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Abstract

The problem of instrument proliferation and its consequences (overfitting
of endogenous variables, bias of estimates, weakening of Sargan/Hansen
test) are well known. The literature provides little guidance on how many
instruments is too many. It is common practice to report the instrument
count and to test the sensitivity of results to the use of more or fewer in-
struments. Strategies to alleviate the instrument proliferation problem are
the lag-depth truncation and/or the collapse of the instrument set (the lat-
ter being an horizontal squeezing of the instrument matrix). However, such
strategies involve either a certain degree of arbitrariness (based on the
ability and the experience of the researcher) or of trust in the restrictions
implicitly imposed (and hence untestable) on the instrument matrix. The
aim of the paper is to introduce a new strateqy to reduce the instrument
count. The technique we propose s statistically founded and purely data-
driven and, as such, it can be considered a sort of benchmark solution to
the problem of instrument proliferation. We apply the principal component
analysis (PCA) on the instrument matrix and exploit the PCA scores as
the instrument set for the panel generalized method-of-moments (GMM)
estimation. Through extensive Monte Carlo simulations, under alternative
characteristics of persistence of the endogenous variables, we compare the
performance of the Difference GMM, Level and System GMM estimators
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authors also thank Roberto Golinellt and Carla Rampichini for suggestions. The usual disclaimer
applies.
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when lag truncation, collapsing and our principal component-based IV re-
duction (PCIVR henceforth) are applied to the instrument set. The same
comparison has been carried out with two empirical applications on real
data: the first replicates the estimates of Blundell and Bond [1998]; the
second exploits a new and large panel data-set in order to assess the role
of tangible and intangible capital on productivity. Results show that PCIVR
is a promising strateqgy of instrument reduction.

JEL classification: C13, C15, C33, C36, C63.
Keywords: Panel data, generalized method of moments, proliferation of
instruments, principal component analysis, persistence.

1 Introduction

Dynamic panel data (DPD) have become very popular in the last two decades,
thanks in particular to the increasing availability of panel datasets both at a micro
level (e.g. data for individuals, households or firms) and at a macro level (e.g.
data for Regions or Countries). The use of dynamic models in macroeconomics
dates back to many decades ago, while it is relatively recent in microeconomics.
The possibility of including some kind of dynamics also in a microeconomic
framework has become very appealing: in fact, it is now a common practice to
estimate dynamic models in empirical analysis in most microeconomic fields.

In particular, the generalized method-of-moments (GMM) estimator, in the
Holtz-Eakin, Newey and Rosen [1988], Arellano and Bond [1991], Arellano and
Bover [1995] and Blundell and Bond [1998] formulations, has gained a leading
role among the DPD estimators, mainly due to its flexibility and to the very few
assumptions about the data generating process it requires. Most of all, while
preventing from the well known DPD bias (see Nickell [1981]) and from the
trade off between lag depth and sample size!, the GMM estimator also gives
the opportunity to account for individual time-invariant effects and for potential
endogeneity of regressors. Another advantage is the availability of “internal’
instruments (lags of the endogenous variables), a noticeable point when finding
instruments is not an easy task. The implementation of ad hoc procedures in
many statistical softwares and the consequent availability of “buttons to push’
have done the rest of the job.

The GMM estimator however is not the panacea for all the drawbacks of the

"This former problem is instead an intrinsic and unavoidable characteristic of the Anderson-
Hsiao [1981, 1982] 2SLS estimator for DPD.



previously proposed DPD estimators: it is in fact not free of faults. Instrument
proliferation, among the others, is a severe issue in the application of the GMM
estimator to DPD models and needs to receive more attention than what it has
been done so far. The potential distortions in the estimates by instrumental
variables (IV) and GMM estimators when the instrument count gets larger and
larger have been treated extensively in the literature?, but not enough attention
has been paid to this issue in Difference, Level and System GMM estimation of
DPD (DIF GMM, LEV GMM and SYS GMM henceforth).

Though these versions of the GMM estimator are designed for a large N-
small T framework, and though the time dimension in panel datasets remains
well below that of a typical time series, it is well-known that the number of
moment conditions increases exponentially with T and the dimension, m, of the
vector of endogenous regressors other than the lagged dependent variable; this
number can get rapidly large relative to the sample size. Consequently, the
excessive number of instruments can create a trade-off between bias (overfitting
of endogenous variables) and efficiency (additional moment conditions), give an
imprecise estimate of the variance/covariance matrix of the moments, lower the
power of specification tests (Sargan [1958] / Hansen [1982] test of over-identifying
restrictions) and exacerbate the weak instruments problem.

Unfortunately, the problem of instrument proliferation is only rarely detected
and addressed in empirical analyses with the consequent risk of drawing mis-
leading conclusions about the coefficient estimates. In many empirical papers,
GMM s often applied with unclear specification of the estimator concerning ini-
tial weighting matrix, onestep or twostep estimate and, in particular, the selection
of instruments: different results emerge as a consequence of different choices of
the instrument matrix (for example, how many lags are included) and it becomes
difficult to interpret such results as robustness checks, as they are based on a
certain degree of arbitrariness, ability or experience of the researcher.

Moreover, there is not a clear indication on how many instruments is too many
and on which is a reasonable number of instruments to be used in empirical works.

The paper has two aims. The first one is to introduce a data-driven technique
for the reduction of the instrument count in GMM estimation of DPD with other
explanatory endogenous variables in addition to the lagged dependent variable.
We extract the principal components from the instrument matrix through the prin-
cipal component analysis (PCA) and use the PCA scores as a new set of instru-

’See, among the others, Ziliak [1997] and Bowsher [2002].



ments (we call this procedure principal component-based IV reduction, PCIVR,
henceforth). In doing so, we aspire to answer the question “How many moment
conditions can be used and still expect to be able to obtain valid inference when
estimating by GMM?". Since, in the words of Hall and Peixe [2003, p. 271], “It is
impossible to verify a priort which elements of the candidate [instruments] set sat-
isfy [the] conditions [orthogonality, identification, efficiency, and non-redundancy]
for a given data set’, we suggest a statistically founded rule for the selection of
non redundant Vs, based on the characteristics of the empirical problem at hand.
In doing so, we extend the analysis of Doran and Schmidt [2006] who consider
an eigenvalue-eigenvector decomposition of the variance matrix of the moment
conditions, and then discard the terms corresponding to the smallest eigenval-
ues; they simulate a simple autoregressive DPD and compare results for different
autoregressive parameter values, different variance of individual effects, different
sample sizes N and T2

The second aim of the paper is to fill the gap in the literature by comparing
the performance of the Difference, Level and System GMM estimators when
various instrument reduction techniques are adopted. In order to do so, we both
run extensive Monte Carlo experiments and we estimate economic models on real
data, allowing for the presence of endogenous variables (together with the lagged
dependent variable), and checking the effects of various persistence characteristics
of the stochastic processes, of different sample sizes N and T, and of the use of
Windmeijer [2005] finite sample correction.

Along with the PCIVR method, the other techniques to reduce the number of
moment conditions we compare are the two usually employed in the empirical
literature: the collapsing of the instrument matrix (Roodman [2009b]) and the
reduction of the lag depth of the instruments. Both solutions make the instrument
count linear in T: the former creates different instruments for each lag but not
also for each time period; the latter consists of the inclusion as instruments of
only few lags instead of all the available ones. Both techniques, separately or
combined together, have gained popularity thanks to their direct implementability
in the statistical softwares and are now commonly, and often blindly, used in
empirical works.® However, collapsing and lag depth truncation involve a certain

3Mehrhoff [2009] sketches the idea of applying the PCA on the GMM-style instrument matrix in
the Difference GMM framework with no additional endogenous regressors and an arbitrary choice
of the number of components to be retained.

40ther suggestions by the literature had less following in the applied works: the projection-
restricted IV estimation of Arellano [2003] and the canonical correlations and information criteria
of Hall and Peixe [2003].



degree of arbitrariness as they ask either to trust the restrictions that are imposed
when the instrument matrix is collapsed or to choose how many lags to include
among the instruments. Despite some attempts to investigate the performance of
the GMM estimators when instrument reduction techniques are employed, the
literature in this fields lacks of exhaustive experiments that compare extensively
these strategies and their robustness to different settings of the parameters in the
simulation model of a DPD with other endogenous variables besides the lagged
dependent variable. Our paper aims to fill this gap.

Our results confirm that PCIVR is a general, data-driven technique to reduce
overidentification problems that can be fruitfully applied to any overidentified
GMM problem. Having tried alternative criteria in order to select the num-
ber of retained components (keep only the components whose eigenvalues are
larger than the average eigenvalue or retain only the components that explain a
given predetermined portion of the original variance), we suggest, as a selection
criterion, the explanation of 90% of the original variance.

In the remainder of the work we proceed as follows: in section 2, after
reviewing the collapsing and limiting, we illustrate the extraction of principal
components from the instrument matrix and discuss the rationale of applying the
PCA on the instrument set; the comparison of a number of instrument reduction
techniques is presented by replicating the Blundell and Bond [1998] estimates for
the labour demand in the UK and by exploiting extensive Monte Carlo simulations
(in section 3); in section 4 we present an empirical application that estimates a
production function with three inputs - labour, tangible and intangible capital -
for a large panel data-set; section 5 draws the conclusions and indicate practical
hints for the empirical analysis; the Appendix runs through the technical details
of the PCA.

2 Reducing the instrument count in GMM estimation

Consider the general one-way error component DPD model:
Yir = aYis—1 + B'Xi¢ 4 bt 4+ vie , vir = i + &, (1)

where i =1,.,N, t=1,.7T, x is a m-dimensional vector of potentially endoge-
nous regressors, the ¢; are the time effects (usually considered deterministic), the

>Roodman [2009b] presents only a Monte Carlo experiment limited to an autoregressive model
to compare the collapsing and lag-truncation techniques but restricts the analysis to the System
GMM estimator and to a specific parameter setting. Mehrhoff [2009] instead bounds his experiment
to the Difference GMM estimator, that is less exposed to instrument proliferation dangers.



n; are the individual effects and ¢;; is a zero-mean idiosyncratic error, allowed
to be heteroskedastic but not serially correlated. The standard assumptions are:
E[ni|=E[ei]=E[ni€i]=0 and predetermined initial conditions £ [y;1&:]=O0.

The Arellano-Bond and Arellano-Bover / Blundell-Bond estimators are linear
GMM estimators for the model in first differences (DIF GMM) or in levels (LEV
GMM) or both (SYS GMM) where the instrument matrix Z includes the lagged
values of the endogenous variables only or also the lagged first differences of the
endogenous variables®. In the standard framework of DIF and SYS GMM, the
columns of the instrument matrix Z correspond respectively to two different sets
of meaningful moment conditions.

In particular, the Arellano-Bond DIF GMM estimator exploits, for each en-
dogenous variable, the following (T —2)(T — 1)/2 moment conditions for the
equation (1) in first differences:’

E[(Z9Y Av)] = E[(Ziy " Avy] =0 for t > 31> 2 (2)

For the sake of simplicity suppose m=1; the instrument matrix Z4, that sati-
sfies the moment restrictions in (2), contains an IV for each endogenous variable,
time period and lag distance and it has the well known form:

Yt Xi1 0 0
ZM=| 3)
0 0 ... 0 wyan .. Yir—2 XA ... X7T-2

The Blundell-Bond SYS GMM estimator also exploits, for each endogenous
variable, the additional non-redundant T — 2 orthogonality conditions for the
equation (1) in levels:

E[(Z')v] = E[(Zs®) vir] =0for s =2,., T —1 (4)

OWe use Z to define a general instrument matrix for DPD GMM estimation. Z can stand for
the untransformed matrix, the collapsed matrix or the limited matrix of instruments. When we need
to indicate more precisely the matrix we are considering, we use specific superscripts to denote it.

’Suitably lagged x-variables can also be used as IVs when the x-variables are predetermined
or strictly exogenous: for predetermined x-variables we have [ > 1 and (T —2)(T +1)/2 moment
conditions; if they are instead strictly exogenous [ = 0 and the moment conditions are T (T —2).



where, again for m=1, the instrument matrix is8

Ain AX,‘Z 0 . 0
zZo=\ 0 5)
0 0 Ayt Axit

The full instrument matrix for the SYS GMM estimator will thus be:

z9 0
ZS_QS — ( i . ) ) (6)
i 0 le_e

Since usually lags of the explanatory variables are used as Vs, “the phe-
nomenon of moment condition proliferation is far from being a theoretical construct
and arises in a natural way in many empirical econometric settings” (Han and
Phillips [2006, p. 149]). The dimension of the GMM-type instrument matrix
grows exponentially as the number of time periods and regressors expands, even
if the time span of the panel is of moderate size.

2.1 Collapsing and limiting the instrument set

As discussed in Roodman [2009], when we collapse the instrument set we
impose the same condition for all ¢ and we create an instrument for each en-
dogenous variable and lag distance rather than for each endogenous variable,
time period and lag distance. The collapsed instrument matrix for the equation
in first differences has the form, for m=1:

Yil 0 Xi1 0 0
74 C= | yo yn x2 xa 0 ... (7)

with (T —2) moment conditions for each endogenous.
Similarly, the collapsed matrix for the equation in levels is:

Ayiz Axp
ZiC = | Ays Axs (8)

8The LEV GMM estimation considers, for each endogenous variable, time period and lag
distance, all the available lags of the first differences as instrument for the equation in levels
because they are non redundant. See Bond [2002] and Bun and Windmeijer [2010] for further
discussion on this issue.



The collapsed matrix for the system estimator will thus be:

dif, C
C . 0
ZIS'LJS = ( O Ztev, C ) : (9)

with (T —2) + 1 moment conditions for each endogenous variable.

When instead we limit the lag depth, we truncate the moment restrictions
and exploit the conditions in equation (2) only for 2 < [ < M, where M is the
maximum lag depth we consider. The limited instrument matrix for the equation
in first differences will be:

ya1 x17 0 0O O O O O O 0 0 O
0 0 Y Yl X2 X 0 0 0 0 00
0 0

Zdlf,L:
L 0 0 0 0 0 0 Yz Y2 X3 X2

(10)
The number of instruments is (T—2)2(7—1) — (T_Z_M)2(7_1_M) and the instrument

count depends on the number of endogenous variables, on T and on M. The
truncation in the lag depth has no impact on Z\¢, as it already includes only
the first lag available. By limiting arbitrarily the lag depth, we drop from the
instrument set Z all the information about the lags greater than M; by collapsing

the instrument matrix, we retain a lot more information as none of the lags is

actually dropped, though restrictions are imposed on the coefficients of subsets
of instruments so that we only generate a single instrument for each lag.

2.2 Extracting principal components from the matrix of instruments

In order to face the problem of instrument proliferation, we propose a strategy
that involves a stochastic transformation of the instrument set: we extract the
principal components from the instrument matrix Z.

The adoption of principal components analysis (PCA) or factor analysis to ex-
tract a small number of factors from a large set of variables has become popular
in macroeconomic fields of analysis. The main use of factors is in forecasting in
second stage regressions, but they are also employed as instrumental variables
in IV estimation, in augmented VAR models and in DSGE models?. The seminal
works by Stock and Watson [1998, 2002a, 2002b] develop the use of static prin-
cipal components to identify common factors when the number of variables in the

9Stock and Watson [2010] provide an extensive survey on the use of estimated factors in eco-
nomic analysis.



dataset gets very large, while Forni et al. [2000, 2004, 2005] propose the use of
dynamic principal components. Stock and Watson [2002a] prove consistency of
the factors as the number of original variables gets sufficiently large, so that the
principal components are estimated precisely enough to be used as data instead
of the original variables in subsequent regressions.

The idea of using principal components or factors as instrumental variables is
not so new in the literature. Kloek and Mennes [1960] and Amemiya [1966] first
proposed the use of principal components in instrumental variable (IV) estimation.
In this stream of literature, we find, among the others, important contributions by
Kapetanios and Marcellino [2010], Groen and Kapetanios [2009] and by Bai and
Ng [2010] that rely on factor-IV or factor-GMM estimation?.

In the stream that uses factors as instruments, the main novelty of what we do
here is that we consider a DPD model with endogenous explanatory variables and
extract principal components allowing for two strategies: (1) we apply PCA to a
large set of lags of each instrument considered separately (what we call PCIV); (2)
we apply PCA to a large set of lags of all the different instruments taken together
(what we call PCIVT). The idea is that of identifying the most meaningful basis
to re-express the information conveyed by the Z, avoiding multicollinearities in
the instrument set. This new basis should filter out the noise component of
the moment conditions'! and reveal the signal delivered by the instrument set
(coming from the mean of the sample moment conditions); most important, the
noise reduction is the result of a data-driven procedure.

Through the PCA we extract the largest eigenvalues from the estimated co-
variance'? or correlation matrix'? of Z and, by combining the relative eigenvectors,
we obtain the loading matrix and the score matrix. We then use the PCA scores
as new instrumental variables for the endogenous variables in GMM estimates
(PCIVR).

10A review of the literature on Factor-IV and Factor-GMM estimations is in the introduction of
Kapetanios and Marcellino [2010].

"The degree of variation over the sample moment conditions increases as the number of moment
conditions raises

12An unbiased estimator of the covariance matrix of a p-dimensional vector x of random variables
is given by the sample covariance matrix C = ﬁX/X where X is @ NV x p zero mean design
matrix.

3There is not a clear indication in the theoretical literature on which is the preferable matrix
among the two. The PCA is scale dependent and the components that are extracted from either
matrices are different. The PCA on the covariance matrix can be used when the variables are
in commensurable units and have similar variances, as it is generally the case in Monte Carlo
experiments. In estimating economic models the PCA on the correlation matrix is instead preferable.
We always use PCA on the correlation matrix.



In practice, defined Z as the general p-columns GMM-style instrument ma-
trix' we extract p eigenvalues Ay, A,.., A, >0 from the covariance matrix of Z,
ordered from the largest to the smallest, and derive the corresponding eigenvec-
tors (principal components) ay, az, .., @p. Our new instruments will be the scores
from PCA that are defined as:

sk =Zay for k=1,2,..,p. (11)

If we write Z=1[z1 2 .. z,] with z; being the j column of the instrument
matrix, the score s, corresponding to the k' component can therefore be rewritten
as:

Sk = axz1 + q2z2 + .+ Akpzp (12)

where ay; is the jt" element of the principal component ay.

Since the aim of the PCA is data reduction, it would not help to keep all the
p scores in the analysis as this would imply no decrease in the number of instru-
ments; only in the first application of section 3 we will check the impact of PCIVR
on estimation results when all the p components are retained. In general we sug-
gest to retain only (m+1) < g < p principal components; as a consequence,
only the g corresponding score vectors will form the new transformed instrument
matrix. Alternative criteria can be applied in order to select the components to
be retained.” In line with Doran and Schmidt [2006, p. 406], we propose the
variability criterion; in particular, we retain the components that explain 90%
of the original variance. With this criterion, the leading eigenvectors from the
eigen decomposition of the correlation matrix of the instruments describe a series
of uncorrelated linear combinations of the instruments that contain most of the
variance. Compared to alternative criteria to select the eigenvalues of interest,
we think that retaining principal components that explain a given predetermined
portion of the original variance better avoids the magnification of sampling errors
in the process of inversion of the variance matrix of the moment conditions. This
should decrease the variance of the estimated weighting matrix and improve finite
sample performance of the GMM estimator.'®

147 can be Z4U zsys, z4IC 7sysC 7diL 7sysL according to the notation adopted in the previous
sections. Remember that, in the simplified case of a balanced panel with 7; = T Vi, and m
endogenous variables plus the lagged dependent variable, we have: Z% has p = ((T —2)(T —
1)/2)(m +1) columns, Z9*C has p = (T —2)(m 4+ 1) columns, Z9*- a number of columns
depending also on the lag truncation. In system GMM estimation, further (T —2)(m + 1) columns
are added in Z%Y° and in Z5Y5L, while only m + 1 are added to ZsY5C.

5The criteria are discussed in the Appendix.

16 According to alternative selection criteria, the smallest eigenvalue or the two or three smallest

10



Defined the matrix of PCA loadings as V. = [y a2 .. @] and the matrix
of PCA scores as S, we have that S = ZV. Instead of the moment conditions in
(2), we will therefore exploit the following restrictions:

E[(S™YAv] = E[(ZV) Av] = 0. (13)

Similarly, in the SYS GMM we will also exploit the additional orthogonality
conditions
E[(S*)'v] = E[(Z*'V)'v] = 0. (14)

In both cases, the number of moment restrictions depends on the number of
components we retain in the analysis that, in turn, depends on the nature of the
data at hand. As our starting point is that instruments are orthogonal to the
error term, a linear combination of the original instruments will also obviously
be orthogonal to the error term.

The rationale of PCIVR is to use, instead of the untransformed instruments,
linear combinations of the original instruments that are properly weighed ac-
cording to the PCA loadings: no available instrument is actually dropped, but
its influence might be rescaled after the PCA. It is also worth noticing that none
of the instruments that are not in the original matrix Z will enter the linear
combinations which forms the columns of the new instrument matrix. PCA thus
preserves all the information in the original instrument set.

A further advantage of PCA is that we can extract principal components not
only from the untransformed instrument matrix but also from any transformation
we think could be useful; for example, applying PCA to the limited or collapsed
instrument matrix would retain all the information each matrix conveys and thus
further reduce the number of instruments. As another example, we could apply
multistep PCA (see e.g. D'Alessio [1989]) to highlight structural aspects of the
data at hand, like persistence or heterogeneity among clusters of individuals.

ones can be arbitrarily dropped; alternatively, one could retain the eigenvalues higher than the
average eigenvalue or a fixed number of the highest ones. Results that compare the performance
of PCIVR when seveleral of such criteria are applied, as well as under various alternative settings,
are available in Mammi [2011]

11



3 Comparing the instrument reduction techniques

3.1 The application of PCIVR technique to Blundell and Bond [1998]
model

In this section we apply our PCIVR technique to the Blundell and Bond [1998]
dynamic labour demand equation of p. 135:

Nit = ani—1 + Bowir + B1wit—1 + vokit + vikit—1 + ¢¢ + ni + Vit (15)

where nj is the log of employment in firm i in year ¢, w;; is the log of the real
product wage and k;; is the log of the capital stock. The sample is an unbalanced
panel of 140 UK listed manufacturing companies with between 7 and 9 annual
observations over the period 1976-1984. Results are reported in Tables 1, 2 and
3 for DIF, SYS and LEV GMM, respectively; in particular, the first column of
Tables 1 and 2 replicate DIF and SYS GMM estimates of the last two columns
of Table 4 in Blundell and Bond [1998]. Table 3 adds also LEV GMM estimates.
The other columns of Tables 1, 2 and 3 present collapsing (DIFc, SYSc and LEVc),
limiting (DIFL, SYSL and LEVL) and PCIVR on each variable separately and on
the variables together (DPCIV100, DPCIV90, DPCIVT90; SPCIV100, SPCIVY0,
SPCIVTI0; LPCIV100, LPCIVI0, LPCIVT90). Reported estimates are the one-
step GMM ones with standard errors robust to heteroskedasticity. The first point
to stress is that PCIV100, which uses PCA to just transform the instrument set
without dropping any of the moment conditions, does not alter the estimation
results originally presented by Blundell and Bond. This is true for each variable
of the model, for the specification tests and for different GMM estimates (DIF,
SYS or LEV). The retain of the scores that are able to explain 90% of the original
variance (PCIV90) in DIF GMM makes evident the problem of near unit root
characterizing the data at hand: lagged wage is no more significant, and Hansen
and residuals second-order autocorrelation tests present lower p-values. This a
signal of weak instruments due to persistence that specially affect DIF GMM.
These problems are exacerbated by PCIVT: putting together all the instruments
and their lags, the PCA operates a sort of reduced form between near unit root
stochastic processes and therefore, compared to collapse and lag truncation, casts
light on the inappropriateness of the instruments. The overfitting of the model
with troublesome moment conditions produces a downwards bias of the estimates
(in the direction of Within-Group estimates) and a general increase in the vari-
ance. Moving to SYS GMM we note that the weak instruments problem due to
persistence is reduced, as suggested by Blundell and Bond. Now PCIV90 de-
livers estimation results that are in line with original SYS GMM more than the

12



other instrument reduction techniques, like collapsing and lag truncation. Com-
pared to original SYS GMM, however, the reduced number of moment conditions
implied by PCIVR reveals the rejection of the orthogonality conditions through
the Hansen test. This rejection can be explained by the use of moment conditions
in levels for the equation in differences; when we look at the LEV GMM, in which
moment conditions in first differences are used for equations in level, we note
how estimation results are close each other and that the Hansen test does not
reject the overidentifying restrictions (the persistence of instruments is solved by
the first-difference transformation).

3.2 Monte Carlo experiments: a multivariate dynamic panel data model

In our set of Monte Carlo simulations we estimate a multivariate DPD whose
settings are the same as in Blundell et al. [2000] The model of interest is:

Yit = aYit—1 + Bxie + ni + vie (16)
Xit = pPXit—1 + i + Ovir + e

where n; ~ N(0,07) are the fixed effects; v; ~ N(0,07) and e;; ~ N (0, a?)

. O
are the idiosyncratic shocks. Initial observations are drawn from a covariance

stationary distribution such that

e

B(1) +n

1—a

E||ya— ni| =0. (18)

The x;; process is positively correlated with n; and the value of 8 is negative
to mimic the effects of measurement error. The setting of the parameters in the
simulation model is as follows:
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a 0.5, 0.95
p 0.5, 0.95
Iterations | 100, 1000
N 500

T 5,8, 20
B 1

T 0.25

0 -0.1

o7 1

o7 1

o7 0.16

In Tables 4, 5, 6 and 7 we consider 500 individuals and two different time
lenghts, ie. T=5, 8; each experiment consists of 1000 iterations; reported es-
timates are the two-step DIF and SYS GMM estimators, with standard errors
robust to heteroskedasticity and with the Windmeijer [2005] finite sample cor-
rection. In Tables 8 and 9 we consider 500 individuals and a large temporal
span, T=20; each experiment consists of 100 iterations and reported estimates
are the one-step DIF and SYS GMM estimators, with standard errors robust to
heteroskedasticity. We consider different degrees of persistence for y;; and x,
as captured by the autoregressive coefficients o and p. The displayed results are
as follows: mean is the mean of estimates; p5 and p95 are the 5/ and the 95h
percentiles of estimates; sd is the standard deviation of estimates, Hp mean, min
and max are the mean, minimum and maximum of the p-values of the Hansen
test and Hdf range is the number of overidentifying restrictions. The main aim of
these simulations is to show that the PCIVR statistical approach gives results in
line with the most appropriate estimation method, that depends on the parame-
ters’ setting and on the temporal length 7. Compared to collapsing and limiting
instruments reduction techniques, PCIVR magnifies the good or bad performance
of an estimation method, without altering the core of the results. In the case
of stationarity of both variables DIF and SYS GMM provide close results, con-
firmed by the PCIVR. As the temporal dimension of the sample grows, it becomes
more evident the effectiveness of PCIVR in reducing the number of overidentify-
ing restrictions: this is particularly true when all the instruments are considered
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together, as in the case of PCIVT, where the reduction process driven by the
characteristics of the simulated data. While collapsing and limiting a priori fix
the number of moment conditions, the PCIVR presents a range of overidentifying
restrictions which is the wider the larger is T.

As we move towards the near unit root case of one or of both variables, the
latter scenario being very close to the Blundell and Bond empirical application
presented above, SYS GMM provides less biased and more precise estimates. |t
is particularly remarkable that the collapsing gives the highest standard errors
in the case of persistence: this loss in the precision of the estimates is due to
non-acceptable constraints on the dynamic structure of the instrument set. PCIVR
is generally safer than collapsing and limiting as it provides estimates closer to
the true parameters. The only not convincing performance is that of PCIVT in
the case of DIF GMM under persistent stochastic processes: in addition to the
problems of near unit root in the variables, we have here also an artificial and
not economically-grounded correlation structure among the variables that further
negatively affects the procedure of principal component extraction. In section
4, we will see that, on the contrary, PCIVT on a set of variables that have an
economically-founded relationship has a better and more convincing performance.

4 An empirical example: old and new panel data methods
applied to the controversial issue of production function
estimates

In order to compare the performance of alternative instrument reduction tech-
niques in the estimation of an economic model on real data, we use a production
function specification with three inputs - labour, tangible and intangible capital
stocks - on a large and unbalanced panel of Italitan manufacturing companies
over the period 1982-2010. Two main reasons drive our choice. As first mo-
tivation, the estimation of production functions from company panel data has
become puzzling for panel data estimation methods (e.g. Mairesse and Sassenou
[1991], Griliches [1998]). Pooled OLS regressions yield plausible parameter es-
timates, in line with factor shares and generally consistent with constant return
to scale. However these estimates should be biased by omitted heterogeneity
and endogeneity issues. Attempts to control for unobserved heterogeneity with
within or first-difference transformations tend to yield less satisfactory parameter
estimates: “In empirical practice, the application of panel data methods to micro-
data produced rather unsatisfactory results: low and often insignificant capital

15



coefficients and unreasonably low estimates of returns to scale” (Griliches and
Mairesse [1998] p. 177; see also the discussion in Mairesse and Hall [1995]).
The endogeneity issue arises from the simultaneous choice of output and inputs
by the decision maker and from the correlations between firm-effects (efficiency
levels of the companies, unknown to the econometrician) and the explanatory
variables. It also arises from possible measurement errors in variables: omis-
ston of labour and capital intensity-of-utilisation variables - such as hours of
work per employees and hours of operation per machine; problems in capital
stocks construction (changes in the accounting normative, choice of depreciation
rates); lack of distinction between blue and white collars in the labour input;
lack of firm-specific prices. Noticeable is the fact that GMM methods are usu-
ally applied on first differenced equations using appropriately lagged levels of
explanatory variables as instruments, with lag-depth truncation at t-3 (Matiresse
and Hall [1996] for France and US; Mairesse and Jaumandreu [2005] for France
and Spain; Bontempt and Mairesse [2008] for Italy). The second motivation is that
our data-set is a large unbalanced panel with a considerable temporal span and
our specification model includes three endogenous explanatory variables. Since
the number of available instruments depends on the length of the panel and on the
number of endogenous explanatory variables, and it changes from cross-section
to cross-section, the GMM estimation procedures become very complex, calling
for a fruitful use of PCIVR techniques in reducing overfitting problems. Table 10
shows the by-year and by-industry sample composition. Data are drawn from
the CADS (Company Accounts Data Service of Centrale dei Bilanci), which is
highly representative of the population of Italian companies, covering over 50%
of the value-added produced by those companies included in the Italian Central
Statistical Office’s Census (further details, cleaning rules and definitions of vari-
ables are in Bontempi and Mairesse [2008]). The total number of observations,
more than 717,000, is roughly equally splitted between services and manufac-
turing companies; the total number of individuals is 73,072, with the availability
of minimum 4 years and of maximum 29 years. In order to produce estimation
results in line with those of the literature on production function estimates and
to preserve the handiness of the empirical framework, we proceed with only the
manufacturing companies. We also split the temporal span in two periods, 1982-
1993 and 1995-2010, so that we can check the robustness of our findings to
changes in the macroeconomic context.'”

1t is worthy to be noted the change of the accounting standards - particularly for the capital
stock - following the implementation of the Fourth European Commission Directive since 1993.
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The standard model proposed by the literature is the Cobb-Douglas produc-
tion function with multiplicative specification of the total capital and constant
(but non-unity) elasticity of substitution:

Oit = A[BtLﬁcﬁKf;@ﬁ (19)

where Q indicates the value added; the terms A; and B; respectively capture
efficiency (unmeasurable firm-specific characteristics, like management ability)
and the state of technology (the macroeconomic events that affect all companies,
like business cycle and “disembodied technical changes” i.e. changes over time in
the rates of productivity growth); labels C, K and L are tangible and intangible
capital stocks and labour, respectively, with the associated parameters measuring
the output elasticity to each input; €; is the usual idiosyncratic shocks, allowed
to be heteroskedastic and within-firm autocorrelated.'

By taking the logarithms of equation 19, and defining all the variables per
employee, the multiplicative production function specification becomes:

(qit — lit) = ai+be+ (1 —Nlie + a(cit — L) + y(kie — lit) + €t (20)

where lower-case letters denote logarithms; a; and b; are the usual individual
and time effects. Table 11 reports, over the columns, the main statistics of the
variables in model 20. In line with the Italian manufacturing division, the data-set
is mainly characterized by small and medium-sized firms (with a median number
of employees equal to 46 units; about 113 units on average)." Input variables
are characterized by outliers causing departures of non-parametric measures of
spread (inter-quartile range, iqr) from parametric ones (standard deviation, sd).
This is particularly evident in intangible capital stock, suggesting that large in-
tangible stocks are concentrated in relatively few companies, and that zeros more
prevail here than in the other two inputs. The decomposition of standard deviation
in its between, within and residual components shows that the across companies
variability prevails, with shares higher than 60% (in line with the findings in
Criliches [1988]). Table 12 presents correlations among the variables of equation
20 and tangible and intangible gross investments (inv and iinv, respectively);
we shall return to this point below, in discussing the role of “internal” (lags of
endogenous explanatory variables) and “external” (variables not included in the

"8Note that we assume a one-period gestation lag before intangible and tangible stocks become
fully productive; beginning-of-period capital measures avoid the simultaneous correlation between
capital inputs and the disturbance term.

"9The average ltalian limited liability company employs 44 workers.
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equation of interest but suggested by the economic structure of the problem at
hand) instruments in GMM applications. For now, we note that investments are
highly correlated with the endogenous variables of equation 20.

Table 13 presents estimation results for the sub-period 1982-1993. The first
three columns report, as benchmarks, pooled OLS estimates (biased by the omis-
ston of firm-specific effects, correlated with explanatory variables), and within
and first-differences estimates, both accounting for cross-sectional heterogeneity.
The first-differences estimates are affected by random year-by-year noise that
hides the signal of data (Griliches and Hausman [1986]); its effect is particularly
evident in the elasticity of labour, and produces disappointing decreasing returns
to scale. The following five columns of Table 13 compare DIF GMM estimates
with usual “internal” instruments: it is noticeable the lack of robustness in esti-
mation results accordingly to the different technique used to reduce the number of
moment conditions and the rejection of overidentifying restrictions by the Hansen
test; PCIVR and PCIVRT produce the best results. Estimates further improve as
we move towards the last five columns of the Table, in which “external” instru-
ments are used: particularly in the case of PCIVRT, overidentifying restrictions
are not rejected and, at least, elasticities of the output to the capital stocks go
in the direction of more sensible results. We prefer the “external” instrument to
the “internal” ones, for at least one reason: the lags of the explanatory variables
may be affected by the same measurement error (possibly correlated over time)
that we are trying to tackle. In general, however, the difficulty with DIF GMM
estimates is that the past levels of variables are poor instruments for the current
differences of the explanatory variables; this even in a large cross-sectional di-
mension, as in our case, see Bound et al. [1995]. Under covariance stationarity
assumptions of the variables in equation 20 we use past differences of investment
as (“external”) instruments for the levels of productive inputs; accordingly to the
above cited literature, LEV GMM - more than DIF GMM - keeps the relevant
information in the variables of interest. Results are presented in Table 14 for
the two 1982-1993 and 1995-2010 sub-periods. The estimates are encouraging,
because robust to changes in the sample periods and in the temporal span, with a
non-rejection by the Hansen test that is more evident in the most recent period;
moreover, previous disappointing decreasing returns to scale have vanished in
favour of constant returns to scale (from an economic point of view, in the first
period, or both in economic and statistical terms in the second period).?%. It is

DThese estimates of elasticities of output with respect to inputs are consistent with evidence for
other countries obtained by using constrained models - like the total factor productivity approach
- to avoid endogeneity and GMM estimating problems
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also remarkable the good performance of PCIVRT in an economic context in which
the reduced form behind the production function contemplates the possibility of
complementarities among productive inputs (which are magnified by the principal
components extraction when the instruments and their lags are putted together).
Compared to PCIVR, collapsing and lag truncation present worse results: esti-
mated elasticities for some inputs are less in line with not-reduced GMM and
PCIVR, and present lower precision. The not-convincing result obtained with
lag-depth truncation of the instrument set should be paid a particular attention,
as this reduction strategy is commonly adopted in the literature on productivity.

5 Conclusions

This paper introduces a new strategy to reduce the number of instruments in
the GMM estimation of dynamic panel data, namely the extraction of principal
components from the instrument matrix (PCIVR), and compares the alternative
instrument reduction techniques through Monte Carlo simulations and empirical
applications.

First, we discussed the rationale of applying the PCA on the instrument
matrix stressing that it involves a purely data-driven procedure which does not
require particular assumptions on the coefficient of the matrix: it is instead the
most information-preserving technique among those we discuss here.

Secondly, we both use empirical applications and run extensive Monte Carlo
simulations of multivariate DPD model with endogenous variables additional to
the lagged dependent one. We found that the extraction of principal components
from the instrument matrix tends to improve GMM results when the assumptions
under DIF or LEV/SYS CMM are valid.

In the light of the previous findings, we are able to suggest some indications
for applied research and to sketch some potential extensions of this work.

Overall, the extraction of principal components from the instrument set seems
to be a promising approach to the issue of instrument proliferation: in fact it
appears reasonable to exploit the correlations between the instruments to sum-
marize the original information. Our results confirm that PCIVR is a general,
data-driven technique to reduce overidentification problems that can be fruit-
fully applied to any overidentified GMM problem. We suggest the researcher
on always reporting the number of instruments and not to adopt an instrument
reduction technique a priori, as every strategy could have serious drawbacks if
some assumptions do not hold.
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Proper procedures to extract principal components from the instrument matrix
have been programmed by the authors in the software Stata: these are based on
the preliminary construction of the instrument matrices. This availability could
facilitate the researchers in presenting the estimates obtained with alternative
GMM estimators with and without data-driven instrument reduction techniques.

Further developments can go in the direction of merging our PCIVR with
statistical tests on the validity of the moment conditions. The reduction in the
number of overidentifying restrictions should improve the reliability of tests on
instruments’ validity. In particular, we are going in the direction of multi-step
principal components analysis, which involves the identification of ‘reference”
matrices of instruments that enlighten aspects of the data at hand that are pro-
blematic for the validity of the instruments; among these, the characteristics of
persistence of the instruments.
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Table 1: BB98 model: comparison between GMM DIF estimates

Variable DIF DIFc DIFL | DPCIV100 | DPCIV90 | DPCIVT90
n coeff 0.707 0.840 0.787 0.707 0.802 0.508
se 0.084 0.107 0.120 0.084 0.126 0.179
p 0.000 0.000 0.000 0.000 0.000 0.005
w  coeff | -0709 -0.971 -0.662 -0.709 -0.862 -0.675
se 0.117 0.290 0.193 0.117 0.210 0.269
p 0.000 0.001 0.001 0.000 0.000 0.012
Wi_q coeff 0.500 0.632 0.617 0.500 0.222 0.315
se 0.111 0.163 0.130 0.111 0.294 0.235
p 0.000 0.000 0.000 0.000 0.450 0.179
k coeff 0.466 0.632 0.479 0.466 0578 0.654
se 0.101 0.215 0.139 0.101 0.225 0.209
p 0.000 0.003 0.001 0.000 0.010 0.002
ki1 coeff | -0215 -0.547 -0.438 -0.215 -0.411 -0.200
se 0.086 0.192 0.111 0.086 0.195 0.236
p 0012 0.004 0.000 0.012 0.035 0.397
Hansen 88.797 14.622 35.693 88.797 23.432 17.197
Hansenp 0.211 0553 0.389 0.211 0.136 0.102
Hansen df 79 16 34 79 17 11
arlp 0.000 0.000 0.000 0.000 0.001 0.055
ar2p 0.891 0.901 0.929 0.891 0.544 0.547
Obs. 751 751 751 751 751 751
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Table 2: BB98 model: comparison between GMM SYS estimates

Variable SYS SYSc SYSL | SPCIV100 | SPCIV90 | SPCIVT90
n coeff 0.811 0.777 0.841 0.809 0.902 0.857
se 0.058 0.068 0.059 0.058 0.048 0.068
p 0.000 0.000 0.000 0.000 0.000 0.000
w  coeff -0.795 -0.875 -0.784 -0.796 -0.742 -0.724
se 0.097 0.260 0.148 0.097 0.154 0.150
p 0.000 0.001 0.000 0.000 0.000 0.000
wp_q coeff 0.550 0.693 0.560 0.547 0.464 0.560
se 0.152 0.255 0.179 0.153 0.195 0.180
p 0.000 0.007 0.002 0.000 0.017 0.002
k coeff 0.429 0.604 0.506 0.429 0534 0.540
se 0.076 0.210 0.078 0.076 0.096 0.098
p 0.000 0.004 0.000 0.000 0.000 0.000
ki1 coeff -0.280 -0.434 -0.380 -0.280 -0.441 -0.414
se 0.078 0.246 0.079 0.078 0.103 0.097
p 0.000 0.078 0.000 0.000 0.000 0.000
Hansen 115.726 17.997 70.504 115.347 57597 42518
Hansenp 0.135 0523 0.078 0.140 0.022 0.022
Hansen df 100 19 55 100 38 26
arlp 0.000 0.000 0.000 0.000 0.000 0.000
ar2p 0.934 0.975 0.920 0.931 0.785 0.905
Obs. 891 891 891 891 891 891
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Table 3: BB98 model: comparison between GMM LEV estimates

Variable LEV LEVc LEVL | LPCIV100 | LPCIV90 | LPCIVT90
n coeff 0.944 0.893 0934 0.944 0.944 0.927
se 0.022 0.091 0.033 0.022 0.027 0.026
p 0.000 0.000 0.000 0.000 0.000 0.000
w  coeff | -0.606 -0.730 -0.809 -0.606 -0.776 -0.723
se 0.167 0.239 0.166 0.167 0.162 0.158
p 0.000 0.002 0.000 0.000 0.000 0.000
wi_q coeff 0.500 0.725 0.552 0.500 0.609 0612
se 0177 0.221 0.175 0177 0.159 0.164
p 0.005 0.001 0.002 0.005 0.000 0.000
k coeff 0.522 0.831 0.500 0.522 0.516 0.565
se 0.062 0.126 0.068 0.062 0.065 0.060
p 0.000 0.000 0.000 0.000 0.000 0.000
ki1 coeff | -0.477 -0.763 -0.444 -0.477 -0.468 -0510
se 0.068 0.161 0.074 0.068 0.070 0.066
p 0.000 0.000 0.000 0.000 0.000 0.000
Hansen 86.805 17.657 49.700 86.805 62.608 60.454
Hansenp 0.257 0.344 0.040 0.257 0.455 0.148
Hansen df 79 16 34 79 62 50
arlp 0135 0.380 0.037 0135 0.018 0.092
ar2p 0912 0543 0.080 0912 0.232 0.487
Obs. 891 891 891 891 891 891
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Table 10: Production function: sample size

Year | Serv. Manuf. Total|| Year Serv. Manuf. Total

19821 5146 10122 152681997 | 14,075 15749 29,824
1983 | 5,101 9553 14,654({1998 | 13,786 15398 29,184
19841 6371 11,421 17,792|11999 | 14251 15532 29,783
1985 | 7,280 12,288 1957412000 | 14,394 15331 29725
1986 | 8,084 12999 21,083|/2001 | 14138 14,456 28,594
1987 | 8490 13,225 217152002 | 13276 13716 26,992
1988 | 9,044 13420 224642003 | 16,469 16,173 32,642
1989 | 9922 14,053 2397512004 | 16,875 16,365 33,240
1990 110,563 14546 2510912005 | 15929 14,824 30,753
1991110421 14,389 248102006 | 15088 13676 28,764
1992110328 14,268 24596 |(2007 | 14115 12709 26,824
1993 | 9275 12155 214302008 | 13226 12136 25,362
1994 113,216 14,259 27,475|12009 | 11,958 11,179 23,137
1995 111,198 12,864 24,062 (2010 | 10529 10,081 20,610

1996 | 8,111 9,966 18,077 || Total | 330,665 386,853 717,518
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Table 11: Production function: statistics

mean  p50 sd igr  between within residual N T
gr| 3797 3791 053 0593 60.34 278 36.88 386853 10.13
¢ | 3458 3488 1.032 1294 79.54 3.66 16.8 284433 754
ki | 0215 0246 1537 1.931 67.17 0.34 3249 284433 754
[ | 3908 3829 106 1242 9159 0.62 7.8 386853 10.13

Table 12: Production function:

pairwise correlations

qy C ky l inv iinv
g |1
C 03612" 1
k 0.1622*  0.0941* 1
[ -0.0978* -0.0687* -0.0626" 1
inv | 01428 03281* 0.0479* -0.0760* 1
iinv | 01114 00311* 03425 -0.0316* 01117° 1
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Appendix

The principal component analysis (PCA)

The PCA is a statistical tool which is used for data reduction according to a
data-driven procedure. Intuitively, what PCA does is to find several orthogonal
linear combinations of the original variables ordering them on the basis of the
portion of the variance in the original data they account for. A principal compo-
nent is therefore a linear combination of observed variables that is obtained by
exploiting a set of optimal weights for each original variable. The first principal
component (PC) will be the linear combination of the original variables that has
the largest variance among all the possible linear combinations of the original
variables. The second PC will be the linear combination, orthogonal to the first
PC, that accounts for the largest portion of the residual variance once the first
PC has been extracted, and so on. All the principal components taken together
contain all the information conveyed by the original data.

In other words, through PCA we aim at reducing the dimension of the data
while retaining, at the same time, as much of the original variability in the data
as possible.

More formally, if we define C as the p x p covariance or correlation matrix
of the p original variables in the data, the k' principal component pc, for k =
1,2,.., p is obtained as

pc, = ujx (21)

where x is the vector of the p variables in the sample, uy is the k" eigenvector
of C corresponding to the k" largest eigenvalue A; subject to the normalization
constraints:

uug = 1 (22)
ui'uj = 0 for i # j. (23)

pc; = ux is therefore the linear combination of the p variables orthogonal to all
other combinations that, subject to the above constraints, has the maximum vari-
ance. Similarly pc, is the linear combination, orthogonal to pcy, that maximizes
the residual variance.

In matrix notation, we can interpret the principal components in the light
of the eigenvalue-eigenvector decomposition of the correlation or the covariance
matrix C:

p
C=VAV =) Awy (24)
i=1
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where V is the matrix consisting of the eigenvectors (principal components) of C, A
is the diagonal matrix that has as element kk the eigenvalue A¢ corresponding to
the eigenvector v¢. The elements v; of the eigenvector vi, namely the coefficients
of each linear combination, are the loadings, that represent the contribution of
each original value to the PC: in other words, they can be interpreted as the
weights of the j variable in pc,.

Subject to the conditions in equations (23) and (13), that is if ug is such to
have unit length, the variance of the k" principal component, var(pc, ), is given
by Ax. The total variance of all the principal components will be equal to the
variance of the original variables so that:

p
Y A =1tr(C). (25)
k=1

As a consequence, each principal component will account for a portion of the
variance of the original data equal to:
Ak

Py = w(C) (26)

By multiplying each original variable by its loading in each PC, we obtain
the matrix of the principal component scores defined as follows:

S =XV (27)

where X is the original data matrix and V is the same as above. In other terms,
the scores s; indicate the influence of a PC on a specific sample. The matrix S
can be used in the analysis in the place of X: in fact, the matrix S contains the
original data matrix in a rotated coordinate system. Clearly the original matrix
of data can be written as:

X=V'S (28)

where V and S are orthogonal.

The number of eigenvalues and eigenvectors, and thus of the principal com-
ponents, obviously equals the number of variables in the original data.

As the aim of PCA is a reduction of the data dimension through a maxi-
mization of the variance explained by the first components and the elimination
of multicollinearities in the data, that imply potential problems in inverting the
original matrix, we will want to select and keep a number of components g which
is smaller than p: we will therefore select the g eigenvectors corresponding to
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the g largest eigenvalues of C such that they explain most of the variability in the
data. The g largest principal components will account for the following portion
of the original variance: .
L1 M (29)
tr(C)
Accordingly, in the matrix V only g eigenvectors will be retained and the scores
will be computed form the reduced V matrix.

It is then possible to exploit directly the scores from the PCA by using them
instead of the original variables.

A relevant issue is how to choose the the g principal components to be
retained in the analysis. Two criteria are generally adopted in the literature: the
first implies that only the components that explain a given predetermined portion,
usually between 70% and 90%, of the original variance are to be retained; the
second one keeps only the components whose eigenvalues are larger than the
average eigenvalue which obviously is the average variance in the original data.
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