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Abstract

We know from Gale and Shapley (1962) that every Two-Sided Matching
Game has a stable solution. It is also well-known that the number of stable
matchings increases with the number of agents on both sides.
In this paper, we propose two mechanisms, one of which is a variant of the

other, to the marriage problem. Our original mechanism implements the full set
of stable matchings for any preference pro�le. On the other hand, the variant
mechanism parititons the domain of preference pro�les into two; for one set, it
implements the full set of stable matchings like the original mechanism and for
the other, it ends up with a proper subset of the set of stable matchings. Besides,
for some pro�les with multi stability, it gives one of the optimal stable matchings.
Namely, the second mechanism coincides either with the original mechanism or it
is an improvement for one side; and in some pro�les, the algortihm induces Gale
and Shapley�s algorithm for some pro�les. Thus, it is a "middle" mechanism.
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1 Introduction

After Gale and Shapley (1962) described the well-known marriage problem,
a huge literature has accumulated mainly on two-sided matching games. In
terms of the interactions between agents of both sides, two types of frameworks
have been proposed so far for the matching markets; one is centralized and the
other is decentralized. In decentralized market form, the agents match with
their opponents on their own. In other words, they are free to match without
any third-party interference. As an example, we can give marriages in real life.
People meet with each other and decide to get married. In centralized markets,
there is a central authority, a clearinghouse or a social planner. This central
authority is responsible for the matching process. The agents on boths sides of
the market interact with this central agent and submit their preferences. Then,
the planner �nds by processing the pereferences of all agents via some algorithm
and announces the outcome matching. The college admissions in (especially)
some eastern countries could be given as an example.
One of the famous examples of centralized markets is the Turkish Student

Placements to the universities. High school graduates, who want to be enrolled
to a college program, every year take several nation-wide exams organized by
the central clearinghouse, ÖSYM, in Turkey. Those exams cover all the subjects
in high school curriculums. By assigning di¤erent weights to the questions in
di¤erent subjects, ÖSYM ranks all the students in many di¤erent categories,
i.e. in category A the value of a question in Mathematics is 1 point, History
0.8, ...etc; on the other hand, in category B, Geography 1 point, Chemistry 0.6
point, ...and so on. And, every program type, e.g. Economics, Mathematics,
...etc, belongs to one of those categories, i.e. all economics departments are
in category F and all mathematics departments are in category D. Knowing
their ranks in all categories, each student submits a list of a limited number of
schools to ÖSYM. (Currently, that number is 30). ÖSYM processes the school
lists together with the ranks of the students by running "an algorithm" and
announces the placements.
By omitting the resricting assumption on the school lists, Balinski and Sön-

mez (1999) showed that the algorithm used by ÖSYM in Turkey is equivalent
to College-Proposing Gale-Shapley�s algorithm, which had been theoretically
known as stable. In their paper, they claimed that the algorithm should be
converted into Student-Proposing Gale-Shapley for the sake of the students.
Introducing the restriction on the school lists, Do¼gan and Yuret (2010)

showed that the Turkish placement procedure has some ine¢ ciencies. Using
data in a �xed year, they showed that the outcome matching of the placements
was not stable and they emprically tried to estimate the ratio of the blocking
pairs. They stated that the algorithm is equivalent to the one by Gale and
Shapley, but because of the restrictions in the application of the algortihm, the
procedure generates blocking pairs. They claimed that the limit for the number
of schools should be increased to overcome this problem. (At the time of their
paper, the limit on the school lists was 18).
Given that the number of agents is too high in this market, the restriction on
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the school lists by the central o¢ ce is justi�able. Every year nearly two million
students take those exams and hundreds of thousands of them are assigned to
the universities.
This paper started with the aim to reduce, and eliminate if possible, the

ine¢ ciencies of this huge market in Turkey. For this purpose, we proposed
a mechanism. Our mechanism partially mimics this Turkish market. In our
market form, the role of the colleges is same as with the one in real life; they
"submit" their preferences over the students to the clearinghouse. On the other
hand, we have changed the game scenario for the students. Instead of submitting
their preferences, students choose their partners (school seats) themselves. So,
while the game for the schools is centralized, it is decentralized for the students.
Thus, we call this market as "semi-centralized".
We illustrate our model through college admission procedure. We call the

side of the schools as "the Restricters" and the side of students as "the Choosers".
We call the colleges as restricters, because they restrict the game of the other
side. And, since the students choose their partners, they are called the choosers.
In our model, the restricters are regarded as objects and their job is done

once they submit their preferences. The game is played among the choosers. In
the mechanism, the choosers act simultaneously at each rank in the preferences
of the restricters. Once a chooser accepts the o¤er of a resricter, they form a
pair and both of them are deleted from the pool. If he rejects the o¤er and
decides to wait his turn for another restricter, then he loses his chance for that
restricter forever.
In section 3, we describe an example on how this mechanism solves some

of the ine¢ ciency problems of Turkish market in real life, that is under incom-
plete information. When we introduce complete information to the model, our
mechanism implements the full set of stable matchings for any preference pro�le.
And then, we introduce a minor modi�cation to our mechanism. Basically,

when a chooser agent rejects an o¤er of a restricter, instead of losing him forever,
he is replaced to the end of the queue of the same restricter. We show that this
modi�cation generates a new "middle" mechanism. Brie�y, this new mechanism
partitions the full domain of the preference pro�les. In one of the set, it again
implements the full set of stable matchings and in the other, it implements a
proper subset of the set of stable matchings for the pro�le. Besides, for some
pro�les it ends up with the Chooser-Optimal stable matching, which could be got
by chooser proposing Gale-Shapley�s algorithm. Thus, this variant mechanism
is partially biased for one side of the market.
Full or partial implementation of stable matchings is not a new issue. In the

relevant literature, some mechanisms have been proposed so far rely on di¤er-
ent game scenarios (two-stages, multi-stages) for di¤erent equilibrium concepts
(undominated Nash equilibrium, subgame perfect Nash equilibrium) in di¤erent
market forms (centralized, decentralized).
Alcalde (1996) proposed a deferred acceptance algorithm similar to Gale-

Shapley, but in a now-or-never scenario. That is, if an agent receives an o¤er,
she can never receive an o¤er in the subsequent stages. In every period, in the
proposing stage each agent proposes to their best choice and the receiver agents
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pick the best o¤er. Contrary to our mechanism, in Alcalde�s mechanism, the
receivers are treated as the objects. Alcalde showed that in undominated Nash
equilibria, the mechanism ends up with the full set of stable matchings.
Alcalde et al. (1998) proposed a two-stage mechanism. In the �rst stage,

each �rm proposes a vector of salaries one for each worker. The �rms move
simultaneously. Once the salaries have been announced, each worker selects a
�rm. The decisions in the second stage determine the matching. This mech-
anism implements the full set of stable matchings in subgame perfect Nash
equilibrium.
Alcalde and Romero-Medina (2000) proposed a two-stage game for many-to-

one games. In the �rst stage, each student simultaneously sends a letter to at
most one college. In the second stage, each college selects its best set of students
among their candidates. Colleges�decisions determine the matching. Like in
Alcalde(1996), the receivers are the objects of the game. They show that this
mechanism implements the full set of stable matchings in subgame perfect Nash
equilibrium.
Blum, Roth and Rothblum (1997) proposed a deferred-acceptance process.

Their paper extends the theory of two-sided matching models in a way to be
applied to senior level and decentralized labor markets. This paper shows how a
market may re-gain stability after a stable matching is disrupted. They assume
there is uncertainty; each proposer only knows to whom she proposes and each
receiver-replier knows only his o¤ers. Also, the order of the proposers to make
o¤ers is randomized. They analyzed the Nash equilibria. In their paper, the
order of the proposers are randomized and they show that the outcome of the
mechanism mainly depends on the initial point of the game. While empty input
(no matching) results in a proposer-optimal matching (like Gale and Shapley),
starting with a non emtpy (disrupted) matching gives a decider-worst matching,
which is better than the initial matching for the deciders. They also show that
the decentralized and the centralized equilibria coincide.
Peleg (1997) proposed a one-stage game for the marriage problem. Agents on

both sides propose to at most one agent on the other side. If a man and a woman
propose each other, then they form a pair. Peleg showed that his mechanism
implements the full set of stable matchings by strong Nash equilibria. He also
showed that a simple extensive form game �nds the same set in subgame perfect
Nash equilibrium.
Roth and Xing (1997) proposed a deferred acceptance algortihm for the

market for clinical psychologists, which is decentralized. In their paper, the
"duration" of the decisions is emphasized. When the agents on one side of
the market propose, the other side can hold the o¤ers for a while so that they
can wait for better proposals safely. They show that the results coincide with
Gale-Shapley�s decentralized algortihm.
Diamantoudi et al. (2007) proposed an in�nite-horizon decentralized game

by extending the original Gale-Shapley model to a dynamic and non-cooperative
setting, where �rms and workers interact repeatedly over the years. Every period
consists of two stages. In the �rst stage, each �rm proposes to at most one
worker. In the second stage, active workers, who have no commitment, accept or
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reject the proposals. They studied the e¤ect of commitment in three scenarios,
i.e. no commitment, one-sided comitment and two-sided commitment. They
found that under no commitment, any stable matching can be yielded. Under
two-sided commitment, instability is observed. Under one-sided version, the
resulting instability is worse than any other stable matching for workers.
Pais (2008) proposed a multi-period decentralized market. The �rms are

randomly chosen to make o¤ers. Workers accept or reject the o¤ers. Once
rejected, a �rm does not propose to the same worker again. If even a worker
accepts an o¤er, he can stay in the market to wait for a better proposal. Firms
are also free to �re a worker to propose to some other workers. Hence, any period
may start with a matching or an empty matching. Starting with same matching
may not need to end up with the same outcome matching. They showed that
if the initial matching is empty, every stable matching can be reached as the
outcome of an ordinal equilibrium.
Niederle and Yariv (2009) proposed a multi-period mechanism for �rm-

worker one-to-one games. They restrict their attention to the preference pro�les
with unique stable matchings. Every period, the �rms can propose to a worker
if the �rm has no proposal held by another worker. Workers can accept, reject
or hold the o¤ers, in which case the worker is available also in the next pe-
riod. They concentrate on equilibria in weakly undominated strategies. They
showed that under complete information, the game ends up with (the only) sta-
ble matching. When the information is incomplete, the property of holding the
proposals and uniquness of stability help to end up with stability.
Haeringer and Wooders (2011) proposed a sequential mechanism for decen-

tralized markets and they studied the mechanism for four di¤erent scenarios.
In their game, the �rms propose and the workers accept or reject the o¤ers.
Their scenarios are based on whether �rms and workers acts simultaneously or
non-simultaneously. In their paper, they emphasized the e¤ect of commitment
on the ourcome matching. Under commitment, they show that regarless of how
the �rms play, if the workers act simultaneously, the outcome includes the full
set of stable matchings; but it also includes unstable solutions. If they act non-
simultaneously, the result is worker-optimal stable matching. When there is no
commitment, the result is always worker-optimal stable matching. Equilibrium
concept in this paper is subgame perfect Nash equilibrium.
Romero-Medina and Triossi (2013) proposed an extension of the model by

Alcalde and Romero-Medina (2000). Precisely, they extended the serial dictator-
ship. Students simultaneously propose to the colleges. And, then, the colleges
in a �xed order are allowed to accept their o¤ers in one single queue. They
show that this extended-serial dictatorship mechanism implements the full set
of stable matchings in subgame perfect Nash equilibrium. Here, the proposers�
(students) decisions are irreversable. They showed that if the decisions are not
irreversable, the unstable matchings could arise in equilibrium.
Among those papers, our paper is based on a semi-centralized framework

with a multi-stage game for one side where we �nd the outcome in subgame
perfect Nash equilibrium. In this perspective, it is similar to Romero-Medina
and Triossi (2013), but we allow multi-ordering; not restricted to one single
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queue. Another similar paper is Alcalde and Romero-Medina (2000), but their
game scenario is based on two stages. There is a similarity between our paper
and Alcalde (1998). But, unlike ours, his game scenario is based on a two-stage
game; one-stage for each side like Alcalde and Romero-Medina (2000). There
is also a similar work to our paper by Haeringer and Wooders (2011) in the
sense that there are multi-stages for non-proposers. But, we �x the preferences
of one side which makes them non-strategic players, namely "objects" in the
game. Their game consists of several two-stage games. But, in our paper, for
one side (restricters) it is a one-stage game and for the other side (choosers) it
is a multi-stage game and they play the game with each other; not against the
restricter agents on the other side. Since our models are di¤erent, we observe
the di¤erences in the outcomes. Our mechanism never ends up with only an
optimal stable matching for any side in the existence of multi stability; it does if
and only if there is only one stable matching for the preference pro�le. Besides,
since we work under complete information, our mechanism does not choose any
unstable matching in subgame perfect Nash equilibrium. Our model may also
seem as an extension of Niederle and Yariv (2009). But, we do not allow the
receiver agents to hold an o¤er. Our analysis also covers the unique stability
environments and so we verify their �ndings on the relationship with the no-
cycle property and stability uniqueness in our game scenario.
Finally, to our knowledge, having the property to divide the domain of

preference pro�les into two sets and having the characteristics of two di¤erent
mehanisms, and so being a middle mechanism between two, our variant mecha-
nism is the �rst in that sense in the literature. While the mechanism keeps the
symmetry between the sides of the market for some preference pro�les, it gen-
erates a bias for a prefered side for some pro�les. Thus, it is a partially biased
mechanism.
The paper is organized as follows. Section 2 summarizes some preliminary

notes. In Section 3, we present our mechanism and make an exhaustive analysis
of the game scenarios. In Section 4, we introduce our variant mechanism and
several examples to show the di¤erences from the original mechanism. Section
5 concludes.

2 Basic De�nitions and Notations

Let M = fm1; :::;mkg and W = fw1; :::; wlg be two non-empty, �nite and
disjoint sets of agents (e.g. men and women).
Each agent has a strict preference ordering R over the agents of the other

set; for example Rmi
is the preference ordering of mi 2 M over W . For any

wi; wj 2 W , wiRmiwj means mi prefers wi over wj . A Preference Pro�le
R = RM[W = (Ri)i2M[W is a set of preference orderings, one for each agent in
the model. Let < be the set of all preference pro�les.
rwj (mi) is the rank of agent mi 2 M in the preference ordering of agent

wj 2W . For example, rwj (mi) = k means that mi is the kth best man for wj .
A (two-sided) matching � : M [ W ! M [ W is an injection. For any
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mi 2 M and wj 2 W , �(mi) = wj means that wj is the match of mi and vice
versa. �(mi) = mi means that mi is single in the matching �. �M[W is the set
of all matchings between M and W .
Let �x; �y 2 �M[W be two matchings andmi 2M . We can rank matchings,

from the point view of agent mi, according to how mi ranks the agents he is
macthed with. If �x(mi)Rmi

�y(mi), then we say that for agent mi, �x Pareto
Dominates �y: If �x(mi) = �y(mi), then mi is indi¤erent between �x and
�y and we denote this by �xImi

�y. If @mi 2 M such that �y(mi)Rmi
�x(mi)

and 9mj 2 M such that �x(mj)Rmj
�y(mj), then we say that for the set of

men M , �x Pareto Dominates �y; that is �xRM�y. If 9mi 2 M such that
�y(mi)Rmi

�x(mi) and 9mj 2 M such that �x(mj)Rmj
�y(mj), then we say

that for the set of men M , �x and �y are incomparable.
For any preference pro�le R = RM[W = (Ri)i2M[W and a matching �, for

any mi 2M and wj 2W , (mi; wj) =2 � is called a blocking pair, if wjRmi
�(mi)

and miRwj�(wj). If there is no blocking pair for �, then we say � is stable;
otherwise, it is unstable.
Gale and Shapley (1962) proved that for any two-sided matching game R =

(Ri)i2M[W , there exists a matching � 2 �M[W which is stable for R.
A Matching Mechanism 
 is a procedure to select a matching from every

preference pro�le. Formally


 : < �! �M[W .

A Matching Mechanism 
 is called stable, if it always selects a stable match-
ing.

3 The Dynamic Mechanism

In this section, we propose a new dynamic mehanism to the marriage prob-
lem. With that mechanism, any stable matching could be chosen for any pref-
erence pro�le.
For a given matching game R = (Ri)i2M[W , we choose one side as the

Restricter, and the other side as the Chooser. We use the restricters�preferences
as the restrictions or the priorities on the chooser side. The choosers play a
game in a ranking order that the restricter side determine. In that game, the
information is complete; that is the rule of the game and the preference pro�le
is known by all agents. The mechanism could be applied also to incomplete
information cases. Here is how the mechanism works.
Without loss of generality, we assignM as the restricter andW as the chooser

sides throughout the paper. (Later we will show that set of the outcomes does
not depend on which set is the restricter or the chooser).
We start with the woman/women who are the best in view of some men; that

is we start with women such that fwi 2 W j9mj 2 M such that rmj
(wi) = 1g.

Those women are called to make a decision; either to say "yes" or "no" to men
for whom they are the best women. Some of them may be the best woman
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for more than one man. In this case, such a woman is asked to choose one of
those men. If a woman says "yes" to a man, then they form a pair and both
of them are deleted from the pro�le; if she says "no", she loses that man/men
forever and waits for her turn for other men. At the end of the �rst step, all
the choosers, women, are informed about the results/decisions of the step.
At any step/rank k, a woman either chooses a man to marry or refuses and

waits for her turn for another man. In that way, we construct our pairs.
First, we shall show that this process produces a matching from any pro�le.

Let wi 2 W be a chooser agent. At any step where she is the best woman for
any man, if wi decides to accept the o¤er of an agent mj 2 M , wi is deleted
from the pro�le and she forms the pair (wi;mj): If she never never accepts an
o¤er at any step, then she forms the pair (wi; wi): As we have said before, any
chooser says "no" to wait for her turn for a better restricter. In this model,
we explicitely assume that all the agents are acceptable for the agents on the
other side, and so they prefer being matched to some agent of the other side of
the matket rather than being single. If she never says "yes" to any man, she
remains single which contradicts to the rationality assumption. We will analyze
when and why a woman says "no" in the following sections. If a chooser agent
remains single, it is only because she does not receive any o¤er (when k < l if
wi 2W is not a favorite woman). These scenarios are the same for all wj 2W:
On the other hand, when any wj 2 W chooses an agent mi 2 M , he is deleted
from the pro�le, too. If mi is not choosen by any wj (when l < k if mi is
not a favorite man), then he forms the pair (mi;mi). This happens when all
of women are matched to some men before he calls for her "best(s)". So, any
agent i 2 M [W could be a member of one pair. Hence, the outcome of the
procedure 
 is a matching � 2 �M[W :
Now, we shall demostrate our mechanism with a simple example.

Example 1 Let M = fm1;m2;m3g and W = fw1; w2; w3g be two disjoint sets
who have the following preference pro�le R1.

R1 =

m1 m2 m3 w1 w2 w3
w2 w1 w2 m1 m3 m1

w1 w3 w3 m3 m2 m2

w3 w2 w1 m2 m1 m3

In the �rst round, w1 and w2 are asked to choose; w1 for m2 and w2 for
either m1 or m3. Since rw2(m3) = 1, w2 says "yes" to m3. They construct
(m3; w2) and both of them are deleted from the pro�le. As the information is
complete and so w1 knows that w2 prefers m3 over m1, she says "no" to m2.
In the second round, w1 and w3 are asked to choose; w1 for m1 and w3 for

m2. Since rw1(m1) = 1, w1 says "yes" to m1. They construct (m1; w1) and
both of them are deleted from the pro�le. Eventhough rw3(m1) = 1, since the
information is complete and so w3 knows that w1 chooses m1, she says "yes"
to m2.
Hence,using our mechanism 
 we get the matching � = f(m1; w1); (m2; w3); (m3; w2)g

which is the only stable matching for R1.
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Before we analyze the details of the �ow of the game under complete infor-
mation, we shall present a real life example to show that this mechanism is also
successful under incomplete information. Assume s is a student in Turkish col-
lege admission procedure. Currently, s is allowed to submit at most 30 schools
to the central clearing house. He wants to study Economics and there are more
than 100 Economics departments in Turkey. By assumption, student s has a
preference ordering over the set of all Economics departments.
In the current placement procedure, the school lists are submitted simul-

taneously and no student has any idea about the preference orderings of any
other student. Thus, s should choose his schools very carefully; either he may
not be placed to any school if the students who have better rankings than s �ll
the departments for which s submits, or he may be enrolled to a school worse
than some other he could get. And, any of those scenarios generates instability.
Thus, the problem is that which schools should s submit.
The mechanism we propose here solves the problem of s. Even though

he cannot observe the preference orderings of any other student, he is able to
observe the taken schools (seats) before his turn comes. When it is his turn,
he is perfectly aware of the currently available positions and he chooses the
best school among them. In such a case, student s is never a member of a
blocking pair. Hence, our mechanism solves some instability problems for some
preference pro�les. It may not solve ine¢ ciency problems (under incomplete
information) for some preference pro�les where a student is interested in more
than one program type and his turn for a worse type comes before the better
one, which we will analyze in the following section.

3.1 The Flow of the Mechanism

In this section, we will exhausatively examine the �ow of the game. All the
possible game scenarios that the choosers confront are based on three de�nitions
we give below.

De�nition 2 Let w 2 W be any chooser agent and mi;mj 2 M be any two
restricter agents with rmi

(w) > rmj
(w) and wiRmwj. If at the step k = rmj

(w)
non of mi and mj have been taken by other choosers yet, then we say the agent
w experiences a con�ict between agents mi and mj.

The de�nition says that for a chooser agent if the turn for a worse restricter
comes before any better one, given that non of those restricters have not been
taken yet, then the chooser agent experiences a con�ict; he may not be sure
about his decision, even under complete information.

De�nition 3 If a chooser agent w 2 W does not experience any con�ict, then
we say w has a smooth game.

In this paper, we pay our attention to the special case of con�icts.

De�nition 4 Let fm1; :::;mrg �M be a set of restricters and fw1; :::; wrg �W
be a set of choosers. If we have such a case;
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� w1Rm1w2, w2Rm2w3,...,wrRmrw1;

� m1Rw2m2,...,mr�1Rwrmr;mrRw1m1;

� rm1
(w1) = rm2

(w2) = ::: = rmr
(wr) = k (for at least one side),

� Each agent of fw1; :::; wrg and fm1; :::;mrg is present at step k.

Then, we say that agents in fw1; :::; wrg experience a cyclical con�ict with
each other for the set fm1; :::;mrg at step k.

Therefore, even though the preference pro�le is publicly known, if some
group of choosers experience a cyclical con�ict, they cannot have a precise de-
cisions, since the actions are not observable for the current step.
Blair (1988) showed that the set of stable matchings has the structure of a

partial order for any preference pro�le. Together with Gale and Shapley (1962)
and Knuth (1976), for a preference pro�le we know that;
i) If there is a unique stable matching, it is men and women optimal stable

matching.
ii) If there are two stable matchings, then one of them is men-optimal and

the other is women-optimal stable matchings.
iii) If there are three stable matchings, one of them is men-optimal; one

another is women-optimal; and the last is a middle stable matching.
iv) If there are more than three stable matchings, then we have a partial

order for both of the sides.
In the following pages of this section, we will construct the full structure of

the set of stable matchings through Claim 5 to Theorem 13 based on the game
scenarios in above de�nitions.

Claim 5 At any step k, any chooser agent can be a member of at most one
cyclical con�ict. In other words, he cannot have cyclical con�icts with two dis-
joint sets of choosers for two disjoint restricters.
Proof. The proof is straightforward. Let wi 2 W be any chooser being a
member of more than one cyclical con�ict at step k. Let mi;mj 2M be any two
restricters where rmi

(wi) = rmj
(wi) = k and each of these restricters is from

di¤erent cyclical con�icts that wi experiences. By assumption, all the agents
have strict preferences. So, we have either miRwimj or mjRwimi. Thus, wi
only considers the cycle with the better restricter among mi and mj and he does
not consider the worse agent.

Now, we will focus on the e¤ects of such cycles on the relationship between
any preference pro�le and the set of the stable matchings for that pro�le; ex.
the number of stable matchings for a given pro�le. Since this is the environment
that they work on, Niederle and Yariv (2009) states the following theorem (as a
proposition) in their paper. Here, we show this result under our game scenario.

Theorem 6 For any given preference pro�le R = (Ri)i2M[W , there exists only
a unique stable matching if and only if there exists no cyclical con�ict for the
choosers.

10



Proof. ((=). Suppose that there is no cyclical con�ict. We shall assume multi
stability for a preference pro�le and prove that this leads to a contradiction.
We know from Gale and Shapley that there exist optimum stable matchings
�M and �W for men and women, respectively, with �MRM�W and �WRW�M .
Since the preferences are strict, then 9wk; wl 2W and 9mi;mj 2M , such that

1. �M (mi) = wk, �M (mj) = wl, �W (mi) = wl, �W (m
�) = wk and �W (mj) =

w� for some m� 2M , w� 2W with

2. m�Rwkmi, miRwlmj , wkRmiwl, wlRmjw
�.

In that case, we may have two scenarios:
Scenario 1: Let A = fm 2 M jmRwlmig be the set of agents who are

better than agent mi according to agent wl. Since �M (mi) = wl, either all of
m 2 A have already been taken by some other ŵ 6= wl before the round where
wl chooses mi, or else wl could foresee that each m would be taken before
her turn. Hence, any m 2 A is not achievable for wl. On the other hand,
we have �W (mj) = wl. In that case, the fact that miRwlmj contradicts the
rationality of agent wl; while she could choose mi, she did not. This implies
that mi = mj ,which gives �M=�W = �, contradiction to the multi stability.
Scenario 2: Maintaining the assumptions on the rationality of agents and

multi stability, we have the following scenario. If we have stable matchings �M
and �W , using information in 2 above, we may have either of the followings;

1. w� = wk and m� = mj , that is the set fwl; wkg has a cyclical con�ict
for the set fmi;mjg so that the preference pro�le has such two stable
matchings, or

2. w� = w0 and m� = m0, that is there is a bigger cycle including wl; wk;mi

and mj . By iterative construction, we end up with the full cycle of all
agents.

Both of them contradict to the fact that there is no cycle. Hence, there is
only one stable matching.
(=)). For a pro�le R = (Ri)i2M[W , there exists only one stable matching

� 2 �M[W . And, let us assume there exists a cyclical con�ict between the
agents of W 0 = fw1; :::; wrg �W for the agentsM 0 = fm1; :::;mrg �M at step
k.
For each wi 2W 0 is in the cycle, any better restricters than the ones in the

cycle have either been taken or regarded as will be taken. For that reason, in
the matching � we cannot have any pair such that (mi; ŵ) where mi 2M 0 and
ŵ =2 W 0; because (mi; wj) would block the matching �, for some wj 2 W 0. For
that reason, in the matching �, 8mi 2 M 0 and 8wj 2 W 0, �(mi) 2 W 0 and
�(wj) 2M 0.
We shall assume that all choosers wj 2 W 0 say "yes" at step k. In such a

case, the matching �x would be stable since no pair blocks it; that is 8mi 2M 0

get better choosers in their own cycle, so no man admires any woman in the
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cycle. But, in that case, another matching �y would be stable where no agent
w 2 W 0 says "yes" at step k; in that situation 8wj 2 W 0, �y(wj)Rwj�x(wj).
Hence, in �y, 8wj 2 W 0 get their better restricters in their own cycle, so no
woman admires any man in the cycle. Hence, we have two stable matchings
which contradicts the single stable matching assumption. And, this argument
is same for any other cyclical con�icts.
With Theorem 6, we have showed that when there is a unique stable match-

ing for a preference pro�le, we do not have any cyclical con�ict for the choosers,
and vice versa. Our proof also showed that when there is a unique stable match-
ing, our mechanism �nds that matching. As we have a two-sided implication in
the theorem, we get a symmetry between both sides: if one side has no cyclical
con�ict, then there is a unique stable matching and if so, other side has no
cyclical con�ict. Then, in any scenario, we get the same matching.
Theorem 6 says that the reason for multi stability is the existence of cyclical

con�icts. The following example shows that when there are multiple stable
matchings for a given preference pro�le, if we change the roles, the set of agents
having cyclical con�icts need not be the same on both sides.

Example 7 Let M = fm1;m2;m3g and W = fw1; w2; w3g be the sets of men
and woman, with the following preference pro�le R2:

R2 =

m1 m2 m3 w1 w2 w3
w1 w2 w2 m3 m1 m3

w3 w1 w3 m2 m2 m1

w2 w3 w1 m1 m3 m2

There are two stable matchings for R2. When W is the chooser side, the sets
of agents in the cycle are fm1;m2g and fw1; w2g. On the other hand, when M
is the chooser side, the sets of agents in the cycle are fm1;m3g and fw2; w3g.

W-Chooser case M-Chooser case
m1 m2 m3 w1 w2 w3
w1 w2 w2 m3 m1 m3

w3 w1 w3 m2 m2 m1

w2 w3 w1 m1 m3 m2

m1 m2 m3 w1 w2 w3
w1 w2 w2 m3 m1 m3

w3 w1 w3 m2 m2 m1

w2 w3 w1 m1 m3 m2

We have seen that the existence of a cyclical con�ict generates two stable
matchings; one of them is constructed if all the choosers in the cycle say "yes" in
the �rst step and the second is created if all say "no". But, we cannot conclude
that every cycle generates two stable matchings.

De�nition 8 Let M and W be the sets of restricters and choosers, respectively.
Let W1;W2 �W be the set of the agents of two cycles. If W1\W2 = ;, then we
say that the cycles are independent. Otherwise, they are (inter) dependent.

From Claim 5, we know that any chooser agent cannot have cyclical con�icts
with two disjoint sets of choosers for two disjoint restricters at the same step of
the game; but he can be a member of another cycle at the same step step of the
game. In such a case, that restricter and the relative chooser are the common
agents of those two cycles.
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Proposition 9 Two (inter) dependent cycles generate three stable matchings.

Proof. Let M1;M2 � M and W1;W2 � W with M1 and W1 be the agents of
the cycle at step k and M2 and W2 be the agents of the cycle at step l: For
(inter) dependent cycles, we have two possible scenarios; either k = l or k 6= l.
Let us assume that for W1 if all say "yes" at step k, �1 is generated; if

nobody says "yes", �2 is generated. And, also we shall assume that for W2 if
all say "yes" at step l, �3 is generated; if nobody says "yes", �4 is generated.
Let w �W1 \W2 be a chooser agent of the both of the cycles.
The scenario k = l is trivial. We shall analyze the case k 6= l. Let mi 2M1

and mj 2 M2 such that rmi
(w) = k and rmj

(w) = l with (wolg) k < l. If
w (with all other agents in W1) says "no", they come to the cycle M1 �W1�s
consecutive step to l (here we explicitely assume l � k � 1). If w says "yes"
(with all other agents in W1) at step l, �2 is generated. But, this also means
that w says "yes" (with all other agents in W2) at step l, which is the �rst step
of the cycle M2 �W2, for which �3 is generated. Then �2 = �3.
The same argument works for the case k = l from which we end up with

�1 = �3: Hence, two (inter) dependent cycles generate three stable matchings.

From Proposition 9, the idea saying that "each cycle produces two stable
matchings" fails. We refer to the following preference pro�le R3 where k 6= l
and w1 is the common agent.

R3 =

m1 m2 m3 w1 w2 w3cw1 cw2 w2 m3 m1 m2cw2 cw1 w3 m2 m2 m1

w3 w3 w1 m1 m3 m3

For example, we may have four stable matchings from either two independent
cycles or three sequentially (inter) dependent cycles. Hence, there seems to be
no clear relationship between the number of cycles and the number of stable
matchings for a given pro�le R.
One more property of cyclical con�icts relates to the set of stable matchings.

Theorem 10 For any preference pro�le, there exist independent cyclical con-
�icts which occur at the same step k if and only there exist incomparable stable
matchings.

Proof. (=)).LetM andW be the sets of restricters and choosers , respectively,
and let M1;M2 � M and W1;W2 � W with M1 and W1 be the agents of the
one of the cycles and M2 and W2 be the agents of the other cycle.
We shall focus on the scenarios of those two cycles. Let us assume that at

step k, if the agents of M1 say "yes", they construct the couples C1, whereas if
nobody says "yes", they construct the couples C2. The same argument applies
to the agents ofM2 and they construct the couples C3 from "yes" at step k and
C4 from "no" at step k. Since the cycles are independent from each other, then
the couples constructed by the two cycles are di¤erent. The combinations of
those cycles give us four matchings: C1[C3 2 �1, C1[C4 2 �2, C2[C3 2 �3
and C2 [ C4 2 �4. From the de�nition of a cycle, we have
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1. C2RM1C1 and C4RM2C3,

2. C1RW1
C2 and C3RW2

C4.

Hence, from (1) we have �1RW�4 and �4RM�1. And, from (2), we �nd that
�2 and �3 are incomparable for both sides M and W .
((=). The proof of this direction is straight forward. Let �x and �y be

any two incomparable stable matchings for the pro�le R = (Ri)i2M[W with
M be the restricter and W be the chooser sides. From Theorem 6, we know
that the reason of multi stability is the existence of cyclical con�icts. Since
�x and �y are incomparable stable matchings, there are two sets M1 and M2

such that M1 = fmij�y(mi)Rmi
�x(mi)g and M2 = fmj j�x(mj)Rmj

�y(mj)g.
Since the interests of the agents in M1 and M2 are opposite, it is easy to show
that they are constructed from di¤erent cycles. If they were sequential cycles,
i.e. one of them comes at an earlier step of the game, there would not be any
con�icts between agents on the matchings, since the common bene�ts of a side
(the restricters in our analysis) decreases as we proceed on the rankings from
top to bottom. Hence, the cycles should occur at the same step. And, moreover,
while one of the matchings is generated from the �rst step of one of the cycles
and the second step of the other, for the other matching it is the opposite.
Now we shall give an example of incomparable stable matchings.

Example 11 (Roth and Sotomayor (1990), Example 2.17, page 37). Let M =
fm1;m2;m3;m4g and W = fw1; w2; w3; w4g be the sets of men as the restricter
and women as the chooser sides who have the following preference pro�le R4:

R4 =

m1 m2 m3 m4 w1 w2 w3 w4
w1 w2 w3 w4 cm4 cm3 fm2 fm1

w2 w1 w4 w3 cm3 cw4 fw1 fm2fw3 fw4 cw1 cw2 m2 m1 m4 m3fw4 fw3 cw2 cw1 m1 m2 m3 m4

�M[W has 24 matchings, 10 of which are stable for R4. Two of them are
�8 = f(m1; w3); (m2; w4); (m3; w2); (m4; w1)g and �9 = f(m1; w4); (m2; w3); (m3; w1); (m4; w2)g.
�8 is generated at the third step of the game if the agents of fw4; w3g and
fw2; w1g say "yes" and "no", respectively, and the opposite for �9. And, both
for M and W , �8 and �9 are incomparable.

Before we state and prove our main theorem, let us examine the following
simple example.

Example 12 Let M = fm1;m2g and W = fw1; w2g be the sets of men as the
restricter and women as the chooser sides who have the following preference
pro�le R5:

R5 =
m1 m2 w1 w2
w2 w1 m1 m2

w1 w2 m2 m1

For the sets M and W , the set of all the possible matchings is �M[W =
f�1; �2g where
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�1 = f(m1; w1); (m2; w2)g,
�2 = f(m1; w2); (m2; w1)g.

For pro�le R5, the set of stable matchings is f�1; �2g. If w2 says "yes"
to m1, then the best response of w1 would be "yes" to m2. Otherwise, we get
the couples � = f(m1; w2); (m2;m2); (w1; w1)g. And, if w2 says "no" to m1,
then the best response of w1 would be "no" to m2; otherwise w1 would miss
the chance to construct (w1;m1) which she prefers over (w1;m2). Hence, the
subgame perfect Nash Equilibrium (NE) is NE(w1; w2) = f(yes; yes); (no; no)g.
And, it is easy to show that the argument is same for any cyclical con�icts.

Theorem 13 If Nash Equilibria of the cycles are chosen, mechanism 
 imple-
ments the full set of stable matchings for any preference pro�le. In other words,
we always end up with one of the stable matchings for any pro�le.

Proof. Given our previous results, the proof is simple. Let R = (Ri)i2M[W
be any preference pro�le with M be the restricter and W be the chooser sides.
If there is no cyclical con�ict, then there is only one stable matching and our
mechanism �nds it as we have proved in Theorem 6.
Hence, let us assume multi stability, and so the existence of some cyclical

con�icts. Let �M[W
S = f�1; :::; �rg be the set of all stable matchings for R.

Let us assume 9� 2 �M[W such that our mechanism does not �nd it in any
scenario.
From Theorem 6 and Proposition 9, we know that 8�x 2 �M[W

S are gener-
ated by some cyclical con�icts. Any cycle that has n choosers and n restricters
generates n! matchings; two of them are stable and (n! � 2) are unstable. The
game ends when all agents construct a pair. With the NE assumption, either
all the agents in a cycle say "yes" or all say "no" at the �rst step of the cycle.
As they say "no", we proceed from the top to the bottom on the preferences of
the restricters M . With the NE assumption, we omit (n!� 2) unstable match-
ings for each cycle which means our mechanism always ends up with a stable
matching. So, for each cycle, one of the two stable matchings is chosen.
Hence, if there exists such a matching �, then either it was not generated by

any cycle or it is an unstable matching. If � was not generated by any cycle,
then from Theorem 6, it is the unique stable matching for the pro�le R which
is a contradiction to the assumption on the existence of multi stability. If � is
unstable, then we are done. Hence, any stable matching could be chosen by our
mechanism and there is no possibility to end up with any unstable matching
under Nash equilibria.

3.2 Strategy-Proofness

Now, we will investigate whether our mechanism is vulnerable to strategic ma-
nipulation or not.

Theorem 14 Truth telling (for the choosers) is weakly dominant in our mech-
anism.
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Proof. Let us assume that our mechanism is manipulable. Let R = (Ri)i2M[W
be any preference pro�le based on true preferences withM be the restricter and
W be the chooser side. And, let R� = (Ri)i2M[W be any other pro�le with
Ri = R

�
i2M[W=fwgandRw 6= R�w for a chooser agent w 2W . R� is the preference

pro�le based on mispresented preferences and w is the manipulator agent with

(R�)Rw
(R).
Scenario 1: The preference pro�le R has a unique stable matching; that is

there is no cyclical con�ict. So let 
(R) = � and 9�� 2 
(R�). Let mi;mj 2M
be two restricters. Let ��(w) = mi and �(w) = mj with miRwmj . As we
have proved, our mechanism 
 is stable, and so is ��. To satisfy stability for
��, we should have ��(mj)Rmj

w and wRmi
�(mi). If we have ��(m) = �(m)

for 8m 2 M=fmi;mjg, then we get ��(mj) = �(mi) = w� such that the sets
fw;w�g and fmi;mjg construct a cyclical con�ict. If not, to keep the stability
of �� we should have a pair (ŵ;mj) with ŵRmjw, and so on. In every step,
we should assign a better mate to every agents which iteratively leads us to the
full cyclical con�ict. This is a contradiction to the fact that there is no cyclical
con�ict.
Scenario 2: The preference pro�le R has multi stability. If w is not a

member of any cycle, then the above argument works. So, we assume that w
is a member of a cycle. Let mi;mj 2 M be the agents that w experiences the
con�ict with miRwmj . Let �x and �y be stable matchings generated from the
cycle such that �x(w) = mi and �y(w) = mj . From the de�nition of a cycle, any
agent in the set fmjmRwmi;m 2Mg is not achievable for w. Any matching ��
such that mjRw�

�(w) would be unstable. Hence, the question becomes "Can
w guarantee to be matched with mi?".
Firstly, we shall examine Example 12 above, where �1 = �W and �2 = �M .

Let w = w1 be our manipulator. A mispresentation by w breaks the (full) cycle
and for new preference pro�le R�, we get 
(R�) = �2 = �M . Hence, w = w1
damages herself by abolishing the possiblity to end up with �1 = �W .
Now, we shall consider any cycle with more than two agents for each side. Let

fm1; :::;mrg �M
0
be a set of restricters and fw1; :::; wrg �W

0
a set of choosers

wih w1Rm1
w2, w2Rm2

w3; :::; wrRmr
w1 andm1Rw2m2,...,mr�1Rwrmr;mrRw1m1.

If any wi 2W
0
changes her preference ordering, she breaks the cycle and saying

"yes" to the o¤ers at the �rst step of the cycle becomes a rational and dominant
strategy for every chooser agent in the cycle. And so, while the game could
end up with any of the stable matchings f�x; �yg, it ends up with �y, where
�xRW 0�y and �y and �y are the stable matchings generated from the cycle.
Hence, we conclude that truth telling is weakly dominant for the choosers.

4 The Variant of the Mechanism

In this section, we introduce a minor change to our mechanism and analyze
the e¤ects. We shall call this new mechanism as �.
The di¤erence of � from 
 is that when a chooser agent refuses the o¤er,
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she is re-placed to the end of the queue of the same restricter agent, instead of
loosing him forever as in 
.
We shall start with a very simple example to analyze the equilibrium.

Example 15 We will focus on R5 in Example 12.

R5 =
m1 m2 w1 w2
w2 w1 m1 m2

w1 w2 m2 m1

For the sets M and W , the set of all possible matchings is �M[W = f�1; �2g
where

�1 = f(m1; w1); (m2; w2)g,
�2 = f(m1; w2); (m2; w1)g.

For pro�le R5, the matchings f�1; �2g are both stable and for mechanism 

the Nash Equilibrium (NE) of this game is NE(w1; w2) = f(yes; yes); (no; no)g.
Under mechanism �, the story changes.
First, let us assume that w1 says "no" and she is replaced to the end of the

queue of agent m2. At the same step, if w2 says "no", then in the second stage
of the game, the tentative preference pro�le will look like:

R�5 =
m1 m2 w1 w2
w1 w2 m1 m2

w2 w1 m2 m1

Then, in this step both of the choosers say "yes" and we end up with matching
�1, which is chooser-optimal.
On the other hand, if w2 says "yes" at the �rst step , then she forms the

pair (m1; w2) and both of them are deleted from the pro�le. In the second stage
of the game, the tentative preference pro�le will look like as follows:

R�5 =
m2

w1
Then, w1 forms the pair (m2; w1) and we end up with the matching �2, which

is restricter-optimal.
Secondly, let us assume that w1 says "yes", then she forms the pair (m2; w1)

and both of them are deleted from the pro�le. At the �rst step, whatever w2
says, we end up with the matching �2.
Hence, at the �rst step, if w1 says "yes", the game ends up with f�2g and if

w1 says "no", the game ends up with one of f�1; �2g. So, regardless of which
action w2 takes, for w1 rejecting the o¤er is weakly dominant. The arguments
are the same for w2:
Therefore, for mechanism � the Nash Equilibrium (NE) is NE(w1; w2) =

f(no; no)g, which ends up with �1, the chooser-optimal matching.

We have showed that for pro�le R5, � is an improvement for the choosers as
compared to mechanism 
. Of course the opposite is true for the restricters.
We continue with another example.

Example 16 We will study R2 in Example 7.
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R2 =

m1 m2 m3 w1 w2 w3
w1 w2 w2 m3 m1 m3

w3 w1 w3 m2 m2 m1

w2 w3 w1 m1 m3 m2

The preference pro�le R2 has two stable matchings. The strategic players,
having cyclical con�ict, are w1 and w2 in women-chooser case.
The same arguments in Example 15 work here as well. For both w1 and

w2, rejecting the o¤ers at step 1 of the cycle is weakly dominant. Therefore, for
mechanism � the Nash Equilibrium (NE) is NE(w1; w2) = f(no; no)g, which
ends up with the chooser-optimal (women optimal) stable matching.

Can we conclude that for all pro�les with two stable matchings (one cyclical
con�ict), � is an improvement for the chooser side as compared to mechanism

? The following example shows that the answer is negative.

Example 17 Let M = fm1;m2;m3g and W = fw1; w2; w3g be the sets of men
and women who have the following preference pro�le R6:

R6 =

m1 m2 m3 w1 w2 w3
w1 w2 w1 m2 m1 m1

w3 w1 w3 m1 m3 m2

w2 w3 w2 m3 m2 m3

The preference pro�le R6 has two stable matchings. The strategic players,
having cyclical con�ict, are w1 and w2 in women-chooser case.
First, let us assume that w1 accepts the o¤er and w2 does not at step 1 of

the cycle. Then, we end up with matching �i = f(m1; w1); (m2; w3); (m3; w2)g,
which w1 prefers less than �W = f(m1; w3); (m2; w1); (m3; w2)g, chooser-optimal
matching. So, if w2 rejects the o¤er, so does w1.
Second, let us assume that w1 rejects the o¤er and w2 accepts at step 1.

Then, we end up with �j = f(m1; w3); (m2; w2); (m3; w1)g, which w1 prefers less
than �M = f(m1; w1); (m2; w2); (m3; w3)g, restricter-optimal matching. There-
fore, if w2 accepts the o¤er, so does w1.
Hence, there is no dominant strategy at step 1. We conclude that � is not

an improvement for the choosers for R6.

Our next example is a pro�le with three stable matchings.

Example 18 Let M = fm1;m2;m3g and W = fw1; w2; w3g be the sets of men
and women who have the following preference pro�le R7:

R7 =

m1 m2 m3 w1 w2 w3
w1 w2 w3 m3 m1 m2

w2 w1 w2 m2 m3 m1

w3 w3 w1 m1 m2 m3

R7 has three stable matchings. Now, we will analyze the possible scenarios
for w1. The table below shows all possible decisions at step 1 and corresponding
mate that w1 matches from the game.
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w1 Y es No Y es No Y es No Y es No
w2 Y es Y es Y es Y es No No No No
w3 Y es Y es No No Y es Y es No No
Mate m1 m1 m1 m3 m1 m2 m1 m3

So, we conclude that for w1 rejecting the o¤er at step 1 is weakly domi-
nant. The same analysis for w2 and w3 shows that also for those agents it
is a weakly dominant strategy to refuse. Therefore, for the mechanism � the
Nash Equilibrium (NE) is NE(w1; w2; w3) = f(no; no; no)g, which ends up with
�W = f(m1; w2); (m2; w3); (m3; w1)g, the chooser-optimal matching.

Example 18 shows that, for R7, which has three stable matchings (the exis-
tence of inter-dependent cycles), � is an improvement for the choosers as com-
pared to 
.
Can we conclude that for all pro�les with three stable matchings (inter-

dependent cycles), � is an improvement for the choosers? The following example
shows that the answer is negative.

Example 19 We will now study R3.

R3 =

m1 m2 m3 w1 w2 w3
w1 w2 w2 m3 m1 m2

w2 w1 w3 m2 m2 m1

w3 w3 w1 m1 m3 m3

R3 has three stable matchings. Now, we will analyze the possible scenarios.
First, let us assume that w1 accepts the o¤er and w2 does not at step 1, then

we end up with �i = f(m1; w1); (m2; w3); (m3; w2)g, which w2 prefers less than
�M = f(m1; w1); (m2; w2); (m3; w3)g, men-optimal matching. So, if w1 accepts
the o¤er, so does w2.
Second, let us assume that w1 rejects the o¤er and w2 accepts at step 1,

then we end up with �j = f(m1; w3); (m2; w2); (m3; w1)g, which w2 prefers less
than �k = f(m1; w2); (m2; w1); (m3; w3)g (middle stable matching) or �W =
f(m1; w2); (m2; w3); (m3; w1)g (chooser-optimal matching). Hence, w2 is bounded
by the action of w1 at step 1.
Finally, let us assume that both of w1 and w2 reject the o¤ers at step 1, then

we will have the following tentative pro�le,

R�3 =

m1 m2 m3 w1 w2 w3
w2 w1 w3 m3 m1 m2

w3 w3 w1 m2 m2 m1

w1 w2 w2 m1 m3 m3

For pro�le R�3, there are two stable matching �W (also women-optimal for
R3) and �M (�k, middle stable matching for R3). And, it is easy to show that
at the �rst step of R�3 for w1 and w3, rejecting the o¤ers is weakly dominant
which leads us to �W , the chooser-optimal stable matching.
Since there is no dominant strategy at the �rst step of R3, we cannot conclude

that the outcome set is f�M ; �W g instead of f�M ; �k; �W g. We will go further
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on the comparisons of those sets since object comparison is not the topic of
this paper. But, we regard this shrink as an imrovement for the chooser side.

So far we have showed that for the pro�les with independent or inter-
dependent cyclical con�icts, � may or may not be an improvement for the
choosers as compared to 
. Pro�les with more than three stable matchings
(including incomparable matchings) may have both independent and inter-
dependent cycles. Hence, the same arguments and similar examples, like above,
work also for those pro�les.

Proposition 20 Let M = fm1; :::;mkg be the restricter and W = fw1; :::; wlg
be the chooser sides, with l > k. @R = (Ri)i2M[W 2 <, � is an improvement
for the choosers; mechanisms 
 and � coincide.
In plain English, when the number of choosers is more than the number of

restricters, mechanism � implements full set of stable matchings as 
 does.

Proof. For simplicity let us assume k = n and l = n + 1. Let R 2 < be any
pro�le.
If R has a unique stable matching, then both of 
 and � �nds it. Hence,

they coincide.
Let us assume R has multiple stable matchings. Let �M[W

S = f�1; :::; �rg
be the set of all stable matchings for R. From Roth and Sotomayor (1990), we
know that for a pro�le R, the set of the agents that are matched is the same
for all stable matchings. Therefore, the set of n women matched to n men are
same for all � 2 �M[W .
Let w� 2 W be the agent who remains single for all stable matchings. Let

w 2 W be one the paired agents in stable matchings. We only need to show
that there exists a cycle where w does not have a (weakly) dominant strategy.
Without loss of generality, let us assume 8w 2 W=fwg accept the o¤ers in

the �rst step of the cycle they confront and w rejects the o¤er bym 2M and she
is re-placed to the end of the same queue. Since 8m 2M=fmg have been taken
and deleted from the pro�le, in the next step w� accepts the o¤er by m 2 M
and forms the pair (m;w�). w remains single which she prefers less than being
matched to m. Hence, w is bounded by the actions of the other agents, like
in 
. The same argument works for any other agent that is matched in stable
matchings.
We conclude that � is not an improvement for the chooser side for such

preference pro�les and it coincides with 
.

Finally, we state our most general result.

Theorem 21 Let M = fm1; :::;mkg be the restricter and W = fw1; :::; wlg be
the chooser side. Let < be the set of all pro�les.
Let <�;<��;<���;<���� 2 < be disjoint sub-domains such that <� [ <�� [

<��� [ <���� = <, where we have k � l for <�, <�� and <��� and k < l for
<����.
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Let GSChooser denote the mechanism by Gale and Shapley where, as we call,
the chooser side propose.
Let � be a mechanism that implements a proper subset of the set of stable

matchings, except the chooser-optimal one.
Then, we have

� =

8>>><>>>:
GSChooser; if R 2 <�

�; if R 2 <��


; if R 2 <���


; if R 2 <����

Proof. Examples 15� 19 and Proposition 20 proves the theorem.

5 Conclusion

In this paper, we propose a new dynamic mechanism for semi-centralized
two-sided matching games. The model mimics the college admission procedures
where the number of agents is too high in the market, like Turkey, Greece, Iran
and China, and where the admissions to universities are centralized.
The mechanism is de�ned on a market where the preferences of the restricter

side (the schools) are �xed and we let the chooser side (the students) play the
game simultaneously. The outcome matching is determined by the actions of
students.
The mechanism partially or fully eliminates the blocking pairs depending on

the preference pro�le under incomplete information. Under complete informa-
tion, the mechanism implements the full set of stable matchings. Precisely, the
set of all possible outcomes of the procedure is the set of stable matchings for
any given market.
We also propose a new mechanism, the variant of the original mechanism to

improve the outcome of the game for one side (preferably for the students). We
show that we are partially successful for this purpose; the variant mechanism is
an improvement in a subdomain. Thus, it generates a bias for a preferred side.
Basically the mechanism � partitions the full domain of preference pro�les

into two subsets. In one of them, it implements a proper subset of stable match-
ings. And, for some preference pro�les, it coincides with GSChooser, that is it
ends up with the chooser-optimal stable matching. In the other, it coincides
with 
, that is it ends up with any of the stable matchings.
We can distinguish those subdomains up to some point. When the number of

choosers is more than the restricters, that is <����, both of the mechanisms co-
incide. When the number of the choosers is less than or equal to the restricters�,
we have three subdomains <�;<�� and <���: While � is an improvementfor <�
and <��, it coincides with 
 for <���.
Unfortunately, we do not know further about the distinction between R�,R��

and R���. As we show, the distinction is not based on the cycle types that the
preference pro�les have. Thus, the outcome of mechanism � is speci�c to pro�le.
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