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Abstract

This paper o¤ers an overview of the literature discussing oligopoly games in

which polluti ng emissions are generated by the supply of goods requiring a

natural resource as an input. An analytical summary of the main features of

the interplay between pollution and resource extraction is then given using

a di¤erential game based on the Cournot oligopoly model, in which (i) the

bearings on resource preservation of Pigouvian tax rate tailored on emissions

are singled out and (ii) the issue of the optimal number of �rms in the

commons is also addressed.

Keywords: pollution, commons, natural resources, green R&D, emission

taxation, di¤erential games
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1 Introduction

More often than not, the economic theory of natural resources and the en-

vironment treats the environmental impact of production/consumption and

resource extraction separately. Of course this facilitates the analysis of each

of these issues in isolation, but leaves aside the circular nature of the overall

problem by overlooking the feedback e¤ects between the two sides of what is

in fact a single coin. The interplay I am referring to becomes self evident as

soon as one thinks about the fact that, for more than two and a half centuries

since the beginning of the industrial revolution, the modern economic sys-

tems we are acquainted with have consistently relied on fossil energy sources

which are by nature brown and non-renewable to sustain the growth rates

of consumption and GDP. This twofold pressure exerted on resources and

the environment is compromising the sustainability of economic growth as

we know it, as well as the ecosystem�s capability to absorb and neutralise

greenhouse gases (GHG), leaving no great expectations as for the welfare

of generations still to be born, in absence of drastic changes in the nature

and impact of productive technologies. The picture is made even gloomier

by the possibility of the so-called green paradox looming through the veil

of an uncertain future, i.e., the possibility that boosting policy incentives to

accelerate the introduction of clean technologies causes a higher extraction

rate of fossil fuels, thereby intensifying global warming.1

Here, I am setting out to summarise the extant discussion on the in-

terplay between resource extraction and polluting emissions in static and

dynamic oligopoly games. Several surveys are already available in this area

(see Jørgensen et al., 2010; Long, 2010; and Lambertini, 2013, iter alia).

Hence, after outlining the essential features of the problem at hand in this

1See Sinn (2012) and the related debate (Eichner and Pethig, 2011; Acemoglu et al.,

2012; Grafton et al., 2012; Smulders et al., 2012; van der Ploeg and Withagen, 2012;

Winter, 2014, inter alia).
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introduction, I will o¤er an overview of the related literature and a dynamic

model describing the role of industry structure in a di¤erential game in which

pro�t-maximising �rms (i) exploit a common pool resource to supply a con-

sumption good which (ii) pollutes the environment, while (iii) the government

adopts an emission tax to stimulate �rms�investments in green technologies,

and (iv) may regulate the �rms�access to the common pool resource (or the

industry).

To grasp the essence of the impact of the intensity of competition or

industry structure on the environment, it is su¢ cient to brie�y dwell upon

the usual interpretation we are used to give to competition versus market

power, and then contrast it with the consequences we may expect to emerge

from increasing competition in a setup where the environmental consequences

of production and/or consumption are duly accounted for. Any increase in

competition lowers prices and expands output levels, thereby lowering �rms�

pro�ts and enhancing consumer surplus. All of this can be summarised under

the label of price e¤ect. However, any output expansion associated to the

price e¤ect intensi�es the pressure on natural resources (accelerating their

extraction) and the environment (increasing GHG emissions, for any given

set of technologies in use). This is the external e¤ect. Our appraisal of the

pros and cons of modifying the number of �rms in an industry boils down to

the balance between these two e¤ects, and the relative weights we attribute

to the components of the welfare function. It is then immediate to infer that

the regulation of GHG emissions and resource extraction and its interplay

with industry structure and R&D incentives have simultaneously to do with

the tragedy of commons (Gordon, 1954; Hardin, 1968), market integration

(or, international trade and globalization), and growth.2

2In the remainder, I will not discuss the literature on the link between resource extrac-

tion, environmental externalities and growth as this issue stretches well beyond the scope

of the present paper. To this regard, see Schou (2000); Copeland and Taylor (2004); Hart
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2 Related literature

The core problem that has generated a major stream of research on the

interplay between resource extraction, the environmental consequences of

production and the possibility of regulating either one or both can be traced

back to the idea that those entitled to appropriate the rent generated by

natural resources could be a¤ected by carbon taxes allowing governments to

reap some of that rent. Unsurprisingly, oligopolistic interaction has not been

considered as a fundamental ingredient in modelling this issue. In fact, the

backbone of the dynamic analysis carried out on this leitmotiv (Markusen,

1975; Sinclair, 1992, 1994; Ulph and Ulph, 1994; Wirl, 1994; 1995; Hoel

and Kverndokk, 1996; Tahvonen, 1996; Rubio and Escriche, 2001) focusses

on monopolistic extraction, where this single agent is a cartel (say, OPEC).

The resulting discussion can indeed be summarised in a simple model, where

accumulated extraction is the only state variable measuring at the same time

the stock of pollution at every instant. Hence, one could equivalently think

of a situation in which extraction is being taxed. This level of approximation

is indeed admissible and even sensible if the decay rate of pollution is very

small or, as is currently being stressed by IPCC and several other sources,3

the planets�capability of absorbing and neutralising emission is compromised.

The game takes place between an importing country and a monopolistic

seller holding the property rights on a brown resource (say, a fossil fuel).

The resource stock at time t is X (t) while the extraction rate is determined

by the following instantaneous demand function expressed by the importing

country:

Q (t) = max f0; a� p (t)� � (t)g (1)

(2004); Grimaud and Rougé (2005); Hartman and Kwon (2005); Bartz and Kelly (2008);

and Itaya (2008).
3See IPCC (2007), Le Quéré et al. (2007, 2009) and Stern (2007, 2009).
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where a is a positive constant measuring the choke price, p (t) is the price set

by the foreign monopolist, and � (t) is the tax rate applied onto the resource

by the importing country�s government. For all a > p (t) + � (t) ; the tax

revenue is R (t) = � (t)Q (t) and consumer surplus is CS (t) = Q2 (t) =2:

The stock externality is D (t) = S2 (t) ; whose dynamics is

�
S = Q (t) = a� p (t)� � (t) (2)

where the decay rate is nil and therefore the environmental damage is irre-

versible.

The tax revenue is being redistributed to the citizens of the importing

country, whose instantaneous welfare function is therefore de�ned as follows:

SW (t) = CS (t) +R (t)�D (t) (3)

so that the problem of the government is

max
�(t)

Z 1

0

SW (t) e��tdt (4)

under the constraints posed by the state equation (3) and the initial condition

S (0) � 0.
The monopolistic seller�s objective consists in solving the following prob-

lem:

max
p(t)

Z 1

0

[p (t)� cS (t)] [a� p (t)� � (t)] e��tdt (5)

under the same set of constraints. It is worth observing that, in (5), the

shape of the extraction cost is determined by the fact that, in equilibrium, the

resource consumption is necessarily equal to its extraction rate. Moreover,

as a result, cumulative emissions must correspond to cumulative extractions.

Solving this game under imperfect information (i.e., assuming simulta-

neous moves), Wirl (1994, 1995) shows that the outcome of linear feedback

strategies Pareto-dominates that generated by non-linear strategies. Tahvo-

nen (1996) extends the analysis to the case of Stackelberg play, with the
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exporting cartel taking the leader�s role, and shows that the optimal Pigou-

vian tax rate is higher that the rate emerging at the Stackelberg equilibrium,

proving that the cartel may in fact design its price policy so as to soften the

tax pressure and the resulting revenues accruing to the importing country.

Rubio and Escriche (2001) revisit the model to shed some new light on the

dual role of the emission tax in correcting the externality and extracting a

portion of the rent from the supplier�s pockets, establishing that the Nash

equilibrium tax is neutral in the latter respect, in the sense that it corrects

the ine¢ ciency cause by the external e¤ect without a¤ecting the supplier�s

monopoly power.4

A related aspect concerns the intertemporal behaviour of the carbon tax

(Sinclair, 1994; Ulph and Ulph, 1994). Shall we expect to observe a monotone

relationship between the optimal carbon tax and the residual stock of the

natural resource being extracted? According to Sinclair (1992) and Ulph and

Ulph (1994), the optimal tax is indeed decreasing over time as the residual

resource stock also declines, provided that the percentage reduction in that

same stock determines the rate of growth of pollution. However, Ulph and

Ulph (1994) show that if instead one allows for a full-�edged picture in which

CO2 emissions are not measured by the extraction rate, then the optimal

carbon tax is initially increasing (when the stock of pollution is comparatively

small) and then decreasing (towards the end of the natural resource�s life).5

To the best of my knowledge, the extension of this model to allow for

proper (i.e., noncooperative) oligopolistic interaction has yet to be pursued.

What is available is an extension of the dynamic Cournot game with pol-

4Rubio and Escriche (2001) also show that the Stackelberg equilibrium in Tahvonen

(1996) coincides with the Nash one under feedback rules.
5A large literature is still �ourishing in this vein to explore several additional features

and extensions of the basic model. See Amundsen and Schöb (1999); Liski and Tahvonen

(2004); Wirl (2007); Daubanes and Grimaud (2010); Wei et al. (2012); Wirl (2012); and

Prieur et al. (2013).
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luting emissions and taxation proposed by Benchekroun and Long (1998) to

account for resource extraction (Dragone et al., 2013b) and green R&D ef-

forts (Lambertini and Leitmann, 2013). The outline of this analysis is the

task performed in the remainder of the paper.

As a preliminary step, I would like to draw your attention to the fact that

the foregoing synthesis of a still lively debate takes as a pivotal element the

environmental e¤ects of a traded resource whose exploitation is being taxed.

These features jointly suggest the presence of an extremely relevant link

between the environment and international trade, as mentioned above, and

an at least partial equivalence between carbon taxation and tari¤s or other

trade barriers (cf. Esty, 2001). Moreover, the strategic use of environmental

regulation (or lack thereof) may strongly a¤ect �rms�location decisions and

the �ows of FDIs, through the creation of pollution heavens (see Copeland

and Taylor, 2004; and Fullerton, 2006). Last but not least, free trade implies

an increase of the total number of �rms acting in the resulting integrated

market, modifying (realistically, increasing) the degree of pressure exerted

by any given industry on natural resources and the environment, all else

equal. This important aspect can be assessed in a model like the following

one, although international trade is not explicitly considered.6

3 The model

Before delving into the details of the speci�c model on which the dynamic

game I am about to illustrate is based, it is appropriate and useful to out-

line some general features of the problem posed to a policy maker aiming at

regulating the behaviour of a population of �rms in an industry where pro-

duction relies on the extraction of a natural resource and either production

6For more on the environmental implications of trade, see Copeland and Taylor (1995,

2003, 2005, 2009), Brander and Taylor (1997) and Neary (2006), among many others.
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or consumption (or both) entail the emission of pollutants. Let the relevant

social welfare function at any given time be

SW (q (n; �)) = � (q (n; �) ;k (n; �) ; T (q (n; �))) + CS (q (n; �)) (6)

+X (q (n; �) ; D (q (n; �) ;k (n; �))) + T (q (n; �))�D (q (n; �) ;k (n; �))

where q (n; �) is the vector of quantities chosen by �rms, and depends on the

number of �rms in the industry, n; as well as on the level of the emission

tax rate � set by the government to stimulate green R&D activities k (n; �) ;

and ultimately to diminish the environmental damage D (q (n; �) ;k (n; �)),

increasing in q (n; �) and decreasing in q (n; �). The remaining compo-

nents of social welfare are industry pro�ts �(q (n; �) ;k (n; �) ; T (q (n; �))) ;

consumer surplus CS (q (n; �)) ; the residual stock of the natural resource

X (q (n; �) ; D (q (n; �) ;k (n; �))) (which may well be negatively a¤ected by

the impact of the environmental damage) and the total revenue T (q (n; �))

generated by the emission tax.

In the light of (6), the government has two instruments, namely, the

emission tax � and market access (i.e., a limit posed on n) to regulate this

industry. The �rst tool may alternatively be tuned so as to (i) minimise

the environmental damage (in combination with green innovation), or (ii)

maximise social welfare as a whole, disregarding the size of each of its com-

ponents. The second tool - regulating market access - is traditionally viewed

as a means to attain the optimal number of �rms in the commons.7 This,

in turn, may consist either in maximising the residual stock of the resource

or social welfare (in which case the residual stock must be non negative).8

7See Cornes and Sandler (1983), Cornes, Mason and Sandler (1986), Mason, Sandler

and Cornes (1988), Mason and Polasky (1994, 1997) and Dragone et al. (2013b), inter

alia.
8If resource exploitation is not an issue (or it is simply disregarded), one can still

characterise the optimal number of �rms in terms of the balance between the environmental

damage and overall welfare, as in Katsoulacos and Xepapadeas (1995) and Fujiwara (2009).
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In the remainder, I will illustrate a di¤erential oligopoly game envisaging,

alternatively, di¤erent regulatory menus along these two dimensions.9

Consider a Cournot oligopoly with a population N = 1; 2; 3; :::n of single-

product homogeneous-good �rms interacting over continuous time t 2 [0;1) :
At any time t, the demand function is p (t) = a � Q (t) ; with Q (t) =Pn

i=1 qi (t) ; qi (t) being the instantaneous individual output of �rm i. The

demand function is based on the assumption that consumers do not inter-

nalise any external e¤ects, i.e., consumers in this market have not developed

any environmental awareness. All �rms use the same productive technol-

ogy, described by the cost function Ci (t) = cqi (t) : The production of the

�nal output involves an amount of polluting emissions si (t) generated by the

output of each �rm i and evolving according to the following dynamics:

�
si (t) =

dsi
dt
= vqi (t)� ki (t)� �si (t) ; (7)

where � > 0 is a constant decay rate and coe¢ cient v � 0 measures the

volume of CO2-equivalent emissions per unit of output. Variable ki (t) is

the instantaneous R&D e¤ort of �rm i. The production of the �nal good

requires the extraction of a natural resource X (t) whose stock evolves over

time according to the following equation:10

�
X (t) =

dX

dt
= b

nX
i=1

qi (t)� z
nX
i=1

si (t) + �X (t) (8)

where b > 0 is the technical coe¢ cient measuring the extraction rate per unit

of output, � > 0 is the natural rate of reproduction of the resource itself, and

9A similar but not entirely equivalent approach is adopted in Lambertini and Leitmann

(2013), where a dynamic oligopoly model is gradually enriched by inserting additional

elements such as emission taxation and green R&D one by one.
10I am not adopting speci�c assumptions concerning the positivity of the resource stock

(or, conversely, its possible depletion) on doomsday. For more on this, see Lambertini and

Mantovani (2014).
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parameter z measures the negative impact of polluting emission on the same

resource.

The instantaneous cost associated with the R&D activity is �i (t) =

wk2i (t) ; with w > 0, and �rm i�s emissions si (t) are taxed at the rate

� > 0 at every instant.11 Hence, �rm i�s instantaneous pro�ts are �i (t) =

[p (t)� c] qi (t)� �si (t)��i (t) ; and each �rm i has to set qi (t) and ki (t) so
as to maximise

�i =

Z 1

0

f[p (t)� c] qi (t)� �si (t)� �i (t)g e��tdt; (9)

under the set of state equations (7) and (8) and the initial conditions si (0) =

si0 > 0. Parameter � > 0 represents a constant discount rate common to all

�rms and the policy maker.

The instantaneous social welfare function is

SW (t) =
nX
i=1

�i (t) + CS (t) + �
nX
i=1

si (t) +X (t)� S2 (t) (10)

where CS (t) = Q2 (t) =2 is consumer surplus and aggregate emissions S (t) =Pn
i=1 si (t) cause the quadratic environmental damage S

2 (t) :

4 Equilibrium analysis

Henceforth, I will omit the time argument for simplicity, whenever possible.

Since the present game is a linear state one, the open-loop solution is sub-
11A tax bill de�ned as a linear function of polluting emissions is commonly used in static

models (see Chiou and Hu, 2001; and Poyago-Theotoky, 2007, inter alia). An alternative

way of modelling emission taxation consists in assuming that the tax rate is applied to

the industry-wide environmentl damage (see Karp and Livernois, 1994; Benchekroun and

Long, 1998; 2002; and Dragone et al., 2014, among many others). This is, however, highly

unrealistic for several reasons. The choice I make in the present model is in line with the

idea that, currently, accurate and veri�able data are indeed available at the individual

�rm�s level (e.g., this is the case in the car industry, where the amount of carbon emissions

per kilometer are declared by manufacturers on the websites).
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game perfect (or strongly time consistent) as it yields a degenerate feedback

equilibrium.12 The current-value Hamiltonian of �rm i is:

Hi = (p� c) qi � �si � �i + �ii
�
si +

X
j 6=i

�ij
�
sj + �i

�
X =

= (� �Q)qi � rk2i + �ii
�
si +

X
j 6=i

�ij
�
sj + �i

�
X (11)

where � � a� c > 0 denotes the market dimension.
The necessary conditions (FOCs) are:

@Hi

@qi
= � � 2qi �Q�i + v�ii � b�i = 0; (12)

where Q�i �
P

j 6=i qj, and

@Hi

@ki
= �2wki � �ii = 0; (13)

The adjoint equations read as follows:

�
�ii = (�+ �)�ii + � + z�i (14)

�
�i = (�� �)�i (15)

and
�
�ij = (�+ �)�ij + z�i (16)

From (15-16) we see that the solution �ij = �i = 0 is admissible at all times.

This means that, at any instant t, �rm i fully disregard the dynamics of

any rival�s emissions as well as the impact of extraction on the stock of the

natural resource.
12For more on the arising of strongly time consistent equilibria in di¤erential games

solved under open-loop information, see Fershtman (1987), Mehlmann (1988, ch. 4),

Dockner et al. (2000, ch. 7) and Cellini et al. (2005).
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Using �ij = �i = 0 and imposing symmetry on states and controls, I may

now proceed to use (13) to derive the control equation for the green R&D

e¤ort k; as follows:
�
k = �

�
�

2w
= �(�+ �)�+ �

2w
(17)

which, noting - again from (13) - that � = �2wk; can be rewritten as

�
k =

2w (�+ �) k � �
2w

(18)

The optimal output associated with the Cournot-Nash equilibrium (CN) at

any time t can instead be directly obtained by solving FOC (12):

qCN =
� � 2vwk
n+ 1

(19)

which obviously collapses onto the static Cournot-Nash output any green

R&D e¤ort being absent.

I am now in a position to rewrite the state equations as follows:

�
s =

v (� � 2vwk)
n+ 1

� k � �s

�
X =

b (� � 2vwk)n
n+ 1

� zns+ �X (t)

(20)

and then impose stationarity on the two states and the R&D control to obtain

the following single triple of steady state values:

k� =
�

2w (�+ �)
; s� =

2� (� + �) vw � � (2v2w + n+ 1)
2� (n+ 1) (� + �)w

(21)

X� =
n [2b� (� (� + �) + v�)w + (2� (� + �) vw � � (2v2w + n+ 1)) z]

2�� (n+ 1) (� + �)w

Before proceeding, it is worth noting that the expression of k� in (21) reveals

that green R&D e¤orts are observed at equilibrium if and only if � > 0;

which is a recurrent theme in static and dynamic models of environmental

11



R&D,13 and, more interestingly, that aggregate equilibrium R&D expendi-

ture is increasing monotonically in the number of �rms. In the light of the

long-standing querelle about the so called Schumpeterian hypothesis (Schum-

peter, 1942) on the direct relationship between innovation incentives and in-

dustry concentration, and the opposite position taken by Arrow (1962), one

may formulate the following claim:

Lemma 1 For any emission tax rate � ; the pattern of aggregate R&D e¤ort

at equilibrium is Arrovian.

The above Lemma conveys good news, insofar as increasing industry frag-

mentation induces the whole sector to intensify its aggregate investment in

environmental-friendly technologies, a fact which, in itself, at least partially

o¤sets the negative impact of the price e¤ect.

Using k�; the steady state output level rewrites as follows:

q� =
� (� + �)� v�
(n+ 1) (� + �)

(22)

There remains to observe that

s� > 08 � < � s =
2� (� + �) vw

2v2w + n+ 1
(23)

q� > 08 � < � q =
� (� + �)

v
(24)

with � s < � q in the whole admissible range of parameters. Hence, the fore-

going analysis proves:

Proposition 2 There exists a unique steady state point fs�; X�; k�; q�g ; with
s�; X�; k�; q� > 0 for all

� <
2� (� + �) vw

2v2w + n+ 1
:

13See Chiou and Hu (2001), Montero (2002), Requate and Unold (2003), Poyago-

Theotoky (2007), inter alia. A model in which green R&D is shown to arise also in

absence of any emission tax is in Dragone et al. (2013a). For a survey of the related

debate, see Lambertini (2013).
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As to the stability properties of the dynamic systems, the following can

be shown to hold:

Proposition 3 � > � is a su¢ cient condition for the steady state fs�; X�; k�; q�g
to be a saddle point equilibrium.

Proof. See the Appendix.

In plain words, this amounts to saying that if the natural rate of repro-

duction of the natural resource exceeds the discount rate applied by �rms to

future pro�ts (and by the policy maker to the welfare of future generations)

then the strategic game generates a stable equilibrium.

At this point, one may note that a policy maker may regulate this industry

using two instrument, � and n, for two di¤erent purposes. What if, e.g., the

emission tax is �ne tuned to eliminate emissions altogether, and entry is

limited in such a way that the resulting residual stock of the natural resource

is maximised? The �rst problem is obviously solved setting � = � s:14

Corollary 4 If

� = � s =
2� (� + �) vw

2v2w + n+ 1

then the steady state level of emissions is nil.

It is worth stressing that this happens thanks to the �rms�R&D e¤orts

directed at reducing emissions without compromising the positivity of indi-

vidual Cournot-Nash output levels. If the tax rate � = � s is indeed adopted,

the aggregate green R&D e¤ort at equilibrium is

K�j�=�s =
�nv

(2v2w + n+ 1)
(25)

14It is worth stressing that the result stated in Corollary 4 must be taken cum grano

salis, as it literally implies a violation of the second law of thermodynamics. What really

matters is that the model allows for a degree of environmental innovation su¢ cient to

ensure that the impact of the technology in use be lower than the natural rate of GHG

absorption.
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with
@ K�j�=�s
@n

=
2� (2v2w + 1) v

(2v2w + n+ 1)2
> 0; (26)

con�rming the result illustrated in Lemma 1.

The other aspect of the regulator�s problem refers indeed to identifying

the optimal number of �rms in the commons. One could think of an access fee

to the commons (say, F per �rm), which can be left unmodeled if the revenue

generated by this source is redistributed to consumers (as it is assumed to

be the case for the tax revenue). Relying on the above Corollary, it is easily

established that

@X�

@n

����
�=�s

=
� (b� � nvz)

�� (n+ 1) (2v2w + n+ 1)
= 0 (27)

in correspondence of

nX = max

�
1;
b�

vz

�
(28)

with
@2X�

@n2

����
�=�s

= � 2� (b� + vz)

�� (n+ 1)2 (2v2w + n+ 1)
< 0: (29)

This exercise establishes the following result:

Corollary 5 If z < b�=v; then the industry structure that maximises the

residual resource stock in steady state is nX = b�= (vz) > 1: Otherwise, the

residual stock is maximised under monopoly.

The consequences of choosing the pair (nX ; � s) on welfare are captured

by

sign

(
@SW �

@n

����
n=nX ;�=�s

)
= sign fz + vw (vz � b�)g (30)

@SW �

@�

����
n=nX ;�=�s

< 0 always. (31)

The above expressions imply that choosing n to maximise X� excludes the

attainment of welfare maximisation, except in the very special (and extremely

14



unlikely) case in which z+ vw (vz � b�) = 0: As an alternative, the regulator
may set n so as to maximise welfare, in combination with the choice of � s.

If so, we have:

sign
�
@SW �

@n

����
�=�s

�
= sign

�
�vzn2 + �n+	

	
(32)

where

� � b� � v
�
���vw + z

�
1 + 2v2w

��
(33)

and

	 � �
�
��
�
1 + v2w

�
+ b

�
1 + 2v2w

��
: (34)

It is easily ascertained that

@SW �

@n

����
n=0;�=�s

> 0 (35)

since 	 > 0; and

sign

(
@SW �

@n

����
n=1;�=�s

)
= sign

�
�
�
�� + 2b

�
1 + v2w

��
� 2vz

�
1 + v2w

�	
(36)

which is positive - for instance - if market size � is su¢ ciently large or z

(measuring the negative impact of emissions on the natural resource) is low

enough. If indeed the sign of (36) is positive, then

@SW �

@n

����
�=�s

= 0 in nSW =
�� +

p
�2 + 4vz	

2vz
(37)

with nSW > b�= (vz) i¤ z + vw (vz � b�) > 0. Taking into account (30), this
yields:

Proposition 6 Suppose z + vw (vz � b�) > 0. If so, then at n = nSW it is

necessarily true that @X�=@nj�=�s < 0:
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The above result raises one last question, namely, whether the industry

structure that maximises social welfare entails resource exhaustion or not.

The answer is swiftly delivered by substituting � s into X�; which can be

simpli�ed as follows:

X�j�=�s =
bn�

� (2v2w + n+ 1)
> 0 (38)

for all admissible values of n; obviously including nSW . This �nding produces

one last claim:

Corollary 7 The industry structure maximising the equilibrium level of so-

cial welfare, coupled with the emission tax rate minimising the environmental

impact of production, allows for the preservation of a strictly positive stock

of resource in steady state.

In a nutshell, what the above Corollary says is that the industry structure

that maximises welfare as a result of a compromise between expanding the

usual components of welfare (i.e., producer and consumer surplus) in absence

of externalities or when the latter are disregarded is compatible with the

minimization of polluting emissions (which is obvious, as � is set at � s) and

with the preservation of a positive volume of the natural resource stock.

5 Concluding remarks

The above model delivers a few positive messages, namely, that there exists

a tax policy which may minimise total emissions and simultaneously stim-

ulate green R&D whose volume is increasing in the number of �rms. How-

ever, allowing access to the commons to additional �rms may compromise

the preservation of the resource stock, which might bene�t from granting

monopoly power. This speci�c feature brings the discussion back to the ear-

lier model on which an entire stream of literature is based, where indeed
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monopoly was assumed as representative of cartels controlling natural re-

sources, in particular fossil fuels.

All of this apparently implies the following. Understanding the interplay

between pollution and resource exploitation and design the most e¢ cient

policy measures is, most probably, one of the most challenging task posed to

the economic theory of natural resources and the environment, as it requires

a thorough analysis of many equally important factors such as the intensity of

competition, market integration, a menu of policy instruments and technical

progress, all of which are put together in a single melting pot.

Appendix: Proof of Proposition 3

The stability properties of the model can be assessed relying on Dockner�s

(1985) method (as illustrated in Dockner and Feichtinger, 1991; for more, see

also Kemp et al., 1993).

From FOCs (12-13), one obtains the optimal output qCN in (19) and the

Nash equilibrium R&D e¤ort kN = �= (2w) : These values can be substituted

into (11) to write the maximised Hamiltonian HN (�; �; s;X), imposing ad-

ditionally the symmetry conditions si = s, �ii = � and �i = � for all i; as

well as �ij = 0 for all j 6= i. This procedure delivers the following expression:

HN (�; �; s;X) =
(� + v�� b�) [a� n (v�� b�)]

(n+ 1)2
� �s� �2

4w2
+ (a1)

�

�
v (� + v�� b�)

n+ 1
+
�

2w
� �s

�
+ �

�
n (� + v�� b�)

n+ 1

�
� nzs+ �X

Then, one can construct the following 4� 4 Jacobian matrix:

J =

"
HN
!& HN

!!

�HN
&& �I �HN

&!

#
(a2)

where each H�
��; �; � = &; !, is a 2� 2 matrix of second-order partial deriv-

atives, &� (s;X) is the state vector, ! � (�; �) is the costate vector and I is
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the 2� 2 identity matrix. Hence, (a2) rewrites as

J =

2666666664

�� 0
(n+ 1)2 + 4v2w

2 (n+ 1)2 v
�b (n

2 + 1) v2

(n+ 1)2

�nz � �b (n
2 + 1) v2

(n+ 1)2
2b2n2

(n+ 1)2

0 0 � + � nz

0 0 0 �� �

3777777775
(a3)

whose determinant is

�J = �� (� + �) (� � �) > 0 (a4)

for all � > � (and conversely).

Dockner�s K (see Dockner and Feichtinger, 1991, pp. 45-46) is identi�ed
by the following expression:

K = �M1 +�M2 + 2�M3 (a5)

where matrices M1; M2 and M3 are the following:

M1 =

2664
@
�
s

@s
= �� @

�
s

@�
=

v2

n+ 1
+
1

2w

@
�
�

@s
= 0

@
�
�

@�
= � + �

3775 (a6)

M2 =

26664
@
�
X

@X
= �

@
�
X

@�
=

b2n

n+ 1
@
�
�

@X
= 0

@
�
�

@�
= �� �

37775 (a7)

M3 =

26664
@
�
s

@X
= 0

@
�
s

@�
= � bv

n+ 1

@
�
�

@X
= 0

@
�
�

@�
= z

37775 (39)
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so that �M1 = �� (� + �) ; �M2 = � (�� �) and �M3 = 0: Accordingly,

expression (a5) simpli�es as follows:

K = �M1 +�M2 = �� (� + �) + � (�� �) (a9)

and � � � is a su¢ cient condition to ensure K < 0: Now, if (i) K < 0; (ii)

�J > 0 and (iii) K2=4 > �J jointly hold, then we have saddle point stability

with four real eigenvalues, two being positive and two being negative (cf.

Dockner and Feichtinger, 1991, Lemma 2, p. 35). The su¢ cient condition

for this result is indeed � > �.
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