
Lambertini, Luca; Palestini, Arsen

Working Paper

On the Feedback Solutions of Differential Oligopoly Games
with Hyperbolic Demand Curve and Capacity Accumulation

Quaderni - Working Paper DSE, No. 862

Provided in Cooperation with:
University of Bologna, Department of Economics

Suggested Citation: Lambertini, Luca; Palestini, Arsen (2013) : On the Feedback Solutions of
Differential Oligopoly Games with Hyperbolic Demand Curve and Capacity Accumulation, Quaderni
- Working Paper DSE, No. 862, Alma Mater Studiorum - Università di Bologna, Dipartimento di
Scienze Economiche (DSE), Bologna,
https://doi.org/10.6092/unibo/amsacta/3906

This Version is available at:
https://hdl.handle.net/10419/159701

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  https://creativecommons.org/licenses/by-nc/3.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.6092/unibo/amsacta/3906%0A
https://hdl.handle.net/10419/159701
https://creativecommons.org/licenses/by-nc/3.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 

 

 

 

 
 

 

  

On the Feedback Solutions of Differential 
Oligopoly Games with Hyperbolic 

Demand Curve and Capacity 
Accumulation 

 

  

Luca Lambertini 
Arsen Palestini 

 

 

  

Quaderni - Working Paper DSE N° 862 



On the Feedback Solutions of
Di¤erential Oligopoly Games with
Hyperbolic Demand Curve and

Capacity Accumulation1

Luca Lambertini�;x Arsen Palestini]

*Department of Economics, University of Bologna

Strada Maggiore 45, 40125 Bologna, Italy; fax +39-051-2092664

luca.lambertini@unibo.it

§ ENCORE, University of Amsterdam

Roeterstraat 11, WB1018 Amsterdam, The Netherlands

] MEMOTEF, Sapienza University of Rome

Via del Castro Laurenziano 9, 00161 Rome, Italy; arsen.palestini@uniroma1.it

9th January 2013

1We would like to thank Davide Dragone and Alessandro Tampieri for stim-
ulating discussions and insightful suggestions. The usual disclaimer applies.



Abstract

We characterise the subgame perfect equilibrium of a di¤erential market
game with hyperbolic inverse demand where �rms are quantity-setters and
accumulate capacity over time à la Ramsey. The related Hamilton-Jacobi-
Bellman are solved in closed form both on in�nite and on �nite horizon
setups and the optimal strategies are determined. Then, we analyse the
feasibility of horizontal mergers in both static and dynamic settings, and
�nd appropriate conditions for their pro�tability under both circumstances.
Static pro�tability of a merger implies dynamic pro�tability of the same
merger. It appears that such a demand structure makes mergers more
likely to occur than they would on the basis of the standard linear inverse
demand.

JEL Classi�cation: C73, L13
Keywords: capacity, di¤erential game, Markov-perfect equilibrium,

Hamilton-Jacobi-Bellman equation, horizontal mergers



1 Introduction

Most of the existing literature on oligopoly theory (either static or dynamic)
assumes linear inverse demand functions, as this, in addition to simplifying
calculations, also ensures both concavity and uniqueness of the equilibrium,
which, in general, wouldn�t be warranted in presence of convex demand
systems (see [14] and [8], inter alia). However, the use of linear demand
function is in sharp contrast with the standard microeconomic approach
to consumer behaviour, where the widespread adoption of Cobb-Douglas
preferences (or their log-linear a¢ ne transformation) yields hyperbolic in-
verse demand functions. The same applies to the so-called quasi-linear
utility function, concave in consumption and linear in money, that again
yields a convex demand system. Indeed, both preference structures share
the common property of producing isoelastic demand functions.1

In fact, this is sometimes openly referred to in the �eld of industrial
organization, where researchers mention the opportunity of dealing with
non-linear demand curves, and then promptly leave it aside for the sake
of tractability.2 Additionally, the econometric approach to demand theory
has produced the highest e¤orts to building up a robust approach to the
estimation of non-linear individual and market inverse demand functions,
yielding a large empirical evidence in this direction.3 With these considera-
tions in mind, it appears desirable to investigate the bearings of non-linear
demand systems on the performance of �rms operating in oligopolistic mar-
kets, using thus a setup with solid microfoundations corroborated by robust
empirical evidence, even though this is a costly approach in terms of ana-
lytical tractability.

1For a thorough illustration of these issues in consumer theory, see the classical
textbooks: [7] and [27], inter alia.

2A noteworthy example in this respect is [23] (pp. 53-54), using quasi-linear utility
function to de�ne the concept of consumer surplus.

3See [15], [25] and [26], inter alia.
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Figure 1. Inverse demand functions in the linear and in the hyperbolic cases
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With speci�c reference to di¤erential games, the use of linear inverse
demand functions (jointly with either linear or quadratic cost functions)
allows for the closed-form solution of the feedback equilibrium through the
Bellman equation of the representative �rm, as the model takes a linear-
quadratic form and therefore one can stipulate that the corresponding can-
didate value function is also linear-quadratic. However, there is no particu-
lar reason to believe that a linear function describes correctly virtually any
market demand in the real world, and therefore it is of primary interest to
design, if possible, closed-form solutions of market games with non-linear
demand functions. To the best of our knowledge, the only existing examples
of di¤erential oligopoly games with non-linear market demand are in [5],
[11] and [18]. The �rst one uses a non-linear demand à la Anderson and En-
gers ([1]) and also investigates horizontal mergers, whereas the second one
carries out a pro�tability assessment of small horizontal mergers subject to
a sticky price dynamics. The third one employs a hyperbolic demand with
sticky prices (as in [24] and [13]) as well, but leaves the merger issue out of
the picture. Other non linear-quadratic structures are investigated by [16]
and [17].4

The aim of this paper is to illustrate a way out of the aforementioned
problem, o¤ered by dynamic game theory. We are going to illustrate a
dynamic Cournot model where �rms (i) accumulate capacity à la Ram-
sey (1928), (ii) bear an instantaneous cost of holding any given capacity,
and (iii) discount future pro�ts at a constant rate. The main results are
threefold.

4For excellent and largely complementary surveys of di¤erential oligopoly games, see
[9] and [19].
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1. First, we determine the feedback information structure of the di¤eren-
tial game both over in�nite and �nite horizon, solving in closed form
the related Hamilton-Jacobi-Bellman systems of equations when the
accumulation dynamics is linear and the accumulation cost is a poly-
nomial function of a generic degree of the �rm�s capital endowment.
When the accumulation follows a linear growth dynamics, the result-
ing feedback equilibrium coincides with the open-loop equilibrium,
hence it is indeed subgame perfect.

2. Secondly, we investigate the standard RamseyAk model where the in-
verse demand is a hyperbolic curve. By applying the above results, we
are able to completely characterize the equilibrium structure. Some
results on feasibility of states and controls and on the comparison
between the �rms�pro�ts in the static and in the dynamic frame-
works are also featured.

3. Finally, we use it to investigate the pro�t (or, private) incentive to-
wards horizontal mergers, to �nd that taking a dynamic perspective
widens the range of privately feasible mergers. In particular, the form
of the demand curve is crucial to allow for pro�table mergers to take
place in all setups:5 That is, the presence of discounting, depreci-
ation and a cost associated to holding capacity increases the �rms�
willingness to merge horizontally, for any admissible merger size. Any
merger, of course, has undesirable consequences on consumer surplus
and ultimately for welfare (at least in this model, where the e¢ ciency
defense is not operating).

The remainder of the paper is structured as follows. Section 2 features
the basic concepts on the static game, and subsequently the complete cal-
culation and the related properties of the feedback information structure
of the di¤erential game with capacity accumulation over in�nite and �-
nite horizons. In Section 3 two applications are taken into account and
characterized: the Cournot-Ramsey di¤erential game and the analysis of
pro�tability of horizontal mergers. Section 4 incorporates our conclusions
and further possible developments.

5To the best of our knowledge, scant attention has been devoted to the implica-
tions of dynamic competition on merger incentives, with the exceptions of Dockner and
Gaunersdorfer in 2001 ([9]) and Benchekroun in 2003 ([2]), using a price dynamics à
la Simaan and Takayama ([24]) and Cellini and Lambertini ([5]) adopting a Ramsey-
type capital accumulation dynamics. All of these contributions, however, assume linear
demand functions.
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2 The oligopoly game with hyperbolic in-
verse demand

2.1 A summary of the static game

Consider a market where N single-product �rms supply individual quantit-
ies qi > 0; i = 1; : : : ; N: The good is homogeneous, and the market inverse
demand function is

p(q1; : : : ; qN) =
a

q1 + � � �+ qN
=
a

Q
: (1)

(1) is the outcome of the constrained maximum problem of a representative
consumer endowed with a log-linear utility function

U(Q) = log [Q] +m; (2)

where m is a numeraire good whose price is normalised to one. The budget
constraint establishes that the consumer�s nominal income Y must be large
enough to cover the expenditure, so that Y � p(Q)Q +m: The represent-
ative consumer is supposed to solve the following:

max
Q

L(Q) = U(Q) + � (Y � p(Q)Q�m) : (3)

Solving the above problem, one obtains indeed the hyperbolic inverse de-
mand function (1), where a = ��1 > 0.
On the supply side, production entails a total cost Ci = cqi; where

c > 0 is a constant parameter measuring marginal production cost. Market
competition takes place à la Cournot-Nash; therefore, �rm i chooses qi so
as to maximise pro�ts �i = (p(Q)� c) qi: This entails that the following
�rst order conditions must be satis�ed (given their form, it is not necessary
to assume interior solutions):

@�i
@qi

=
aQ�i

(qi +Q�i)
2 � c = 0 (4)

where Q�i �
P

j 6=i qj: The associated second order condition:

@2�i
@q2i

= � 2aQ�i

(qi +Q�i)
3 < 0 (5)

is always met when qi > 0 for all i = 1; : : : ; N . Then, imposing the
symmetry condition on all outputs, i.e. qi = qj = q, one obtains the
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individual Cournot-Nash equilibrium output qCN =
a (N � 1)
N2c

; yielding

pro�ts �CN =
a

N2
: If theN �rms were operating under perfect competition,

then p� = c and therefore q� =
a

Nc
:

It is apparent that the above solutions (i.e., both the Cournot-Nash
equilibrium and the perfectly competitive equilibrium) are well-de�ned and
feasible for all c > 0:
In the remainder of the paper, we will turn our attention to a di¤erential

game where the demand structure is the same as here. We will separately
investigate the in�nite horizon and �nite horizon cases.

2.2 Feedback solutions of the di¤erential game on an
in�nite horizon

We are going to consider a market existing over t 2 [0 ; +1) ; and which
is served by N �rms producing a homogeneous good. Let qi(t) 2 (0; +1)
de�ne the quantity sold by �rm i at time t: Firms compete à la Cournot,
the demand function at time t being:

p (t) =
a

Q (t)
; Q (t) =

NX
i=1

qi (t) : (6)

In order to produce, �rms bear linear instantaneous costs Ci (t) = cqi (t) ;
where C > 0. Moreover, they must accumulate capacity or physical capital
ki(t) 2 [0; +1) over time. If we denote with yi(t) the output produced by
�rm i at time t; we assume that ki a¤ects the production of yi in the sense

that
@yi
@ki

> 0. Capital accumulates as a result of intertemporal relocation of

unsold output yi(t)� qi(t):6 This can be interpreted in two ways. The �rst
consists in viewing this setup as a corn-corn model, where unsold output is
reintroduced in the production process. The second consists in thinking of
a two-sector economy where there exists an industry producing the capital
input which can be traded against the �nal good at a price equal to one (for
further discussion, see [5]). Unlike the standard macroeconomic approach
to growth models in a Ramsey fashion, here we will allow for the presence
of an instantaneous cost of holding installed capacity. This cost will be
�i(ki(t)); possibly asymmetric across �rms. In the remainder, we will refer

to
@�i
@ki

as a measure of the opportunity cost of a unit of capacity. We will

6Of course, capacity decumulates whenever yi(t)� qi(t) � 0:
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employ ki(t) as the i-th state variable subject to the following dynamic
constraints: 8<:

dki(t)

dt
�

�
ki(t) = Gi(ki(t))� qi(t)

ki(t0) = ki0 > 0
; (7)

where Gi(ki(t)) is a C2(R+) function a¤ecting the growth dynamics of
capital. The i-th �rm�s strategic variable is qi(t); while the i-th �rm�s state
variable is ki(t):
Assuming all �rms discount pro�ts at the same constant rate � � 0; the

problem of �rm i is to choose the output level qi (t) so as to maximise its
own discounted �ow of pro�ts (from now on, we will omit time arguments
whenever possible):

max
qi2R+

Ji (ki0; t0) �
Z 1

t0

[(p (Q(�); �)� c) qi (�)� �i(ki(�))] e��(t0��)d� =

=

Z 1

t0

" 
aPN

i=1 qi (�)
� c
!
qi (�)� �i(ki(�))

#
e��(t0��)d� : (8)

Call ki0 = k. Denoting with Vi(k) the i-th optimal value function for (8),
the Hamilton-Jacobi-Bellman (HJB) system of equations reads as follows:

�Vi(k) = max
qi

( 
aPN
i=1 qi

� c
!
qi � �i(k) +

@Vi
@k
(Gi(k)� qi)

)
; (9)

for all i = 1; : : : ; N . Note that because Ji only depends on the i-th capital,
in (9) the �rst order partial derivatives of Vi with respect to the remaining
state variables do not appear. To proceed with the analytical solution of the
feedback problem, we are going to introduce suitable symmetry conditions:
one is qi = qj for all i 6= j; saying that the equilibrium output must be
symmetric across all �rms. The assumption of symmetry across capitals
states that, from the standpoint of a generic �rm i, the rivals�capacities
(and therefore also their weights in the value function) must be symmetric
when the respective growth dynamics and cost structures are equal.

Proposition 1. Assuming symmetry across all variables, the HJB equation
of the problem is given by:

@V

@k
= �

V (k)

G(k)
+
�(k)� a

N2

G(k)
; (10)
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Proof. Maximizing the r.h.s. of (9) with respect to qi yields:

aQ�i

(qi +Q�i)
2 � c�

@Vi
@k

= 0; (11)

then, by assuming symmetry on the relevant variables and functions, i.e.
q1 = : : : = qN = q, V1 = : : : = VN = V , �1(�) = : : : = �N(�) = �(�), G1(�) =
: : : = GN(�) = G(�), we have that (11) yields the following expression for
the optimal strategy q�:

q� =
a(N � 1)

N2

�
@V

@k
+ c

� ; (12)

which must be plugged into (9) to achieve:

�V (k) =

0BB@N
�
@V

@k
+ c

�
N � 1 � c

1CCA a(N � 1)

N2

�
@V

@k
+ c

���(k)+@V
@k

0BB@G(k)� a(N � 1)

N2

�
@V

@k
+ c

�
1CCA ()

() �V (k) =

a

�
N
@V

@k
+ c

�
N2

�
@V

@k
+ c

���(k)+@V
@k
G(k)�@V

@k

0BB@ a(N � 1)

N2

�
@V

@k
+ c

�
1CCA ()

() �V (k)+�(k)�@V
@k
G(k) =

a

N2

�
@V

@k
+ c

� �N @V
@k

+ c� (N � 1)@V
@k

�
()

() �V (k) + �(k)� @V
@k
G(k) =

a

N2

�
@V

@k
+ c

� �@V
@k

+ c

�
()

() @V

@k
= �

V (k)

G(k)
+
�(k)� a

N2

G(k)
:

Corollary 2. (10) admits the following family of solutions in any interval
properly contained in the set fk 2 R+ j G(k) 6= 0g:

V �(k) =

0@eC + Z k

0@�(s)� a

N2

G(s)

1A e� R s �
G(�)

d�ds

1A eR k �
G(s)

ds; (13)

where eC is a constant depending on the initial conditions of (10).
7



Expression (13) is useful to characterize the standard cases. In particu-
lar, when the capital�s production function is linear and it does not involve
�xed costs in absence of capital, it suggests us the following result:

Proposition 3. If G(k) is linear, G(0) = 0 and �(k) is an m-th degree
polynomial in k, then one solution of (10) is an m-th degree polynomial in
k as well.

Proof. By assumption, call G(k) = �k and �(k) =
Pm

l=0 �lk
l. Replacing

such functions in (13) yields:

V �(k) =

0@eC + Z k

0@Pm
l=0 �ls

l � a

N2

�s

1A e� R s �
��
d�ds

1A eR k �
�s
ds =

=

0@eC + Z k

0@Pm
l=0 �ls

l � a

N2

�s

1A s� �
�ds

1A k �
� =

= eCk �
� +

"Z k
 
1

�

mX
l=0

�ls
l� �

�
�1 � a

�N2
s�

�
�
�1

!
ds

#
k
�
� =

= eCk �
� +

mX
l=0

�l
�l � �k

l +
a

�N2
;

hence the solution corresponding to the choice eC = 0 is an m-th degree
polynomial in k.

By plugging the solution into (12), it follows that:

Corollary 4. If the assumptions of Proposition 3 hold, the optimal feedback
strategy is given by:

q�(k) =
a(N � 1)

N2

�Pm
l=1

l�l
�l � �k

l�1 + c

� : (14)

2.3 Feedback solutions of the di¤erential game on a
�nite horizon

On a �nite horizon [t; T ], where 0 � t < T < 1, the HJB system of
equations of our problem takes the following form:

�@Vi
@t
+ �Vi(k) = max

qi

( 
aPN
i=1 qi

� c
!
qi � �i(k) +

@Vi
@k
(Gi(k)� qi)

)
;

(15)
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where Vi depends on both k and initial time t. Di¤erently from the in�nite
horizon case, we must additionally take into account the transversality
conditions on all Vi:

lim
t�!T

Vi(k; t) = 0: (16)

Proposition 5. If G(k) is linear, G(0) = 0 and �(k) is an m-th degree
polynomial in k, then the system (15) admits the following solution:

V (k; t) =
��0 +

a

N2

�
[1� e�(t�T )] +

mX
l=1

�l
�l � � [1� e

(���l)(t�T )]kl: (17)

Proof. As in Proposition 3, call G(k) = �k and �(k) =
Pm

l=0 �lk
l. The

maximization of the r.h.s. of (15) yields:

aQ�i

(qi +Q�i)
2 � c�

@Vi
@k

= 0; (18)

then, by assuming symmetry on the relevant variables and functions, i.e.
q1 = : : : = qN = q, V1 = : : : = VN = V , �1(�) = : : : = �N(�) = �(�), G1(�) =
: : : = GN(�) = G(�), we have that (18) yields the following expression for
the optimal strategy q�:

q� =
a(N � 1)

N2

�
@V

@k
+ c

� ; (19)

which must be plugged into (15) to achieve (the steps are analogous to
those in Proposition 3, so we omit them):

�@V (k; t)
@t

+ �V (k; t) +

mX
l=0

�lk
l � �k@V (k; t)

@k
� a

N2
= 0: (20)

We guess a function of the following kind for V (k; t):

V (k; t) =
mX
l=0

Al(t)k
l; (21)

where Al(t) 2 C1([t; T ]) and the transversality conditions are Al(T ) = 0
for all l = 0; 1; : : : ;m. Plugging (21) into (20), we obtain:

�
mX
l=0

_Al(t)k
l + �

mX
l=0

Al(t)k
l � a

N2
+

mX
l=0

�lk
l � �k

mX
l=0

lAl(t)k
l�1 = 0;

9



subsequently, all the coe¢ cients of the powers of k are supposed to vanish,
giving rise to the following dynamic system:8>>>><>>>>:

� _A0(t) + �A0(t)�
a

N2
+ �0 = 0

� _A1(t) + �A1(t)� �A1(t) + �1 = 0
: : :

� _Am(t) + �Am(t)�m�Am(t) + �m = 0

:

By employing the transversality conditions, we achieve the following unique
solutions:

A0(t) =
��0 +

a

N2

�
[1� e�(t�T )];

Al(t) =
�l

�l � � [1� e
(���l)(t�T )];

for all l = 1; : : : ;m. Finally, substituting the found solutions in (21), we
obtain the optimal value function in closed form:

V (k; t) =
��0 +

a

N2

�
[1� e�(t�T )] +

mX
l=1

�l
�l � � [1� e

(���l)(t�T )]kl: (22)

Corollary 6. If the assumptions of Proposition 5 hold, the optimal feedback
strategy is given by:

q�(k; t) =
a(N � 1)

N2

�Pm
l=1

l�l
�l � � [1� e

(���l)(t�T )]kl�1 + c

� : (23)

3 Applications

3.1 The Cournot-Ramsey game

In this well-known example, in order to produce, �rms must accumulate
capacity or physical capital ki(t) over time. We chose to consider the
kinematic equations for capital accumulation as in Ramsey ([21]), i.e. the
following dynamic constraints:( �

ki(t) = Aki(t)� qi(t)� �ki(t)
ki(0) = ki0 > 0

; (24)

10



where Aki(t) = yi(t) denotes the output produced by �rm i at time t and
� > 0 denotes the decay rate of capital, equal across �rms. I.e., this is
the familiar Ak version of the Ramsey model. The related cost will be
�i (t) = bki(t); with b � 0; representing the aforementioned opportunity
cost of a unit of capacity.
Because Gi(ki(t)) = �ki(t) = (A� �)ki(t), we can apply all the results

collected in the previous Section. In particular, if we posit the following:

�0 = 0; �1 = b; �2 = : : : = �m = 0; � = A� �;

then the application of formulas (13), (14), (22) and (23) respectively entail:

� In�nite horizon:

V �(k) =
b

A� � � �k +
a

�N2
;

q�(k) =
a(N � 1)(A� � � �)
N2[b+ c(A� � � �)] :

� Finite horizon:7

V �(k; t) =
a

�N2
[1� e�(t�T )] + b[1� e

(��A+�)(t�T )]

A� � � � k;

q�(k; t) =
a(N � 1)(A� � � �)

N2[b(1� e(��A+�)(t�T )) + c(A� � � �)] :

In order to ensure the feasibility (i.e., the positivity) of such strategies,
we need suitable parametric assumptions:

Proposition 7. In the in�nite horizon case, if one of the following condi-
tions:

1. A > �+ �,

2. � < A < �b
c
+ �+ �,

7As an ancillary observation, it is worth noting that here, since the feedback optimal
strategy coincides with the open-loop one and the strategic contributions cannot be
distinguished under symmetry, the co-state variable at initial time appearing in the
open-loop formulation of the game, which we omit here for brevity, can be appropriately
considered as a shadow price of an additional unit of capacity, while, in general, this is
true only of the partial derivative of the value function at initial state (for more on this
aspect, see [3]).
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holds, then q�(k) is feasible.

Proof. Both conditions are trivially satis�ed. In particular, in both cases
we have to assume A > � to ensure accumulation of capital (otherwise _ki(t)
would be negative at all t).

Moreover, here q�(k) is constant whereas k�(t) grows unbounded in
that A > �. We can easily compare the optimal output with the one in the
Cournot-Nash static setup:

Proposition 8. In the in�nite horizon case, we have that:

1. if A > �b
c
+ �+ �, then qCN > q�(k);

2. A < �b
c
+ �+ �, then q�(k) > qCN .

Proof. It su¢ ces to evaluate the di¤erence between outputs:

q�(k)�qCN = a(N � 1)(A� � � �)
N2[b+ c(A� � � �)]�

a(N � 1)
N2c

= �ab(N � 1)(A� � � �)
N2c[b+ c(A� � � �)] :

In the �nite horizon case, the situation is di¤erent and we need to
establish a time interval over which q�(k; t) is feasible. However, note that
at t = T the optimal strategy coincides with the Cournot-Nash optimal
strategy: q(k; T ) = qCN .

Proposition 9. In the �nite horizon case we have that:

1. If � < A < �b
c
+ �+ �, q�(k; t) is feasible for each t 2 [0; T ).

2. If A > �b
c
+ �+ �, q�(k; t) is feasible for each t 2 (et; T ), where
et = T + 1

�� A+ � ln
hc
b
(A� �� �) + 1

i
:

Proof. We are going to consider the two di¤erent cases:

If A < � + �, then the numerator is negative, hence we have to ensure
that the denominator is negative too:

b(1� e(��A+�)(t�T )) + c(A� � � �) < 0 () : : : ()

12



() e(��A+�)(t�T ) >
c

b
(A� � � �) + 1:

If the r.h.s. is negative, i.e. A < �b
c
+ � + �, q�(k; t) is positive for all

t 2 [0; T ). If the r.h.s. is positive, then:

t� T > 1

�� A+ � ln
hc
b
(A� �� �) + 1

i
;

hence if we call et = T + 1

�� A+ � ln
hc
b
(A� �� �) + 1

i
, q�(k; t) > 0 over

(et; T ).
Subsequently, consider A > �+ �, we have to prove the positivity of the

denominator of q�(k; t):

b(1� e(��A+�)(t�T )) + c(A� � � �) > 0 () : : : ()

() t� T > 1

�� A+ � ln
hc
b
(A� �� �) + 1

i
;

then q�(k; t) > 0 over (et; T ), meaning that the relevant condition for the
restriction of the time interval is A > �b

c
+ �+ �.

The next Figures sketch the behaviour of the optimal strategy in �nite
horizon, showing the di¤erence between its possible domains (et; T ] and
[0; T ] in compliance with Proposition 9.

Figure 2. If A > �b
c
+ �+ �, q�(k; t) is decreasing and it reaches qCN at the instant T .

-

6

t

qCN =
a(N � 1)
N2c

et T

q

q�(k; t)

�
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Figure 3. If A > �b
c
+ �+ �, q�(k; t) is decreasing and it reaches qCN at the instant T .

-

6

t

qCN =
a(N � 1)
N2c

T

q

q�(k; t)

�

Corollary 10. Since the di¤erential game at hand is a linear state one8,
the open-loop equilibrium is subgame perfect as it coincides with the feed-
back equilibrium q�(k; t) yielded by the Bellman equation. Moreover, this
would hold true also in the more general case where yi (t) = f (ki (t)) ; with
f 0 (ki (t)) > 0 and f 00 (ki (t)) � 0: That is, state-linearity is not necessary
to yield subgame perfection in a Cournot-Ramsey game. For more on this
issue, see [4] and [6].

If we substitute q�(k; t) in the dynamic constraint (24), we can also
achieve the expression of the optimal state k�(t):8<:

�
ki(t) = (A� �)ki(t)�

a(N � 1)(A� � � �)
N2[b(1� e(��A+�)(t�T )) + c(A� � � �)]

ki(0) = ki0

;

whose unique solution is given by:

k�(t) =

�
k0 �

a(N � 1)(A� � � �)
N2

Z t

0

e�(A��)s

b(1� e(��A+�)(s�T )) + c(A� � � �)ds
�
e(A��)t:

(25)
Now the joint feasibility of q�(t) and k�(t) can be evaluated:

8A linear state game is one where, if we callHi(�) the i-th �rm�s Hamiltonian function,

we have that:
@2Hi (�)
@qi@kj

=
@2Hi (�)
@k2j

= 0 for all i; j = 1; : : : ; N: For more on linear state

games, see [10](ch. 7), inter alia.
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Proposition 11. Under the same assumptions as in Proposition 9, if q�(t)
is feasible and if

k0 >
a(N � 1)(A� � � �)

N2

Z t

0

e�(A��)s

b(1� e(��A+�)(s�T )) + c(A� � � �)ds

for all t 2 (0; T ], then k�(t) is feasible as well.

Proof. It immediately follows from the positivity of q�(t) and from the
expression (25).

The next Proposition provides the exact expression of k�(t):

Proposition 12. The optimal state of the Cournot-Ramsey game is given
by the following function:

k�(t) =

�
k0 �

a(N � 1)(A� � � �)
N2

�
e�(A����)T

�
(e��t � 1)+

+
b+ c(A� � � �)
�e�2(A����)T

�
log

�
e�(A����)T � (b+ c(A� � � �))e�(A����)t

e�(A����)T � (b+ c(A� � � �))

����
e(A��)t:

(26)

Proof. The explicit calculation of (25) needs the calculation of the related
integral:

I(t) =

Z t

0

e�(A��)s

C1 � C2e(��A+�)s
ds;

where C1 = b+ c(A� � � �) and C2 = e�(��A��)T . We have that:

I(t) =

Z t

0

(�C2)e�(A����)s + C1 � C1
(�C2)e�s(C1 � C2e(��A+�)s)

ds =
1

C2

�
e��s

�

�t
0

+
C1
C2

Z t

0

1

e�s(C1 � C2e(��A��)s)
ds =

=
1

�C2

�
e��t � 1

�
+
C1
C2

Z t

0

1

e�s(C1 � C2e(��A��)s)
ds:

Then, applying the change of variable x = e��s, leading to the change of

di¤erential ds = �dx
�x
, we obtain:

I(t) =
1

�C2

�
e��t � 1

�
� C1
�C2

Z e��t

1

dx

C1 � C2x
A����

�

ds =

=
1

�C2

�
e��t � 1

�
+

1

�C2

Z 1

e��t

dx

1� C2
C1
x
A����

�

ds =
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=
1

�C2

�
e��t � 1

�
+

1

�C2

Z 1

e��t

1X
k=0

�
C2
C1
x
A����

�

�k
ds =

=
1

�C2

�
e��t � 1

�
+

1

�C2

264 1X
k=0

�
C2
C1

�k �
x
A����

�

�k+1
k + 1

375
1

e��t

=

=
1

�C2

�
e��t � 1

�
+

1

�C2

26664C1C2
1X
l=1

�
C2
C1

�l
l

� C1
C2

1X
l=1

�
C2
C1
e�(A����)t

�l
l

37775 =
=

1

�C2

�
e��t � 1

�
+
C1
�C22

�
� log

�
1� C1

C2

�
+ log

�
1� C1

C2
e�(A����)t

��
=

=
1

�C2

�
e��t � 1

�
+
C1
�C22

�
log

�
C2 � C1e�(A����)t

C2 � C1

��
: (27)

Finally, plugging (27) into (25) yields the complete expression (26)of the
optimal capital:

k�(t) =

�
k0 �

a(N � 1)(A� � � �)
N2

I(t)

�
e(A��)t =

=

�
k0 �

a(N � 1)(A� � � �)
N2

�
e�(A����)T

�
(e��t � 1)+

+
b+ c(A� � � �)
�e�2(A����)T

�
log

�
e�(A����)T � (b+ c(A� � � �))e�(A����)t

e�(A����)T � (b+ c(A� � � �))

����
e(A��)t:

Given (26), we can evaluate k�(T ), i.e. the terminal value of capital at
the end of the time interval9:

k�(T ) =

�
k0 �

a(N � 1)(A� � � �)
N2

I(T )

�
e(A��)T = �a(N � 1)(A� � � �)

�N2

�
1� e�T+

+
b+ c(A� � � �)
e�(3(A��)�2�)T

�
log

�
1� [b+ c(A� � � �)]

1� [b+ c(A� � � �)]e(A����)T

���
+k0e

(A��)T :

(28)

9We omit the most tedious calculations, reminding the readers that all of them are
available upon request to the authors.
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If we call �� = �(q�(T ); k�(T )) the pro�t function evaluated at the terminal
instant T , we are able to compare it with the pro�t function �CN = �(QCN)
evaluated at the steady state in the static Cournot problem as shown in
Subsection 2.1. Namely, we have that:

�� =

�
a

Nq�i (T )
� c
�
q�i (T )� bk�i (T ) =

a

N
� cq�(T )� bk�(T ) =

=
a

N2
� b
�
k0e

(A��)T � a(N � 1)(A� � � �)
N2

(1� e�T )+

+
b+ c(A� � � �)
�e�(3(A��)�2�)T

�
log

�
1� [b+ c(A� � � �)]

1� [b+ c(A� � � �)]e(A����)T

���
: (29)

Proposition 13. Under the hypotheses of Propositions 9 and 11, if q�(t)
and k�(t) are both feasible at all t 2 [0; T ], then the Cournot-Nash equi-
librium pro�t is larger than the Ramsey-Cournot equilibrium level at the
terminal instant.

Proof. It su¢ ces to consider the di¤erence:

�� � �CN = a

N2
� bk�(T )� a

N2
= �bk�(T )

which is strictly negative by the feasibility of k�(t) at all instants, mean-
ing that the Cournot-Nash equilibrium pro�t exceeds the Ramsey-Cournot
terminal pro�t.

Remark 14. It is worth noting that comparing the two optimal strategies in
the static and in the dynamic cases, one immediately sees that the presence
of capital accumulation in the dynamic game plays a key role in opening
the way towards a solution to the indeterminacy issue a¤ecting the static
game as the marginal production cost c of the consumption good drops to
zero. Essentially, if c = 0, no solution exists for the static game if no
strategy space is compact, whereas in the di¤erential game with capacity
accumulation q�(k; t) is well-de�ned and feasible under suitable parametric
conditions even when the marginal cost is zero, both over �nite and in�nite
horizons.
Propositions 8 and 13 suggest that at the subgame perfect equilibrium of

the dynamic game the representative �rm may produce either more or less
but she earns higher pro�ts when she plays the Cournot-Nash equilibrium
of the static game, irrespective of the levels of marginal cost, opportunity
cost, intensity of capacity accumulation growth and intertemporal discount
rate.
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Having characterised the subgame perfect equilibrium of the di¤erential
game, we can now proceed to the analysis of its application to horizontal
mergers.

3.2 Horizontal mergers

To illustrate the advantages of our approach to the feedback solution of the
di¤erential oligopoly game à la Ramsey, we illustrate here its applicability
to the analysis of the private pro�tability of a horizontal merger, and its
welfare appraisal.
As is well known, a lively debate has taken place on this topic from the

1980�s, based upon static oligopoly models. A thorough overview of it is
outside the scope of the present paper, and it will su¢ ce to recollect a few
essential aspects. Examining a Cournot industry with constant returns to
scale, in [22] it is shown that a large proportion of the population of �rms
has to participate in the merger in order for the latter to be pro�table. In
particular, a striking result of their analysis is that, in the triopoly case,
bilateral mergers are never pro�table. Enriching the picture by allowing
for the presence of convex variable costs and �xed costs, one may �nd a
way out of this puzzle (in particular, see [20] and [12]).
Now take the static Cournot game and examine the incentive forM > 1

�rms to merge horizontally, out of the initial N: After the merger (if it does
take place), there remain N �M + 1 �rms. If we call �CN(j) the pro�t of
a �rm in the Cournot static game among j �rms, without distinguishing
the original ones from those generated by the merger, we can prove the
following:

Proposition 15. In the static Cournot game with hyperbolic inverse de-
mand, the merger is pro�table if and only if M �

p
M < N < M +

p
M:

Proof. Pro�tability holds when

�CN (N �M + 1)

M
> �CN (N) () a

M (N �M + 1)2
>

a

N2
()

() N2 > M(N �M + 1)2 () : : :() N2 � 2MN �M(1�M) < 0;

which entails N 2
�
M �

p
M; M +

p
M
�
.

It is easily checked that, contrary to [22], if N = 3 and M = 2; the
merger is pro�table.
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On the other hand, if we consider the terminal outcome of the di¤er-
ential game over �nite horizon, in compliance with the above notation, we
can assess the pro�t incentive scheme for anM -�rm merger in the dynamic
framework too.
If we consider the assumptions of Proposition 9 to ensure the feasibility

of the optimal strategy on [0; T ], we can state the following:

Proposition 16. If a horizontal merger of M �rms is pro�table in the

Cournot static game, then if � < A < �b
c
+ � + �, the same merger is

pro�table in the Cournot-Ramsey game on the horizon [0; T ] as well.

Proof. The pro�tability of a merger in the Cournot-Ramsey game is meas-
ured by

�� (N �M + 1)� bk�N�M+1(T )

M
> �� (N)� bk�N(T ); (30)

where we called k�l (T ) the capital at time T under circumstances where a
merger of l �rms took place. In order to simplify the notation, call

g(T ) =

�
1� e�T + b+ c(A� � � �)

e�(3(A��)�2�)T

�
log

�
1� [b+ c(A� � � �)]

1� [b+ c(A� � � �)]e(A����)T

���
as in (28). The inequality (30) becomes:

a

M(N �M + 1)2
� b

M

�
�a(N �M)(A� � � �)

(N �M + 1)2
g(T ) + k0e

(A��)T
�
>

>
a

N2
� b
�
�a(N � 1)(A� � � �)

N2
g(T ) + k0e

(A��)T
�
;

which amounts to

a

�
N2 �M(N �M + 1)2

MN2(N �M + 1)2

�
� bk0e(A��)T

�
1

M
� 1
�
+

+ba(A� � � �)g(T )
�

N �M
M(N �M + 1)2

� N � 1
N2

�
> 0: (31)

By Proposition 15, the �rst term of (31) is positive when theM -�rm merger
is pro�table in the static framework, the second term is positive for all

M > 1, whereas the remaining term is positive for A < �b
c
+ �+ � < �+ �

(the condition ensuring feasibility of the strategy over [0; T ] by Proposition
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9) if and only if the quantity N�M
M(N�M+1)2

� N�1
N2 is negative. In fact, we have

that:

N �M
M(N �M + 1)2

� N � 1
N2

=
N �M

M(N �M + 1)2
� 1

N
+
1

N2
<

<
N �M

M(N �M + 1)2
� 1

N
+

1

M(N �M + 1)2
=

1

M(N �M + 1)
� 1

N
=

=
N �MN +M2 �M
NM(N �M + 1)

=
(N �M)(1�M)
NM(N �M + 1)

< 0;

where we exploited the inequality N2 > M(N � M + 1)2. Hence, this
completes the proof.

Taken together, these facts entail that the interval wherein the M -�rm
merger is pro�table may be the same in the dynamic setup and in the static
one, given that the measure of output productivity A is small enough.
The examination of the welfare consequences of a merger is omitted,

as it goes without saying that any merger would diminish social welfare,
both in the static as well as in the dynamic setting. This is trivially due
to the fact that the damage caused to consumer surplus always outweighs
the increase in industry pro�ts.10

4 Concluding remarks

We characterised the subgame perfect equilibrium of a dynamic Cournot
game with inverse hyperbolic demand and costly capacity accumulation,
showing that the feedback solution, coincident with the open-loop one,
is subgame perfect. We fully carried out the calculation of the optimal
value functions and of the strategies of the di¤erential game subject to a
Ramsey-type dynamic constraint. Then, we employed the model to analyse
the feasibility of horizontal mergers in both static and dynamic settings,
�nding out appropriate parametric conditions under which the pro�tability
of a merger in a static game implies the pro�tability in a dynamic game as
well.
10In line of principle, a merger could allow for some reduction in the total opportunity

costs for the industry, giving rise to a possible e¢ ciency defense argument (see [12]).
Although we omit the related calculations for brevity, it is quickly checked that this never
outweighs the loss in consumer surplus necessarily generated by any merger. Hence, in
this model the e¢ ciency argument cannot be advocated to justify the merger itself.
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Possible future developments of our �ndings consist in the analysis of
the feedback information structure of further di¤erential oligopoly games
endowed with a hyperbolic inverse demand function, possibly in presence
of more complex dynamic constraints and in asymmetric frameworks.
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