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INTEGER PROGRAMMING, MARGINAL REVENUE * 
PRODUCTIVITY, AND PRICING OF RESOURCES 

Let B be an n-dimensional, square, integer matrix and N an 

integer matrix of order nxm. The matrices B and N are assumed to 

contain n unit vectors among their columns. Let cB and cN be n 

and rn-dimensional integer row vectors, respect.ivel-y, t nnd b be 

n-dimensional integer ·column vectors, arid x be an· m-dimensionel 

integer column.vector.- Then.consider the following linear 

programming problem: 
(1) Hax (z= CB•t + ~·x) 

subject to 

(2) B• t + N•X = b 

** t, x ~ 0 

The dual problem is: 

(3) Min (v=b·p) 

subject to 

(4) B' •p < c - B 
N'•p < cN 

p ;;;. 0 

where »' and N' are the transposes of B and N. 

Assume that the optimal solution to the primal problem ((1) and 

(2)) is given by 

* 

• 

This paper is an elaboration 
for Princeton University in 1963. 
Harold Kuhn and William Baumol for 

of part of my Ph.D. dissertation done 
I would like to thank Professors 
their help. 

** Although all the vector and matrix constants are assumed to be 
integer, this entails only a slight loss of generality since any linear 
program with non-integer but rational constants is equivalent to a linear 
program obtained by multiplying all the constants by a common denominator. 



{5) t * = B-l.b 

x* = 0 · 

-1 * B ·x 

z* = cB·B-l·b-{-cN + cn·B-1·N)·x* 

The optimal solution to the dual is 

(6) 

The matrix B is called the basis of the optimal solution. Variables 

t are basic variables and x are non-basic variables in the optimal 

solution. 

Many properties of such a linear pLogramming problem and its dual 

are well knoi-m. For example, the solution to the dual problem provides 

2 

a set of prices {p*) on the resources {b) which if applied to the amounts 

of resources used up by each activity result in zero profitability for 

activities {t) which enter the optimal solution at a positive level 

* . -1 {i.e., CB - p ·B =·CB -:- CB•B ·B = 0) and non-positive profitability 

for activities {x) which do not enter the optimal solution 

Furthermore, if the resources 

are changed {i.e., b' = b + 6b), the change in· the objective function 

{6z{b) = z(b + 6b) - ~{b)) is less than or equalto the increased cost 

of resources when valued at the dual prices {i.e., 6z{b) ~ p*·6b), 

{If the basis of the optimal solution remains the same under the trans-

* formation of b, then 6Z(b) = p ·6b.). This property of the dual pric~s 

ensures that it is never profitable to hire more or less resources if 

* they are available at the dual prices (p ). Finally, if only one re-

source is changed (say b. is increased) then the marginal revenue 
l. 
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productivity of that resource (the increase in the objective func-

tion z per unit increase in b for very small increases in b ) is 
. i * i 

equal to the dual price of that resource (pi ) except in the case of 

degeneracy (i.e., if the basis of the optimal solution changes for 

any increase in bi no matter how small). In the degenerate case, 
the marginal revenue productivity is less than or equal to the 

* dual price (p. ) of the resource. 
l. 

Some of the above properties do not apply to the case in 

which the variables t and x are required to be integer, i.e., to 

integer programming problems. There does exist, however, a set 

of pr.ices fo~ the resources and for the activities in an integer 

program which makes every activity profitless and results in zero 

prof it for every activity which enters the optimal solution at a 

positive level. This in itself is a trivial conclusion. Hore 

importantly, Gomory and Baumol (4) show how these prices may be 

computed by allocating to the resources and activities in a natural 

way the dual prices assigned to ·the Gomory cutting planes ~enerated 

in the process of computing an optimal solution to the integer pro-

gramming problem). In cases of non-degeneracy, where non-degeneracy 

is defined in a special way (to be discussed later), the Gomory-Baumol 

prices on the resources are identical to the regular linear program-

ming dual prices. 

The Gomory-Baumol prices do not, however, give the marginal 

revenue productivity of resources. The marginal revenue productivity 

6f resourcefin an integer program can be defined as the increase 

in the objective function for a unit increase of resource i rather 

• 

than the per unit increase in the objective function for small increases 
,.: 

in resource i since only unit changes can give any positive increment 
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in the objective function. With integer programs, the marginal 

revenue productivity of a resource as a function of the amount of the 

resource available is not continuous, monotonic, nor constant in the 

range of non-degeneracy as is the case with linear programs. Fur-

thermore, with integer programs, unlike with linear programs, the mar-

ginal revenue productivity of resource i is dependent on the amount 

available of resource j in non-degenerate cases. Finally, for an 

integer program in the range of non-degeneracy, the total increase 

in the objective function due to increases in resources i and j is 

greater than or equal to (rather than equal to as with linear pro-

grams) the sum of the marginal revenue productivities of increases 

in resources i and j individually. 

The purpose of this paper is to determine functional form, 

applicable for certain cases of non-degeneracy, relating increases 

in the objective function to changes in the resource endowment in 

the integer programming case and to determine a simple pricing system 

which not only makes it profitless to change any level of activity 

but makes it profitless to hire any different combination of resources. 

A by-product of our analysis is a method of parametric programming 

which computes all optimal programs in a very quick and straight- . 

forward manner for a certain range of values of the resource endow-

ment vector b. • . · 

I. 

Let us rewrite the optim9l solution (5) to· the l:lnear program-

ming problem as follows: 
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B-l.b -1 m 
(7) t* = - B E n. ·x. * 

i=l. l. l. 

m 
z* = no - E lT .. x. 

i=l l. l. 

where·ni (i = l, ... ,m) are the columns of N and lTi are non-negative 

scalars. If any of the constants in (7) are non-integer, a Gomory 

constraint (cutting plane) s1 _ can be derived as follows: 

"(8) 

D D 
m 

= no1 + E nu x 
D i=lD i 

where .. 

(a) A(l) = (A1 (1), A2(1), ... , An(l))is a row vector 

with arbitrary non-negative integer elements (see Gomory [2]), 

(b) D = I det BI, 
(c) -1 -1 "' -1 B is the inverse of B and (B ) = B ·n, and 

(d) {a}D stands for the operation which transforms the ele-
ments of the matrix a into the corresponding numbers 
modulo D. For example, 

{-5} = 3 4 

{ 2 6 l = 
{ 10 3 )3 

1 0 

1 0 

{(- 2- ' 12 ) } = (_]_' 1) 
. 10 5 1 10 5 

A GausS.an elimination can be performed on s1 in such a way 

that we pivot on that x. for which ni is a minimum.* Let us assume 
l. -

nil min (ni)= n 1 . 
i=l, .•. ,m (n~ °ll 

After without loss of generality that 

* ~ 
That is, we perform a pivoting operation using the dual 

simplex method. See Dantzig, Ford, and Fulkerson [11. 

• 
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performing the GaulSi.an elimination on the equations in (7) and (8) 

by pivoting on s1 and x1 , we obtain 

-1 -1 -1 m -1 = B ·b - B ·n1 n01 - B •n1·n s 1 - E (B •n. 
. 2 l. 

-1 
B ·n1 ·nil)xi (9) t 

z = n0 - n1·n01 - n1 ·D 

nll nll 

s -1 

m 
I (n. 
. 2 l. i= 

i= 

nl.nii)xi 

. ·n11 

nll 

The effect of the Gau~an elimin?tion is to transfonn the constants 

in (7) which are expressible in terms of integers divided by D to 

the constants in (9) which are integers divided by n11 • The cominon 
denominator \l is less than D. . 
If n11 is not unity, a second Gomory constraint s 2 may be derived and 

a second Gau%ian elimination perfonned. The process is continued as 

long as the common denominator of all coefficients is not unity. 

Since the common denominator is monoton~cally decreasing, however, 

the process need only be continued a finite number K (< D) of steps. 

Without loss of generality, we may assume that successive pivots 

. * on the Gomory constraints occur on variables x1 , x2 , ••. ,xK Each 

pivot occurs in such a manner that the coefficients of the s. and the 
l. 

x. in the z equation remain non-negative. The final result is the 
l. 

following: 

* This, of course, rules out the possibility of pivoting on 
one of the pre.viously int!ifduced variables s.. One may show, how-
ever, that a pivot on /f~fariable can be avoiaed by the proper choice 
of the arbitrary vector ~(i). This will be illustrated in an example. 
Thus there is no real loss of generality. 
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K m 
(10) 

I 
xk = xk (K) - I aik (K) s. - I aik (K) xi for K=K,K-1, ••• ,1 

i=l i i=K+l 
\ 

K 
t = t(K) - I 

i=l 

K 
z = z (K) - I Yi (K) 

i=l 

m 
- r Bi (K) xi 

i=K+l 

m 
s . - I y·. (K) x . 

i i=K+l i i 

where the °'ik (K), Bi(K:k(e11(K) •.•.• ,Sin(K)),and yi(K):or i = 1, ••• ,m are 

the coefficients of the non-basic variables after the pivot on the Kth 

Gomo~y constraint sK. The xk (K), t (K) and z (K) are determined re-

cursively as follows: 

(11) XK (K) = noK 
nKK 

K 
xk (K) = nok -·I nik·x. (K) for K = K-1, K-2, ••• ,1 

-- i 
nkk i=k+l nkk 

K 
z (K) = n - r n •x (K) 

0 k=l k k 

where the nik for i = 1, ... ,m are derived from the ktb Gomory constraint. 

(12) 
k-1 

sk = - ~Ok + r 
nk-1,k-:l . i=l 

nik + ____ si 

nk-1,k-1 

m 
r nik -='----- x. 
i=k n i k-1,k-l 

.. The nik are determined recursively from (8) and 



{14) 

(15) 

-1 k-1 = {>..(k)·B b·nk-1,k-l - nk-1,k-1 E 
j=l 

k-1 
E nij x. (k-1)]} for k=2, ••• ,K 

i=j+l njj i nk-1, k-1 

k 
x. (k) = nOj -

J 
:E 
i=j+l 

~ x (k) for j=l, ••• ,k k=2, ••• ,K 
j 

n.j J . 

n ~l 

{E >... (k)f\. (k-1) + E o. (k) a .. 
j=l J .J j=l J l.J 

for i=l, ••• ,m, k=2, ••• ,K 

(k-1)} 
n k-1,. k-1 

The ··>..(k) = ().1 (k}, ••• s >.. (k)) and o. (k) for j = 1,. •• , k-1 
. n J 

are arbitrary non-negative integer vectors. 

Now (11) gives an optimal solution to the integer programming 

problem if t (K) ~O and xk (K)~O for k=l, ••• _,K. The t(K) and xk(K) are 

integer since nKK' the common denominator, is integer. Because of 

the dual simplex algorithm pivoting rule, o1 (K) ~O for i=l, ••• ,m. 

While the basic variables of the linear programming problem are those 

of the t vector, the integer programming problem has as its basic variables 

the t variables and the xk for k=l, ••. ,K variables. The new basic 

variables arise as the result of the introduction of the Gornory cutting 

planes si for i=l, ••• ,K. The equations.in (11) give the optimal solu-

tion to the integer programming problem for any resource endowment b for 

* which the integer basis remains the same, i.e., non-negative. 

* As Gomory [ ] has shown the basic t variables remai.n the same 
as long as 
variables may or 
the same basic t 

The x 
may not remain the same for changes in b which~eep 
variables. 

8 
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II. 

The analysis to this point· suggests/eomputational technique for 

parametric integer programming in cases where the integer basis con-

sists of the variables t and xk fo·r k=l, ••• ,K. First, solve the inte-

ger programming problem for any resource endowment b, From (12)-(15), 

we note that the n.l1k fork.= l, •• ,n are dependent on b while the nik 
(and i > 'kf 

9 

for i ~ 0 /are independent of b. Thus, if the nik for i f- 0 are (and i~ k} 

are recorded as the solution for any b is obtained, only the n0k need be 

determined for each b, using equations (13} and (14). Then (11) may 

be used to compute recursively, the values of the variables xk, for k= 

K, K-1, •.• ,1, t, and z in that order, 

If for any particular value of b, any of the t, z, and xk variables 

as computed by (11) are negative, then, of course, the proposed method 

does not work. In such a case, we suggest the following procedure: 

(a} 

(b} 

(c) 

If some of the xk are negative, pivot on the negative xk until they 
are all non-negative. Then add additional Gomory constraints until 
all variables are integer. 

If none of the xk are negative, but some of the t variables are 
negative, pivot on the t variables until all are non-negative. 
Add additional Gomory constraints until all variables are integer. 

If after performing step (a) or step (b),·all variables are non-
negative, a solution has been reached. Otherwise, repeat step (a} 
or step (b), whichever is appropriate. 

Since this is a variation of the technique proposed by Gomory [2], 

it is easy to show that it converges to the optimal solution. 
• 
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III. 

The variables x1 , ••• ,xK can be eliminated from equation· (11) by 

solving the first K equations. The solution can be written in terms of the 

cofactors of the following triangular matrix. 

~K,K-1 
0 

1 
I Tl 
i K-1,K-l 
i 
I TlK,K-2 

E = nK-2,K-2 

. . 

nK-1 K-2 
' 

nK-2,K-2 

. 0 

0 

I 
1 .1 

J 
This matrix is independent of b. Now 

(16) x = k 

K 

E EK+l-i, K+l-k i=l 

where Eij is the cofactor of the ith row and the jth column of E. If the 

solution in (16) is.substituted into (11), one obtains fort and z 

(17) t (K) -1 B •n k 

K . K 

K 
(I: EK+l-i,K+l-k TJOi) 
i=l n1 i 

z (K) = no - E nk (E EK+l-i K+l-k nOi) 
k:ool i=l · ' n· ii 

S"ince the n01 are dependent on bas indic~ted by (13) and (14), we may 

write for {16) and (17): 



(18) xk(b) = cfik(b) for k=l, ••• ,K 

t(b) = B-lb -. cfit{b) 

z(b) = cB·B-l b - cfiz(b) = p*·b - cfiz{b) 

The <ti functions may be interpreted as the difference between the 

linear programming and the integer programming solutions. 

11 

The functions cfik (b), <tit (b), and cfiz {b) have several interesting pro-

perties, all of which are easily proved. 

Property 1. If B-lb is an integer vector, then cfik{b) = cfit(b)=~z{b) = O. 

Property 2. 

Property 3. 

Property 4. 

If o is an integer column vector, then 

cfik(b+oD) = ¢k (b) 

cj>t{b+oD) = ¢t(b) 

¢ (b+oD) = ¢ {b) z z 

If ~is an integer scalar and s. is a column of B, then 
1 1 

If 

cfit(b+oisi> = cfit(b) 

~ (b+o.S.) = cp (b) 't'z i i z 

b' e b (mod B), then 

cj>k (b I) = cj>k (b) 

~t (b') = cpt(b) 

¢z (b I) = cj> (b) z 

Property 5. The functions ¢k(b), cj>t{b) andcfiz(b) assume at most D 

different values each. 

• 
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Property 1 is merely a statement that if the optimal linear pro-

gramming solutio.n is integer then the linear programming solution is the 

integer programming solution. Property 5 is a statement of the periodicity 

of the cf>functions while properties 2 through 4 indicate the various ways 

in which this periodicity may be expressed. First (Property 2), if one 

adds D units to any one of the resources, the difference between the inte-

ger programming solution and the linear programming solution remains the 

same. Secondly, (Property 3), if one adds amounts of all resources suffi-

cient to increase one of the basic t activities exactly by one unit (or 

any integer number of units), the difference between the integer program-

ming and linear.programming solution remains the same. Finally, Property 4 

says that the difference between the linear programming and integer pro-

gramming solution remains the same if b' e b (mod B). This means that 

there exist vectors [b'] and [b] such that (a) fb, = b' - [b') = b - [b]=fb 

(b) [b'] and (b] are integer combinations of vectors in the basis B, and 

(c) fb = fb' = B•A f~r some vector A such that 0 ~A< 1. It is well kno~m 

that b(modB) = b - [b] may assume at most D different values which give rise 

to Property 5. 

We may rewrite Property /1 in the following way 

cf>t (b) =' cf>t (fb) 

cf>z (b) = cf>z (fb) 

where, as above, fb = b - [b]. Let us assume that (~, ~) ~ O. 

Then z(O) = 0 and 

• 
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* (19) = p ·f b or 

(20) 

Since fb can only assume a finite.number of values, the difference between 

the linear programming and the integer programming optimum value of the ob-

jective function is limited to some finite number. Furthermore, one can 

easily show that fb ~ ~ 6i so that 
i=l 

(21) * n 
If> (b) f p l: 6. 

z i=l l. 

where ai is a column of the basis B •. We may interpret lf>z (b) as the loss which 

would accrue to the integer programming optimal solution if resources were 

given their linear programming dual prices p*. The inequality (21) says that 

this loss never exceeds the cost of operating each and every activity in 

the linear programming basis at a unit level of activity. 

IV 

Given the above five properties of ~z(b), we may also state several 

interesting properties of the marginal revenue productivity (~1RP) of resources. 

The MRP1 of a resource i is 

(~1 l (?\ _J~ 
(bi bi 

I . : 
(22) . I 

-zl :: ' 
- (ct> b.+l bi ) MRP1 = z I bi+.11. = 

~·B ~; 
- If> z l. z 

i : ' \ . / 
b b \ b I n' n n 



if the basis t and 
I 

x1 , ... ,xk remain the same when bi is increased one 

unit. Note that the first term on the right hand side of (22) is nothing 

more than the linear programming dual price from which is subtracted 

a periodic function of b, i.e., 

(23) 

where ~.(b) may be either positive or negative and is a periodic function 
. l. 

satisfying all of Properties 1 through 5. Since the increase in the objec-

tive function resulting from a unit increase in resource i is obviously nbn-

negative, the following property must also hold 

* (24) ~i(b) ~pi 

Let us define the marginal revenue productivity of a group of resources 

b which is incremented by t.b =. (6b1, •.• , 6b
0

) as follows: 

(25) MRP t.b _(b} = z(b+bb) - z(b) 

-1 = ~·B •t.b - (¢>z 

= p*·bb - ~6b (b) 

(b+t.b) - ¢> (b)) z 

if the integer basis t and x1 , ... ,xK remain the same. Furthermore, one can 

show: 

(26) if t.b >O, 
and 
(27)' if t.b <O, 

* then p ·t.b ~~bb(b} 

then p*·t.b ~~bb(b) 

The periodic function ~bb(b) also satisfies_Properties 1 through 5. 

14 
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Finally, the following relationship between the MRP of single re-

sources and the MRP of an increment in a group of resources holds if tib~ o: 

n 
(28) MRPllb (b) ;i=l MRPi• tibi and 

tJ1 lib (b) 

v. 
lt'is not always possible to find a set of prices for the resources 

(b) such.that it both never pays ~o change the optimal activity levels nor to 

purchase any different combination of resources (See Gomory and Baumol [4]). 

There is an alternative method of pricing, however, which will achieve this 

result. Let us suppose that there is a dual pricing system applied to each 

resource. The first bi* units of resource i cost.pi' per unit and any pur-

chases in excess of bi* cost pi" per unit. Then the profit accruing to 

any feasible integer program (t,x,-b) is 

(29) tr(t,x,-b) = cB·t + cN·x-p' •b*- p"•d"(b-b*)-p' ·d' (b-b*) 

where d' and d" are diagonal matrices with elements d ' and d " re-i i ' 

spectively, along the diagonals such that 

(30) d '={1 if bi - b1* ~ o} 
i 0 if b· - bi* > 0 l. 

a ''= {o if b - b * < o} i i 
i 1 if b. b * > 0 

l. i 

.. 

• 



(31) Max ir(t,x,-b) = Max (z(b) - p' •b~°' - p"•d11 (b-b*) - p' ·d' (b-b*)} 
b 

= Max ir(b) 
b 

Next, let us define efficiency as follows: 

DEFINITION: A feasible point (t,x,-b) is efficient if 
and only if there exists no other feasible 
point (t', x',-b') such that (t', x', -b')~ 
(e,x,-b) with t'. > ti, x'i > xi, or -b' 1 ; 
-b'. for at leasf one i. 

l. 

Let us call semi-optimal points, all points (t,x,-b) in which, given b, 

t and x are an optimal integer program. The following lemma is easily 

16 

proved: LEMMA: A semi-optimal point (t,x,-b) is efficient if and only 
if there exists no other semi-optimal point ( t', x' ,-b') 
such that- (z(b'),--b') ~ (z(b), -b) and either z(b') > 
z(b) or -b'. > -b. for some i. 

1 1 show that 
Now we will/for each efficient semi-optimal point there exists a set 

of dual prices p' >O and p" >Osuch that the efficient semi-optimal point 

is also optimal, i.e., 

THEOREM: If (t*,x*,-b*) is semi-optimal and efficient 
and if the linear programming dual prices p* 
exist and are all positive, then there exist 
price vectors p' >O and p" >O such that 

Max ir(t,x,-b) = Max ir(b) = ir(b*) 
t,x,b b 

(32) 

\_ 

PROOF: Let us define the price vectors p' and p" in 
terms of the basis B to- the linear programming 
problem resource vector b. Now p* =cB·B-1 is 
the vector'of dual prices corresponding to the 
basis B. Let 

p' = * p - v s 
II * p = p +v 

t 
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We then need to demonstrate the existence of a v > 0 and a v > O 
t = s= 

I 
such that v <v • s p 

.· It is sufficient to show that for all b = b*+6b* 

for which an optimal solution to the integer programming problem exists 

lnr(b*) = n(b) - n(b*) < 0 or 

z(b*+6b,.') - (p*-vs) 'b,.c - (p*+vt) d11 6b>'c - (p*-v
5

)d' 6b* - z(b*) + (p*-v
5

) b*~ O. 

Collecting terms, we get: 
(33) 6n(b*) = z(b*+ 6b*)-p* tib* - z(b*) - v d116b* + v d 1 6b* < 0 

t s 

Now 

and 
(34) z(b*) = p* ·b* - i (b*) - o(b*)/z(b*+' 6b*) = p*(b*+6b*)-<t>z(b*+6b*)-· o(b) 

where o(b*) and o(b) are non~negative correction factors indicating the differ-

ence between the value of z if (11) provides an optimal solution to the inte-
respectively, 

ger programming problem for b* .and b*+6b;/and the value of z if (11) does not 

give an optimalrolution and further dual pivoting steps must be performed to 

obtain the optimal solution. Substituting (34) into (33), we obtain 

(35) lin(b*)- = -<t> (b*+ 6b*) + cfi (b*) - o(b) + o{b*) - v d 11 6b* + v d'tib*< o. 
z ·z t s = 

for 

Now all terms on the left 
and 6(b*) 

¢> (b*)/are non-positive. z 

hand side of the inequality in (35) except 
+ tS(b*) 

Thus, ¢> (b*)/is an upper bound on 6n(b*). 
Z. 

tib* contains any positive elements, however, since 6b* is integer,6n(b*). 

If 

can be made non-positive by setting v = (¢ (b*) + o(b*), ••• , <t> (b*) + o(b*)). t z . z 

If tib* = 0, then obviously (35) is satisfied. Thus, we need only consider 

those tib* ,;;;; 0 for which tib* :f O. With this information we may rewrite the 

inequality (33) as follows: 



' c 
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We need not consider any 6b* such that b* + 6b*: b* {mod B) for then 

-z(b,~ + 6b*) + z(b,'') = - p*·6b* and the inequality in (36) must hold for 

6b* ~ O. Furthermore, if the inequality (36) holds for 6b* = a, then it 

holds for 6b* = a'~ a where a' : a (mod B). To show this to be true, let 

us write z(b*+a) = z(b*+a') + p,>c(a'-a) which follows from the fact that 

b* +a~ b* +a' (mod B) and ~z(b* +a) = $z(b* + a')~SeeProperty 4 in sec-

tionIV). Since (36) holds for 6b* = a, we have 

-z(b* +a:)+ z(b*h -(p*-v) a or -z(b*+a') + p,.'(a'-a) + z(b*h-(p*-v )a or - s s 

-z(b*+a') + z(b*)~ -p*a• + v a s 

Since a ~ a' and vs ~O, it follows that 

-z(b*+a) + z(b*) > -(p* - v ) a' = s 

Thus, (36) holds for a'~ a and since a (mo~ B) can only take on a finite 

*' member D of values, there is a lower bound on the 6b ~ 0 which must be con-

sidered. In fact one can easily show that we need only consider ob*~ -fb* ~-

{D-l,D-1, ••• ,D-l) where fb* is defined as above. The lower bound on the 

6b* implies an upper bound on the right hand side of (36) where p*-v > O. s 

* The left-hand side of (36) has a lower bound of unity for otherwise b would 

not be efficient according to the above lenuna. Thus, v can assume some finite 
s 

non-negative value such that (p*-v ) >O and (36) holds for all possible 6b*. s 

In particular if 

vis = p* 

for i = 

where fb~ 
1 

i 
1 0 - > 

nf b* 
i 

1, ... , n 

d h .th f f d th th an v. are t e 1 components o . b* an v , en e 
1S S 

inequality (36) is always satisfied. q.e.d. 

• 



I 
The quantities v and vt may be regarded as subsidies (v ) and taxes s . s 

(v ) on the resources. 
t 

* If up to and including b. 
l. 

units of resource i 

are purchased a subsidy of v. per unit is paid. More than b.* units are 
l.S l. 

taxed at a rate vit per unit. 

VI 

To illustrate some of the above ideas, let us consider the following 

example: 

Subject to 

(38) 3tl + 2t2 +xl =28 

·tl + 4t2 +x2 =27 

3tl + 3t2 + t3 +x 3 =36 
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t 1,t2,t3,x1,x2,xJ; 0 and integer. The revised simplex method yields 

the followii:ig matrix with the optimal program to the linear progranuning problem 

in the first column and the last row containing the first Gomory constraint 

s 1 which is introduced. 

TABLE 1 

1 -xl -x2 -x 3 

z • 52 4/10 2/10 4/10 1 

t1 5 8/10 4/10 -2/10 0 

t2 5 3/10 -1/10 . 3/10 0 

t3 2 7/10 -9/10 -3/10 1 

sl -4/10 -2/10* -4/10 0 
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The determinant D of the basis is 10. Thus, the _constraint s1 given 

in the matrix above is only one of 10 possible Gomory constraints. (See Gomory 

~ )). The coefficients of the ~O possible Gomo~y constraints s 1 are generated 

by letting A(l) an arbitrary non-negative integer vector assume various values· 

in the following vector of coefficients: 

{(Al (l),~"2 (1),A/1),A4 (1))·10 A} 10 
10 

where A represents the above simplex matrix in Table 1. In particular, 

the 10 possible constraints may be generated by letting A1 (1)=A 2 (l)=A 4 (1)=0 

and A3(1)=1,2, ... ,10. The result is 

A3(1) 

~39) ( 7/10, 1/10, 7/10, O) 1 

( 4/10, 2/10, 4/10, O) 2 
( 1/10, 3/10, 1/10, O) 3 
( 8/10, 4/10, 8/10, O) 4 

( 5/10, 5/10, 5/10, O) 5 
( 2/10, 6/10, 2/10, O) 6 

( 9/10, 7/10, 9/10, O) 7 

( 6/10, 8/10, 6/10, 0) 8 

( 3/10, 9/10, 3/10, O) 9 
( 0, 0, 0, 0) 10 

If we perform a pivot on the element of the simplex matrix in Table 1 

marked with an asterisk we obtain the following matrix: 

TABLE 2 

1 -s 1 -x 2 -x 3 

z 52 1 0 1 

tl 5 2 -1 0 

t2 5 1/2 -1/2 1/2 0 

t3 4 1/2 -9/2 3/2 l 

xl 2 -5 2 0 

52 -1/2 -1/2 -112* 0 
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Here the common denominator of all elements in the matrix is n 
11

=2 and 

~here are two possible Gomory constraints. The particular constraint chosen 

can be generated by setting 

Pivoting again, one obtains 

TAD LE 3 

1 -sl -s 2 -x 3 
z 52 1 0 1 

tl 6 3 -2 0 

t2 5 -1 1 0 

t3 3 -3 3 1 

xl 0 -7 4 0 

x2 1 1 -2 0 

The first column gives the optimal solution to the integer programming 

problem. From equation (11) '1e can derive an expression for the. optimal 

values of the variables 

x1 (2)= no1 - 4 x (2) 
-2- 2 2 . . 

t (2) = (4bl- 2b2 + Ob3)- Lf 
1 10 10 x 1(2) + 2/10 x 2 (2) 

tz (2) = Clb1+3b 2+0b 3) + l/lU x1 (2) - 3/10 x2 (2) 
10 

t
3 

(2((_-9bl-Jb2+lOb3 + 9/10 x
1 

(2) + 3/10 x (2) 
10 

2 

z (2) = J2b1+4b 2+10b 3)- 2/10 x 1 (2) - 4/10 x 2 (2) 

10 



where 

n02= {l(-lb1 + 3h2 + ob 3)2 + 2.1._1 
·--~-__;;,;;--...:::.~. 10 ·xl (1) }2 = 

10 

Solving (40)for x1 (2) and x2 (2), we obtain 

(42) x2 (2) = n02 

x
1

(2).= nOl -
2 

tl(2) = (4bl - 2b2) no1 + n02 - 2 
10 10 

t2(2) = c1b1 + 3h2> + 1 nOl 
10 20 

t3(2) = (-9bl- 3b2 + 10b3) + 
10 

- 1 
2 

no2 

z (2) = <2h 1 + 4b2 + 1ob3>. _ 1 n01 
10 10 

where 

(43) ~1 (b) = n02 , 

~2(b) = no1 - 2y02' 
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1 no1 - no2 
5 

- 1 (101 + 1/2 no2 
$t (b) = 20 and 

.. 9 nOl + 3/2 no2 
20 I 

$ (b) = 1 nOl z 10 

From (42) and (41), we may determine the marginal revenue productivity of 

resources 1 and 2 as follows: 

(44) NRP l (b) = 2 1 {2bl + 4b2 + 2}10 - {2bl + 4b2}10] 
10 10 

NRP 2 (b) = 4 1 
[ {2bl + 4b2 + 4}10 - {2bl + 4b2}10] 10 10 

Note that the first terms in both of these expressions are the respective 

linear programming dual prices. 

Let us calculate the optimal values of the variables x1 , x2 , t 1 , t 2 , 
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t 3 and z for b1 ranging from 22 to 31 with h2 and b3 hold constant at 27 and 

36, respectively. In this particular case we may rewrite equations (41). 

no1 = {-2bl + 4·27}10 = {2bl + 8} 10 
(45) 

= {2bl + 8}10 

no2 = {-18bl +. b·27 + n01 }
2 

{18b1 + 2 +n01 } 
= 

10 10 2 

To further make computation less difficult we can calculate n 01 and n 02 _ 

on the basis of b1 varying from 2 to lb the res~lt uill be the same. 
the computations 

Performin~in (45) and substituting back into (42), the following re-

sults are obtained: 



24 

TABLE 4 

bl nOl no2 x 1 x2 tl t2 t3 z NRP1 

22 2 0 1 0 3 6 9 51 0 

23 4 0 2 0 3 6 9 51 0 

24 6 0 3 0 3 6 9 51 0 

25 8 0 4 0 3 6 9 51 1 
26 0 1 -2 1 6 5 3 52 0 

27 2 1 -1 1 6 5 3 52 0 

28 4 1 0 1 6 5 3 52 0 
29 6 1 1 1 6 5 3 52 0 
30 8 1 2 1 6 5 3 52 1 
31 0 0 0 0 7 5 0 53 0 

Note that for b1 = 26 and b1 = 27, the proposed method of calculating 

the optimal solution does not work because x1 is negative. Since there is 

a great deal of disgression in choosing the Gomory constraint at each stage 

in the process, ~ natural question is: would a different choice of the cut-

ting planes s 1 and s 2 have resulted in a method which is valid for all 

changes in b1 over the range from 22to 31? The answer is yes. In fact 

if 

= - no1 + 1 ... 
(46) sl --ru 10 xl +-L_x + Ox and 10 2 3 

s2 = - no2 + l* x1 + _4_x2 + Ox3 --
10 7 7 

where the asterisk indicates the pivot variable, the following results 

are obtained: 

• 
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TABLE 5 

bl ndl. no2 xl x2 t 1 t2 t3 z HRP1 
22 1 1 1 0 3 6 9 51 0 
23 2 2 2 0 3 6 9 51 0 

24 3 3 3 0 3 6 9 51 0 

25 4 4 4 0 3 6 9 51 0 

26 5 5 5 0 3 6 9 51 0 

27 6 6 6 0 3 6 9 51 1 
28 7 0 0 1 6 5 3 52 0 

29 8 1 1 1 6 5 3 52 0 

30 9 2 2 1 6 5 3 52 1 
31 0 0 0 0 7 5 0 53 0 

Another choice of Gomory constraints' leading to non-negative values for 
x1 and x2 is 

(4 7) s = nOl + _3_ x1 + _l_x2 + 0 x3 and 1 10 10 10 

s = _no2 + 2 x + 1 Ox3• 2 3 -3- 1 -3- x2 + 

The results are: 

TABLE 6 

bl 101 no2 xl x2 tl t2 t3 z l1RP1 

22 3 0 1 0 3 6 9 51 0 

23 6 0 2 0 ~ 6 9 51 0 

24 9 0 3 0 3 6 9 51 0 • 
25 2 2 0 2 5 5 6 51 0 
26 5 2 1 2 5 5 6 51 0 

27 8 2 2 2 5 5 6 51 1 
28 1 1 0 1 6 5 3 52 .o 
29 4 1 1 1 6 5 3 52 0 

30 7 1 2 1 6 5 3 52 1 

31 .0 0 0 0 7 5 0 53 0 
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Thus, for this particular' problem, the optimal solution to the integer 

programming problem is not ahrnys unique. 

A different choice of Gomory constraints leads to another problem. 

For example, if 

(48) 

then the pivoting rule leads to a re-introduction of s 1 later on as a 

basic variable. The analysis in this paper breaks down in such a 

case. This can be avoided, hoHever, if one uses the following criterion: 

Criterion for Choosing sk. Choose the non-zero sk which gives· the smallest 

value of n.
1 

for a variable x. with the sn::allcst entry in the first row 
ic i . 

of the simplex matrix. If more than one sk satisfies this criterion, 

choose among them the sk with the smallest for a variable x. with 
1 

the next smallest entry in the first rm• of the simplex matrix, and so on. 

When pivoting, always pivot on a variable with the smallest entry in 

the first row of the simplex matrix if there is a choice of pivots. 

Since our results are so sensitive to the choice of the Gomory con-

straint introduced at each step, it would be desirable to formulate a de-

cision rule which would insure non-negative integer programming basic 

variables x1 , .•. ,xk ~o matter what the value of b. Good results have been 

obtained using the above criterion but one can construct examples for which 



this criterion does not work.* If this criterion or some other always 

results in non-negative x1 , ... ,-xK' then (11) gives the optimal integer 

program so long as the t variables are non-negative. 

The above criterion may be illustrated with reference to the first 

simplex matrix (Table 1) for our example,· (37) and (38). All possible 

Gomory constraints are represented in (39). Since x1 has the smallest 

number in the first row of the simplex matrix (Table 1), according to 

the above criterion the constraint represented by the first vector in 

(39) is the one to use. 

Next let us specify the price vectors p' and p'' which make prof-

· n( b) · Ct* t* t* * * * b* b* b*) it t, x, - a maximum at 1 , 2 , 3 , x1 , x2 , x3 , - l' - 2, - 3 
= (6,5,3,0,l,0,-28,-27,-36), where (t*, x*) is the optimal program in 

(37) and (38). Nm·? from (31), we have 

(49) n(b) = z(b) - (p* - vs)b* - (p* + vt)d''(b-b*) - (p* - vs)d'(b-b*) 

where 

(50) p' p* -= v s 
pt; = p* + Vt 

2 = <10' 
2 = <10' 

4 
10' 

4 
10' 

l) (vls' v2s' v3s) 

l) + (vlt' v2t' v3t) 
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From (43), we knou that <l>z: (b) = ii n01 and in particular when b* "" (28, 27, 36) 

we have <I> (b*) = !±..(See equations (41)). From the proof to the theorem z 10 

* I can prove that this criterion ah.Jays works for m 22 or for K = 1 
with m arbitrary if an integer programming solution exists. Briefly, if 
K = 1 the proof is trivial. If K = 2, we have nOl n21 

xl = nll - nu n02 and 

x2 = n02 ~O. If m = 2, one can show that either n = 0 in which case 
tfie proof is trivial o. r n21 = 1. Since n02 <n11 , i! follows that 
n21 
~ n02 <l. Since x1 mu.st be integer, it must be non-negative. 

Tl11 .. 



in section V, we know that we can set 

(49) 

and 

(50) V = p* . i l.S 
1 for i = l, 2, 3 if (50) gives non-negative 

. v 18 for i = 1, 2, 3. 

The way in which fb* may be calculated is to take the fractional 

parts of the optimal linear programming values given in the first column 
8 3 7 of Table 1 and substitute these fractional parts (10 , 10 , 10) into 

(37) and (38). The result is 

(51) fb~ = 3• l~ + 2· l~ = 3 

8 --1 
10 + 4 • 10 = 2 

8 3 7 
. fbj = 3 · 10 + 3 · 10 + 10 = 4 

S\lbstituting (51) in (50), we obtain 

(52) 2 l 
vls = - - -10 9 

4 l 
v2s = - - -10 6 . 

l 
v3s = 1 - -12 

From (48) we may write 

(53) 1 1 1 
p' = <9. 6°' 12) 

6 8 4 
pll ;; <10' 10 ' 110) 

This system of dual prices ensures that Hax TI(b) = TI(b*). 
b 

28 
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VII 

The properties of integer programs are not nearly as easy to deter-

mine as those of linear programs. As Gomory has shown [ 5 ], however, 

integer programs are intireately related to linear programming solutions 

for a large class of cases via a set of periodic functions of b, the 

resource vector. This paper shows how in certain cases these periodic 

functions may be derived explicitly which results in a method of parametric 

programming and enables one to express the marginal revenue productivity 

o~ any resource as a function of the linear programming dual price plus 

a periodic function, The method proposed ·in this paper does not always 

work, however, when K = 1 or when m, the number of non-basic linear pro-

gramming variables is greater than 2, although the criterion which is 

proposed in this paper seems "'to give good results for m72. More experi-

ments need to be performed to determine how often the criterion fails. 

Further research also·needs to be done to determine whether there exists 

a criterion for choosing sk which ensures non-negative Xk for any b, 

or failing that, for any particular b. 

It is impossible to specify a single set of prices for the resources 

such that the integer programming optimal solution gives maximum profits. 

Our proposal is a two part pricing system to make an efficient point a 

profit maximizing point. This proposal bears a strong resemblance to the 

pricing proposals {n much of the literature on pricing in public utilities 

where individisibilities are present and such things as taxes and subsidies, 

two part tariffs, discriminatory pricing, etc., are the order of the day. 

· Charles R. Fr.ank, Jr. 
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