consists of the logical appara-

tus set forth in "Satisficing, Selection and the Innovating Remnant," modi-

fied and extended to deal explicitly with the dynamics of economic growth. 

Lacking an adequate mathematical analysis of its dynamic behavior, we have 

used computer simulation to study its workings. In another paper we develop 

a model, more simplified than the simulation model discussed here, which 

admits of mathematical manipulation (Nelson and Winter, forthcoming). 

The logical structure of the model is laid out in Section I I. Section 

111 describes the manner in which the model is linked quantitatively to the 

data underlying the Solow analysis. Sections IV and V discuss the simula-

tion results, in general and in relation to the Solow analysis. 

II 

A description of our model could proceed at a variety of different 

levels. At the most detailed level the description would include al I of 

the specific formulas and logic of the computer program, including program 

options that are not actually exercised in the simulation runs reported 

I 
1. 
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below. Needless to say, such a description would be very lengthy, and would 

not interest most readers. For those who are interested in this level of 

detail, information will be made available upon request. The description 

here 1s at a higher level of abstraction, with many details omitted. 

The focus of the model is on the evolution of production techniques 

over time. Our principal break with neoclassical tradition I ies in our 

"behavioral" treatment of the question: Why is the firm at any time using 

the technique it is using? A neoclassical answer would be that the firm 

has chosen its technique on the basis of profitability calculations comparing 

the elements of a large choice set (production function). A behavioral ist's 

answer, and the one embodied in our model, is of a very different form. The 

production technique used by a firm at any time is regarded as a complex 

pattern of routinized behaviour, of which the input-output coefficients are a 

quantifiable aspect. The firm is not seen as, at any time, "choosing" its 

technique from a large choice set, but rather as "having" its technique. 

The technique may change over time as a result of search, but changes are 

typically smal I. When larger changes occur, it is I ikely because prominent 

other firms are using significantly different techniques, which thus provide 

a target for imitation. The forces of search are complemented, at an 
., 

industry level, by forces of selection. Profitable firms exoand. Unpro-

fitable firms contract and are spurred to search harder, or more effectively. 

Our specific assumptions regarding these mechanisms enable us to structure 

the model as a Markov process. In each time period, each firm in the model 

is in a particular firm state characterized by values of two state variables: 

(1) its production technique, characterized by its coefficients of labor 

and capital input per unit output, (al' aK); (2) the firm's scale, charac-
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terized by the nonnegative, integral number of capital units the firm 

employs, f. There are finitely many possible decision rules, and also 

finitely many firms, but not al 1 of the firms need have positive scale 

in a particular period. The list of firm states in a particular time period 

is the industry state. Each firm employs its entire capital stock, with 

its current decision rule, to produce output. Consequently, an industry 

state implies a certain aggregate capital stock in use, If., 
a J 

a certain aggregate labor demand, L__Jj_ f., and a certain output, 
aKj J 

f. 
I-1. 
aKj 

The firms collectively face a supply-price schedule for labor, and it is 

assumed that the labor market clears in every period. Hence, to each 

industry state there corresponds a wage rate, quoted in units of output. 

From one time period to the next, the state of an individual firm 

changes according to probabilistic rules that depend on the initial state 

of the firm and its profitability. Profitability is determined by the 

initial state, the wage rate, and constant parameters. Since the industry 

state is the list of firm states, the transition probability rules for 

individual firms define, implicitly, the transition probabilities in the 

set of industry states. 

We discuss first, the transition rules for firms "in business," i.e., 

with positive capital stock. Assumptions governing entry will be mentioned 

1 ater. (A parenthetical delta identifies parameters that have been varied 

in the experimental runs reported below.) 

(l) Technique Changes. 

The transition probability rules for productive techniques involve 

elements of satisficing behavior, local search, imitation, and profitability 

testing of alternatives. 
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a. Satisficing. 

Firms with positive capital in the current state retain the 

production technique of that state, with probability one, if their 

currently calculated gross return on capital exceeds . 16. This 

critical gross return may be regarded as the sum of three program 

parameters, the depreciation rate, o=.04, the "required dividend" 

rate R {o) and the "target rate of (net) return," symbolized 

TRR (o). Firms that do not make a gross return of . 16 undergo a 

probabilistic technique-change process. This process occurs in two 

stages, a search stage in which an alternative rule may be identified, 

and a testing stage in which the profitability of the alternative is 

compared with that of the initial rule. 

b. Local Search. 

Given that a firm is searching, it is either seeking incremental 

improvements of its present methods, or looking at what other firms 

are doing, but not both at the same time. In the former, "local 

search," case, the probabi I ity distribution is concentrated on tech-

niques close to the current one. The formula used for the distance 

between techniques h and h' is 

D ( h , h ' ) = WT L j l og h a -
L 

h' h h' 
log al I + WTKI log aK - log aK I 

(where WTL + WTK = l) 

That is, distance is a weighed average of the absolute differences in 

the logs of input coefficients. This gives rise to diamond-shaped 
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equal distance contours in the space of logs of input coefficients. 

Employment of different values of WTL and WTK permits us to treat 

search with differing degrees of "bias" toward discovering capital 

or labor saving technologies. Probabilities for transitions from 

a given rule to other are then determined as a decreasing linear 

function of distance, subject to obvious nonnegativity conditions, 

an appropriate normalization, and introduction of a probability that 

no alternative technique will be found. The slope of this linear 

function is IN (o) where IN stand mnemonically for "ease of INvc:ntion. 11 

The larger (less negative) is IN .• the more 1 ikely it is the search 

process will uncover technologies with input coefficients significantly 

different from the initial ones. 

c. Imitation. 

A searching firm may look to what other firms are doing. If it 

does, the probability that it will find a particular technique is 

proportional to the fraction of total industry output produced by 

that technique in the period in question. 

The actual transition probabilities for a firm that is searching 

then are a weighted average of the probabilities defined by "local 

search, 11 and the probabilities defined by i-ni tat ion. The re I at i ve 

weights on local search and imitation are characterized by the parameter 

IM (~). A high value of IM denotes a regime where search is more 

likely to be over wh~t other firms are doing and less likely to be of 

the "local search 11 type, than in regimes where IM is low. 

I 
I 
I 

I 
I 



10 

d. Profitability Testing. 

An alternative rule turned up by the search process is adopted 

by the firm only if it promises to yield a higher return, per unit 

capital, than the firm's current rule. (Since the firm's capital 

stock is independently determined, the return per unit capital criterion 

gives the same result as a test based on anticipated total profit.) 

The wage rate employed in this comparison is the one associated with 

the current industry state. There is an element of random error in 

the comparison: the capital and labor input coefficients employed 

in the test are not the true values for the alternative technique, 

but the products of the true values and realizations of independent 

normal deviates. A firm in business misjudges the input coefficient 

of an alternative technique by an amount that exceeds twenty percent 

about a third of the time. 

(2) Investment 

Our characterization of the determinants of changes in the sizes of 

firms can be described much more compactly. The capital stock of a firm 

with positive capital in the current state is first reduced by a random 

depreciation mechanism; each unit of capital is, independently, subject 

to a failure probability of D=.04 each period. The capital stock, thus 

reduced, is then increased by the firm's gross investment in the period. 

Gross investment is determined by gross profit, where gross profit is 

revenue minus wage bill minus required dividends. (More precisely, gross 

investment is gross profit rounded to the nearest integer, the rounding 

being necessary because capital stock is integer-valued and gross profit 
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is not.) This rule is applied even when gross profit is negative, subject 

only to the condition that the resulting capital stock not be negative. 

(3) Entry 

As indicated above, we make special assumptions about entry. A firm 

with zero capital in the current state is a potential entrant and "contemplates" 

the use of a production decision rule. If its decision rule imp! ies a gross 

rate of return to capital in excess of . 16, calculated at current prices, it 

becomes an actual entrant with probabi I ity .25. If it does enter, its 

capital stock is determined by a draw on a distribution that is uniform 

over the integers from 5 to JO. (Entry is relatively infrequent, and the 

contribution it makes to gross investment is minor when averaged over several 

periods.) Other firms (i.e., those contemplating rules that do not meet 

the rate of return test) remain at capital stock zero with probability one. 

The assumptions about search by potential entrants differ slightly from 

the assumptions about search by firms already in the industry; these will 

be mentioned when needed. 

(4) The Labor Market 

The only market in which the model's firms interact is the labor 

market. The prevailing wage rate influences the profitability of each firm, 

given the technique it is using, and, in turn, the behavior of the industry 

as a whole is a powerful, but not the only, influence on the wage rate. 

The simulation program admits all wage determination equations of the form 

w a + b c 
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where t is the time period, Lt is the aggregate labor use in the period, 

and a, b, c, and g are constants. When g = 0, labor supply conditions 

are constant over time and the model as a whole is a Markov process with 

constant transition probabilities.· A nonzero g corresponds to changing 

labor supply conditions; the model as a whole remains a Markov process, but 

with time dependent transition probabilities. In the runs reported here, 

we have employed g = .0125, interpreted as a 1.25 percent per year increase 

in the labor supply forthcoming at a given wage. We have employed a=O 

and c=2, corresponding to a short run labor supply curve of constant 

elasticity equal to .5. Parameter b was set to .000018 for reasons explained 

in the following section. As may be obvious, these choices are not the 

result of a thorough analysis of the relations among population growth, 

labor force participation, hours worked, and wages. We believe that they 

are adequate for our present purposes; further discussion of this point is 

deferred to Section IV below. 

II I 

We turn now to the calibration of this evolutionary model with the 

U.S. economic growth data analyzed by Solow. Our objectives in this 

quantitative exercise are limited, as is appropriate at the present state 

of development of this theory. Judged by their conformity to standard practice 

in growth theory and the theory of the firm, the assumptions of our modei 

are 11wild. 11 What we seek to establish here is that the dynamic behavior of 

the model is not "wild" at all, once its quantitative linkage to a particular 

data set is established. We hope thereby to rebut the point so often made 

against a behavioral approach to the theory of individual decision units, 
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that it cannot be brought to bear on such high level phenomena as the 
4 patterns of aggregate economic growth. 

The Solow data determined, first of all, the choice of the set of 
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input coefficient pairs built into the model. The one hundred possible 

techniques were randomly chosen (from the uniform distribution) over a 
~ 

square region in the space of logarithms of input coefficients. The 

region includes, with room to spare, all of the historical coefficients 

implied by Solow's data. This scatter is displayed in Figure l; and the 

square region corresponds to the range of values of al from .46 to 1.8 and 

of aK from 1.2 to 4.6. The actual time path of input coefficients, from 

Solow's data, is shown. 5 In selecting the region, we were concerned to 

leave room for the simulated results to depart from the historical ones 

without producing strong effects associated with proximity to the boundary 

of the region, but also to choose a region small enough so that a 

computat~onally plausible number of decision rules would provide reasonable 

density of coverage. The square chosen reflects our subjective balancing 

f h . "d . 6 o t ese competing const erat1ons. 

The U.S. growth data also determined our choices of initial conditions. 

The initial input coefficients of firms in business were chosen so that 

they roughly averaged those revealed by Solow's data for 1909.7 

For reasons of convenience, we chose to work with an aggregate capital 

stock of about 300 units. Given this choice of a unit of measurement for 

capital (roughly, 1 t,Jnit = .5 billion 1929 dollars), the choice of output 

and labor units was indicated by the desire to maintain direct comparability 

with historical values for the key ratios. Thus, given the initial capital 

stock and the input coefficients, initial labor input was determined. 
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We set the labor supply curve so that the initial price of the model's labor 

unit in terms of its output unit would roughly correspond to the price 

(in the Solow data) of a 1909 manhour in 1929 dollars. This condition 

yielded the coefficient of .000018 in the labor supply-price schedule, 

mentioned in the previous section. As mentioned earlier, we let the supply 

curve shift to the right at roughly the historical rate. 

Still another way in which the simulation is linked to the Solow 

data (and perhaps to reality) is that the depreciation and rate of return 

parameters employed are plausible. Solow at one point proposed three to 

five percent as a reasonable range for the depreciation rate, we apply a 

random failure probability of .04 to each capital unit in each-simulated 

year. The implied gross rates of return in Solow's data run about ten to 

twenty percent; our "search trigger" is pulled at rates below sixteen 

percent. 

The~e remain some important parameters that cannoi be calculated by 

reference to the Solow data, but whose qualitative influence can be anti-

cipated by considering the logical structure of the model. To explore the 

sensitivity of simulation outcomes to some of these parameters, we conducted 

an experiment involving 16 runs of 50 periods each. The sixteen runs comprise 

all possible combinations of levels of four experimental factors, with two 

levels for each factor. With this design, it is sensible to distinguish 

the different runs by numbering them in the binary system; run number 1111 

is the run with all factors set at the "one" levels. In the binary numbering, 

the levels of the four factors are recorded from right to left, so that, 

for example, run 0001 has the first factor at level one and the others at 

zero. 
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The fir.st experimental factor is parameter IN, a mnemonic for the 

ease of INnovation, measured by the slope of the decline of probability 

with distance in the local search mechanism. We designate x1N as the 

binary indicator of the level of IN where: 

XIN = 0 +-+ IN= -6.0 

XIN = I +-+ IN= -4.5 

The larger (less negative) is IN, the less local the search, the "easier" 

is major innovation, and hence, one would hypothesize, the faster is the 

rate of technical change in the aggregate data I ikely to be. --

Factor two is the strength of the imitation component in the search 

mechanism relative to "local search!' and involves two parameters IM 1 
and IM2. IM 1 is a mnemonic for the ease with which established firms can 

IMitate other firm~ technology and is measured by the probability weight 

on.imitation in the imitation-internal search choice; IM2 is the imitation 

weight for zero-scale firms (in general we did not assume these were 

equal). The settings are: 

.2 and IM 2 . 0 

.4 and IM 2 • 2 

Higher values of XIM shou,ld bind firms together in their techniques, low 

values lead to greater independence of the evolution of firms' techniques. 

The third factor is the cost of capital and involves parameters R 

(required dividend) and TRR (target rate of return over required dividends 

and depreciation). The levels are: 

XR 0 +-+ R 

X = +-+ R R 

. 02 and TRR 

. 06 and TRR 

• 1 0 

. 06 



Thus, the sum of the two parameters is constant at .12; adding in the 

depreciation probability of .04 we have the constant 11 search trigger" 
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value of. 16. The impact of different R values may be explained as follows. 

Imagine that two different simulated histories with different values of R, 

chance to pass through states with the same average input coefficients. 

The run with the higher value of R will tend to have the lower aggregate 

capital stock, because investment is determined by profits net of required 

dividends. Labor demand, and hence the wage rate, will be lower in the high 

R run. Thus, profitability tests of alternative techniques will favor more 

labor intensive techniques in the high R run~ And therefore, in the subse-

quent history of the two runs, the presumed initial equality of average 

input coefficients wi 11 be fo 11 owed by a tendency for the high R run to 

drift off in the relatively labor inten~ive direction, compared to the 

other. For this reason, and others, a higher value of R is hypothesized to 

produce a lower capital-labor ratio. 

The two levels of factor four correspond to two different distance 

functions in the space of input coefficients, and hence to different 

probabilities characterizing the local search mechanism. The parameters 

involved, \./TL and WTK are, respectively, the weights on the logarithmic 

differences of labor coefficients and of capital coefficients in the 

distance function (see formula on p. 8). The two levels are: 

XWT 0 +-+ WTL = .5 and WTK = .5 

+-+ WTL . 4 and WTK • 6 
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Thus, the zero level assumption is that there is no bias in the local 

search mechanism; proportional changes in the two coefficients are 

weighted equally. Level one makes differences in the labor input coeffi-

cient less important as a contribution ~o distance, hence makes rules 

with different labor coefficients closer neighbors. And hence, we hypo-

thesize, the level one cases should result in aggregate data that show 

faster decline in the average labor coefficient relative to the capital 

coefficient. 

All of the experimental runs were initiated with the same assignments 

of techniques to all thirty-five firms. In the eight runs with the high R 

values, the fifteen firms in business each had twenty units of capital. In 

the low R runs, firms in business each had twenty-two units of capital. 

These initial capital values were chosen to put the system in approximate 

"equi 1 ibrium, 11 i.e., with roughly zero expected net investment in the 

initial period. 8 To have started all runs at the same industry state, 

ignoring the implications of the different parameter values, would have_ 

been a straightforward but naive approach to the problem of achieving 

11 identical 11 initial conditions for the different runs. Drastic differences 

in the aggregate outcomes in the early periods would then have been imp! ied 

by the R differences; no such strong effects are visible in the results as 

they stand. 

IV 

The computer output describing the experimental simulation runs contains 

abundant quantitative detail and is rich in qualitative patterns. Firms 
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thrive and decline; new techniques appear, dominate the scene briefly and 

then fade away: time series for most aggregate data display strong trends, 

but also a good deal of short period fluctuation. The stack of paper 

describing the total of 800 years of synthetic history is over eight inches 

high. It is clear that it must be summarized fairly drastically for the 

purposes of this discussion. 

By way of illustration, we display in Table l some of the aggregate 

time series for a single run, 1111. · Several features of these results 

may be noted. The A series was calculated, a la Solow, on the contra-

factual assumption that.the time series was generated by a neutrally 

shifting neoclassical production function. The measured rate of technical 

change fluctuates quite sharply from period to period and occasionally 

turns negative. However, the number of negative values, and the range 

of the fluctuation, is smaller than in the Solow series. Thus, in spite 

of the absence of a production function and cost minimization from the 

underlying structure, and in spite of the presence of random elements in 

search and in profitability testing, the evolutionary model displays a· 

somewhat smoother pattern of technical change than the real data. The 

simulated series for the share of capital, on the other hand, displays 

considerably more volatility than the corresponding Solow data. This 

behavior may plausibly be attributed to the unrealistically effective 

functioning of our simulated labor market. If the wage rate were allowed 

to adjust only partially to labor market conditions, the impact of uncoordinated 

investment and decision rule changes by individual firms would show up 

partly in excess supply or demand for labor; the impact on the wage bill and 

hence on the capital share, would be correspondingly muffled. 9 
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Table 2 presents data on each run for each of several variables, observed 

at period 40 of the run. lO Also displayed are the corresponding figures, where 

these exist, for the 36th period (1944) and the 40th period (1948) of the Solow 

data. 

It is plain that the simulation model does generate technical progress 

with rising output per worker, a rising wage rate and a rising capital labor 

ratio, and a roughly constant rate of return on capital. The rates of change 

produced correspond roughly to those in the Solow data. Also, some individual 

runs produce values quite close to the Solow values for the variables measured 

for example, runs 0101 and 0111. 

Figures 2 to 5 display the time paths of the average input coefficients 

generated by the sixteen runs. To keep the figures relatively uncluttered, 

the values are plotted for the initial period and at periods 5, 10, etc., 

thereafter. In Figure 6, the input coefficient track for one run (1110) is 

compared with the track imp I ied in the Solow data. The case shown is one 

in which there is close agreement at the initial point and also forty 

periods later, but there is a wide divergence in between. The divergence 

is associated with the fact that, while the simulated track gives the 

impression of taking a relatively constant direction, there is a sharp turn 

in the track of the Solow data, suggestive of a change in the underlying 

regime. The apparent break occurs between 1929 and 1934. Perhaps it would 

be asking too much of the simulation model, committed as it is to full employ-

ment, to reproduce that break. 

It seems interesting to ask: If a neoclassical economist believed the 

data generated by the simulatJon model to be real data, and tested his theory 

against the data, what would he conclude? This, of course, depends on the 

particular simulation run of data, and the particular test. But by and large 

it seems that he would believe that his theory had performed well. 
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TABLE 1 

SELECTED TIME SERIES, RUN 1111 (see key, next page) 

Year w r SK Q/L K/L A - - -
.45 . 102 .296 .64 1. 87 1. 000 

2 .45 . 114 .320 . 66 1. 86 1. 028 
3 .49 .092 .255 . 66 l. 81 1. 032 
4 . 49 .091 .248 . 65 l. 78 1. 029 
5 .38 . 156 .450 .69 1. 99 1. 056 
6 . 50 . 104 .290 . 70 1. 96 1. 081 
7 . 52 .098 .264 . 71 1. 90 1. 096 
8 .so . 123 • 325 . 74 1. 94 1. 139 
9 .44 . 164 .440 . 78 2.09 1. 179 

10 .48 • 149 .399 . 79 2. 12 l. 192 

11 . 56 . 116 . 300 . 79 2.05 l. 205 
12 . 55 • 12 7 . 326 . 81 2.07 l. 224 
13 . 49 . 167 .432 . 85 2.21 1. 266 
14 .44 . 191 .518 . 91 2.47 l. 291 
15 . 53 • 154 .417 . 91 2.46 l. 291 

16 • 66 . 102 .259 . 89 2. 27 1. 305 
17 . 63 • 118 . 305 . 91 2.32 1. 316 
18 . 61 • 132 • 341 . 92 2.38 1. 329 
19 .68 .098 .253 . 91 2.34 1. 324 
20 .58 . 153 .399 . 96 2.51 1. 376 

21 .60 • 152 .393 . 99 2.57 l. 402 
22 . 59 . 157 .415 1. 02 2.68 1. 412 
23 . 76 .095 .244 l. 01 2.58 l. 420 
24 . 74 • l 07 • 271 1. 02 2.57 l. 437 
25 . 69 . l 30 • 329 1.03 2.61 l. 455 

26 . 70 . 123 .315 l. 02 2.62 1. 436 
27 .68 . 139 . 356 1.05 2.70 1. 464 
28 . 62 . 166 .438 1. 10 2.89 l. 491 
29 .68 • 148 . 385 1. 11 2.87 l. 508 
30 • 81 . 123 .296 1. 15 2.76 l. 585 

31 .78 • 147 • 346 l. 19 2.81 l. 640 
32 • 80 . 146 . 344 l.22 2.88 l. 66 7 
33 . 87 . 133 . 307 1. 25 2.88 I. 702 
34 • 90 . l 22 . 280 1. 24 2.86 l. 701 
35 • 92 . 11 l .254 1. 28 2.84 l. 693 

36 . 89 • 135 .305 l. 34 2.89 l. 741 
37 .87 • 157 .352 1. 42 3.00 1. 803 
38 .84 • 181 .406 1. 43 3. 18 1. 872 
39 .97 . 143 • 319 1. 47 3. 17 1. 886 
40 .97 . 151 . 341 1. 53 3. 31 1. 913 

41 l. 05 • 144 .313 1. 56 3.32 1. 994 
42 1.09 • 142 • 306 1.60 3.38 2.028 
43 I. 10 • 146 . 315 1.63 3.46 2.058 
44 1. 09 • 153 . 336 1.63 3,58 2. 082 
45 1. 22 . 116 • 250 1. 65 3. 52 2.083 

46 I. 16 .134 .298 l. 63 3.65 2. 089 
47 l. 33 .087 • 185 I. 65 3.47 2.096 
48 1.23 • 122 • 258 1.66 3, 51 2. 131 
49 l. 22 • 133 .279 1.69 3.55 2. 16~ 
50 1. 2~ • 135 • 283 1. 72 3.61 : . 138 
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KEY: 

w wage rate, 1929 dollars per man-hour 

r gross rate of return on capital 

sK =capital share ( = 1 - labor share) 

Q/L =output-labor ratio (1929 dollars per man-hour) 

K/L =capital-labor ratio (1929 dollars per man-hour) 

A = Solow technology index. 



Run 

0000 
0001 
0010 
0011 
0100 

0101 
0110 
0111 
l 000 
1001 

JOJO 

101 l 
1100 
1101 
1110 

l 1 1 l 

Solow 
( 1944) 

Solow 
(I 948) 

Key: 

(K/L)40 A (40) 

2.796 l. 727 
3. 129 2.391 
2.519 l. 712 
4.242 2. 716 
2.035 1. 855 

2.695 2. 106 
2. 686 I. 658 
2.703 2. 123 
3.015 ] . 746 
4. 511 2.359 

4.332 2. 098 
4. 258 2.450 
3.212 1. 835 
3.391 2. 190 
3. 031- 1.963 

3.315 1.913 

2.63 l. 856 

2.55 1. 810 

K/L =Capital-labor ratio. 

TABLE 

(al) 4o 

.832 

. 592 

. 846 

.477 

. 825 

. 679 

. 84 l 

. 672 
• Boo 
. 524 

. 600 

. 514 

. 705 

. 600 

. 705 

. 682 

. 675 

.699 
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2 

(aK) 40 ( c 4) 40 6w40 

2. 32r, . 560 l. 4 
I. 851 . 521 2.5 
2. 131 .383 l. 6 
2.025 . 387 3.2 
l. 678 .645 l. 8 

l. 829 .404 2.4 
2.258 . 405 l. 4 
1. 817 . 388 2. l 
2. 411 . 476 2. l 
2.364 . 457 2.4 

2.599 .443 l. 9 
2. 190 .325 2.8 
2.265 .491 I. 9 
2.034 . 518 2.6 
2. 136 . 394 l. 9 

2.260 .327 l. 9 

1. 776 

l. 784 l. 7 

A =Solow technology index. (Solow figures for 1944 and 1948 are correct; 
the values originally published were in error.) 

al =Average labor input coefficient, L/Q. 
aK =Average capital lnput coefficient, K/Q. 
c4 Four firm concentration ratio. (Initial value== .206.) 
6w =Rate of change of wages, percent per period. 

6Q == Rate of change of output, percent per period. 
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Tables 3 and 4 display the results of fitting Cobb-Douglas production 

functions, by each of two methods, to the aggregate Q, K, L and capital 

share series for each experimental run. The Solow procedure was fol lowed in 

generating Table 3. The percentage neutral shift in the hypothetical aggre-

gate production function was calculated in each period, and the technology 

index A(t) constructed. The Index was then employed to purge the output 

data of technological change, and the log of adjusted output per labor unit 

was regressed on the log of capital per labor unit. The observations were 

taken from periods 5-45 of the simulation run, to give us a sample size the 

same as Solow's and to minimize possible initial-phase and terminal-phase 

effects on the outcomes. 

The regressions in Table 4 are based on an assumed exponential time 

trend in the technology index, and involves the logs of the absolute magni-

tudes rather than ratios to labor input. The same sample period was employed. 

The most noteworthy feature of these results is that the fits obtained 

in most of the cases are excellent: Half of the R2 values in Table 3 exceed 

.99, and more than half of those in Table 4 equal .999. The fact that there 

is no production function in the simulated economy is clearly no barrier to 

a high degree of success in using such a function to describe the aggregate 

series it generates. It is true that the fits obtained by Solow and others 

with real data are at least as good as most of ours, but we doubt that 

anyone would want to rest a case for the aggregate production function on 

what happens in the third or fourth decimal place of R2. 11 Rather, this 

particular contest between rival explanatory sche~es should be regarded as 

essentially a tie, and other evidence consulted in an effort to decide the 

. 12 issue. 
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TABLE 3 

COBB-DOUGLAS REGRESSIONS, SOLOW METHOD 

log 
Q(t) /A(t) 

b log (K(t)) ( L{t) ) = a + ITtT 
r· ----·--------·- ·--·------· 
I 

I Run b R2 R2 I Run b I - -
I 0000 . 195 .993 1000 . 211 .968 
! 0001 . 184 .990 100 l . 268 . 991 i 0010 .244 .996 JOJO .261 .994 

00 l I .214 .. 993 I OJ I . 256 .986 

01,00 . 219 . 985 I I 00 . 325 .999 
0101 .248 .988 I I 01 . 241 .987 
OJ I 0 . 30 I . 998 I I 10 .249 .978 
O I I I • I 93 . 942 I I I I .313 .997 

---

TABLE 4 

COBB-DOUGLAS REGRESSIONS WITH TIME TREND 

log Q(t) = a + bl log K(t) + b2 Jog L(t) + b3 t 

Run bl b2 b3 R2 . Run bl b2 b3 R2 

0000 .336 . 649 .012 • 999 1000 . 505 . 550 . 008 .998 
0001 . 681 . 54 I • 011 . 999 1001 . 648 . 360 . 0 I I . 999 
0010 .201 . 764 .016 . 998 JOJO . 723 . 336 .009 . 999 
0011 . 728 . 158 .017 .997 IO I I . 532 . 505 .015 .998 

: 0100 . 281 • 654 .016 .999 I JOO .637 . 444 .008 . 999 
i 0 I 0 l .222 .833 • 017 .999 l 101 . 669 .448 .010 .999 
j 01 IO . 405 . 593 .009 .998 I 11 O . 479 • 545 .013 . 999 
i 0111 .075 .658 .013 . 999 I I I I . 641 .547 . 007 .998 
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A second feature of the results that requires comment is the rather 

low values of the estimated b coefficients in Table 3, which are, of course, 

the estimated exponents of capital in the Cobb-Douglas function. The Solow 

estimate is .353; none of ours are this high. Under the neoclassical inter-

pretation, this coefficient should equal the capital share when factor 

markets are in equilibrium. It is also known that if the capital share 

series is precisely constant, then the Solow adjustment procedure will 

result in a perfect fit by the Cobb-Douglas function and the regression 

coefficient will equal the value of the constant capital share (see Hogan). 

Thus, the question of the goodness of fit achieved by the Solow procedure 

can be regarded as providing a particular measure of the degree of variability 

in the capital share series. It might be thought that the question of the 

value of the regression coefficient obtained could correspondingly be 

regarded as involving the central tendency of the capital share series. 

In the simulation results, the capital share values do tend to run low by 

comparison with the historical values. However, it also appears that 

higher variability of the capital share series tends to result in a lower 

coefficient, with the mean of the capital share series held constant. 

This effect seems to be important in producing the simultaneous occurrences 

of relatively poor fits and low coefficients in Table 3. 13 It would not be 

surprising if there is a straightforward estimation bias involved here, but 

no proof of the existence of such a bias in the Solow procedure has come to 

our attention. 

Although the fits obtained with the alternative specification of the 

Cobb-Douglas function are excellent, the estimated coefficients in Table 4 

vary erratically from one case to the next. The coefficients of log Kare 
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much too high if the capital share is the basis of comparison, especially 

in the biased search runs. This pattern of good fits and coefficients that 

are implausible by neoclassical standards is not, however, peculiar to 

the analysis of simulation data generated by the evolutionary model. It has 

appeared when the same statistical specification is employed with real data. 

In the process of describing the experimental factors, we set forth 

a number of hypotheses concerning the effects of various parameters in the 

model. Although these hypotheses are plausibly based in the rrodel 's logic, 

they are not strictly deducible (at least at present) from its assumptions~ 

The complexity of the interactions in the model, and its stochastic charac-

ter, make such deductions difficult. We are thus forced to treat the 

conformity of the model's behavior to our hypotheses as an empirical ques-

t ion. 

To explore this question -- and also to search for unanticipated 

patterns in the simulated behavior -- we adopted a linear regression approach. 

The independent variables were the four experimental factors, represented 

by a 0-1 dummy variable; various dependent variables were considered. This 

is clearly a very simple stochas.tic model of the simulated data; there are 

good reasons to doubt that interaction effects of the experimental factors 

are absent, or that the various stochastic features of the simulation model 

are neatly encapsulated in an additive disturbance term. However, we have 

a sample size of sixteen; with four factors allowing for even the first 

order interaction effects would reduce the degrees of freedom to precarious 

levels. The simpler model is adequate for exploring the gross features of 

the logic of the system, such as the hypotheses mentioned in the description 
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of the experimental factors. Subtler hypotheses should probably be tested 

with both a better specification and more extensive (and expensive) observa-

tions. 

The first dependent variable considered is the aggregate capital-labor 

ratio at period 40 of the run. The regression result is: 
K 

( /L)40 = 3.353 + ,577 XIN + .288 XIM - .717 XR +. 7825 XWT 

(. 017) (. 19) ( . 00 5) ( . 00 3) 

(R 2 = . 766) 

Here XIN is the dummy variable for the first experimental factor IN and so 

forth. Figures in parentheses are significance levels. The hypothesized 

effects of factors three and four are strongly confirmed, as the input 

coefficient diagrams lead us to expect. A higher price of capital, considered 

as a return that must be paid out and is not available for reinvestment, does 

lead to a substantially more labor intensive mode of production after a period 

of time. Considered as a growth rate effect, the rise in R from .02 to .06 

(and the associated decline in TRR), produces a decrease of .3 percentage 

points per period in the rate of change of the capital-labor ratio. The 

effect of the labor-saving search bias introduced by factor four is of compar-

able magnitude but, of course, in the opposite direction. 

The magnitude and significance level of the coefficient of XIN comes as 

something of a surprise. Why should the capital-labor ratio be higher in a 

system in which search is less local? On reflection, one possible answer to 

this question seems to be the following: The general direction of the path 

traced out in input-coefficient space does not depend on the localness of 

search. However, the rate of movement along the path is slower if search is 

more local. Therefore, given that the path is tending toward higher capital-labor 



ratios (as a consequence of the level chosen for Rand the neutrality or 

labor-saving bias of search), the capital-labor ratio that results after a 

given number of periods is lower when search is more local. This explanation 

imp! ies that the coefficient of x1N really measures an interaction effect; 

the impact of the first experimental factor depends on the particular levels 

chosen for the third and fourth. Another possible answer is more 11 Schumpe-

terian. 11 A high rate of technical progress may produce a high level of (dis-

equilibrium) profits, which in turn are invested. The resulting increase 

in thedemandfor labor results is a higher wage, and deflects the results at 

profitability comparisons in the capital-intensive direction. These possible 

answers are not, of course, mutually exclusive. 

Effects on the period 40 value of the Solow technology index are 

characterized by the following regression equation: 

A(40) = 2.335 + .456 x,N + .0529 x,M - . 194 XR + .034 XwT 

(. 0006) (. 59) (. 07) (. 73) (R2 
= . 705) 

As anticipated, the higher value of IN produces a higher measured rate of 

technical change. The only other factor that seems to influence the measured 

technological change is the required dividend, with a higher required divi-

dend tending to reduce the technology level achieved. Ex post analysis of 

this effect indicates that it is associated with our particular choice of 

a distance function in the space of input coefficients, and would disappear 

if ordinary Euclidean distance were employed. With our choice of distance 

function, the Solow rate of technical change tends to be minimized when factor 

shares are equal and maximized at the extreme values of zero and one. The 
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higher value of R leads to capital share values closer to one-half, hence 

to slower progress. With circular distance contours, Solow measured progress 

is independent of the shares. 

The failure of the higher imitation weight to contribute significantly 

to technical change may appear surprising, at first thought. However, the 

model contains an offset to the favorable effects of a more rapid spread of 

better methods. The increased weight on imitation in the search process 

implies a decreased weight on local search. Thus, the firms that are tech-

nically most advanced at a given point of time have slower progress under a 

high imitation regime. They do less local searching, and the techniques 

they turn up through imitation are typically inferior to the ones they already 

have, and do not pass the profitability test. The high imitation condition 

does not merely accelerate the technical tortoises, but also makes the hares 

spend more time looking smugly behind them. ~hus the race turns out to be 

closer, but not faster. 

Mention of the leveling effects of imitation leads naturally to the 

question of the firm-size distribution. The dependent variable for this 

analysis is the share of the largest four firms in total capital, at period 

40. The regression result is 

c4 (40) = .495 - .058 XIN - . 127 XIM + .0028 XR - .033 ~T 

(.04) (.0004) (.91) (.22) (R 2 = . 741) 
The imitation effect is clearly the most pronounced. We have suggested an 

explanation for this effect i·n terms of the 11 closer race. 11 There are actually 

two distinct mechanisms in the simulation model by which a closer technical 

race tends to keep concentration ~own, and both are quite plausible as hypo-

theses about economic reality. First, as among firms in business, similarity 
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rn technique implies similarity in cost conditions, hence in profit rates, 

and hence in growth rates. Thu~ acloser race implies a smaller dispersion 

of firm growth rates and lower concentration. But secondly, potential entrants 

also stay closer to the technical leaders when imitation is easy, and (per-

ceived) opportunities for profitable entry occur more frequently. Since 

entry tends to occur in a particular (and relatively low) scale range, the 

·amount of capacity added by entry is higher when entry is higher. Considera-

tions of overall industry 11 equilibrium11 imply that the infusion of capacity 

through entry is partially offset by lower investment by the firms previously 

in business. Since the latter are typically larger than the entrants, 

concentration is reduced. 

The effect of x1N on c4 is prob~bly also a reflection of entry condi-

tions, but in this case the result is more in the nature of an artifact of 

the simulation set-up. In each of our runs, the firms in business start 

off with the same technical lead over the potential entrants. That lead 

is more easily overcome when the race is faster (XIN = l), hence there is 

more entry, and lower concentration. 

The above analysis of the influences on the concentration of firms is 

illustrative of a fundamental difference between the neoclassical and evolu-

tionary approaches to growth theory. Neoclassical theory is aimed at macro 

phenomena and its micro details are instrumental to its macro purposes. 

Evolutionary theory treats the micro processes as fundamental, and the macro 

aggregates as aggregates. Hence, it encompasses a wider range of phenomena; 

its treatment of the micro details is intended to be subject to test. Thus, 

for example, we can treat our simulation model not only as an abstract 

account of the phenomena of aggregate economic growth, but also as an abstract 

account of the size distribution of firms. 
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viewed, some features of the simulation model suggest a family resem-
14 

the stochastic theories of the size distribution. In particular, 

individual firms• histories reflect the cumulative effect of a number of 

random occurrences, and the assumption that gross investment depends on 

gross economic prof it corresponds roughly to Gibrat 1 s law. Thus, it should 

be no surprise to find that the distribution late in the run is highly skewed. 

On the other hand, our model was not 11 aimed 11 at the size distribution prob-

lem; the stochastic process involved is not a highly stylized one chosen for 

analytic tractability in size distribution analysis, but represents the 

combination of a set of assumptions with independent sources in economic 

reality. The fates of the firms are linked through the labor market; the 

random elements involved are not just a complication of a simple deterministic 

structure, but are central to the model 1 s story about technological change. 

Thus, while it may not be surprising that the model produces reasonable-

looking size distributions, neither is it an obvious foregone conclusion. 

Figure 7 shows plots of firm size (scale) against firm rank, on double-

log paper. A straight 1 ine in a plot of this type corresponds to the Pareto 

distribution law. As has been emphasized by ljiri and Simon, e~pirical 

firm-size distributions tend to depart from the Pareto result; specifically, 

empirical plots tend to be curved, and concave down. Clearly, the simulation 

results have this characteristic. 

In a preliminary report on this study (1973), we interpreted this 

concavity in the terms suggested by lji ri and Simon; specifically, that it 

is a reflection of the existence of serial correlation in individual firm 

growth rates. Such correlations exist in our model, since the local search -
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mechanism tends to produce serial correlation in unit cost levels, hence in 

profit rates, and hence in p~oportional growth rates. Recently, however, 

Vining has argued convincingly that the concavity produced by the lj iri-

Simon stochastic process is properly interpreted as the consequence of 

negative correlations between size and growth rates, arising indirectly 

through common correlations with firm ages. This leaves the interpretation 

of our own simulation results rather· up in the air. However, the hypothesis 

suggested by Vining's work is that the concavity is ultimately traceable 

to the fact that the total size of our simulated economy is bounded by 

its labor supply curve. Negative correlations between a firm's size and 

its growth rate arise by way of labor demand, the wage rate, and hence 

profitability. The larger the firm, and the less elastic is labor supply, 

the tighter this linkage is. 

v 

This paper presents a progress report rather than a completely articulated 

theory. Our simulation model is no more the last word on the evolutionary 

theory of economic growth than Solow's 1957 article was the last word on 

the neoclassical theory. In other papers, closely related to this one, we 

pursue somewhat different I ines of development of the basic ideas. In 

"Factor Price Changes and Factor Substitution in an Evolutionary Model" we 

discuss and formally analyze the search and selection mechanisms of factor 

substitution in a sectoral model. "Neoclassical vs. Evolutionary Theories 

of Economic Growth: Critique and P rospectus 11 presents a more genera I dis-

cuss ion of the two approaches to the understanding of economic growth. 
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More recently, in "Dynamic Competition and Technical Progress," we have 

studied an industry model in which the costs of both research and imitation 

efforts are explicitly recognized and realized rates of technical progress 

are the results of a complex interaction between exogenously arising oppor-

tunities and endogenous influences on the gains from research and imitation 

activity. 

So far as the particular model in this paper is concerned, there are 

clearly many specific assumptions and features that will be modified or 

totally abandoned as our work progresses. We already have a little I ist, 

{and they'd none of them be missed). 

One way to interpret the message of the present paper is to regard it 

as underscoring the seriousness of the difficulty that is called, in a 

narrower context, the identification problem. Very different structures 

can generate simi Jar statistical patterns; a world without a production 

function can, for example, mimic much of the behavior of a world that has 

one. Or, a world full of firms that can determine, approximately, whether 

a proposed alternative is more or less profitable than the status quo may 

behave in some ways simi Jarly to a world in which firms unerringly pick 

optimum positions from continuums of possibilities. But a point that is 

either little known or taken very lightly is this: The identification 

problem is much exacerbated when economic reality is first divided into 

fragments for purposes of theoretical analysis and the fragments are then 

intensively analyzed with the aid of assumptions that are justified primarily 

by the claim that the (fragmentary) evidence is patterned "as if11 the assump-

tions were true. 
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In developing a special-purpose model for a particular fragment, the 

theorist denies himself the full benefit of available information on the 

structure of economic reality. Thi5 may not detract much from the abi Jity 

to get good fits to a given data set, but it makes the predictive power of 

the model vulnerable to changes occurring in the neglected part of the 

environment. And the family of models and empirical findings thus produced 

is lacking in connectedness to a degree that severely I imits its power as 

a tool for analyzing the coherent realities of particular industries or 

sectors. An appeal to the "as if11 argument should be construed as an 

admission that the attempt to identify the true structure has been abandoned. 

The logic of the standard arguments in favor of trying to identify the true 

structure then applies and the question is how much weight they are to be 

given in the particular substantive area involved. 

The issue is not "theory versus realism." What we have set forth 

and analyzed here is a highly abstract, drastically simplified theoretical 

model of a progressive economy. No one could confuse one of our simulated 

firms with, say, General Motors. We can only claim that certain empirical 

data are patterned 11as if" General Motors and other real firms were I ike 

our simulated ones. But we invoke this argument at quite a different level 

than is typical in economic theorizing; our story is highly abstract, but 

clearly much less abstract than the stories theories usually tell. And, 

concurrently with the change in the level of abstraction, we have thrown 

aside a large body of orthodox conceptual apparatus and introduced new 

concepts that seem to us to provide a superior language for discussing 

events at the lower level of abstraction. We have produced an account of 
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economic growth and technical change that is simultaneously consistent 

(a) in quantitative terms, with the broad features of a certain body of 

aggregate data; (b) qualitatively, with such phenomena as the firm-size 

distribution, the existence of cross-sectional dispersion in capital-labor 

ratios and in efficiency, and patterns of innovation and diffusion of 

techniques; and (c) at lea~t metaphorically, with the empirical I iterature 

on firm decision making. These fragments of economic reality, at least, 

need not be regarded as posing isolated problems to be addressed through 

special-purpose assumptions. The model's consistency with disparate types 

of data indicates, in our view, that it is not merely consistent with the 

data of any one type, but rather bears a fairly intimate relationship to 

"what is really going on out there." 

r 
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1. See Kuhn, especially Chapter 8 and Chapter 12. 

2. We have discussed the general perspective at some length in another 

paper (1974) and wil 1 only sketch it here. 

3. This is a very brief summary of the theorem, and omits mention of 

important assumptions. 

4. Indeed, we would like to make this point stick the other way: It is 

neoclassical theory that suffers from 1 imited scope, because it is so 

remote from the actual dynamic behavior of individual units. This 

argument is a major theme of our 1974 paper. 

5. In converting the Solow data to input coefficient form, we allowed for 

the point made in the final footnote (p. 320) of Solow 1 s article; 

namely, that his capital and output series are not in the same 

constant dollars. We converted to a consistent 1929 valuation basis, 

employing ihe price deflator for total GNP to adjust the series involving 

quantities with the dimensions of output. 

6. A slight compromise of the random choice procedure was made: The 

scatter chosen was one of four generated, and it was selected because 

it was most free'of 11 holes 11 
-- areas of the square in which no techniques 

occurred. 



I I 

7. More precisely, the attempt was made to set initial values so that 

period 5 of the simulation run would approximately agree with the 

1909 values. 

8. Actually, the 10% increase in initial capital is a slight overadjust-

ment for the decline in R -- unavoidable because of the discreteness 

of capital and the decision to start all firms initially in business 

with equal capital. 

9. It may also be the case that the Solow capital share data are 

unrealistically smooth; this possibility is certainly suggested by 

his remarks on the sources of the data. 

JO. The reason for focusing on values observed late in the run is to allow 

plenty of time for the different parameter settings to display their 

distinctive influences on the industry state. The reason for observing 

at period 40 rather than, e.g., period 50 is that a few of the runs 

display, in the late periods, clear "boundary effects11 associated with 

proximity of average input coefficients to the edge of the region from 

which the decision rules were chosen. 

11. If anyone does, we might reply by reiterating the comment made above 

to the effect that the ''real" capital share series may wel I be inaccurate 

and smoother than an accurate series would be; this could accou~t for 

the difference in fit. 

12. In recent work, Franklin Fisher has also been engaged in exploring, 

through simulation, the question of why the aggregate production 

function model seems to fit so well when its assumptions are so dubious. 

However, his primary concern 1s with the assumptions that would justify 

capital aggregatron, and the model he simulates is considerably more 

orthodox than ours. It involves, for example, equilibrium allocations 

of labor among firms, in every time period. 
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13. The poorest fit in Table 3 occurs for run Olli. For this run, the mean 

of the capital share series in the sample period is .288 -- almost ten 

percentage points above the estimated coefficient. 

14. See, e.g., the discussion in Scherer, pp. 125-30, and the simulation 

results there reported. 
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