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Abstract

We study a class of games featuring payo¤ functions being par-

abolic cylinders where best reply functions are orthogonal and there-

fore the pure-strategy non-cooperative solution is attained as a Nash

equilibrium in dominant strategies. We prove that the resulting thresh-

old of the discount factor above which implicit collusion on the Pareto

frontier is stable in the in�nite supergames is independent of the num-

ber of players. This holds irrespective of whether punishment is based

on in�nite Nash reversion or one-shot stick-and-carrot strategy. We

outline two examples stemming from economic theory and one from

international relations.

JEL Codes: C73

Keywords: parabolic cylinder; supergame; folk theorem; implicit
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1 Introduction

In the theory of non-cooperative games, we are accustomed to think that

in�nite supergames with discounting may allow players to generate in�nitely

many equilibria which are Pareto-superior to the Nash equilibrium of the

stage game. This is the essential message of generations of folk theorems

(see, e.g., Fudenberg and Tirole, 1991, ch. 5). Moreover, the acquired wis-

dom holds that the stability of implicitly collusive paths is monotonically

decreasing in the number of players, the reason for this being that for any

given size of the pie to be split among players, the individual slice is itself

monotonically decreasing in the number of diners.

We shall show that this property is engendered by the presence of mul-

tiplicative e¤ects among players�strategic variables, in the absence of which

the stability criterion is indeed a pure number. To do so, we construct a

payo¤ function which takes the shape of a parabolic cylinder producing or-

thogonal best reply functions, thereby identifying a class of non-cooperative

games which are solvable in dominant strategies. Then, we characterize some

properties of such payo¤ function, to be used to investigate the outcome of

the in�nite supergame based on (i) in�nite Nash reversion (Friedman, 1971)

or (ii) one-shot stick-and-carrot punishments (Abreu, 1986), alternatively.

By doing so, we prove rather surprising results, namely, that

� the critical threshold of the discount factor above which implicit collu-
sion along the Pareto frontier is stable is independent of the number of

players in both cases (i-ii); and

� under (i) such threshold is twice as high as under (ii).

The straightforward implication of our results is that relying upon the

number of players to assess the stability of the Pareto-e¢ cient outcome may

not be a sound proposal. For example, if the game describes oligopolistic

interaction, an antitrust agency could be tempted to think that increasing
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the number of �rms in the industry may make collusion less likely. Our result

imply that this implication is not systematically reliable.

To corroborate the general analysis (Section 2), which is carried out with

no reference to any speci�c �eld of social sciences, we outline two examples

belonging to the theory of the �rm (Section 3) and the intersection between

economic geography and the theory of industrial organization (Section 4),

and one emerging from the theory of international relation (Section 5). Con-

cluding remarks are in Section 6.

2 The general case

Consider a supergame over discrete time t = 0; 1; 2; :::1; played by a �nite

set N = (2; 3; :::n) of agents. Each player i controls a single variable xi 2 R.
Each stage game is played noncooperatively under complete, symmetric and

imperfect information. All players discount the future at a common and

time-invariant discount factor � 2 (0; 1). In the whole paper, we con�ne our
attention to pure strategies.

Let the objective function of the i-th player be

vi = �x2i + �
X
j 6=i

xj + xi + " (1)

where f�; �; ; "g is a vector of real parameters. Depending on the sign of �,
player i faces either a maximum or a minimum problem. We will come back

later to the sign of f�; ; "g.
Note that vi is the equation of a parabolic cylinder in Rn, whose canonical

equation is vi = �x2i + �
P

j 6=i xj. In our case, the parabolic cylinder is

translated by xi + ".

An interesting property of (1) will become relevant in the ensuing analysis.

From the Theorema Egregium of Gauss (1827), we know that the Gaussian

curvature of any given surface does not modify by bending the surface itself

without stretching it. That is, the Gaussian curvature is determined by
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measuring angles, distances and their rates on the surface itself, with no

reference whatsoever to the speci�c way in which the surface is embedded

in the 3D Euclidean space. Hence, the Gaussian curvature is an intrinsic

invariant property of a surface. In Gauss�own words:

�Si super�cies curva in quamcumque aliam super�ciem explicatur, men-

sura curvaturae in singulis punctis invariata manet.�

The Gaussian curvature K of a surface f (xi; xj) is de�ned as the deter-

minant of the Hessian matrix of the function f (xi; xj) itself:1

K � det

2664
@2f (�)
@x2i

@2f (�)
@xi@xj

@2f (�)
@xj@xi

@2f (�)
@x2j

3775 = @2f (�)
@x2i

� @
2f (�)
@x2j

� @2f (�)
@xi@xj

� @
2f (�)

@xj@xi
(2)

If f (�) is a cylinder, then K = 0, because it can be �attened onto a plane

whose Gaussian curvature is zero. This property obviously extends to the

speci�c case in which f (�) is a parabolic cylinder, as (1).
The Gaussian curvature is no longer nil in presence of a multiplicative

e¤ect between xi and xj or when f (�) is non-linear in at least one of the
n� 1 xj�s.
In our model, since vi is additively separable w.r.t. the strategic variables

of all players, the extremal of vi is in correspondence of

xi = x� = � 

2�
(3)

for any vector of xj�s. This amounts to saying that reaction functions are

orthogonal to each other. At x�i ; the maximum or minimum of vi is

v�i = �
2

4�
+ �

X
j 6=i

xj + " (4)

for any vector of xj�s.

1For more, see, e.g., do Carmo (1976, chapter 3).
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Another relevant property of vi is the following. The gradient of vi is

rvi =
�
@vi
@x1

= �; :::
@vi
@xi�1

= �;
@vi
@xi

= 2�xi + ;
@vi
@xi+1

= �; :::
@vi
@xn

= �

�
(5)

which implies the following:

Lemma 1 If the objective function of player i is a parabolic cylinder, then,
for any xi, the e¤ect of a change in any xj on vi; for all j 6= i; is (a) constant

and (b) independent of n.

Notice that properties (a-b) do not generally hold true. For instance, if

player i�s objective function is

fi (xi; X�i) =

"
�� xi � �

X
j 6=i

xj � "

#
xi (6)

where X�i is the vector of all xj; j 6= i; then @fi (xi; X�i) =@xj = ��xi
and this, combined with the fact that the best reply function of i is x�i =�
�� �

P
j 6=i xj � "

�
= (2) ; makes @fi (xi; X�i) =@xj dependent on n. This

is because (6) generates a multiplicative e¤ect between xi and all of the

xj�s, which reveals, as noted above, that (6) is not a parabolic cylinder and

therefore its Gaussian curvature is not nil. This example illustrates that,

when the best replies are not orthogonal, each element of the gradient rvi
being a function of the numerosity of players, Lemma 1 stops holding true.

A direct implication of Lemma 1 is:2

Proposition 2 For any vector of pure strategies (xi; xj = xi + (n� 1) k`) ;
with ` = 1; 2; 3;

 ih =
vi (xi; xi + (n� 1) k3)� vi (xi; xi + (n� 1) k2)
vi (xi; xi + (n� 1) kh)� vi (xi; xi + (n� 1) k1)

=
k3 � k2
kh � k1

; h = 2; 3

2From Proposition 2 onwards, we follow the common practice of treating n as a con-

tinuous variable.
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and therefore
@ ih
@n

= 0:

Proof. Suppose player i picks any xi (which, in general, does not coincide
with the best reply x�, although it may). Then, imagine all players j 6= i

choose xj = xi+(n� 1) k; with k 2 R. Notice that xj = xi+(n� 1) k covers
the whole strategy space over the real axis, for any player j 6= i, by tuning

parameter k. Obviously, if k = 0, then xj = xi.

Player i�s payo¤ in correspondence of outcome (xi; xi + (n� 1) k) is

vi (xi; xi + (n� 1) k) = (�xi + )xi + � (n� 1) [xi + (n� 1) k] + " (7)

For any triple k1 6= k2 6= k3; we can de�ne the corresponding payo¤s to

player i as vi (xi; xi + (n� 1) k`) with ` = 1; 2; 3; respectively. This situation
is illustrated in Figure 1, where xi < x�:

Figure 1

6

-
0,0

xj

xi

x�

x�

xj � k1

xj � k2

xj � k3
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Now observe that the ratios

 i3 =
vi (xi; xi + (n� 1) k3)� vi (xi; xi + (n� 1) k2)
vi (xi; xi + (n� 1) k3)� vi (xi; xi + (n� 1) k1)

=
k3 � k2
k3 � k1

(8)

 i2 =
vi (xi; xi + (n� 1) k3)� vi (xi; xi + (n� 1) k2)
vi (xi; xi + (n� 1) k2)� vi (xi; xi + (n� 1) k1)

=
k3 � k2
k2 � k1

(9)

are both independent of the number of players.

One might wonder about the interest of the above analysis. The answer

lies in the understanding of  ih and its partial derivative w.r.t. the number

of players. The interpretation becomes evident as soon as one thinks back to

the critical threshold of the discount factor above which implicit collusion be-

comes sustainable in an in�nitely repeated game in which the time-invariant

payo¤ function takes the form speci�ed in (1).

To see this, consider the case in which player i sticks to his best reply,

i.e., xi = x� = �= (2�). If all other players choose k = 0 and thus play

xj = x� = �= (2�) ; the resulting outcome is the Nash equilibrium of the

stage game, yielding the symmetric payo¤

vN = "� 2

4�
� � (n� 1)

2�
(10)

where N stands for Nash. If instead all players collude along the frontier of

the collective payo¤ V =
Pn

i=1 vi, the symmetric strategy optimising V is

xC = �� (n� 1) + 
2�

(11)

where C mnemonics for collusion. The corresponding payo¤ is

vC =
4�"� � (n� 1) [� (n� 1) + 2]� 2

4�
(12)

The unilateral deviation from the collusive outcome takes place along (3) and

delivers

vD =
4�"� 2� (n� 1) [� (n� 1) + ]� 2

4�
(13)

in which D stands for deviation.
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As illustrated in Figure 2,

xj = bx = �� (n� 1) + 2
4�

(14)

univocally solves vi (x�; xj) = vC : That is, bx is the strategy that each of the
n�1 rivals should play in order to grant to player i the same payo¤ as under
collusion when player i himself sticks to his best reply. Using x�; xC and bx;
one can easily see that

x� � bx
x� � xC

=
1

2
(15)

which is a special case of the situation illustrated in Proposition 2, wherebx = x� � � (n� 1) = (4�) ; so that k = bk = ��= (4�) and xC = x� �
� (n� 1) = (2�) ; so that k = kC = ��= (2�).

Figure 2
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Now it is appropriate to recollect the rules of a supergame over an in�nite

horizon relying on Friedman�s (1971) grim trigger strategies, according to

which any deviation from the collusive path is followed by the in�nite Nash
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reversion. This implies that collusion is stable i¤

vC

1� �
� vD � �vN

1� �
(16)

that is, for all

� � vD � vC

vD � vN
� �F =

1

2
(17)

where subscript F mnemonics for Friedman. Therefore, if the triple of values

chosen for k is
�
k1 = 0; k2 = kC ; k3 = bk� ; then the ratio  i3 is nothing but

�F ; i.e., the critical level of the discount factor under a punishment based on

the in�nite Nash reversion.

Alternatively, if one-shot stick-and-carrot punishments (also termed as

optimal punishments) are used,3 as in Abreu (1986), the perpetual stability

of the collusive path is ensured i¤

vD � vC � �
�
vC � vOP

�
(18)

while the incentive compatibility constraint that must be satis�ed in order

for players to simultaneously adopt the optimal punishment is4

vD
�
xOP

�
� vOP � �

�
vC � vOP

�
(19)

where vOP is the payo¤ resulting from the symmetric adoption of the opti-

mal punishment xOP and vD
�
xOP

�
is the payo¤ produced by the optimal

unilateral deviation x� against the punishment. The system of inequalities

(18-19) has to be solved w.r.t. the unknowns � and xOP , yielding

� � vD � vC

vC � vOP
� �A =

1

4
(20)

3We con�ne ourselves to single-period optimal punishments. For the analysis of multi-

period optimal punishments, see Lambertini and Sasaki (2002).
4There exists a third constraint regarding the non-negativity of the continuation pay-

o¤. This must be satis�ed to ensure that players do not quit the supergame after an

initial deviation from collusion. We will explicitly take into account this constraint in the

remainder of the paper.
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where subscript A stands for Abreu, and xOP � [� (n� 1)� ] = (2�). Note

that the lower bound of xOP is x� + (n� 1) k when k = �= (2�) � kOP :

Accordingly,  i2 is �A, i.e., the lowest level of the discount factor stabilising

collusion under optimal one-shot punishments if the triple of values of k is�
k1 = �= (2�) ; k2 = kC ; k3 = bk�.
The interpretation of the property whereby @ ih=@n = 0; as from Propo-

sition 2, is therefore that in supergames where the payo¤ function is a par-

abolic cylinder, collusive stability does not depend on the number of players,

contrary to the acquired wisdom on the basis of which we are accustomed to

think that enlarging a cartel size amounts to destabilising it.

Figure 3
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x�
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C;P
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�
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��

Additionally, observe that the value of kOP generating the lower bound

of xOP is exactly equal to �kC :5 This implies that the two segments CN
5Hence, the position of C and P w.r.t. N depends on the sign of �=�, that determines

the direction along which vi increases along i�s best reply. This fact is re�ected in Figure
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and NP along the 45� line in Figure 3 have the same length, and therefore

CN=CP = NP=CP = 1=2; which explains why �F = 2�A. Properties (15)

and kOP = �kC follow from any cylinder (including a parabolic one) being

broadly de�ned in di¤erential geometry as any ruled surface spanned by a

parametric family of parallel lines.

The foregoing discussion boils down to the following:

Proposition 3 If the payo¤ function is a parabolic cylinder, then the stabil-
ity of implicit collusion in a supergame over an in�nite horizon is independent

of the number of players, under both Nash and optimal punishments. More-

over, the critical discount factor generated by the in�nite Nash reversion is

twice as high as that generated by one-shot stick-and-carrot punishments.

This prompts for an additional question, about the relevance of the class

of games featuring this property. We are about to provide three such exam-

ples by borrowing well established models from the theory of the �rm, from

a terrain where industrial organization and economic geography overlap, and

international relations. In all of these models, players act non cooperatively

over an in�nite time horizon.

3 Team production

As for the stage game, here we use a version of the model by Holmström

(1982), where the focus is the arising of moral hazard in teams. A set of n

agents is employed in a �rm whose output q is obtained through the pro-

duction function q = z
Pn

i=1

p
ei; where ei � 0 is agent i�s e¤ort and z is a

positive parameter. Each agent chooses ei to maximise utility ui = wi � cei;

where wi � 0 is wage and c is a positive parameter. The shape of ui reveals
constant work-aversion. The sharing rule is decided by the principal, unable

to observe each individual e¤ort. Hence, the principal sets wi = q=n for all

3, where C and P may exchange positions depending on the sign of �=�.
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q � q > 0; and wi = 0 otherwise (as in Groves, 1973). If indeed wi = q=n;

the individual utility writes

ui =
z
Pn

i=1

p
ei

n
� cei (21)

which is a a parabolic cylinder corresponding to (1), if one rede�nes xi =
p
ei: However, here the non-negativity of e¤orts entails that we con�ne our

attention to real and positive portion of the cylinder. Moreover, looking back

at (1), � = �c; � = z=n and  = " = 0.

The Nash equilibrium of the stage game is delivered by the solution of

the following system of �rst order conditions (FOCs):

@ui
@ei

=
z

2n
p
ei
� c = 0 (22)

whereby, e� = z2= (4c2n2) : The resulting payo¤ is uN = (2n� 1) z2= (4cn2).
The associated output is qN = z2= (2c).

In the context of this model, the collusive outcome is the Pareto-e¢ cient

solution, which is attained by imposing the a priori symmetry condition upon

e¤orts, ei = e for all i; and then maximising the generic ui w.r.t. e. Doing so,

one obtains eC = z2= (4c2) ; yielding uC = z2= (4c). The unilateral deviation

from eC takes place along the best reply (22), and is eD = e�: The resulting

payo¤ is uD = [1 + 2 (n� 1)n] z2= (4cn2).
If deviation is deterred via the in�nite Nash reversion as in Friedman

(1971), the Pareto-e¢ cient outcome is stable i¤

� � �F =
uD � uC

uD � uN
=
1

2
(23)

If instead the one-shot stick-and-carrot strategy is adopted, the utility level

in the punishment period is uOP = z
p
eOP �ceOP ; while the utility generated

by a unilateral deviation from the optimal punishment is

uD
�
eOP

�
=
z
hp

e� + (n� 1)
p
eOP

i
n

� ce�: (24)
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Solving the inequalities corresponding to (18-19), one obtains �A = 1=4 and

eOP � z2 (n� 2)2 = (4c2n2) :
As for the third constraint, the discounted �ow of payo¤s accruing to

each player from the symmetric punishment phase to doomsday must be

non-negative so as to prevent exit. That is,

uOP +
�uC

1� �
� 0 (25)

Using eC and the lower bound of eOP ; we can simplify the l.h.s. of (25) as

z2 (n2 � 4 + 4�) = [4cn2 (1� �)] ; which is strictly positive for all � 2 (0; 1)

and all n � 2. Hence, in this example, �F = 2�A = 1=2; as required by

Proposition 3.

Our reformulation of Holmström�s (1982) model illustrates that (i) the

Pareto-e¢ cient outcome can be sustained forever without implementing the

Groves mechanism, provided agents are su¢ ciently patient; and (ii) the crit-

ical threshold of the discount factor is independent of the team size.

4 Agglomeration, externalities and collusion

The acquired wisdom from both the IO literature (Tirole, 1988, pp. 247-48)

and policy reports (Ivaldi et al., 2003) is that high market concentration is

a facilitating factor for (tacit as well as explicit) collusion. In addition to

coordination being likely more di¢ cult in larger groups, the intuition that

the incentive to collusion shrinks with too many competitors is fairly simple:

�Since �rms must share the collusive pro�t, as the number of �rms in-

creases each �rm gets a lower share of the pie. This has two implications.

First, the gain from deviating increases for each �rm since, by undercutting

the collusive price, a �rm can steal market shares from all its competitors;

that is, having a smaller share each �rm would gain more from capturing the

entire market. Second, for each �rm the long-term bene�t of maintaining
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collusion is reduced, precisely because it gets a smaller share of the collusive

pro�t. Thus the short-run gain from deviation increases, while at the same

time the long-run bene�t of maintaining collusion is reduced. It is thus more

di¢ cult to prevent �rms from deviating.�(Ivaldi et al., 2003, p. 12)

The source of this property is the externality engendered by a negatively

sloped demand function, as it transpires from the above quotation. Hence, a

priori, one might be induced to conjecture that, if market price is exogenously

given for some reasons, this property stops holding and collusion becomes

altogether impossible. We are about to show that such conjecture may be

falsi�ed if an industry features some other admissible type of externality.

Consider n identical �rms selling a homogeneous good whose market price

p > 0 is exogenous, because of either a perfectly competitive market or

regulatory intervention. Firm i�s output is qi; and production involves total

costs Ci = c
�
q2i � b

P
j 6=i qj

�
; with c > 0 and b 2 (0; 1= (n� 1)) : This cost

function captures the presence of a linear externality due, for instance, to

agglomeration phenomena as in Krugman (1991) and the whole literature on

agglomeration and economic geography.

Per-period individual pro�ts writes

�i = pqi � c

 
q2i � b

X
j 6=i

qj

!
(26)

Looking back at (1), in (26) we can recognize a parabolic cylinder where

� = �c, � = b� c;  = p and " = 0.

The best reply function, delivering the Nash equilibrium output, is q� =

p= (2c) : Nash equilibrium pro�ts are �N = p [p+ 2bc (n� 1)] = (4c). If �rms
collude along the frontier of industry pro�ts, each of them has to solve

max
qi
� =

nX
i=1

�i (27)

whereby the individually optimal collusive output is qC = [p+ bc (n� 1)] = (2c)
and the corresponding share of cartel pro�ts is �C = [p+ bc (n� 1)]2 = (4c).
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The unilateral deviation q� from collusion delivers

�D =
p [p+ 2bc (n� 1)] + 2b2c2 (n� 1)2

4c
(28)

If the supergame relies on Friedman�s (1971) grim trigger strategies, the

critical level of the discount factor is

�F =
�D � �C

�D � �N
=
1

2
(29)

If instead one-shot stick-and-carrot punishment is used, one has to solve the

following system of inequalities:

�D � �C � �
�
�C � �OP

�
�D
�
qOP

�
� �C � �

�
�C � �OP

� (30)

w.r.t. � and qOP ; so as to obtain �A = 1=4 and qOP � [p� bc (n� 1)] = (2c) �
0 for all b 2 (0; 1= (n� 1)) since the pro�t margin on the �rst unit being
produced is p� c; which must be positive.

The continuation payo¤ is

�OP +
��C

1� �
=
p [p+ 2bc (n� 1)]� 3b2c2 (n� 1)2 + 4b2c2 (n� 1)2 �

4c (1� �)
(31)

and it must be non-negative to prevent �rms to quit the supergame after a

deviation from the collusive path. A su¢ cient condition for the expression

on the r.h.s. of (31) to be positive is

p [p+ 2bc (n� 1)]� 3b2c2 (n� 1)2 � 0 (32)

which is certainly true because the above inequality is met by all

b 2
�
0;

p

c (n� 1)

�
(33)

where p= [c (n� 1)] > 1= (n� 1) because p > c; as we already know.

As anticipated above, the presence of an externality makes collusive sta-

bility independent of cartel size. Therefore, an antitrust authority should
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keep an eye on these phenomena since agglomeration - if accompanied by

cost-reducing externalities traditionally associated with industrial districts -

might indeed neutralize the usual destabilising e¤ect of increasing industry

fragmentation on implicitly collusive behaviour.

5 Arms race vs disarmament

We consider a supergame among n � 2 countries, each of them endowed with
a given military capacity yielding a utility level u � 0.6 Country i chooses

ai 2 R, to be interpreted as increase in its military capacity if positive, or
disarmament if negative. In either direction, a change in the military endow-

ment involves a quadratic cost. The resulting utility function of country i

is

ui = u+ ai �
X
j 6=i

aj �
ba2i
2

(34)

where � = �b=2; � = �1;  = 1; " = u. The function (34) is concave and

single-peaked in ai and linearly decreasing in any other country�s investment.

The best reply function is a� = 1=b; yielding uN = u � (2n� 3) = (2b) :
The Pareto-e¢ cient strategy vector solving

max
ai

U =
nX
i=1

ui (35)

is identi�ed by ai = aC = (2� n) =b for all i. Note that aC � 0 for

all n � 2. That is, the collective agreement along the Pareto frontier

entails maintaining the status quo unaltered if there are only two pow-

ers, or e¤ective disarmament if there are more. The associated utility is

uC = u + (n� 2)2 = (2b) > uN . Deviating unilaterally from aC and playing

6The literature on arms races is too long to be exhaustively accounted for here. See

Shubik (1971); Powell (1990); and Zagare and Kilgour (2000) among many others.
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instead a� delivers the deviation utility

uD = u+
2n (n� 3) + 5

2b
> uC (36)

Using grim trigger strategies, the resulting critical threshold of the discount

factor is again �F = 1=2:

To evaluate the outcome of the supergame under the one-shot stick-and-

carrot punishment, one has to de�ne the punishment payo¤:

uOP = u�
aOP

�
2 (n� 1)� baOP

�
2

(37)

and the utility generated by a unilateral deviation from the punishment along

a�:

uD
�
aOP

�
= u� (n� 1) aOP + 1

2b
(38)

Then, solving
uD � uC � �

�
uC � uOP

�
uD
�
aOP

�
� uC � �

�
uC � uOP

� (39)

one obtains aOP � n=b and �A = 1=4. As for the non-negativity constraint

on the continuation payo¤, it is met by all

u � 2n (n� 1)� 1
2b

(40)

It is noteworthy that the optimal one-shot punishment describes an intense

arms race taking place in a single period. Moreover, con�rming the property

highlighted in Section 2, a� � aC = (n� 1) =b = aOP � a�.

6 Concluding remarks

We have shown that when payo¤ functions are parabolic cylinders, the sta-

bility of implicit collusion does not depend on the number of players. Fairly

natural applications of our results extend to many issues in industrial eco-

nomics and have relevant implications for antitrust authorities. Additionally,
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our frame may accomodate issues pertaining to international relations and

possibly also others in di¤erent �elds of social sciences, with equally relevant

implications.
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