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Abstract

The paper presents a new framework to assess firm level heterogeneity and to
study the rate and direction of technical change. Building on the analysis of revealed
short-run production functions by Hildenbrand (1981), we propose the (normalized)
volume of the zonotope composed by vectors-firms in a narrowly defined industry
as an indicator of inter-firm heterogeneity. Moreover, the angles that the main
diagonal of the zonotope form with the axes provide a measure of the rates and
directions of technical change over time. The proposed framework can easily ac-
count for n-inputs and m-outputs and, crucially, the measures of heterogeneity and
technical change do not require many of the standard assumptions from production
theory.

JEL codes: D24; D61; C67; C81; O30

Keywords: Production theory, Heterogeneous firms, Activity Analysis, Technical
change, Zonotopes, Production functions

∗The statistical exercises which follow would not have been possible without the valuable help of
the Italian Statistical Office (ISTAT) and in particular of Roberto Monducci and Stefano Menghinello.
Comments by Werner Hildenbrand, Stefano Marmi, Anwar Shaikh and the participants to the Italian
Economic Society (SIE), Bologna, October 2013; Jornadas de Economia Industrial, Segovia, September
2013; University of Berkeley and Bologna faculty seminars are gratefully acknowledged. Errors remain
our own.

1



1 Introduction

In recent years an extremely robust evidence regarding firm– and plant– level longitudinal

microdata has highlighted striking and persistent heterogeneity across firms operating in

the same industry. A large body of research from different sectors in different countries

(cf. Baily et al.; 1992; Baldwin and Rafiquzzaman; 1995; Bartelsman and Doms; 2000;

Disney et al.; 2003; Dosi; 2007; Syverson; 2011, among many others) documents the

emergence of the following “stylized facts”: first, wide asymmetries in productivity across

firms; second, significant heterogeneity in relative input intensities even in presence of the

same relative input prices; third, high intertemporal persistence in the above properties.

Fourth, such heterogeneity is maintained also when increasing the level of disaggregation,

thus plausibly reducing the diversity across firms’ output.

The latter property has been vividly summarized by Griliches and Mairesse (1999):

“We [...] thought that one could reduce heterogeneity by going down from general mixtures

as “total manufacturing” to something more coherent, such as “petroleum refining” or

“the manufacture of cement.” But something like Mandelbrot’s fractal phenomenon seems

to be at work here also: the observed variability-heterogeneity does not really decline as

we cut our data finer and finer. There is a sense in which different bakeries are just as

much different from each others as the steel industry is from the machinery industry.”

The bottom line is that firms operating in the same industry display a large and

persistent degree of technological heterogeneity while there does not seem to be any clear

sign that either the diffusion of information on different technologies, or the working of the

competitive mechanism bring about any substantial reduction of such an heterogeneity,

even when involving massive differences in efficiencies, as most incumbent theories would

predict.

This evidence poses serious challenges not only to theory of competition and market

selection, but also to any theoretical or empirical analysis which relies upon some notion

of industry or sector defined as a set of production units producing under rather similar

input prices with equally similar technologies, and the related notion of “the technology”

of an industry represented by means of a sectoral production function. Indeed, the

aggregation conditions needed to yield the canonic production functions building from the

technologies of micro entities are extremely demanding, basically involving the identity

of the latter up to a constant multiplier (cf. Fisher 1965 and Hulten 2001).

Note that these problems do not only concern the neoclassical production function,

whose well known properties may either not fit empirical data or fit only spuriously,1

but also non neoclassical representations of production at the industry level. If input-

1Shaikh (1974), for instance, shows that Cobb-Douglas production functions with constant returns to
scale, neutral technological change and marginal products equal to factor rewards in presence of constant
distributional shares of labour and capital (wages and profits) tend to yield a good fit to the data for
purely algebraic reasons.

2



output coefficients à la Leontief (1986) are averages over a distribution with high standard

deviation and high skewness, average input coefficients may not provide a meaningful

representation of the technology of that industry. Moreover, one cannot take for granted

that changes of such coefficients can be interpreted as indicators of technical change

as they may be just caused by some changes in the distribution of production among

heterogeneous units, characterized by unchanged technologies.

How does one then account for the actual technology - or, better, the different tech-

niques - in such industry? Hildenbrand (1981) suggests a direct and agnostic approach

which instead of estimating some aggregate production function, offers a representation

of the empirical production possibility set of an industry in the short run based on actual

microdata. Each production unit is represented as a point in the input-output space

whose coordinates are input requirements and output levels at full capacity. Under the

assumptions of divisibility and additivity of production processes,2 the production pos-

sibility set is represented geometrically by the space formed by the finite sum of all the

line segments linking the origin and the points representing each production unit, called

a zonotope (see also below). Hildenbrand then derives the actual “production function”

(one should more accurately say “feasible” functions) and shows that “short-run efficient

production functions do not enjoy the well-known properties which are frequently assumed

in production theory. For example, constant returns to scale never prevail, the production

functions are never homothetic, and the elasticities of substitution are never constant.

On the other hand, the competitive factor demand and product supply functions [. . . ]

will always have definite comparative static properties which cannot be derived from the

standard theory of production” (Hildenbrand; 1981, p. 1095).

In this paper we move a step forward and show that by further exploiting the proper-

ties of zonotopes it is possible to obtain rigorous measures of heterogeneity and technical

change without imposing on data a model like that implied by standard production func-

tions. In particular, we develop measures of technical change that take into consideration

the entire observed production possibility set derived from observed heterogeneous pro-

duction units, instead of considering only an efficient frontier. In that, our representation

of industry-level dynamics bear some complementarities to non-parametric estimates of

(moving) efficiency frontiers (cf. Farrell 1957, Färe et al. 1994).

The promise of the methodology is illustrated in this work with reference to the

evidence on micro data of Italian industries and the dynamics of their distributions.

The rest of the work is organized as follows. We start with an empirical illustration of

the general point (Section 2). Next, Section 3 builds on the contribution of Hildenbrand

(1981) and introduces the (normalized) volume of the zonotope as a measure of industry

heterogeneity. We then proposes a measure of technical change based on the zonotope’s

main diagonal and we assess the role of firm entry and exit on industry level produc-

2Already not entirely innocent assumptions: for a discussion cf. Dosi and Grazzi (2006).

3



 0.001

 0.01

 0.1

 1

 2  2.5  3  3.5  4  4.5  5  5.5  6

NACE 151 (and nested)

(log) Labor Productivity

Pr

Lab Prod 151
Lab Prod 1511
Lab Prod 1513

 0.001

 0.01

 0.1

 1

 1.5  2  2.5  3  3.5  4  4.5  5  5.5

NACE 177 (and nested)

(log) Labor Productivity

Pr

Lab Prod 177
Lab Prod 1771
Lab Prod 1772

Figure 1: Empirical distribution of labor productivity in three and (nested) four-digit NACE
sectors in 2006. Densities estimates are obtained using the Epanenchnikov kernel with the
bandwidth set using the optimal routine described in Silverman (1986).

tivity growth. Section 4 presents an empirical application on manufacturing firms in

narrowly defined industries. Section 5 discusses the implications of this work and further

applications of the proposed methodology.

2 Persistent micro heterogeneity: an illustration

In order to vividly illustrate the ubiquitous, wide and persistent heterogeneity across firms

within the same lines of business and in presence of roughly identical relative prices, con-

sider two sectors of the Italian industry which one could expect not too different in terms

of output, namely meat products, NACE 151, and knitted and crocheted articles, NACE

177, see Figure 1. Each of the two plot reports the distribution of labor productivity in a

three-digit NACE sector and it shows the coexistence of firms with much different levels

of productivity across firms highlighting a ratio ‘top to bottom’ greater than 5 to 1 (in

logs!). Disaggregation well reveals the ‘scale freeness’ of such distribution: the width of

their support does not shrink if one considers the four-digit NACE sectors nested therein.

The observed heterogeneity is not the result of the chosen level of industry aggregation.

Further evidence that firm-level techniques do not belong to the same ‘production

function’ - at least of any canonic form - stem from the lack of correlation between

labour productivies and ‘capital productivities’ (i.e. value added/ capital stock). In

our two foregoing sectors is -.02 and .2, and over all the 3-digit sectors of the Italian

manufacturing industry it ranges between -0.07 and .425 with a median of .13.

Figure 2 graphically illustrates the point in our two sectors, with on the axes inputs

(labour and capital) and output (value added). Using the kernel estimation techniques,

smooth surfaces have been obtained from the discrete sets of observations. As a reference,

the location of the observed amount of inputs (l, k) has been reported on the bottom
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Figure 2: Adopted techniques and output level in two different three-digit NACE sectors, in
2006.

of plots, each dot represents the input mix of a firm. The “isoquants” report on the l-k

plane the correspondent levels of output. Note, first, that dots are quite dispersed over

the plane and do not seem to display any regularity resembling conventional isoquant

(a feature already emphasized by Hildenbrand 1981). Second, output does increase - as

it should be expected - in both inputs. However, this happens in quite non-monotonic

manners: given a quantity of one input, different firms attain the same level of output

with very different levels of the other input. In other words, overall degrees of efficiency

seemingly widely differ.

Further, over time heterogeneity is very persistent. In our two sectoral illustrations

the autocorrelation coefficients in firm-level labour productivities over a two years period

rests around .8, as it does in most of the comparable 3-digit industrial sectors. And,

such an evidence is quite in tune with both the parametric and non-parametric estimates

discussed in Bartelsman and Dhrymes (1998); Haltiwanger et al. (1999); Dosi and Grazzi

(2006) among others.

All together, the evidence is robustly ‘Schumpeterian’ consistent with idiosyncratic

firm-level capabilities, quite inertial over time and rather hard to imitate (much more on

that in Winter 2005, 2006; Nelson 2008; Dosi et al. 2008).

Granted that, how does one concisely represent the corresponding distributions of

micro coefficients and their dynamics over time?
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3 Accounting for heterogeneous micro-techniques

Without loss of generality it is possible to represent the actual technique of a produc-

tion unit by means of a production activity represented by a vector (Koopmans; 1977;

Hildenbrand; 1981)

a = (α1, . . . , αl, αl+1) ∈ Rl+1
+ .

A production unit, which is described by the vector a, produces during the current

period αl+1 units of output by means of (α1, . . . , αl) units of input.3 Also notice that in

this framework it is possible to refer to the size of the firm as to the length of vector

a, which can be regarded as a multi-dimensional extension of the usual measure of firm

size, often proxied either by the number of employees, sales or value added. In fact, this

measure allows to employ both measures of input and output in the definition of firm

size.

In this framework, as noted by Hildenbrand (1981), the assumption of constant returns

to scale (with respect to variable inputs) for individual production units is not necessary:

indeed it is redundant if there are “many” firms in the industry. Anyhow, the short

run production possibilities of an industry with N units at a given time are described

by a finite family of vectors {an}1≤n≤N of production activities. In order to analyze

such a structure Hildenbrand introduces a novel short-run feasible industry production

function defined by means of a Zonotope generated by the family {an}1≤n≤N of production

activities. More precisely let {an}1≤n≤N be a collection of vectors in Rl+1, N ≥ l+ 1. To

any vector an we may associate a line segment

[0, an] = {xnan | xn ∈ R, 0 ≤ xn ≤ 1}.

Hildenbrand defines the short run total production set associated to the family {an}1≤n≤N
as the Minkowski sum

Y =
N∑
n=1

[0, an]

of line segments generated by production activities {an}1≤n≤N . More explicitly, it is

the Zonotope

Y = {y ∈ Rl+1
+ | y =

N∑
n=1

φnan, 0 ≤ φn ≤ 1}.

Remark 3.1 Geometrically a Zonotope is the generalization to any dimension of a Zono-

hedron that is a convex polyhedron where every face is a polygon with point symmetry or,

3Our considerations hold also for the multi-output case.
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equivalently, symmetry under rotations through 180◦. Any Zonohedron may equivalently

be described as the Minkowski sum of a set of line segments in three-dimensional space,

or as the three-dimensional projection of an hypercube. Hence a Zonotope is either the

Minkowski sum of line segments in an l-dimensional space or the projection of an (l+ 1)-

dimensional hypercube. The vectors from which the Zonotope is formed are called its

generators.4

Analogously to parallelotopes and hypercubes, Zonotopes admit diagonals. We define

the main diagonal of a Zonotope Y as the diagonal joining the origin O = (0, . . . , 0) ∈
Y ⊂ Rl+1 with its opposite vertex in Y . Algebraically it is simply the sum

∑N
n=1 an of all

generators, that is, in our framework, the sum of all production activities in the industry.

In the following, we will denote by dY such diagonal and we will call it production activity

of the industry.

Denote by D the projection of Y on the firsts l coordinates, i.e.

D = {v ∈ Rl
+ | ∃x ∈ R+ s.t. (v, x) ∈ Y }

and the production function F : D −→ R+ associated with Y as

F (v) = max{x ∈ R+ | (v, x) ∈ Y }.

In the definition above the aggregation of the various production units implies a

“frontier” associating to the level v1, ..., vl of inputs for the industry the maximum

total output which is obtainable by allocating, without restrictions, the amounts v1, ...

vl of inputs in a most efficient way over the individual production units. However, as

argued by Hildenbrand (1981) it might well be that the distribution of technological

capabilities and/or the market structure and organization of the industry is such that

the efficient production function couldn’t be the focal reference either from a positive

or from a normative point of view in so far as the “frontier”, first, does not offer any

information on the actual technological set-up of the whole industry, and, second, does

not offer any guidance to what the industry would look like under an (unconstrained)

optimal allocation of resources. This notwithstanding, estimates of the “frontier” offer

important clues on the moving best-practice opportunities and the distance of individual

firms from them. Here is also the notional complementarity between this approach and

the contributions in the Data Envelopment Analysis (DEA) tradition, see Farrell (1957);

Charnes et al. (1978); Daraio and Simar (2007); Simar and Zelenyuk (2011) for major

contributions in the field and Murillo-Zamorano (2004) for a review. In the DEA approach

one focuses on a measure of firm’s efficiency which is provided by the distance between any

single firm and the efficient frontier. Conversely, in our approach, the way in which a firm

4The interested reader can refer to Ziegler (1995) for a survey on Zonotopes.

7



contributes to industry heterogeneity depends on how such firms combines and compares

with all other firms. A similar point applies to how technical change is measured, see

below.

The representation of any industry at any one time by means of the Zonotope provides

a way to assess and measure the overall degree of heterogeneity of an industry. As we shall

show below, it allows also to account for its variation of production techniques adopted

by firms in any industry and, at least as important, it allows to ascertain the rate and

direction of technical change.

3.1 Volume of Zonotopes and heterogeneity

Start by noting that if all firms in an industry with N enterprises were to use the same

technique in a given year, all the vectors of the associated family {an}1≤n≤N of production

activities would be multiples of the same vector. Hence they would lie on the same

line and the generated zonotope would coincide with the diagonal
∑N

n=1 an, that is a

degenerate zonotope of null volume. This is the case of one technology only and perfect

homogeneity among firms. At the opposite extreme the maximal heterogeneity would

feature an industry wherein there are zero inputs and other firms producing little output

with a large quantity of inputs. This case of maximal heterogeneity is geometrically

described by vectors that generate a zonotope which is almost a parallelotope.

In the following we provide the formula to compute the volume of the zonotope.

Let Ai1,...,il+1
be the matrix whose rows are vectors {ai1 , . . . , ail+1

} and ∆i1,...,il+1
its

determinant. In our framework, the first l entries of each vector stand for the amount of

the inputs used in the production process by each firm, while the last entry of the vector

is the output. It is well known that the volume of the zonotope Y in Rl+1 is given by:

V ol(Y ) =
∑

1≤i1<...<il+1≤N

| ∆i1,...,il+1
|

where | ∆i1,...,il+1
| is the module of the determinant ∆i1,...,il+1

.

Our main interest lies in getting a pure measure of the heterogeneity in techniques

employed by firms within any given industry that allows for comparability across firms

and time; that is, a measure which is independent both from the unit in which inputs

and output are measured and from the number of firms making up the sector. The

volume of the zonotope itself depends both from the units of measure involved and from

the number of firms. In order to address these issues we need a way to normalize the

zonotope’s volume yielding a new index which is dimensionless and independent from the

number of firms.

The normalization we introduce is a generalization of the well known Gini index,

which we call Gini volume of the zonotope. Analogously to the original index, we will

8



consider the ratio of the volume of the zonotope Y generated by the production activities

{an}1≤n≤N over a total volume of an industry with production activity dY =
∑N

n=1 an. It

is an easy remark that the parallelotope is the zonotope with largest volume if the main

diagonal is fixed. If PY is the parallelotope of diagonal dY , its volume V ol(PY ), i.e. the

product of the entries of dY , is obviously the maximal volume that can be obtained once

we fix the industry production activity
∑N

n=1 an, that is the total volume of an industry

with production activity dY =
∑N

n=1 an.

Note that alike the complete inequality case in the Gini index, i.e. the case in which

the index is 1, also in our framework the complete heterogeneity case is not feasible,

since in addition to firms with large values of inputs and zero output it would imply the

existence of firms with zero inputs and non zero output. It has to be regarded as a limit,

conceptually alike and opposite to the 0 volume case in which all techniques are equal,

i.e. the vectors {an}1≤n≤N are proportional and hence lie on the same line.

In what follows we consider the Gini volume defined above for the short run total

production set Y :

G(Y ) =
V ol(Y )

V ol(PY )
. (1)

3.2 Unitary production activities

An interesting information is provided by comparison of the Gini volume G(Y ) of the

short run total production set Y and the same index computed for the zonotope Y

generated by the normalized vectors { an
‖an‖}1≤n≤N , i.e. the unitary production activities.

The Gini volume G(Y ) evaluates the heterogeneity of the industry in a setting in which

all firms have the same size (norm is equal to one). Hence the only source of heterogeneity

is the difference in adopted techniques, since differences in firm size do not contribute to

the volume.

Comparing the Gini volume of the zonotope Y with that of the unitary zonotope

Y is informative about the relative contribution of large and small firms to the overall

heterogeneity in techniques within the given industry. Intuitively, if the Gini volume

G(Y ) of Y is bigger than G(Y ) this means that big firms contribute to heterogeneity

more than the small ones, and viceversa, if the volume G(Y ) is smaller than G(Y ).

3.3 Solid Angle and external production activities

Let us move further and introduce the external zonotope Ye. In order to define it we need

the notion of solid angle. Let us start with the solid angle in a 3-dimensional space, but

the idea can be easily generalized to the (l + 1) dimension.

In geometry, a solid angle (symbol: Ω) is the two-dimensional angle in three-dimensional

space that an object subtends at a point. It is a measure of how large the object appears

9



Figure 3: The solid angle of a pyramid generated by 4 vectors.

to an observer looking from that point. In the International System of Units, a solid angle

is a dimensionless unit of measurement called a steradian (symbol: sr). The measure of

a solid angle Ω varies between 0 and 4π steradian.

More precisely, an object’s solid angle is equal to the area of the segment of a unit

sphere, centered at the angle’s vertex, that the object covers, as shown in figure 3.

In our framework the production activities are represented by a family {an}1≤n≤N of

vectors. Their normalization { an
‖an‖}1≤n≤N will generate an arbitrary pyramid with apex

in the origin. Note that in general, not all vectors ai, i = 1, . . . , N will be edges of

this pyramid. Indeed it can happen that one vector is inside the pyramid generated by

others. We will call external vectors those vectors {ei}1≤i≤R of the family {an}1≤n≤N such

that their normalizations { ei
‖ei‖}1≤i≤R are edges of the pyramid generated by the vectors

{ an
‖an‖}1≤n≤N . All the others will be called internal.

This pyramid will subtend a solid angle Ω, smaller or equal than π
2

as the entries of

our vectors are positive. We will say that the external vectors of the family {an}1≤n≤N
subtend the solid angle Ω if it is the angle subtended by the generated pyramid.

We define the external zonotope Ye as the one generated by vectors {ei}1≤i≤R. A

pairwise comparison betweenG(Ye) andG(Y ) shows the relative importance of the density

of internal activities in affecting our proposed measure of heterogeneity.

Solid angle of an arbitrary pyramid. In R3 the solid angle of an arbitrary pyramid

defined by the sequence of unit vectors representing edges {s1, s2, . . . , sn} can be computed

as

Ω = 2π − arg
n∏
j=1

(< sj, sj−1 >< sj, sj+1 > − < sj−1, sj+1 > +i | sj−1sjsj+1 |) (2)

where parentheses < sj, sj−1 > are scalar products, brackets | sj−1sjsj+1 | are scalar

triple products, i.e. determinants of the 3×3 matrices whose rows are vectors sj−1, sj, sj+1,

and i is the imaginary unit. Indices are cycled: s0 = sn and sn+1 = s1 and arg is simply

10



the argument of a complex number.

The generalization of the definition of solid angle to higher dimensions simply needs

to account for the l-sphere in an l + 1-dimensional space.

3.4 Technical Change

Let us consider a non-zero vector v = (x1, x2, . . . , xl+1) ∈ Rl+1 and, for any i ∈ 1, . . . , l + 1

the projection map

pr−i : Rl+1 −→ Rl

(x1, . . . , xl+1) 7→ (x1, . . . , xi−1, xi+1, . . . , xl+1) .

Using the trigonometric formulation of the Pythagoras’ theorem we get that if ψi is

the angle that v forms with the xi axis, θi = π
2
−ψi is its complement and ‖vi‖ is the norm

of the projection vector vi = pr−i(v), i.e. the length of the vector vi, then the tangent of

θi is:

tgθi =
xi
‖vi‖

.

In our framework we are primarily interested in the angle θl+1 that the diagonal of

the zonotope, i.e. the vector dY , forms with the space generated by all inputs, that is

the arctg(dl+1/‖dY ‖) where dY is equal to d1, . . . , dl+1. This can easily be generalized to

the case of multiple outputs, so that if we have m different outputs we will consider the

angles θi for l < i ≤ l +m.

In order to assess if and to what extent productivity is growing in a given industry, it

is possible to analyze how the angle θl+1 varies over the years. For example if the angle

θl+1 increases then productivity increases. This is indeed equivalent to state that the

industry is able to produce more output, given the quantity of inputs, than it was able

to before. Conversely, a decrease in θl+1 stands for a productivity reduction.

Also notice that it is possible to study how the relative inputs use changes over the

years. To do this, it is enough to consider the angles that the input vector, i.e. the

vector with entries given by only the inputs of dY , forms with different input axis. More

precisely, if there are l inputs and m outputs and the vectors of production activities

are ordered such that the first l entries are inputs, then we can consider the projection

function on the first l coordinates:

prl : Rl+m −→ Rl

(x1, . . . , xl+m) 7→ (x1, . . . , xl) .

The change over time of the angle ϕi between the projection vector pr(dY ) and the

11



xi axis, 1 ≤ i ≤ l, captures the changes in the relative intensity of input i over time with

respect to all the other inputs.

It is also informative to measure the changes in the normalized angles θi. Indeed, as we

have done for volumes, we can consider the normalized production activities { an
‖an‖}1≤n≤N .

Call dY the resulting industry production activity. Of course, one can study how it varies

over time and this is equivalent to study how the productivity of an industry changes

independently from the size of the firms. In particular the comparison of the changes of

two different angles, θi and θi, reveals the relative contribution of bigger and smaller firms

to productivity changes and hence, on the possible existence of economies/diseconomies

of scale.

For the sake of simplicity and for coherence with the 1-input and 1-output case5 we

consider here the variation of the tangent of the angles instead of the angles themselves,

noting that if an angle increases then its tangent increases too.

3.5 Entry and exit

Under what circumstances does the entry of a new firm increase or decrease the hetero-

geneity of a given industry? In order to compute how entries and exits impact on industry

heterogeneity it is enough to remark that, by the definition of volume, given a zonotope Z

in the space Rl+1 generated by vectors {an}1≤n≤N and a vector b = (x1, . . . , xl+1) ∈ Rl+1,

the volume of the new zonotope X generated by {an}1≤n≤N ∪ {b} can be computed as

follow:

V ol(X) = V ol(Z) + V (x1, . . . , xl+1)

where V (x1, . . . , xl+1) is a real continuous function on Rl+1 defined as:

V (x1, . . . , xl+1) =
∑

1≤i1<...<il≤N

| Λi1,...,il |,

Λi1,...,il being the determinant of the matrixBi1,...,il whose rows are vectors {b, ai1 , . . . , ail}.
If dZ = (d1, . . . , dl+1) is the diagonal of the zonotope Z, then the diagonal of X will

be dX = dZ + b = (d1 + x1, . . . , dl+1 + xl+1). The heterogeneity for the new industrial

set-up will be the continuous real function

G(X) =
V ol(Z) + V (x1, . . . , xl+1)

V ol(PX)
=
V ol(Z) + V (x1, . . . , xl+1)

Πl+1
i=1(di + xi)

and the tangent of the angle with the input space will be the continuous real function

5This is the generalization to the multi-dimensional case of the 1-input and 1-output setting. Indeed,
in this simpler case, industry productivity is the quotient o/i between output and input, i.e. the tangent
of the angle θ2 that the vector (i, o) forms with the input axis.
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tgθl+1(x1, . . . , xl+1) =
dl+1 + xl+1

‖pr−(l+1)(dX)‖

Studying the variation (i.e. gradient, hessian etc...) of these real continuous functions

is equivalent to analyze the impact of a new firm on the industry. So, for example,

when these functions increase then the new firm positively contributes both to industry

heterogeneity and productivity. We consider as an example the entry of a firm in the

3-dimensional case. If Z is the zonotope generated by vectors {an}1≤n≤N in R3 with

entries an = (a1n, a
2
n, a

3
n), the function V (x1, x2, x3) for a generic vector b = (x1, x2, x3) is

V (x1, x2, x3) =
∑

1≤i<j≤N

| x1(a2i a3j − a3i a2j)− x2(a1i a3j − a3i a1j) + x3(a
1
i a

2
j − a2i a1j) | .

The diagonal of the new zonotope X is

dX = (
N∑
i=1

a1i + x1,
N∑
i=1

a2i + x2,
N∑
i=1

a3i + x3).

We get the Gini volume for X as:

G(X) =
V ol(Z) +

∑
1≤i<j≤N | x1(a2i a3j − a3i a2j)− x2(a1i a3j − a3i a1j) + x3(a

1
i a

2
j − a2i a1j) |∑N

i,j,k=1(a
1
i + x1)(a2j + x2)(a3k + x3)

,

(3)

where V ol(Z) and {a1n, a2n, a3n}1≤n≤N are constants and the tangent of the angle with

the input space is:

tgθ3(x1, x2, x3) =

∑N
i=1 a

3
i + x3√

(
∑N

i=1 a
1
i + x1)2 + (

∑N
i=1 a

2
i + x2)2

.

If we set the output x3 constant or we fix the norm of b, i.e. the size of the firm, setting

x3 =
√
‖b‖ − x21 − x22 then G(X) and tgθ3(x1, x2, x3) become two variables functions,

G(X) = G(X)(x1, x2) and tgθ3(x1, x2), which can be easily studied from a differential

point of view.

It is important to notice that all the foregoing measures not only can be easily applied

to any l + 1-dimensional case with multi-dimensional outputs (i.e., for example, l inputs

and m outputs in the space Rl+m), but also to the more general case of a vector space V

over a field K. Indeed all the tools we introduced hold for any finite dimensional vector

space. In that respect recall that the set Hom(V,W ) of all linear maps between two

vector spaces V and W over the same field K is a vector space itself. Hence we can

consider the vector space Hom(Rl,Rm) in which a vector is a linear function from Rl

13



Year 1 Year 2 Year 3 Year 4

# L K VA L K VA L K VA L K VA
1 7.0 4.0 9.0 7.0 4.0 9.0 7.0 4.0 9.0 7.0 4.0 9.0
2 1.0 4.0 5.0 1.0 4.0 5.0 1.0 4.0 5.0 1.0 4.0 5.0
3 6.0 2.0 9.0 6.0 2.0 9.0 6.0 2.0 9.0 6.0 2.0 9.0
4 1.5 8.0 10.0 1.5 8.0 10.0 1.5 8.0 10.0 1.5 8.0 10.0
5 5.0 2.0 8.0 5.0 2.0 8.0 5.0 2.0 8.0 5.0 2.0 8.0
6 1.0 3.0 8.0 1.0 3.0 8.0 1.0 3.0 8.0 1.0 3.0 8.0
7 2.0 2.0 7.0 2.0 2.0 7.0 2.0 2.0 7.0 2.0 2.0 7.0
8 3.0 5.0 7.0 3.0 5.0 7.0 3.0 5.0 7.0
9 2.5 2 2 2.5 2 2
10 5.0 6.0 4.0 4.0 4.0 6.0 4.0 4.0 6.0 4.0 4.0 6.0

Table 1: Production schedules in year 1 to 4, Number of employees (L), Capital (K) and Output
(VA). External production activities in bold.

to Rm. More in general, our model applies to all finite dimensional topological vector

spaces such as, for example, the space of degree l+1 polynomials over a field K, the finite

dimensional subspaces of smooth functions on R and so on.

3.6 A toy illustration

Consider the production schedules of 10 hypothetical firms composing an industry as

reported in Table 1, with two inputs, labor, on the x axis, and capital, on the y axis,

and one output, on the z axis, measured in terms of value added; “external” production

activities are in bold. Figure 4 shows the initial zonotope of the industry and Figure 5

reports the solid angles in year 1 and 2, respectively.6

In order to better evaluate the proposed measure of heterogeneity and technical

change, and, even more relevant, their dynamics over time, we allow for a change in

only one of the firm (vector) going from one period to the other, as reported in Table 1.

In particular, from period 1 to 2 only the production schedule of firm 10 changes with

unequivocal productivity increases as both inputs decrease while output increases. Then,

from period 2 to period 3 the ninth firm exits the industry. The property of the vector

representing the ninth firm is that it is an “external” vector: hence removing it signif-

icantly affects the shape of the zonotope. Finally, from period 3 to 4 firm 8 leaves the

industry. However this time it is a firm represented by an “internal” vector.

How do these changes, i.e. a firm increasing productivity and two different firms

exiting, affect industry heterogeneity and the extent and direction of technical change?

Let us introduce a few notations in order to study this easy example. Denote by

atj ∈ R3 the 3-dimensional vector representing the production activity of the firm j in

6Numerical calculations for this toy illustration as well as for the empirical analysis that follows have
been performed using the software zonohedron, written by Federico Ponchio. The code and instructions
are available at: http://vcg.isti.cnr.it/~ponchio/zonohedron.php.
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z-axis

x-axis

y-axis

Figure 4: 3D representation of the zonotope of the toy illustration.

the year t, 1 ≤ j ≤ 10 and 1 ≤ t ≤ 4 (e.g. a11 = (7.0, 4.0, 9.0) and a22 = (1.0, 4.0, 5.0)).

The zonotope at year t will be denoted by Y t and the industry production activity will

be dY t =
∑10

j=1 a
t
j, 1 ≤ t ≤ 4.

Then the matrices described in section 3.1 will be 3 × 3 matrices Ati,j,k with vectors

ati, a
t
j, a

t
k as columns and determinants ∆t

i,j,k .

The volumes of zonotopes Y t are given by

V ol(Y t) =
∑

1≤i<j<k≤10

| ∆t
i,j,k | , 1 ≤ t ≤ 4

and yielding the following values:

V ol(Y 1) = 8265 V ol(Y 2) = 6070 V ol(Y 3) = 4664.5 V ol(Y 4) = 3402.

The norm of the projection on the space of inputs of the 3-dimensional diagonal vector

dY t = (dt1, d
t
2, d

t
3), 1 ≤ t ≤ 4, is ‖pr−3(dY t)‖ =

√
(dt1)

2 + (dt2)
2.

and we get the following numerical values:

‖pr−3(dY 1)‖ = 50.997 ‖pr−3(dY 2)‖ = 48.84 ‖pr−3(dY 3)‖ = 45.67 ‖pr−3(dY 4)‖ = 39.96

The Gini volume will be:

G(Y t) =
V ol(Y t)

dt1d
t
2d
t
3
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Figure 5: The plot depicts a planar section of the solid angle generated by all vectors in year
1 and 2. The section plane is the one perpendicular to the vector sum of generators in year 1.
The vector of firm 10 (a10) moves inward from year 1 to year 2.

The numerical results for 1 ≤ t ≤ 4 are shown in Table 2.

As illustrated in Section 3.4 the variation over time of the angle θ3 that the diagonal

of the zonotope Y t forms with the plane x, y of inputs can be used to assess if and to what

extent productivity is growing in a given industry. Similarly if ϕt1 is the angle that the

diagonal of Y t forms with the x axis, then tgϕt1 allows to study how the relative inputs

use changes over the years. Using the notation introduced above, they are, respectively,

tgθt3 =
dt3

‖pr−3(dY t)‖
and tgϕt1 =

dt2
‖dt1‖

,

where the first is the index of the technical efficiency in the production of output, i.e. a

measure of improvement in “total factor productivity”, and the second index captures the

relative “intensity” of the first input (the second one can be obtained as tgϕt2 = 1
tgϕt

1

).

Table 2 displays the values of Gini volumes for the zonotopes Y t, the zonotopes Y
t

generated by the normalized production activities { atj
‖atj‖
}1≤j≤10 and the zonotopes Y t

e

generated by the external production activities which are in bold in Table 1. Moreover

it also reports the solid angle, the ratio of the Gini volumes of Y t over the Gini volumes

of Y t
e and the angles that account for the rate and direction of technical change.

Going from year 1 to 2, firm 10 displays an unequivocal increase in productivity. As

shown in Figure 5 the normalized vector accounting for the production activity of firm

10 rotates inward: in period 1 a110 is a boundary (normalized) vector, whether in period

2, a210 is an “internal” vector. Since a boundary vector (firm) shifts inward, production

techniques are more similar in period 2, hence heterogeneity within the industry reduces.

This is captured by our proposed measures which all vary in the expected direction. The
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Year 1 Year 2 Year 3 Year 4

G(Y t) 0.09271 0.07196 0.06518 0.06880

G(Y
t
) 0.09742 0.07905 0.06795 0.07244

G(Y t
e ) 0.12089 0.09627 0.07297 0.07297

Solid Angle 0.28195 0.22539 0.15471 0.15471

G(Y t) / G(Y t
e ) 0.70593 0.74748 0.89324 0.94285

tgθt3 1.3532 1.4538 1.51066 1.55133

tgϕt
1 1.11765 1.09091 1.11475 1.05455

Table 2: Volumes and angles accounting for heterogeneity and technical change, respectively,
in the four years of the toy illustration.

Gini index, G(Y ), the Gini index on normalized, G(Y ), and “external” vectors reduce

from year 1 to year 2. As apparent from Figure 5 also the solid angle reduces. The

ratio G(Y t) / G(Y t
e ) increases suggesting that internal vectors now contribute more to

the volume as compared to external vectors. The variation of the tangent of the angle

θ3 that the diagonal of the zonotope forms with the plane of inputs is our measure of

technical change. From year 1 to 2, firm 10, the least efficient, becomes more productive,

and this positively contributes to productivity growth at the industry level as captured

by the increase in the tangent of the angle θ3. The last indicator of Table 2 is informative

of the direction of technical change. The decrease in tgϕt1 suggest that technical change

is biased in the capital saving direction.

From year t = 2 to year t = 3 firm 9, an external vector, leaves the industry.7 The

outcomes are smaller Gini volumes for all our zonotopes. The solid angle reduces, too,

while the tangent of the angle θ3 increases, suggesting that the exit of firm 9 resulted in

a a further efficiency gain for the industry. Technical change is now in the labor saving

direction as tgϕt1 increases.

From period t = 3 to t = 4 an “internal” vector, firm 8, drops out of the industry. In

this case all our measures of Gini volumes point to an increase in heterogeneity, except,

obviously, G(Y t
e ) since the boundary vectors do not change. Again the exit of firm 8

positively contributes to productivity growth in the industry, as shown by the increase

in tgθt3 with capital saving bias, as tgϕt1 decreases.

Section 3.5 above discussed how the present framework can account for firm entry and

exit. In this respect, graph in Figure 6 represents how the heterogeneity changes when a

generic firm of fixed value added (V A = 5) enters the industry in year 1 of the example.

The function plotted in Fig. 6 is the function G(X) in equation (3) with Z = Y 1, N = 10

and vectors an = a1n. The value on the z-axis is the degree of heterogeneity in terms of

7Note that, intuitively, external vectors are the analogous to the support of an empirical distribution.
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Figure 6: Variation of heterogeneity (on the z axis) when a firm of labor x, capital y and fixed
value added enters the industry.

the Gini index for the different values that labour and capital might take. Analogous

graphs can be plotted in order to visualize technical change.

4 An empirical application

In the following we put the model at work on longitudinal firm-level data of an ensemble

of Italian 4-digit industries (chosen on the grounds of the numerosity of observations) over

the period 1998-2006. Values have been deflated with the industry-specific production

price index. Output is measured by (constant price) valued added (thousands of euro),

capital is proxied by (deflated) gross tangible assets (thousands of euro) and labour is

simply the number of employees (full time equivalent). More details on the databank are

in Appendix A. The list of sectors and the number of observations is reported in Table 3

together with the number of “external vectors”, as defined above, in brackets.

Figure 7 reports the actual analog of Figure 5 and it shows the coordinates of the

normalized vectors on the unit sphere for firms making up the industry in 2002 and 2006.

Both plots show that the solid angle provides a snapshot of the extreme techniques at

use in a given industry. For the same reason, this measure can change a lot following a

variation in the adopted technique by one firm only. Hence we will not refer to the solid

angle as our measure of heterogeneity, but we will focus on some normalized measures of

the zonotope’s volume.
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NACE Description
Code

1513 Meat and poultrymeat products 162 (7) 162 (10) 190 (9)
1721 Cotton-type weaving 139 (9) 119 (11) 113 (7)
1772 Knitted & crocheted pullovers, cardigans 137 (8) 117 (10) 100 (7)
1930 Footwear 616 (9) 498 (6) 474 (9)
2121 Corrugated paper and paperboard 186 (7) 176 (9) 199 (11)
2222 Printing n.e.c. 297 (11) 285 (10) 368 (8)
2522 Plastic packing goods 204 (7) 217 (10) 253 (11)
2524 Other plastic products 596 (9) 558 (9) 638 (10)
2661 Concrete products for construction 208 (8) 231 (11) 272 (7)
2663 Ready-mixed concrete 103 (8) 114 (8) 147 (10)
2751 Casting of iron 94 (7) 77 (9) 88 (9)
2811 Metal structures and parts of structures 402 (9) 378 (8) 565 (10)
2852 General mechanical engineering 473 (11) 511 (8) 825 (11)
2953 Machinery for food & beverage processing 131 (6) 134 (7) 159 (6)
2954 Machinery for textile, apparel & leather 191 (10) 170 (10) 154 (12)
3611 Chairs and seats 205 (8) 201 (10) 229 (7)

Table 3: NACE sectors for the empirical analysis. Number of observations in 1998, 2002 and
2002. In brackets the number of external vectors in each year.

4.1 Within Industry Heterogeneity and its dynamics

Table 4 reports the normalized volumes for the sectors under analysis. The first set of

columns report G(Y ) which, to repeat, is the ratio between the zonotope’s volume and

the volume of the parallelotope build on the zonotope’s main diagonal, for 1998, 2002 and

2006. Notice that the volume of the cuboid (denominator) is much bigger than that of the

zonotope (nominator) because, intuitively, the parellelotope is the notional production

set formed by production activities that produce no output with positive amounts of

inputs, and conversely, others which produce a high quantity of output with no input.

That is why the ratio, G(Y ), although small in absolute value, points nonetheless at big

differences in the production techniques employed by firms in the industry. The dynamics

over time of the ratio within any one industry allows to investigate how heterogeneity

in the adopted techniques evolves. G(Y ) displays indeed an increase over time in most

sectors, suggesting that heterogeneity has not been shrinking, but if anything it has

increased.8 Since G(Y ) is a ratio, we can also compare this measure of heterogeneity

across industries. As it might be expected, there are relevant differences in such degrees

of heterogeneity, with G(Y ) varying in the range .03-.16. Interestingly, also sectors that

are supposed to produce rather homogeneous output, such as 2661, Concrete, and 2663,

Ready-mixed concrete, display a degree of heterogeneity comparable, if not higher, to

that of many other sectors.

8This result is coherent with the evidence shown in Dosi et al. (2012) on Italian firms, although
employing a different methodology to explore heterogeneity.
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Figure 7: The plot depicts a planar section of the solid angle generated by all vectors in year
2002 and 2006. The section plane is the one perpendicular to the vector sum of generators.
Meat and poultrymeat (sector 1513) on the left and Footware (sector 1930) on the right.

The second set of columns reports the value of G(Y ), that is the Gini volume of

the unitary zonotope. As discussed in Section 3, in this case the zonotope is formed by

vectors having the same (unitary) length; hence size plays no role. For most of sectors,

G(Y ) is bigger than G(Y ) suggesting that, within any industry, smaller firms contribute

relatively more to heterogeneity than bigger ones. In particular, in some industries, such

as the Ready-mixed concrete (NACE 2663), industry heterogeneity almost doubles when

all firms are rescaled to have the same size. Finally, also G(Y ) display an increasing trend

over time, from 2002 to 2006, pointing to growing differences in the techniques in use.

Finally, G(Ye) (column III) reports the Gini volume for the zonotope built on the

external vectors only. As it could be expected, for all sectors G(Ye) is bigger than G(Y )

as the former maps a sort of “overall frontier” made of better and worse techniques.
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I II III
NACE G(Y ) G(Y ) G(Ye)
Code ’98 ’02 ’06 ’98 ’02 ’06 ’98 ’02 ’06

1513 0.059 0.051 0.062 0.082 0.062 0.096 0.391 0.201 0.301
1721 0.075 0.068 0.103 0.075 0.078 0.124 0.135 0.120 0.133
1772 0.160 0.122 0.136 0.154 0.126 0.130 0.142 0.273 0.172
1930 0.108 0.139 0.150 0.110 0.115 0.123 0.361 0.562 0.249
2121 0.108 0.043 0.062 0.081 0.064 0.081 0.257 0.105 0.178
2222 0.062 0.077 0.087 0.077 0.086 0.115 0.239 0.328 0.356
2522 0.065 0.061 0.070 0.071 0.064 0.074 0.197 0.261 0.266
2524 0.089 0.083 0.094 0.097 0.088 0.096 0.458 0.269 0.307
2661 0.079 0.088 0.099 0.100 0.094 0.110 0.376 0.234 0.352
2663 0.066 0.067 0.088 0.111 0.106 0.111 0.306 0.192 0.277
2751 0.035 0.037 0.070 0.064 0.055 0.073 0.174 0.107 0.184
2811 0.105 0.109 0.109 0.117 0.113 0.122 0.327 0.480 0.416
2852 0.088 0.102 0.110 0.100 0.103 0.111 0.227 0.395 0.391
2953 0.072 0.095 0.096 0.098 0.104 0.111 0.233 0.155 0.248
2954 0.078 0.074 0.093 0.086 0.130 0.113 0.170 0.141 0.352
3611 0.078 0.099 0.118 0.107 0.096 0.121 0.288 0.233 0.281

Table 4: Normalized volumes in 1998, 2002 and 2006 for selected 4 digit sectors.

4.2 Assessing industry level technical change

Next, let us take to the data the analysis of technical change by means of the angle that

the main diagonal of the zonotope forms with the input plane.

As shown in the toy illustration above, an increase in the tangent of the angle with

the plane of inputs is evidence of an increase of efficiency of the industry. The first

two columns of Table 5 reports the rates of growth of tgθ3 respectively for the period

1998-2002 and 2002-2006.9

Overall, not many sectors display a constant increase of productivity (i.e. increase in

tgθt3) in all periods. Reassuringly, the results from the method are broadly in line with the

rougher evidence stemming from sheer sector-level average productivities and the simple

observation of their micro distribution, highlighting a widespread stagnation in Italian

manufacturing over the first decade of the new millennium (cf. Dosi et al. 2012). Notice

that, in tune with it, also the values of the unitary zonotope point to the same pattern.

The change over time of the angle ϕi between the projection vector pr(dY ) and the

xi axis captures the changes of the quantity of input i over time with respect to all

the other inputs. Results are reported in Table 6. For some sectors the value of tgϕ1

decreases over time, suggesting that industries have moved towards relatively more labor

intensive techniques (indeed a result which might reveal the peculiarities of the most

recent patterns of growth, or more precisely, lack of it, of the Italian economy).

9Note that changing the unit of measurement, i.e. considering value added in millions (rather than
thousands) of euro of course changes the value of the angle, but the variation over time - our proxy of
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NACE (a) rates of growth of tg θ3 (b) rates of growth of tg θ3
Code 1998-2002 2002-2006 1998-2002 2002-2006

1513 -11.9073 -11.4541 -3.5540 -3.8569
1721 10.5652 4.3723 3.6084 1.4179
1772 -2.5717 32.9763 -0.3235 3.1497
1822 30.2406 42.1259 2.0202 1.9519
1930 3.1152 25.2797 0.3005 1.9487
2121 -6.8362 -8.8206 -3.1977 -4.4401
2222 -23.8199 2.8973 -8.2509 1.0216
2522 -18.0316 -16.8038 -8.2018 -8.9011
2524 -15.2821 0.4118 -4.6589 0.1282
2661 6.7277 -18.5953 1.4119 -4.6636
2663 25.4457 -19.6427 6.6499 -5.9972
2751 -33.6675 12.9994 -15.6436 5.9044
2811 6.4256 -7.9102 0.9619 -1.2723
2852 -12.0712 2.1536 -2.4139 0.4289
2953 19.3637 -4.7927 1.1784 -0.3032
2954 -0.3020 -21.2919 -0.0209 -1.8708
3611 -17.9141 0.0892 -2.0263 0.0102

Table 5: Angles of the zonotope’s main diagonal, rates of growth. (a) original zonotope; (b)
unitary zonotope.

technical change - is not affected by the unit of measure.
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Nace (a) tg ϕ1 (b) tg ϕ1

Code 1998 2002 2006 1998 2002 2006

1513 23.0224 25.5508 27.0043 21.8256 22.6442 20.1068
1721 21.0047 21.3726 18.4777 15.1804 16.0332 12.8776
1772 6.8281 6.7041 5.5909 5.0274 6.2307 5.6227
1930 4.5795 5.3113 5.0533 3.8295 4.5798 4.4675
2121 39.0274 39.3436 40.0129 23.9678 26.6887 24.8705
2222 19.1097 26.1785 24.3621 13.2630 17.2095 14.6962
2522 30.2555 37.3270 43.8918 23.9336 27.9305 27.1886
2524 17.9118 21.4862 19.9956 13.4808 15.7137 14.6993
2661 14.1626 16.5427 17.9402 10.5512 12.3908 12.0912
2663 26.9417 26.3218 26.9437 15.1537 16.5539 15.0585
2751 21.8179 36.6899 31.9027 19.4979 30.2839 24.7586
2811 9.1053 9.7865 9.8170 6.9113 7.8659 6.6393
2852 10.0784 13.1988 13.2519 7.9099 10.4204 10.0850
2953 5.4316 5.3541 5.9111 4.1020 5.0619 4.7180
2954 5.0435 5.1530 5.8891 4.0276 3.7809 4.6053
3611 5.7162 6.3274 6.2222 4.5100 5.3190 5.0401

Table 6: Angles of the zonotope’s main diagonal. (a) Angles on production inputs plane,
original zonotope; (b) unitary zonotope.
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5 Conclusions

How does one synthetically accounts for the actual “state of the technology” of any indus-

try when firm-level techniques are widely and persistently heterogeneous? Hildenbrand

(1981) suggested a seminal methodology focusing on the geometric properties of the actual

activities - that is the actual input-output relations - displayed by the firms composing

the industry. And he analyzed the features of such constructs in terms of the standard

properties normally postulated by production functions but not born by the actual data.

Here we pushed the investigation some steps further. First, we used different measures

of volume of the geometrical objects defined by firms’ activities as measures of inter-firm

technological heterogeneity. Second, we investigated the properties of the dynamics of

such objects over time as meaningful proxies for industry-level technological change quite

independent of any behavioral assumptions on allocative strategies of individual firms,

and on the relationships between input prices and input intensities.

A straightforward step ahead involves the disentangling between movement of the

“frontier” however defined and movements of the weighted an unweighted distributions

of techniques across firms. And another one entails indeed the study of the relationships of

the foregoing dynamics with relative input prices, if any, and, probably more important,

with the patterns of learning and competition characteristic of each industry.

Appendix

The database employed for the analyses, Micro.3, has been built through to the collabo-

ration between the Italian statistical office, ISTAT, and a group of LEM researchers from

the Scuola Superiore Sant’Anna, Pisa.10

Micro.3 is largely based on the census of Italian firms yearly conducted by ISTAT

and contains information on firms above 20 employees in all sectors11 of the economy for

the period 1989-2006. Starting in 1998 the census of the whole population of firms only

concerns companies with more than 100 employees, while in the range of employment 20-

99, ISTAT directly monitors only a “rotating sample” which varies every five years. In

order to complete the coverage of firms in the range of employment 20-99 Micro.3 resorts,

from 1998 onward, to data from the financial statement that limited liability firms have

to disclose, in accordance to Italian law.12

10The database has been made available for work after careful censorship of individual information.
More detailed information concerning the development of the database Micro.3 are in Grazzi et al. (2009).

11In the paper we use the Statistical Classification of Economic Activities known as NACE, Revision
1.1.

12Limited liability companies (società di capitali) have to hand in a copy of their financial statement
to the Register of Firms at the local Chamber of Commerce
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