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Abstract

This paper proposes a semiparametric estimator for spatial autoregressive (SAR)

binary choice models in the context of panel data with fixed effects. The estimation

procedure is based on the observational equivalence between distribution free models

with a conditional median restriction and parametric models (such as Logit/Probit) ex-

hibiting (multiplicative) heteroskedasticity and autocorrelation. Without imposing any

parametric structure on the error terms, we consider the semiparametric nonlinear least

squares (NLLS) estimator for this model and analyze its asymptotic properties under

spatial near-epoch dependence. The main advantage of our method over the existing

estimators is that it consistently estimates choice probabilities. The finite-dimensional

estimator is shown to be consistent and root-n asymptotically normal under some rea-

sonable conditions. Finally, a Monte Carlo study indicates that the estimator performs

quite well in finite samples.
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1 Introduction

The spatial econometric literature has increasingly focused on spatial models with limited

dependent variables. As Pinkse and Slade (2010) pointed out, the discrete-choice spatial

model is a new direction for the future of spatial econometrics. For example, the spatial probit

model has been widely studied by McMillen (1992), Pinkse and Slade (1998), LeSage (2000),

Pinkse et al. (2006), Beron and Vijverberg (2000), Pace and LeSage (2011), and Wang et al.

(2013), among others. These papers propose estimation methods such as an expectation-

maximization algorithm, the general method of moments, Bayesian simulation approaches,

and partial maximum likelihood estimation. The main assumption of the model is that the

distribution of errors is known, and often assumed to be normal or logistic. However, when

the distribution of errors is misspecified, this kind of parametric methods yield inconsistent

estimates.1 Furthermore, even if the model is correctly specified, likelihood-based methods

may suffer from the multidimensional integration problem as individual disturbances depend

on each other. Finally, estimation would become much more difficult with longitudinal data

and in the presence of unobserved heterogeneity. In such a case, one needs a clever estimator,

such as the conditional logit estimation (Chamberlain, 1984). For these reasons, it may be

useful to consider a semiparametric approach.

This paper develops a semiparametric or “distribution free” estimator of binary response

spatial autoregressive models for panel data. The model is allowed to have both a spatial

lag and fixed or random individual effects in the data generating process. The parametric

part estimates the regression coefficients using a probit-logit criterion function in an NLLS

minimization procedure. The nonparametric part estimates the scale function of the (het-

eroskedastic) error terms through a kernel regression as in Jenish (2014). We use a two-stage

procedure: in the first step we estimate the scale function and in the second step, the re-

gression coefficients. The main aim of this paper is to show the consistency and asymptotic

normality of the proposed semiparametric NLLS estimator.

Semiparametric estimators of spatial binary choice models are still scarce in the literature.

Lei (2013) extends the smoothed maximum score estimator (SMS) proposed by Horowitz

(1992) to SAR models in the panel data context. He solved the main issues related to these

models, i.e., the inconsistency of the estimators in the presence of either heteroskedastic con-

ditional error terms or a misspecification of the error distribution, or both. However, the Lei

(2013) approach does not estimate the choice probabilities. Indeed, choice probabilities and

marginal effects are of interest in most practical applications as well as for policy purposes.

For the standard binary choice model, Khan (2013) proposes a semiparametric estimator

which consistently estimates the choice probabilities.

Khan (2013) shows that the binary response model yi = I[x′iβ − εi] (where I(·) is an in-

1According to Pinkse and Slade (2010), spatial dependence can lead to heteroskedasticity.
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dicator function) with a null conditional-median restriction for identification is “observation-

ally” equivalent to a multiplicative heteroskedastic probit (or logit) model, up to an unknown

infinite-parameter scale function.2 Thanks to this equivalence, he constructs a sieve semi-

parametric estimator to consistently estimate both the regression coefficients and the choice

probabilities.

The present paper shows such an observational equivalence for a larger class of models

(SAR models) with heteroskedasticity and autocorrelation in the disturbances. Consequently,

it proposes a two-stage semiparametric estimator for a fixed effects SAR binary choice model

which also allows the estimation of the choice probabilities.

Andrews (1994) provides a general framework for showing the consistency and asymptotic

normality of semiparametric estimators that minimize a criterion function that depends on

a preliminary infinite-dimensional nuisance parameter estimator. Jenish (2014) extends this

general framework to spatial models with endogeneous regressors and spatial lags of the de-

pendent variable. Our asymptotic theory relies on this framework. However, verification of

the high-level assumptions of Jenish (2014) is nontrivial. The finite-dimensional estimator is

shown to be consistent and root-n asymptotically normal under some regularity conditions.

The spatial weight matrix is assumed to be exogenous and time invariant.

The rest of this paper is organized as follows. Section 2 proves the equivalence between

a spatial model with a conditional median restriction and an autocorrelated-heteroschedastic

spatial probit model in terms of conditional probabilities. Section 3 defines our proposed

estimator. Section 4 proves the consistency and asymptotic normality of the estimator. Section

5 investigates its finite sample properties and Section 6 concludes. Appendix A contains some

basic results on stochastic equicontinuity and a functional central limit theorem. Appendix B

includes proofs of our main results.3

2 Spatial Autoregressive Binary Choice Models

2.1 A class of Spatial Dual Models

As in Lei (2013), the SAR binary choice model is

y∗it = λ0

n∑
j=1

wijy
∗
it + βxit + αi + εit, i = 1, . . . , n t = 1, . . . , T, (1)

where y∗it is a latent random variable which has the observation rule yit = 1 if y∗it > 0 and yit = 0

otherwise. The xit are the regressors at time t for each individual i, and wij is the element of

2That is, P (yi = 1|xi = x) is the same in both models.
3The first theorem on the observational equivalence between the models is left in the main text to make

the definition of the proposed estimator easier.
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the spatial matrix Wn that is fixed across time. The parameter of interest is λ0, which captures

the spatial dependence, αi is the unobserved individual heterogeneity constant across time4,

and εit is a disturbance with conditional distribution Fεn given (α, x) with x = (xn1, . . . , xnT ).

We consider the case when there are only two periods.5 Suppose that the inverse of matrix

Sn(λ0) = Sn = (In − λ0Wn) exists. We can rewrite Equation (1) as

y∗nt = (In − λ0W )−1(β0xnt + αn + εnt) = S−1
n (β0xnt + αn + εnt), t = 1, 2.

Taking the time differences of this model and omitting the subscript n to make the notation

simpler, we have

∆y∗i = S−1
i (β0∆x+ ∆ε), (2)

where Si is the first row of the matrix S. Lei (2013) finds conditions similar to Lemma 1 of

Manski (1987) that allow the parameters of model (1) to be identified up to scale. See Section

4.1 (Identification) for further details.

Khan (2013) proves the observational equivalence between a distribution-free model under

a conditional median restriction (e.g., Manski, 1975) and a (multiplicative) heteroskedastic

parametric (e.g., probit-logit) model when the observations are i.i.d. In what follows, Khan’s

duality is shown to hold even in an SAR binary choice model where the observation are not

i.i.d. To prove the result, the following assumptions are needed.

• Model 1: SAR binary choice model in Equation (2):

1. xi ∈ Rk is assumed to have a density with respect to Lebesgue measure, which is

positive on the set χ ⊆ Rk.

2. F0(c, x) is the CDF Pr(S−1
i ∆ε ≤ c|x). The density of S−1

i ∆ε is symmetric around

zero.

• Model 2: SAR Autocorrelated-Heteroschedastic probit-logit Model:

a. 1.

b. εi = σ0(Si, x) · ηi1 − σ0(Si, x) · ηi2 where σ(·) is continuous and positive on χ and ηit

is independent of x, and with any known (logistic, normal) distribution.

Proposition 1. Under Assumptions 1 and 2, a and b, Models 1 and 2 are observationally

equivalent.

4Note that we don’t impose any restriction on the distribution or dependence between αi and xit
5The extension to multiple periods extremely complicates the notational burden, but the theoretical results

remain basically unchanged. See Charlier et al. (1995) for a multiple time period SMS estimator.
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Proof. Note that the assumption in Model 2 implies that the assumptions in Model 1 are

satisfied.

Assuming that the assumptions of Model 1 are satisfied, we show that there exists a scale

function σ0(·, ·) which satisfies Assumption b such that the two models are observationally

equivalent, that is, Pr(∆yi = 1|∆x) is the same in both models.

Let F0(x) = F0(S−1
i β0∆x, x) be the probability function of Model 1. Let us define the

scale function as

σ0(Si, x) = S−1
i (β0∆x)/Φ−1(F0(x))I[S−1

i (β0∆xn) 6= 0], (3)

where Φ(·) denotes the CDF of S−1
i ∆η.

The scale function is positive for all x, so that S−1
i (β0∆x) 6= 0.

Thus, for Model 2 we have

Pr(∆yi = 1|x) = Pr(S−1
i ε ≤ S−1

i β0∆x) (4)

= Pr(S−1
i σ0(Si, x)∆η ≤ S−1

i β0∆x)

= Φ((S−1
i β0∆x/σ0(Si, x)) = Φ((Φ−1(F0(x)))) = F0(x),

since the event {S−1
i (β0∆xn) = 0} holds with probability 0 under assumption 1.

Comments

The equivalence result exploits the fact that the normal density has median zero and is positive

everywhere. Also the positivity of the scale function is required to establish this class of

“dual models.” The first model can be estimated using the estimator proposed by Lei (2013).

Following Manski (1987), Lei (2013) shows that under some regularity conditions, θ0 = (λ0, β
′
0)′

is the unique maximizer of the following function

θ0 = argmax
θ

1

n

n∑
i=1

E
{

∆yi sign
[
S−1
i (λ)β∆x

]}
. (5)

Thus, Lei (2013)’s estimator is based on the maximization of the sample analog (and a

smoothed version) of the function (5). Following the author, we call it a smoothed spatial

maximum score estimator (SSMS).

This is a standard approach in the sense that models with conditional median restrictions

are often estimated by minimizing least absolute deviation (LAD) objective functions. Lei’s

method does not permit estimating probabilities, which are often needed by a policy maker.

The observational equivalence of Model 1 with Model 2 allows us to propose a new estimator
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that allows the estimation of predicted probabilities. There are other semiparametric estima-

tors which allow estimating choice probabilities but they have the disadvantage of assuming

the independence of the errors from the covariates, precluding any form of heteroskedastic-

ity. See Klein and Spady (1993), among others. In the next section, we suggest a different

estimator and we describe its advantages over the aforementioned existing estimators.

3 A Spatial Semiparamentric Nonlinear Least Square

Estimator

In the previous section, we have shown that the SAR binary response model with conditional

median restriction is observationally equivalent to an SAR autocorrelated-heteroskedastic

probit-logit model up to an unknown infinite-parameter scale function. This equivalence, as

Khan (2013) pointed out, suggests that an econometrician could estimate a probit model that

is “distribution free.” Thus, we use the result of Proposition 1 to construct a semiparametric

estimator using a probit criterion function. In particular, we define the criterion function as

θ̂n = argmin
θ

1

n

n∑
i=1

{
∆yi − Φ

[
S−1
i (λ)β∆x exp(l(Si, x))

]}
, (6)

where l(Si, x) = log
(

1
σ(Si,x)

)
. Recall the scale function defined in Equation (3). Given this

definition, the spatial semiparametric NLLS (hereafter, SSNLLS) is unfeasible, as the values of

the conditional probabilities F0(x) are unknown. Therefore, we propose a two-stage approach

to estimate Equation (6).

The first step consists in the estimation of the unknown scale function.

Following Chen and Khan (2003), we use a nonparametric estimation of F0(x) = Pr(S−1
i ∆ε ≤

S−1
i β∆x) = E(∆yi|S−1

i ∆x). Observe that z∞ = S−1
i ∆x = (I−λWn)−1∆x =

∑∞
k=1(λWn)k∆x,

provided ||λWn||∞ < 1, where || · ||∞ is the row-sum matrix norm. Following standard practice

in spatial econometrics, we can replace z∞ by a linear combination. The conditioning matrix

becomes z∞ = [(I,Wn,W
2
n , . . . )∆x]. We can select a submatrix zi = (∆xi,Wi∆x,W

2
i ∆x),

where Wi and W 2
i are the i−th rows of the matrix Wn and W 2

n respectively. In particular, we

propose to estimate the nonparametric regression

min
F∈S

1

n

n∑
i=1

(∆yi − F (zi))
2 . (7)
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Using the definition of the scale function (3) and taking the logarithm, we have

l̂(Si, x) = log

(
1

σ̂(Si, x)

)
= log

(
Φ−1(F̂ (zi))

S−1
i (λ2)(β′2∆xn)

)
.

Observe that λ2, β2 are nuisance parameters estimated in the second stage. In particular, to

estimate Equation (7), we use the Nadaraya–Watson kernel estimator, as in Jenish (2014).

f̂(z) =
1

n

n∑
i=1

K̂

(
z − zi
ĥn

)/
ĥn (8)

F̂ (z) =

[
1

n

n∑
i=1

∆yiK̂

(
z − zi
ĥ

)/
ĥn

]/
f̂(z),

where the kernel K(·) is a non-random real function on Rk, and the bandwith parameter ĥn

is a positive constant.

As the second stage, we propose the semiparametric NLLS estimator

θ̂n = argmin
θ

1

n

n∑
i=1

ξ(zi)
{

∆yi − Φ
[
S−1
i (λ)β′∆xi ĝn(Si, x)

]}2
, (9)

where ĝn(Si, x) = exp
[
l̂(Si, x)

]
to constrain the scale function to be positive and ξ(zi) =

1(zi ∈ χ∗), where χ∗ ⊆ χ . Φ is the normal CDF. The estimated vector θ̂n contains both the

estimates of β and of the parameter of interest λ. Observe that the estimator θ̂n is defined

using a trimming function ξ(zi) since the regression model (2) is only assumed to hold on

a compact subset of χ, χ∗. In the next sections, we drop the trimming function to make

the notation easier. Trimming is useful in this context mainly for two reasons. First, it can

eliminate observations from the computation of θ̂n for which the nuisance parameter estimator

is estimated without precision. Second, it makes it easier to derive the asymptotic properties

of θ̂n, since one can obtain uniform consistency of F̂ (z) for F (z) over a compact subset of χ

under suitable conditions, but not over unbounded sets in general.

4 Asymptotic properties

4.1 Consistency

Identitfication

We list a set of assumptions that we need in order to show consistency.

Assumption 1. i) For all i and (x, α), Fε1|x,α = Fε2|x,α where Fεt|x,α denotes the distribution

of ε conditional on (x, α). ii) The support of Fε1|x,α is R for all i and (x, α).
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Observe that under the conditional stationarity Assumption 1 i), also S−1
i ε1 and S−1

i ε2 have

the same distribution.

Assumption 2. i) The support of F∆x is not contained in any proper linear subspace of

Rq. ii) There exists at least one q′ ∈ [1, 2, . . . , q] such that β0,q′ 6= 0, and for almost every

value of ∆x̃i = (∆xi,1, . . . ,∆xi,q′−1,∆xi,q′+1, . . . ,∆xi,q)
′, the scalar random variable ∆xi,q′ has

everywhere positive Lebesgue density conditional on ∆x̃i for all i = 1, 2, . . . , n and conditional

on ∆xj,q′ for all j 6= i.

Assumptions 1 and 2 are very similar to those in Manski (1987), but the conditioning sets

are different. In this framework, one needs to condition on other members to take into account

the spatial correlation between individuals. For a further discussion of these assumptions, see

Lei (2013). Observe that in the SAR model (2), median(∆yi|xi, y1 6= y2) = sgn(S−1
i (β′∆x))

due to the stationarity of the conditional error distributions. This means that the identification

result of the binary response model under the conditional median restriction in Manski (1987)

remains almost the same if one adds a spatial lag to the model. Lemma 1 in Lei (2013) proves

that under these conditions, θ0 = (λ0, β
′
0)′ is identified relative to θ = (λ, β′)′ ∈ Λ×Rq, where

β/||β|| 6= β0/||β0||.
Let us introduce some notation regarding the space and metric that are convenient when

we are dealing with a spatial correlation structure. Following Jenish and Prucha (2009, 2012),

we consider a spatial process located on an unevenly spaced lattice that satisfies the following

assumption.

Assumption 3. The lattice D ⊆ Zd, d ≥ 1 is infinitely countable. All elements in D are

located at a distance of at least d0 > 0 from each other. For example, denoting by li the location

of the corresponding unit i, we have that for all li, lj ∈ D : d(li, lj) ≥ d0. We assume d0 = 1

without loss of generality.

This assumption ensures the growth of the sample size as the sample regions Dn =

l1, . . . , ln ⊂ D expand. This means that we are using increasing domain asymptotics.

Assumption 4. ζ ≡ λm supn ||Wn||∞ < 1 and Λ = [−λm, λm] is the compat parameter space

of λ on the real line.

Assumption 4 is related to the stability of the linear SAR model, the model coherency

for a nonlinear simultaneous system of equations, and the weakness of the spatial correlation

between the variables when their spatial distance is large. See Xu and Lee (2015) for an

exhaustive discussion.

Moment and NED properties of the key variables
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In order to study the asymptotic properties of the SNLLS, some moment and NED properties

are needed. Some structure for the spatial weights is needed in order to establish that our

dependent variable is NED on some input process.

Assumption 5. In addition to the diagonal element of W being normalized to zero, the weights

wij satisfy at least one of the following two conditions:

(a) If d(i, j) > dc, we have that wij = 0. Without loss of generality we set dc > 1. Only

individuals whose distances are less than or equal to some specific constant may affect

each other directly.

(b) (i) Let us define N as a nonnegative integer that does not depend on n. For every n,

the number of columns of Wn with |λ0|
∑n

i=1 |wij,n| > ζ is less than or equal to N . (ii)

There exists an α > d and a constant C0 such that |wij,n| ≤ C0/d(i, j)α.

The distance plays a crucial role in Assumption 5. In (a), agents might be linked to

other agents over a wide area, but once the geographic distance between two agents exceeds a

threshold, the two units do not spatially interact. In (b), the units might be linked in general

but the spatial weights decline sufficiently fast at a certain rate as the distance increases.

Following Jenish and Prucha (2012), we first review the definition and some properties of

NED random fields.

Definition 1. For any random variable x, ||x||p = [E|x|p]1/p denotes its Lp−norm. Let

{xi,n, i ∈ Dn, n ≥ 1} and {ηi,n, i ∈ Dn, n ≥ 1} be two random fields, where the Dn satisfy

Assumption 1. Then, xi,n is called near epoch dependent on ηi,n if

sup
i,n
||xi,n − E(xi,n|=i,n(s))||p = di,nv(s)→ 0, as s→∞

where di (the NED scaling factors) is a sequence of positive constants (scale factors) and

v(s) (the NED coefficients) can be taken to be non-increasing without loss of generality.

=i,n(s) = σ(ηj,n : d(li, lj) ≤ s) is the σ field generated by the random variables ηj,n located

in the m-neighborhood of location i. xi,n is Lq− NED of size −ι if v(s) = O(s−ι−δ) for some

δ > 0. To give an intuition of the definition, the random field xi,n should be predictable enough,

once we condition on the m-neighborhood of the input process ηi,n. The forecast error declines

quickly as the conditioning set of input variables expands. The NED property is preserved

under summation, product, and Lipschitz transformations. The NED random field is uniform

if and only if supn supi di,n <∞, and it is called geometric if and only if v(s) = O(ρs) for some

0 < ρ < 1.

As in Xu and Lee (2015), we need the following moment conditions on the input process

in order to prove the NED properties of some variables.
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Assumption 6. sup1≤k≤K,i,nE|(xik,n)|2 <∞ and supi,nE|(εi,n)|2 <∞.

In what follows, we summarize the properties of the moments and the NED properties of

the latent and observed dependent variables.

Proposition 2. (a) Under Assumption 4, if sup1≤k≤K,i,nE|(xik,n)|p <∞ and supi,nE|(εi,n)|p <
∞, for some p ≥ 1, then {y∗i,n}ni=1 and {yi,n}ni=1 are uniformly Lp bounded.

(b) Under Assumptions 3–5(a) and 6, {y∗i,n}ni=1 and {yi,n}ni=1 are geometrically L2− NED

on η : ||yit−E(yit|=i,n(m))||2 ≤ Cζs/dc for some C > 0 that does not depend on i and n.

(b) Under Assumptions 3–5(b) and 6, {y∗i,n}ni=1 and {yi,n}ni=1 are L2−NED on η : ||yit −
E(yit|=i,n(m))||2 ≤ C/sα−d for some C > 0 that does not depend on i and n.

To prove consistency we also need the objective function to be an NED random field. This

result is summarized in the following proposition.

Proposition 3. Under Assumptions 1–6, the processes {∆yit},
{

Φ
(
S−1
i (λ)β′∆xi exp(l(Si, x))

)}
,

and
{(

∂Φi(θ,σ)
θ

)}
, are L2−NED on the process {ηit} of the same size as {y∗i,n}ni=1 and {yi,n}ni=1.

First-step estimation and consistency of SSNLLS estimator

In what follows, we establish the consistency of the nonparametric first-step estimator.

Here, we introduce some notation which will be used in imposing smoothness and compactness

conditions. For any k × 1 vector v = (v1, v2, . . . , vk)
′, let |v| =

∑k
i=1 vi. Let h(·) denote any

function on χ. We denote the |v|−th derivative of h(·) by

Dvh(x) =
∂|v|

∂xv11 , . . . , ∂x
vk
k

h(x).

In order to prove consistency, we consider q-times continuously differentiable functions with

finite Sobolev norm

||h||q,r,U =
∑
|v|≤q

(∫
U
|Dvh(x)|rdx

)1/r

. (10)

Let us define T q,r(U), 1 ≤ r < ∞, as the Sobolev space endowed with the above norm, and

let Cω denote the space of ω−times continuously differentiable functions on U .

The consistency of a finite-dimensional parameter estimator relies heavily on the uniform

consistency of the nonparametric estimator F̂ (·).
The uniform consistency of F̂ is based on the following conditions.
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Assumption 7. For some large finite B and q > 0, F ∈ S where

S = {F : ||F (·)||q,2,χ∗ ≤ B}

Assumption 8. η = {xit, εit}ni=1. {xit}, i = 1, ..., n, t = 1, 2, is a strictly stationary strongly

mixing process with α-mixing coefficient α(k, l, r) ≤ (k+l)cα̂(r), c > 0, α̂ s.t.
∑∞

r=1 r
d(c+1)−1α̂ <

∞. εit are i.i.d. random variables. xit and εit are independent.

Assumption 9. (a) The density of z, fi(z), is in Cω, with ω ≥ 1 + q.

(b) sup
n

sup
z∈Rk

| 1
n

∑n
i=1D

vfi(z)| <∞∀v with |v| ≤ ω .

Assumption 10. (b) F (z)fi(z) ∈ Cω, with ω ≥ 1 + q.

(c) sup
n

sup
x∈Rk

| 1
n

∑n
i=1D

v[F (z)fi(z)]| <∞∀v with |v| ≤ ω.

Assumption 11. (a)
∫
K(z)dz = 1,

∫
zvK(z)dz = 0 ∀ 1 ≤ |v| ≤ ω − 1,

∫
|zvK(z)dz| <

∞ ∀ |v| = ω. For each |v| ≤ q, DvK(z)→ 0 as ||z|| → ∞.

(b) DvK(z) is absolutely integrable and has a Fourier transform

Ψv(r) =

∫
exp(ir′z)DvK(z)dz

that satisfies
∫

(1 + ||r||) sup
b≥1
|Ψv(br)|dr <∞∀v ≤ q, where i is the imaginary unit.

Assumption 7 characterizes the set of nonparametric functions. We need to restrict this

set in order to obtain the stochastic equicontinuity of the moment functions in F . Assumption

8 characterizes the dependency structure of the input process and serves to provide the NED

properties of the objective function and the applicability of the weak LLN. Assumption 9

assumes that the regressors are continuous. This assumption can be relaxed to allow for mixed

discrete continuous regressors. Assumption 10 serves to quantify the rates of convergence of

the first-step estimator. Assumption 11 (a), requires bias-reducing kernels in order to obtain

a proper rate of convergence. Assumption 11 (b) is a technical condition used to prove the

following proposition. Recall that k in the following proposition is the dimension of the x and

|v| is the degree of smoothness of F (·).

Proposition 4. Under Assumptions 7 and 12 together with the Assumptions 3 and 8, as

n → ∞ we have that supχ||Dvσ̂ − Dvσ0|| = Op(n
−ι/(2ι+d)h

−k−|v|−d/(2ι+d)
n ) + Op(h

ω−|v|
n ), for

|v| ≤ q, provided that the R.H.S of the equality is op(1).

Proposition 4 establishes the consistency of the first-step nonparametric estimator in Equa-

tion (7). See Theorem 1 in Jenish (2014) for a detailed proof. Thus, the convergence is slower,
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the stronger is the dependence (ι) and the higher the dimension of the lattice (d). As in

Jenish (2014), to ensure uniform convergence of the first-step estimator, we use the following

assumption.

Assumption 12. The data-dependent bandwidth parameter hn = cn−γ, with c > 0 and 0 <

γ < ι/[(2ι + d)(k + q) + d] where ι is the rate of decay of the NED coefficient of the process

{∆yi}ni=1.

Assumption 12 is not restrictive for most application. For example, in Proposition 2 (b),

ι is equal to α − d. If we set the dimension of the lattice d = 2, α = 3, k = 1, and q = 3,

we have that γ must be between 0 and roughly 0.06. We need other assumptions in order to

derive the consistency of the SSNLLS estimator in Equation (9).

Assumption 13. Pr(∆yi = 1|x) = Φ
(
S−1
i (λ)β′∆xi exp(l(Si, x))

)
.

Assumption 14. There exists a function G(θ, σ) such that

lim
n→∞

1

n

n∑
i=1

E∆(Si, x)′ {[∆yi − Φi (θ, σ)]} ,

where ∆(Si, x) = E
(
∂Φi(θ,σ)

∂θ

)
and Φi(θ, σ) =

{[
Φ
(
S−1
i (λ)β′∆xi
σn(Si,x)

)]}
, uniformly over (θ, σ) ∈

Θ× S

Theorem 1. Under Assumptions 1–14, let

θ̂n = argmin
θ

Gn(θ, gn), (11)

where Gn(θ, gn) = 1
n

∑n
i=1 ξ(zi)

{
∆yi − Φ

[
S−1
i (λ)β′∆xi ĝn(Si, x)

]}2
and θ = (λ, β′)′. Then we

have θ̂ − θ0 = op(1).

The main motivation for the SSNLLS estimator proposed here is to consistently estimate

the choice probability function. Observe that, under Assumptions 1–14, the choice probabili-

ties Φi(θ̂, σ̂) are also consistently estimated. This is a crucial result in the present paper, which

fills a gap in the literature on the distribution-free estimation of binary choice SAR models

with unobserved heterogeneity.

4.2 Asymptotic Normality

In what follows, we give sufficient conditions for the asymptotic normality of the estimator in

(9). We maintain the previous assumptions, which imply consistency. Recall ω is defined in

Assumption 9.

12



Assumption 15. The data-dependent bandwidth parameter hn = cn−γ, with c > 0 and

[4ω]−1 < γ < min{ι/[(2ι+d)(k+q)+d], (2ι−d)/[4k(2ι+d)+4d]}. In addition, q > (pw+1)/2

for pw = dimMin and Min = (xit, yit).

Assumption 15 strengthens the bandwidth condition we needed for consistency. See Jenish

(2014) for an exhaustive discussion.

Assumption 16. (a) θ0 is in the interior of Θ0. Assumption 8 holds with α̂(r) s.t.
∑∞

r=1 r
d(c+1)−1α̂−1/2 <

∞,

(b)

S = lim
n→∞

1

n

n∑
i=1

n∑
s=1

E∆0(Ss, x)′ {[∆ys − Φs(θ0, σ0)]} {[∆yi − Φi(θ0, σ0)]}′∆0(Si, x),

exists and is positive definite,

H = lim
n→∞

1

n

n∑
i=1

E∆0(Si, x)′∆0(Si, x)

exists uniformly on (θ, σ) ∈ Θ×S and is nonsingular.

This assumption is used to identify the asymptotic variance–covariance matrix of the SSNLLS

estimator. It ensures the convergence of the Jacobian and covariance matrices of the sample

moments. The assumption on the mixing number is used to apply the central limit theorem

(CLT) to the Gi(θ0, σ0) used in the asymptotic normality proof, which exploits empirical

process theory.

Theorem 2. Under Assumptions 1–16, the NLLS estimator θ̂ satisfies
√
n(θ̂−θ0)

d→N(0, H−1SH−1).

The estimation of the asymptotic variance–covariance matrix should be straightforward

given the definition of H and S and substituting the matrices with the estimated sample

counterparts. Observe that we don’t provide a limiting distribution for the choice probability

functions. This estimator will only converge at the nonparametric rate of the scale function

estimator. We leave these topics for future research.

5 Monte Carlo Simulations

In order to evaluate the finite sample performance of the proposed estimators, we conducted

a Monte Carlo simulation. The data generating process (DGP) is

y∗it = λ0

n∑
j=1

wijy
∗
it + β′0xit + αi + εit, t = 1, 2, (12)

13



where yit = 1 if y∗it > 0 and zero otherwise. We set β0 = 1 in order to allow identification and

αi ∼ N(0, 1). In this experiment, we consider three designs, corresponding to three different

distributions of εit:

1. εit ∼ normal, median 0, variance 1.

2. εit ∼ uniform, median 0, variance 1.

3. εit = 0.25(1 + x2
1it)vit, vit ∼ logistic, median 0, variance 1.

Borrowing from Qu and Lee (2012), we construct the row-stochastic nearest neighbor

spatial weight matrix Wn using Lesage’s econometrics toolbox. In practice, we generate two

random vectors of coordinates which serves as the geographic location for each observation.

Then, we find the l nearest neighbors according to the spatial distance and we set wij = 1 for

these individuals and zero otherwise. Finally, we row-normalize Wn.

In the simulation, we compare three different estimators which are commonly used to

estimate binary choice SAR models with our semiparametric spatial NLLS estimator given

in (9). We refer to these four methods as Spatial Maximum Score (SMS), Spatial Smoothed

Maximum Score (SSMS), Spatial local NLLS (SLNLLS) and SSNLLS. The SMS is the spatial

version of the Maximum score proposed by Manski (1987). The SSMS is its smoothed version

as in Lei (2013). The SLNLLS is the spatial version of the Local Non-linear Least Squares

proposed in Khan (2013) and Blevins and Khan (2010). For the SSMS, SLNLLS and SSNLLS,

the bandwidth is selected according to Silverman’s rule of thumb: hn = 1.06 · ŝ ·n−1/5, where ŝ

is the sample standard deviation of yit. We also allow the strength of the spatial interactions

to differ, setting λ= 0.2 and 0.5 to investigate how the endogenous effects parameter affects

the estimates.

The setup of our simulations is as follows. The population size is set to 200, 500 and 1000

observations. We estimate model (12) 1,000 times with SMS, SSMS, SLNLLS and SSNLLS.

The control variable xit and the error terms are randomly generated for each replication.

Tables 1–3 report the empirical mean (Avg Point Estimation) and the root mean squared

errors (RMSE) of each estimator. For each value of the sample size n (n=200, 500 and 1000),

we show the performance of each estimator for low and medium strength spatial interactions

(λ= 0.2 and 0.5). Tables 1–3 are given in Appendix C.

Table 1 reports the performance of each estimator when the distribution of errors is normal.

Table 2 reports the performance of each estimator when the distribution of errors is uni-

form. Table 3 reports the perfomance of each estimator when the distribution of errors is

logistic and the errors are heteroskedastic.

The simulation results are summarized as follows.

1. The bias of the parameter estimators SSMS and SSNLLS is very small when the er-

rors have a normal or uniform distribution (designs 1 and 2). The magnitude of this
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bias slightly increases when the distribution of the errors is logistic and exhibits het-

erosckedasticity (design 3).

2. The bias of the estimators does not vary with the magnitude of the spatial interactions,

λ. It decreases with the sample size, n.

3. The root mean-squared error of the estimators SLNLLS and SSNLLS are systematically

greater than those of SMS and SSMS. While SLNLLS has a slow rate of convergence (see,

e.g. Khan, 2013), the variance of SSNLLS depends on the estimation of the first-step

parameters.

4. Table 1 shows that the RMSE of those estimators decreases as n increases. In contrast,

it increases as λ increases.
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6 Conclusions

In this paper we proposed a new distribution-free estimation procedure for heteroskedastic-

autocorrelated spatial binary response models in panel data settings. The SSNLLS estimator

permits estimating the choice probabilities. Conditions to prove the limiting distribution of

the regression coefficients estimator have been given. A simulation study showed that the

estimator performs adequately well in finite samples.

We leave for future research the limiting distribution theory for the (pointwise) choice

probability, and marginal effects estimators. Also it would be useful to explore other nonpara-

metric estimators for the scale function, such us series estimators, since they have the virtue

of being easy to implement.

To conclude, the SSNLLS estimator fills a gap in the literature of semiparametric estima-

tion of SAR binary choice models, being a procedure which allows estimating the response

probability, something which is useful for most policy purposes.
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Appendix A: Stochastic equicontinuity and functional

central limit results

In the following proofs we establish a stochastic equicontinuity criterion and a functional CLT

for NED random fields. These results are derived in Jenish (2014). Let G(·, ·) :M×S → R
be a real function indexed by an infinite-dimensional metric space S. We assume that for

each σ ∈ S, G(m,σ) is Borel measurable in m and that the family {G(·, σ)} belongs to the

Sobolev space T q,2(M) equipped with norm (10). Following Andrews (1991), we take the

pseudo-metric ρ on S to be

ρS = ||G(·, σ1)−G(·, σ2)||M =

(∫
M
|G(·, σ1)−G(·, σ2)|2dm

)1/2

and consider the empirical process vn(·) defined as

vn(σ) =
1√
n

n∑
i=1

[Gi(mi,n, σ)− E(Gi(mi,n, σ))] .

Definition 2. {vn(·), n ≥ 1} is uniformly stochastically equicontinuous iff for every ε > 0

and ε > 0, there exists a δ > 0 such that

lim sup
n→∞

P ∗

(
sup

σ1,σ2∈S:ρS(σ1,σ2)<δ

|vn(σ1)− vn(σ2)| > ε

)
< ε,

where P ∗ denotes P−outer probability.

Claim A.1. Suppose that the following conditions are met:

(a) M is an open bounded subset of Rp with minimally smooth boundary;

(b) writing p for Dim(mi,n), supσ∈S ||G(·, σ)||q,2,M <∞ for some integer q > (p+ 1)/2;

(c) {Min}is a M−valued random field that is L2-NED of size −d on {ηi,t, i ∈ Dn}, where

Dn satisfies Assumption 1, and the mixing coefficient of {ηi,t} satisfies α(k, l, r) ≤ (k +

l)cα̂(r), c > 0, α̂(r) s.t.
∑∞

r=1 r
d(c+1)−1α̂(r)1/2 <∞.

Then {vn(·), n ≥ 1} is uniformly stochastically equicontinuous and (S, ρ) is totally bounded.

Claim A.2. If the conditions of Claim A.1 and the following conditions are met,

(d) (G(m,σ)) satisfies for any m1, m2 ∈M : |G(m1, σ)−G(m2, σ)| ≤ C|m1−m2| for some

C <∞;
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(e) For any σ = (σ1, . . . , σp)
′ ∈ Sp and p ≥ 1, Sp(σ) = limn→∞E(vn(σ)vn(σ)′) exists and is

positive definite, where vn(σ) = (vn(σ1), . . . , vn(σp))
′,

then vn(·) converges weakly to a zero-mean Gaussian process with covariance function S(·, ·)
whose sample paths are uniformly continuous on (S, ρ) almost surely.
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Appendix B: Proofs

Lemma B.1. Under Assumptions 3–5(b), Γ ≡ |λ0| supn ||Wn||1 < ∞ and ||λl0|W l
n|||1 ≤

max(lN, 1)Γζ l−1, where |Wn| ≡ (|wij,n|)n×n.

Proof. See Lemma 1 in Xu and Lee (2015).

Proof of Proposition 2. (a) ||ai(β′xnt + εnt)||p ≤
∑n

j=1 aij,n||β′xjnt + εjnt||p <∞ by As-

sumption 4 which implies Lemma B.1. Thus, {y∗i,n}ni=1 is bounded.

Even though 1(·) is not differentiable, we can apply the mean value theorem of a convex

function (Wegge, 1974) since the indicator function of a convex set is a convex function.

Thus, we have y(·) : y1 − y2 = fDn [a1n(β′x1nt + ε1nt)− a2n(β′x2nt + ε2nt)], where fDn is a

diagonal matrix whose ith diagonal element is some subgradient of y(·) at some points

between a1n(β′x1nt + σ1(·)ε1nt) and a2n(β′x2nt + ε2nt). Observe that the subgradients of

y(·) are always between 0 and 1 and therefore, given the Lp boundness of {y∗i,n}ni=1, we

have that the R.H.S of the mean value equality is always Lp bounded.

(b) Following the proof of Proposition 1 in Jenish and Prucha (2012), we have

||yit − E(yit|=i,n(m))||2 ≤ sup
j,n
||β′xjnt + εjnt||2 sup

i,n

∑
j:d(i,j)>s

aij,n.

Under Assumption 5(a), by applying Proposition 1 (i) in Xu and Lee (2015), we have

sup
i,n

∑
j:d(i,j)>s

aij,n ≤ sup
i,n

∑
l=[s/dc]+1

ζ l ≥ (1− ζ)−1ζs/dc ,

which implies

||yit − E(yit|=i,n(s))||2 ≤ C0(1− ζ)−1ζs/dc .

Under Assumption 5(b), by applying Proposition 1 (ii) in Xu and Lee (2015), we have

sup
i,n

∑
j:d(i,j)>s

aij,n ≤ C1C22α(α− d)−1sd−α.

This implies

||yit − E(yit|=i,n(s))||2 ≤ C0C1C22α(α− d)−1/sα−d.

Finally, the NED properties {y∗i,n}ni=1 are obvious from {yi,n}ni=1.

Proof of Proposition 3. The NED of the process {∆yit} follows directly from Theorem

17.8 in Davidson (1994), which can also be applied under spatial dependence. We follow the
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strategy of Jenish (2014) to prove the NED of the process
{

Φ
(
S−1
i (λ)β′∆xi exp(l(Si, x))

)}
.

by Assumption 13, we have that E(∆yi|x) =
{

Φ
(
S−1
i (λ)β′∆xi exp(l(Si, x))

)}
. Thus, given

Assumptions 1–7, E(∆yi|x) is continuously differentiable in its arguments, and hence satis-

fies a Lipschitz condition in its arguments with a bounded Lipschitz coefficient. Then, by

Proposition 2 of Jenish and Prucha (2012), E(∆yi|x) is L2−NED of the same size as {y∗i,n}ni=1.

Similarly,
{(

∂Φi(θ,σ)
θ

)}
, is also L2−NED of the same size {y∗i,n}ni=1

Proof of Proposition 4. See Theorem 1 of Jenish (2014)

Lemma B.2. Under Assumptions 1–3, let us define our limiting objective function as

G(θ) = − 1

n
EGi(θ) = − 1

n
E

{[
∆yi − Φ

(
S−1
i (λ)β′∆xi
σn(S, xi)

)]2
}
.

Then G(θ0) > G(θ) for all θ = (λ, β) ∈ Λ×Rq, where β 6= β0 when λ = λ0.

Proof. Lei (2013) shows that the smoothed maximum score estimator for the SAR binary

choice model are identified in the Manski (1987) sense and that θ0 is the unique maximizer.

So, following Khan (2013), we observe that every maximum of this objective function, say

θ̃ and σ̃, must satisfy
S−1
i (λ)β̃′∆xi
σ̃n(S,xi)

=
S−1
i (λ0)β′0∆xi
σ0(S,xi)

by the strict monotonicity of Φ(·). Suppose

θ̃, σ̃ 6= θ0, σ0. Then by Assumptions 1 and 2, we have on a set of positive probability that

sign(S−1
i (λ0)β′0∆xi) 6= sign(S−1

i (λ)β̃′∆xi). Therefore
S−1
i (λ)β̃′∆xi
σ̃n(S,xi)

6= S−1
i (λ0)β′0∆xi
σ0(S,xi)

, given that

both scale functions are positive everywhere. Observe that if θ̃ = θ0, we have that σ̃ = σ0

since P (S−1
i (λ)β′∆xi = 0) = 0 by Assumption 2.

Proof of Theorem 1. We have to satisfy all the conditions C of Theorem A.1 of Andrews

(1994). In particular:

(a) There exists a function G(θ, σ) such that Ḡi
p→G(θ, σ), where

Ḡi =
1

n

n∑
i=1

∆(x)′ {[∆yi − Φi(θ, σ)]}

uniformly over (θ, σ) ∈ S.

Assumption (a) holds if

G(θ, σ) = lim
n→∞

1

n

n∑
i=1

E∆(x)′ {[∆yi − Φi(θ, σ)]} ,
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where ∆(x) =
(
∂Φi(θ,σ)

θ

)
and Φi(θ, σ) =

{[
Φ
(
S−1
i (λ)β′∆xi
σn(S,xi)

)]}
. By Proposition 3, {Ḡi}

is L2−NED of the same size as y. By Theorem 1 of Jenish and Prucha (2012),{Ḡi}
satisfies an LLN, that is for each (θ, σ) we have

∣∣∣∣Ḡi(θ, σ)− EḠi(θ, σ)

∣∣∣∣ p→ 0.

Next we have to show the this convergence holds uniformly over Θ× S. In order to do

this, it suffices, by the ULLN of Jenish and Prucha (2009), to show that (i) {Ḡi(θ, σ)}
is stochastically equicontinuous on Θ × S w.r.t. the pseudometric ρ1, and Θ × S, ρ1 is

totally bounded, where

ρ1((θa, σa), (θb, σb)) = ||θa − θb||+ sup
χ
|σa − σb|.

To this end, consider the following inequality.

|(yi − Φi1)2 − (yi − Φi2)2| = |(Φi1 − Φi2)(Φi1 + Φi2 − 2yi)| ≤

|(Φi1 − Φi2)(Φi1 + Φi2)| ≤ (13)

|(Φi1 − Φi2)2| (14)

(15)

Under Assumptions 1–7, we have by Proposition 3 that both
{

Φ
(
S−1
i (λ)β′∆xi exp(l(Si, x))

)}
,

and
{(

∂Φi(θ,σ)
θ

)}
, are L2 NED on the input process, and thus by the mean value ex-

pansion we can write

|(yi − Φi1)2 − (yi − Φi2)2| ≤ Cρ1((θa, σa), (θb, σb)),

for some C < ∞, which proves the stochastic ρ1−equicontinuity of {(yi − Φi1)2} on

Θ × S. Moreover, S is uniformly ρ2-continuous on χ, where ρ2 = sup
χ
|σa(z) − σb(z)|,

and S is equibounded on Θ× S. Then, by the Arzela–Ascoli theorem, (S, ρ2) is totally

bounded, and hence (S × Θ, ρ1) is also totally bounded given the compactness of Θ.

Thus, by the ULLN of Jenish and Prucha (2009),

sup
Θ×S

∣∣∣∣Ḡi(θ, σ)− EḠi(θ, σ)

∣∣∣∣ p→ 0.

Then, by Assumption , we have that
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sup
Θ×S

∣∣∣∣EḠi(θ, σ)−Gi(θ, σ)

∣∣∣∣ p→ 0,

and we also have

sup
Θ×S

∣∣∣∣Ḡi(θ, σ)−Gi(θ, σ)

∣∣∣∣ p→ 0.

It also follows that Gi(θ, σ) is uniformly ρ1-continuous on Θ × S, and by the total

boundedness of (S ×Θ, ρ1), that supΘ×S |Gi(θ, σ)| <∞.

(b) sup
θ∈Θ
||G(θ, σ̂)−G(θ, σ0)|| p→ 0 for some σ0 ∈ S, and P (σ̂ ∈ S)→ 1.

The first part of Assumption (b) holds by Proposition 4, because

sup
θ∈Θ
||G(θ, σ̂)−G(θ, σ0)|| ≤

sup
θ∈Θ

lim
n→∞

1

n

n∑
i=1

∫
||(∆̂(x)−∆0(x))||||Φi(θ, σ0)− Φi(θ, σ̂)||dFi(x) ≤

C

[
sup
θ∈Θ

E||Φi(θ, σ0)− Φi(θ, σ̂)||2
] 1

2

lim
n→∞

1

n

n∑
i=1

∫ [
||(∆̂(x)−∆0(x))||2dFi(x)

] 1
2 p→ 0.

We next show that P (σ̂ ∈ S)→ 1. By Proposition 4, we have that

||σ̂ − σ0||q,χ ≤
∑
|v|≤q

(∫
χ

|Dvσ̂ −Dvσ0|2dx
)1/2

≤ C
∑
|v|≤q

sup
χ
|Dvσ̂ −Dvσ0|2

p→ 0.

It then follows that

||σ̂||q,χ ≤ ||σ̂ − σ0||q,χ + ||σ0||q,χ ≤ op(1) +B.

Hence, P (||σ̂||q,χ ≤ B)→ 1 and the conclusion follows.

(c) d(G) is uniformly continuous on G ∈ {G ∈ < : G = G(θ, σ) for some θ ∈ Θ, σ ∈ S},
where d(G) = G′G/2 (see, Andrews, 1994).

Assumption C holds with d(G) = G′G/2 and a) given that supΘ×S |Gi(θ, σ)| < ∞.
Observe that by the uniform continuity of |G(θ, σ)| in (θ, σ), d(G(θ, σ0)) is continuous

on Θ.

(d) For every neighborhood Θ0(⊂ Θ) of θ0, inf
θ∈Θ/Θ0

d(G(θ, σ0)) > d(G(θ0, σ0)).

Assumption D holds with Θ compact, d(G(θ, σ0)) continuous on Θ and Lemma B.2.
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Proof of theorem 2. Let us define zi(θ) = S−1
i (λ)β′∆xili(S, xi). The estimator θ̂ satisfies

the following first order conditions:

Ḡi =
1

n

n∑
i=1

{[
∆yi − Φi(θ̂, σ̂)

]}
φ(θ̂, σ̂)

∂zi(θ)

∂θ
= op(1). (16)

Note that by assumption, Ḡi(θ, σ) is continuously differentiable in the interior of Θ, and θ0 ∈
the interior of Θ. Taking the mean value expansion of Ḡi(θ̂, σ̂) about θ0 yields

Ḡi(θ̂, σ̂) = Ḡi(θ0, σ̂) +
∂Ḡi(θ̄, σ̂)

∂θ
(θ̂ − θ0), (17)

where θ̄ is between θ̂ and θ0. Plugging equation (17) into (16) gives

√
n(θ̂ − θ0) = −Ḡi(θ0, σ̂)

[
∂Ḡi(θ̄, σ̂)

∂θ

]−1

+ oP (1). (18)

From Assumption 9(b), and arguments analogous to those in Theorem 1 (a) (by applying

Theorem 1 of Jenish and Prucha, 2012), the Hessian term ∂Ḡi(θ̄,σ̂)
∂θ

satisfies an ULLN. Therefore,
∂Ḡi(θ̄,σ̂)

∂θ

p→H. By applying Slutzky’s theorem, we have

√
n(θ̂ − θ0) = −H ′−1

√
nḠi(θ0, σ̂) + oP (1). (19)

Recall Gi(θ) =
{[

∆yi − Φ
(
S−1
i (λ)β′∆xi
σn(S,xi)

)]}
φ(θ̂, σ̂)∂zi(θ)

∂θ
.

Let

vn(σ) =
1√
n

n∑
i=1

[Gi(θ0, σ)− E(Gi(θ0, σ))] .

Then,
√
n(θ̂ − θ0) = −H−1′ v̂n −H−1′

√
nEḠi(θ0, σ̂) + oP (1).

We now show that
√
nEḠi(θ0, σ̂) = op(1).

From the definition of our moment condition, we have

∣∣∣∣ 1√
n

∑n
i=1 E[Gi(θ0, σ̂)]

∣∣∣∣ = 0∀σ, for

large n. Thus, the result follows.

Following Andrews (1994), we need

1√
n

n∑
i=1

[Gi(θ0, σ̂)− E(Gi(θ0, σ0))] = op(1). (20)

Given that, we have

1√
n

n∑
i=1

[Gi(θ0, σ̂)− E(Gi(θ0, σ0))] = vn(σ̂)− vn(σ0)−
√
nḠi(θ0, σ̂). (21)
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Therefore, Equation (20) holds if and only if the R.H.S. of Equation (21) is op(1).

Thus, it remains to show that vn(σ̂) − vn(σ0)
p→ 0. To this end, it suffices to show: (i)

P (σ̂ ∈ S) → 1 (already proven), (ii) ρn(σ̂, σ0)
p→ 0, and (iii) {vn(·), n ≥ 1} is stochastically

equicontinuous at σ0. The sufficiency of showing (i), (ii), and (iii) is because given any η and

ε > 0, there exists a δ > 0 such that

¯lim
n→∞

P (|vn(σ̂)− vn(σ0) | > η) ≤ (22)

¯lim
n→∞

P (|vn(σ̂)− vn(σ0) | > η, σ̂ ∈ S, ρn(σ̂, σ0) ≤ δ) + ¯lim
n→∞

P (σ̂ /∈ S or ρn(σ̂, σ0) > δ) ≤
¯lim

n→∞
P ∗( sup

σ∈S, ρn(σ̂,σ0)≤δ
|vn(σ̂)− vn(σ0) | > η) ≤ ε.

Here P* is the outer measure (see, e.g. Andrews, 1994b). To show (ii), observe that by

Assumption 4, G(·, θ0, σ) belongs to the Sobolev space T q,2(M) with norm of order q >

(KM + 1)/2, and by Theorem 1 in Jenish (2014),

ρn(σ̂, σ0) ≤ Leb1/2(M) sup
m∈M

|G(m, θ0, σ̂)−G(m, θ0, σ0)| p→ 0.

To establish (iii), we verify the assumptions of Claim A.1. Assumptions (a) and (c) of Claim

A.1 hold by Assumptions 3–5(a) or (b), 6, and Assumption 16. Now, by Assumption 7,

||G(·, θ0, σ)||q,2,M = sup
σ∈S

∑
|µ|≤q

||Dµ
mG(m, θ0, σ)||L2(M) <∞.

Thus, {vn(·), n ≥ 1} is stochastically equicontinuous at σ0. Lastly, we show vn(σ0)
d→N(0, S)

by verifying the assumptions of Claim A.2. Assumptions (a)–(d) of Claim A.2 have been

verified above. Assumption (e) of Claim A.2 for p = 1 holds by Assumption 16.

Therefore, our (element by element) mean value expansion becomes

√
n(θ̂ − θ0) = −H−1′(v̂n − vn(σ0) + vn(σ0))−H−1′

√
nEḠi(θ0, σ̂) + oP (1) =

√
n(θ̂ − θ0) = −H−1′op(1)−H−1′vn(σ0) + oP (1)

d→N(0, H−1′S(H−1′)′),

by the functional CLT in Claim A.2.
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Appendix C: Tables

Table 1: Design 1: normal distribution.

SMS SSMS SLNLLS SSNLLS

n=200

λ0 = 0.2 λ̂ 0.123 0.202 0.215 0.217
RMSE 0.679 0.317 0.418 0.615

λ0 = 0.4 λ̂ 0.470 0.420 0.417 0.436
RMSE 0.399 0.293 0.419 0.682

n=500

λ0 = 0.2 λ̂ 0.130 0.199 0.206 0.197
RMSE 0.356 0.300 0.205 0.398

λ0 = 0.4 λ̂ 0.350 0.440 0.402 0.412
RMSE 0.388 0.207 0.292 0.447

n=1000

λ0 = 0.2 λ̂ 0.143 0.193 0.178 0.164
RMSE 0.363 0.262 0.319 0.311

λ0 = 0.4 λ̂ 0.368 0.426 0.403 0.390
RMSE 0.277 0.160 0.226 0.342

Table 2: Design 2: uniform distribution

SMS SSMS SLNLLS SSNLLS

n=200

λ0 = 0.2 λ̂ 0.165 0.190 0.170 0.213
RMSE 0.380 0.368 0.451 0.558

λ0 = 0.4 λ̂ 0.599 0.439 0.466 0.454
RMSE 0.569 0.364 0.818 0.293

n=500

λ0 = 0.2 λ̂ 0.150 0.194 0.176 0.190
RMSE 0.332 0.208 0.355 0.351

λ0 = 0.4 λ̂ 0.596 0.428 0.431 0.400
RMSE 0.388 0.214 0.306 0.433

n=1000

λ0 = 0.2 λ̂ 0.230 0.201 0.171 0.198
RMSE 0.198 0.165 0.229 0.254

λ0 = 0.4 λ̂ 0.580 0.421 0.390 0.400
RMSE 0.277 0.166 0.228 0.356
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Table 3: Design 3: logistic distribution with heteroskedastic errors

SMS SSMS SLNLLS SSNLLS

n=200

λ0 = 0.2 λ̂ 0.233 0.238 0.240 0.305
RMSE 0.679 0.355 0.449 0.620

λ0 = 0.4 λ̂ 0.633 0.534 0.491 0.568
RMSE 0.669 0.357 0.620 1.257

n=500

λ0 = 0.2 λ̂ 0.245 0.267 0.256 0.235
RMSE 0.356 0.358 0.216 0.412

λ0 = 0.4 λ̂ 0.350 0.525 0.488 0.483
RMSE 0.588 0.237 0.363 0.488

n=1000

λ0 = 0.2 λ̂ 0.266 0.261 0.243 0.211
RMSE 0.363 0.228 0.164 0.328

λ0 = 0.4 λ̂ 0.543 0.491 0.432 0.381
RMSE 0.390 0.158 0.491 0.482
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