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Abstract

We introduce two bonds in a standard New-Keynesian model to study the
role of segmentation in bond markets for the determinacy of rational expectations
equilibria. We use a strongly-separable utility function to model short-term bonds
providing transaction services for the purchase of consumption goods. Long-term
bonds, instead, provide the standard services of store of value. We obtain a fully
analytical solution for the bond pricing kernel, allowing to endogenize the term
spread within the model. In this way, we study equilibrium determinacy properties
within a context embedding the full information derived from term structure of
interest rates. Our results show that, when utility is weakly separable between
consumption and bonds, the Taylor principle holds only conditional to a non-linear
relation between output and inflation targeting coefficients of monetary policy rule.
Achieving solution determinacy requires to constraint policy coefficients to lie within
bounds depending on structural parameters of the model. This paper provides an
analytical setting useful for several generalizations to address the stability properties in
dynamic models including the term structure of interest rates, induced by policy rules.
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∗Marzo: Department of Economics, Università di Bologna; massimiliano.marzo@unibo.it. Zagaglia:
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1 Introduction

The Taylor principle has become one of the pillars of modern normative analysis of

monetary policy. In a nutshell, it prescribes that the central bank should adjust the

nominal rate of interest more than one-for-one as a response to changes in the inflation

rate. In the standard New Keynesian models, the Taylor principle alone pins down

the equilibrium inflation rate. The recent experience of ‘quantitative easing’ measures

implemented by several central banks has stressed once more the strict link existing

between the maturity structure of government bonds and the implementation of monetary

policy.

In what follows, we focus on the role of term structure of interest rates and of

endogenous term spreads in defining the conditions for determinacy of a Rational

Expectation Equilibrium (REE, henceforth). Our goal is to study the role of interest

rates associated to bonds of different characteristics to understand if the standard ‘Taylor

principle’ of monetary policy is still valid. The Taylor principle, as discussed by Taylor

(1993) and states that policy rate should react more than proportionally with respect to

changes in inflation rate.

We consider a cashless economy where bonds provide transaction or ‘liquidity’ services

in place of money. The model includes two types of bonds, namely liquid and illiquid.

Liquid bonds are providers of services that facilitate transactions in the market for

consumption goods. They play the same role of real money balances in the New Keynesian

monetary models. Like for real money balances, we include the real quantity of liquid

bonds directly into the utility function. Illiquid bonds are mere forms of financial

investments that allow to carry income across time periods and, as such, enter the

intertemporal budget constraint. An alternative to this formulation consists in including

transaction costs in the consumer’s budget constraint, like in Sims (1994).

After modelling bonds that provide transaction services and those that do not, we

go one step forward. We suggest that there is a relation between the provision of

transaction services and the maturity structure of government bonds. We interpret

short-term securities as imperfect substitutes for consumption, and long-term bonds as

perfect substitutes. Thus, short-term public debt performs the function traditionally

attributed to ‘money’ as a medium of exchange. This approach can be motivated from

several points of view. This way, we model two bonds with different intrinsic characteristics

in general equilibrium. The function of each bond refers to a different maturity.

In our framework, purchasing long-dated bonds and holding them until maturity

implies that a households receives a stream of interest-rate income and ‘stores the face

value of a bond’ until the maturity period. This way, a household ‘locks in’ the resources

for the face value of the bond. Hence, the longer the maturity of a bond, the more limited

its capability of providing opportunities for consumption smoothing until expiry, should
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negative shocks occur.

The spirit of our framework is similar to the proposition of Tobin (1958) about the idea

of liquidity preferences as a proxy for risk attitude. In a world with money, the demand

for transactions in the consumption-good market generates a demand for liquidity services

in the asset market. This is the so-called transaction demand for money. The key point

is that the demand for liquidity services is related to the maturity profile of a portfolio of

financial assets. In particular, the longer the maturity, the larger the propensity to adjust

portfolio holdings between the assets and money balances.1

This paper aims to present the most simplified model which allows the simultaneous

presence of two interest rates in a general equilibrium model with otherwise standard

features of real and nominal rigidities. We abstract from an explicit role for money

because we intend to focus on the role of the short-term interest rate in the monetary

transmission mechanism. In this sense, modelling money would allow us to account only

for an additional buffer in the transmission of shocks. This choice allows us to deal with

the most tractable and transparent model available. Moreover, as argued by Woodford

(2003), the absence of money is not at odds with neutrality proposition.

In the present framework, the term structure emerges as an affine representation

where the expectation hypothesis holds in log-linear approximation. If bonds providing

transaction services are part of the utility function in a strongly separable way, as in the

standard neo-keynesian model, the parameters of the monetary policy rule should lie in

the same region described in the literature for models built without the term structure for

determinacy to hold. Hence, regardless of the vehicle providing liquidity services, what

really matters for determinacy is whether the demand for transaction services is linear with

respect to consumption. Instead, when the liquidity services enter in a weakly separable

way, the standard Taylor principle does not hold any longer. In the region of determinate

solutions, there is a nonlinear relation between the inflation targeting coefficient and the

output targeting coefficient. Thus, modelling several government bonds with strongly

separable utility does not determine an important change in determinacy conditions. The

dramatic change occurs only with a weakly separable utility, for which the determinacy

conditions are no longer standard.

Rational expectations equilibria are affected by the interplay between fiscal and

monetary policy. The role of fiscal policy is essential since this allows to widen the range

of parameters for which determinacy exists. In the language of Leeper (1991) and Sims

(1994), we find that determinacy is obtained either by considering active-monetary with

passive-fiscal or, alternatively, a passive-monetary with active-fiscal regime. A passive

1The discussion of Tobin (1958) also introduces the idea imperfect substitutability between different
types of bonds and money. This is indeed at the heart of a variety of recent contributions, including
Andres, Lopez-Salido, and Nelson (2004), Canzoneri and Diba (2005) and Canzoneri, Cumby, Diba, and
López-Salido (2011).
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fiscal policy arises from setting the tax revenues to react to the outstanding real level of

total public debt.

The explanation for our results has to do with our modelling assumption that make two

interest rates coexist in a general equilibrium. Including multiple bonds is irrelevant for

the determinacy conditions of the model with strongly separable utility, since it does not

change how the parameters of monetary policy rules enter the model. This changes for the

case with weakly separable arguments, where the traditional arguments for determinacy

are strongly dependent on the core model parameters.

This paper fills a gap in the current literature on determinacy and monetary policy

initiated by Bullard and Mitra (2002). In particular, we consider an explicit role for the

term structure of interest rates and solving for an endogenous term spread. A similar

question is addressed by McCough, Rudebusch, and Williams (2005). However, their

model does not allow to solve analytically for an endogenous term spread in the standard

New Keynesian setting. It should be stressed that we obtain a full analytical solution

for bond prices without imposing any ad-hoc assumption on the pricing kernel, or on the

role of the expectations hypothesis of interest rates. Part of the results contained in this

paper challenge what has been considered by Canzoneri, Cumby, Diba, and López-Salido

(2011), where Taylor principle does not hold when bonds together with money provide

transaction services.

The remainder of the paper is organized as follows. The following section introduces

the reader to the main modelling framework. Section 3 describes the calibration of

the benchmark model. We also comment on selected impulse responses to compare the

coherence of the model with the patterns documented in the current literature. Section

4 discusses the model reduction, derivation of the pricing kernel, and the pricing of

government bonds. Section 5 presents the main results of the model about determinacy.

Section 6 extends to the case of a household utility that is weakly-separable between

consumption and liquid bonds. Section 7 concludes. An additional appendix material

contains the set of proofs of analytical results.

2 The Model

The general feature of our model is to consider the explicit role of bonds as providers of

transactional services. We assume the existence of two types of bonds: liquid and illiquid.

For their intrinsic nature, liquid bonds perform the function of ‘money’. They are held

by the representative agent in order to facilitate liquidity services. Illiquid bonds are held

for investment purposes. Both types of bonds pay an interest rate which in equilibrium

differs because of two elements, namely the explicit role of transaction services and the
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endogenously determined term premia.

2.1 Households

We assume the existence of an infinite number of heterogeneous agents indexed on the

real line between 0 and 1. Each i -th agent maximizes the following utility function:

Ut =

∞∑

t=0

βtu

(
Cit,

Bi1t
Pt

, Lit

)
(1)

where the instantaneous utility function u (. . .) is defined as:

u

(
Cit,

Bi1t
Pt

, Lit

)
=
C
(1− 1

σ )
it(
1− 1

σ

) + χ

(
Bi1t

Pt

)(1− 1

σ )

(
1− 1

σ

) −
L
1+ 1

η

it

1 + 1
η

(2)

where Cit indicates the amount of consumption expressed by each i -th agent, Bi1t indicates

the amount of short-term bond holdings (here indexed with 1); the general price level is

given by Pt. Instantaneous utility depends positively from Cit and Bi1t, while negatively

from labor supply Lit. In (2), σ indicates the intertemporal elasticity of substitution, χ is

a scale parameter and η is the Frisch labor elasticity. The structure of financial assets of

the present model economy is similar to Ljungqvist and Sargent (2007). The Government

issues two types of bonds: one is a one-period bond, Bi1t, the short term bond. A second

type of bond, Bi2t, lives for two periods. Both bonds pay a return each period R1t for

the one-period bond, and R2t for the two-period bond, in gross terms. The price of both

bonds is the reciprocal of their respective gross returns.

The representative agent solves an intertemporal portfolio allocation problem by

maximizing the utility function subjected to the budget constraint:

Bi1t
R1tPt

+
Bi2t
R2tPt

=
Bi1t−1

Pt
+
Bi2t−1

R1tPt
+
WtLit
Pt

− Cit − Tit (3)

where Wt is the nominal wage, Tit is the tax collected, assumed to be lump sum. Given

the structure of financial assets, from (3), the two-period bond issued at time t− 1, when

it comes at t it has one period left before maturity: this makes it like a one-period bond.

Therefore, the price of a two period bond with one period left until maturity is given

by 1/R1t. Clearly, the structure of financial markets assumed in this paper allows the

presence of a secondary market. This setting generalizes what has been introduced by

Andres, Lopez-Salido, and Nelson (2004), Marzo and Zagaglia (2008) and Harrison (2012)

by presenting a model with mild assumptions underlying the introduction of term structure

of interest rates. In particular, we do not consider any explicit role for transaction costs:

short-term bond Bi1t is inserted in the utility function, playing a similar role of money in
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traditional monetary models. This allows the definition of a bond pricing kernel depending

on preference parameters. The first order conditions with respect to Cit, Lit, Bi1t and Bi2t,

are given, respectively, by:

C
−

1

σ

it = λt (4)

L
1

η

it = λtWt (5)

χb
χ(1− 1

σ )−1

i1t + βEt
λt+1

πt+1
=

λt
R1t

(6)

βEt
λt+1

πt+1R1t+1
=

λt
R2t

(7)

Equation (4) indicates the first order with respect to consumption; equation (5) defines

the optimal labor supply choice and equates the disutility from work effort to the real wage

weighted by the marginal utility of consumption; equation (6) is the optimal intertemporal

allocation of short-term (one period) bonds Bi1t and (7) is the result of the optimal choice

of long-term (two periods) bonds Bi2t; λt is the Lagrange multiplier. In particular, we

expressed the bond demand in real terms, after having defined bi1t = Bi1t/Pt, bi2t =

Bi2t/Pt.

By reshuffling (6) - (7) we get the following expression for the demand of liquid bonds:

χb
χ(1− 1

σ )−1

i1t =

[
R2t −R1tEtR1t+1

R1tR2t

]
C

−
1

σ
t (8)

It is immediate to verify that demand for liquid bonds (after dropping subscript index i)

satisfies the following properties, provided that χ
(
1− 1

σ

)
< 1 :

∂b1t
∂Ct

> 0
∂b1t
∂R1t

> 0

∂b1t
∂R1t+1

> 0
∂b1t
∂R2t

< 0

The intuition goes as follows. The increase in consumption increases the demand for

short bonds, since they are employed for transaction. On the other hand, the increase

in current, R1t, and expected rate of return on short-term bonds, R1t+1, increases the

demand for short bonds, since investors tend to favour investment with higher return,

given the same level of risk. In the same guise, the increase in the return of long-term

bonds, R2t, depresses the demand for short-term bonds.

To complete the demand side, we assume the existence of a large number of

differentiated goods indexed over the real line between 0 and 1. This allows each firm

to have a control of the price of her final good to be sold, since output becomes demand

determined. Following the approach by Dixit and Stiglitz (1977), we assume that the

consumption bundle Cit demanded by each agent i ∈ [0, 1] is a CES type aggregate of all
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the j ∈ [0, 1] varieties of final goods produced in this economy, as described by:

Cit =

[∫ 1

0
cit (j)

θ−1

θ dj

] θ
θ−1

(9)

where θ is the elasticity of substitution between different varieties of goods produced by

each firm j. To guarantee the existence of an equilibrium, the elasticity θ is restricted to be

bigger than one. Standard optimization problem for the choice of the optimal composition

of bundle (9) lead to the following constant-elasticity inverse demand function:

cit (j)

Cit
=

[
pt (j)

Pt

]
−θ

(10)

where pt (j) is the price of variety j and Pt is the general price index defined as:

Pt =

[∫ 1

0
pt (j)

1−θ dj

] 1

1−θ

(11)

As θ → ∞, the demand function becomes perfectly elastic, and the differentiated goods are

perfect substitutes. The aggregate price level Pt is beyond the control of each individual

firm. Similar steps can be applied to public expenditure Gt, so that aggregate demand

is defined as the sum of private and public consumption for each variety goods: Ct (j) +

Gt (j) = Yt (j), which after aggregating over all varieties j ∈ [0, 1] becomes: Ct +Gt = Yt.

In order to simplify, we assume the existence of a symmetric equilibrium where all

agents make the same choice ex-post. Therefore, we can drop index i from all equations

in the model.

2.2 The pricing kernel

Including bonds into the utility function makes the intertemporal pricing scheme of bonds

peculiar. To shed further light on this, let us consider a model with no short-term bonds

in the utility function, obtained by setting χ = 0. In this case, following Ljungqvist and

Sargent (2007), we obtain:

βEt
λt+1

πt+1
=

λt
R1t

(12)

βEt
λt+1

πt+1R1t+1
=

λt
R2t

(13)

The pricing kernel Mt+1 is defined as:

Mt+1 = βEt
λt+1

λtπt+1
(14)
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As it is well known, the pricing kernel is the tool to price recursively the entire term

structure, starting from the shortest maturity bond. In our case, it is obvious to see that

the pricing of the two-periods bond is, after a recursive application of the kernel, given

by:

β2Et
λt+2

πt+1πt+2
=

λt
R2t

(15)

By the same sort of argument, if we generalize to j -th period bond, we obtain:

βjEt
λt+j

λt+j−1 (πt+1 . . . πt+j−1πt+j)
= R−1

jt (16)

The classical approach to the term structure implies that expected future short term

interest rates determine long-term interest rates. This defines the well known expectations

hypothesis (EH, henceforth), which in our case can be simply stated as: R2t = RtEtR1t+1.

From equation (13), we obtain:

R−1
2t = βEt

[
λt+1

πt+1λt

]
EtR

−1
1t+1 + covt

[
β
λt+1

πt+1λt
,R−1

1t+1

]
(17)

which, after using (12) becomes:

R−1
2t = R−1

t EtR
−1
1t+1 + covt

[
β
λt+1

πt+1λt
,R−1

1t+1

]
(18)

From (18), we observe that the EH holds if and only if utility is linear in consumption,

such that λt+1

πt+1λt
= 1, and when the stochastic process of πt, so that the covariance term

becomes zero. In the case under exam, instead, with the inclusion of bonds into the utility

function, we observe that the pricing kernel is affected by utility terms. In fact, by taking

advantage of the first order conditions (6)-(7), we can rewrite (18) as follows:

R−1
2t =


R−1

t −
χb

χ(1− 1

σ )−1

1t

λt


EtR−1

1t+1 + covt

[
β
λt+1

πt+1λt
,R−1

1t+1

]
(19)

Thus, by setting χ = 0 in (19) we obtain exactly the setting outlined in (18). From (19)

we immediately obtain the kernel expression such that:

Mt+1 = βEt
λt+1

λtπt+1
= (20)

=


R−1

t −
χb

χ(1− 1

σ )−1

1t

λt




Thus, by plugging (21) into (19), we observe that the interaction between the preference
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structure and the pricing structure is also reflected in the second order terms. This shows

that including bonds with a sort of ’liquidity preference’ motivation in the model delivers

a non-standard representation of the stochastic pricing equations for all financial assets.

Finally, taking advantage of (4) into (14), we have:

Mt+1 = βEt

(
Ct
Ct+1

) 1

σ 1

πt+1
(21)

To obtain a version of the pricing kernel (14) that can be used for the analysis, we

need a solution for consumption and inflation as a function of the shocks of the system.

2.3 Firms

We assume the presence of a continuum of monopolistically competitive firms distributed

on the unit line [0, 1], indexed by j ∈ (0, 1). Each individual firm faces a downward sloped

demand curve for her differentiated product Yt(j):

Pt(j) =

[
Yt(j)

Yt

]
−

1

θ

Pt (22)

It is well known that demand function (22) can be directly derived by following the details

from Dixit and Stiglitz (1977).

The production function of each variety j employs only labor as input and it is given by:

Yt (j) = AtL
α
t (j) (23)

Note that all firms producing j varieties are subjected to an homogenous technological

shock At, for which we assume the following structure (in log-linear terms):

at = (1− ρa) a+ ρaat−1 + a
1/2
t σaǫ

a
t (24)

where ǫat is an innovation term distributed according to a standardized Normal

distribution. The structure of the equation (24) includes an heteroskedastic innovation.

As it will be clear later, the term structure will be dependent on the shocks of the system:

technically speaking the shock of the model represent the principal component of the

yield curve, interpreted according to the specificity modelled. One factor is here modeled

as business cycle component modeled via (24). Nominal rigidities are modeled via price

rigidities modeled through Calvo (1983) method of price adjustment. Each seller sets each

period a new price with probability 1− α, with α ∈ (0, 1), independent of time since last

change. Parameter α indicates the degree of price stickiness.

Let us define the evolution of the price level. Let Pt be the general price level index,
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and be ℘t the new price chosen at date t, by all sellers . Thus the price level is given by:

P 1−θ
t =

[∫ 1

0
pt(i)

1−θdi

]
= (1− α)℘1−θ

t + α

∫ 1

0
pt−1(i)

1−θdi (25)

which is equivalent to write, given the definition of the general price level:

P 1−θ
t = (1− α)℘1−θ

t + αP 1−θ
t−1 (26)

To determine the price level we need the choice of ℘t. It is interesting to note that the

optimal choice of ℘t depends only upon the current and the expected future evolution

of the entire sequence of {Pt}
∞

t=0, so there is no need to know other aspects of the price

distribution.

Firms set their own price by maximizing the following profit function:

Ωt(j) = Et

∞∑

k=0

(αβ)k
[
λt+k(j)p

1−θ
t (j)P θt+kYt+k − ω

(
pt(j)

−θP θt+kYt+k

)]
(27)

By taking the First Order Condition with respect to pt(j), we obtain:

Et

∞∑

k=0

(αβ)k

{
(1− θ)λt+k(j)

(
pt(j)

Pt+k

)
−θ

Yt+k + ω′(·)θp−1−θ
t (j)P θt+kYt+k

}
= 0 (28)

After simplifying we have:

Et

∞∑

k=0

(αβ)k
{
λt+k(j)pt(j) − ω′(·)

θ

θ − 1

}
= 0 (29)

After imposing the ex-post homogeneity condition (assuming that the pricing problem

solved by each firm is equal for all firms producing the i-th varieties), and the resource

constraint, we obtain:

Et

∞∑

k=0

(αβ)k

[
u′(Yt+k)

pt(j)

Pt+k
−

(
θ

θ − 1

)
ω′

(
Yt+k

(
pt(j)

Pt+k

)
−θ

)]
= 0 (30)

where ω (·) is the utility function representing the preferences towards work vs. leisure,

which in our case is given by:

ω (·) =
L
1+ 1

η

it

1 + 1
η

(31)

In this paper we abstract from the explicit definition of price distortions induced by

monopolistic competition and nominal price rigidities. For a more general treatment,
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we address the reader to Woodford (2003) and Schmitt-Grohé and Uribe (2005),

Schmitt-Grohé and Uribe (2007). Taking advantage of the production function, the first

order condition on consumption given by, the first order condition of the pricing problem

is given by:

[
pt (i)

Pt

]1−θ+ θ
α

(

1+ 1

η

)

=
θ

(θ − 1)α

(
1 +

1

η

)
1

λt
A

−
1

α

(

1+ 1

η

)

t Y
1

α

(

1+ 1

η

)

−1

t (32)

After log-linearization, we obtain the following expression for the aggregate supply

function:

βπt+1 = πt − kyt + µaat + µggt (33)

where:

k =
(1− δ) (1− δβ)

δ

{
σSc [1 + η (1− η)] + αη

σSc [αη (1− θ) + θ (1 + η])

}
(34)

ηa =
(1− δ) (1− δβ)

δ

[
1 + η

αη (1− θ) + θ (1 + η)

]
(35)

ηg =
(1− δ) (1− δβ)

δ

[
αηg

Scσ [αη (1− θ) + θ (1 + η)]

]
(36)

Interestingly, the aggregate supply function given in (33) depends on the exogenous shocks

of the system, at, gt. The traditional formulation of the model is often expressed in terms

of the output gap: this would allow to get rid of the explicit formulation of the shock

from the AS curve, since the definition of the potential output is a linear combination of

the shock. We keep this formulation in terms of actual output, since it allows a neater

derivation of the kernel, given the solution of the full model in terms of the shocks of the

system.

2.4 Fiscal policy

The Government Budget Constraint in nominal terms is given by:

B1t

R1tPt
+

B2t

R2tPt
=
B1t−1

Pt
+
B2t−1

R1tPt
+Gt − Tt (37)

where Gt indicates the government expenditure, net of interest expenses. We assume

that bond demand expressed by each i-the agent matches the supply supplied by the

government according to the following equilibrium conditions:

B1t =

∫ 1

0
Bi1tdi; B2t =

∫ 1

0
Bi2tdi;
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In the same fashion, total fiscal revenues are equal to the sum of taxes paid by each i-the

agent:

Tt =

∫ 1

0
Titdi

Government spending follows a stochastic process given by:

gt = (1− ρg) g + ρggt−1 + g
1/2
t σgǫ

g
t (38)

Equation (38) represents a policy shock included in the model, ǫgt is an i.i.d. standard

normal shock with zero mean and constant volatility σ2g . The solution of the pricing kernel

and the term structure is a function of two shocks: a technological shock, representing

business cycle fluctuations, and a policy shock, represented by gt in (38). This opens

interesting questions about the response of both short and long rates with respect to

policy changes and their feedback into the entire model economy, as we will see later.

According to the fiscal theory of price level determination (FTPL, henceforth), the

comparative evaluation of alternative monetary policy rules should not be thought in

isolation from an explicit design of the fiscal policy stance. As suggested by Leeper (1991)

and Sims (1994), we introduce a fiscal rule whereby taxes react to the outstanding level

of real public debt:

Tt = ψ0 + ψ
B1t−1

Pt
+ ψ

B2t−1

Pt
(39)

The parameter capturing the strength of the tax response to debt fluctuations is given by

ψ, which is set equal for both short and long-term debt. We follow Leeper (1991) and

define fiscal policy as ‘passive’ for:

∣∣β−1 − ψ
∣∣ < 1 (40)

and active otherwise.

Given the model structure, for short-term bonds we have an explicit demand function

that depends on the preference structure of the investor. The demand for long-term

bonds is derived endogenously, thus representing a residual adjustment in the government

budget constraint. This amounts to saying that long-term bonds absorb residual demand

that is not satisfied by the supply conditions for short-term bonds. Implicitly, our model

designs the behavior of a secondary market for government bonds by allowing for trading

of long-term bonds (with a two-period maturity, as it is assumed here) at each point in

time.
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2.5 Monetary policy

We consider the role of monetary policy rules in tying down the determinacy properties

of a REE. We study the role of variants of the standard interest rate rule proposed by

Taylor (1993):

R1t = R1

(πt+nπ

π

)φπ (
Yt+ny

Y

)φy (R1t+nR−1

i

)φR
(41)

where φπ, φy and φR indicate the response of the policy rate R1t to inflation, output and

lagged R1t over different time horizons (nπ, ny , ni). All the parameters of the policy rule

are restricted to be positive. This general setting can be simplified as:

R1t = (1− ρ) (φππt + φyyt) + ρR1t−1 (42)

Given (41), the demand for short term bonds is fully determined.

3 Calibration and impulse responses

In this section we present the procedure adopted to calibrate the model together with

a short impulse-response analysis, in order to discover the main dynamic properties of

model economy under study. The scope of this section is to show the basic properties of

the model conditional to the evolution of exogenous shocks.

The model is calibrated on quarterly U.S. data from for the period 1960:1-2010:3. The

parameter values are reported in Table 1. The annual inflation rate for the sample period

is 4.09%. The steady-state short-term interest rate R1 is 5.58%, obtained as the mean of

3-month Treasury Bill Rate. To capture the steady state value of long-term bonds, we take

the mean of the 10-year return of government bond, given by 6.5 %. The steady state level

of output has been obtained as the mean of quarterly GDP, constant prices, seasonally

adjusted over the sample period 1960:1-2010:3. This number has been normalized by

considering the civilian population considered over the same sample period, according

to the methodology described by Kim (2000). The intertemporal discount rate implied

by above informations is set equal to 0.99, as it is standard in the current literature.

We also assume that the inverse of risk aversion coefficient in the utility function σ has

been set equal to 0.5, together with Frisch labor supply elasticity η equal to 1, and the

scale parameter χ has been set equal to 0.3, as in Gaĺı (2008). The labor share in the

production function α is set equal to 0.67, as it is customary in the current real business

cycle literature. The share of consumption over GDP is set to be 0.57, implying a public

expenditure to GDP ratio equal to 0.43, an high value if compared to the true data, given

the absence of investments from the model. Price rigidity parameter δ is set equal to

12



2/3, implying an average price duration of three quarters, consistent with the empirical

evidence. In the same way, the elasticity of substitution between differentiated goods is

equal to 6, as commonly assumed in the traditional New Keynesian models. The parameter

representing the response of fiscal revenue to outstanding short and long term debt is set to

be 0.05. The steady state level of labor supply is given by L = 0.33, implying a 1/3 ratio of

working activities to non-working activities. The steady state level of total public debt is

set to 33% over GDP, equal to the average of US Federal public debt to GDP ratio for the

sample period considered. The short term debt has been left to be free: for the simulation

reported, we set as a benchmark value 40% of the total level of debt, implying a 60% of

the long term debt. Finally, the monetary policy assumed for impulse-response function is

the standard Taylor rule with both contemporaneous inflation and output targeting, with

φπ = 1.5 and φy = 0.5 and ρ = 0.

The autoregressive coefficient for the shocks are: ρA = 0.9, ρA = 0.5, for technological

and public expenditure shock, respectively. Standard deviation are, instead: σA = 0.007,

and σG = 0.01, as considered in the current literature (for σA) and according to the

standard deviation of the public consumption for the US economy for the sample period

considered.

The model is log-linearized around the deterministic steady state. We report the

impulse response functions from a one-standard deviation shock to technology and public

expenditure in Figures 1 and 2, respectively. From Figure 1 we observe that technological

shock expands output and consumption but reduces labor effort. The increase in aggregate

demand raises inflation rate, with a consequent increase of both short and long nominal

interest rates. The level of both short and long term bonds in real terms decreases because

of the increase of the inflation rate. This determines a reduction of tax revenue. Labor

supply decreases, because the productivity shock is perceived as a windfall gain.

The results for an expansionary government expenditure shock are reported in Figure 2:

output increases, consumption increase, inflation and both short term and long term rates

increase. Obviously, the increase of public debt (both short and long term in real terms)

make taxes to increase, too. Interestingly, the reaction of short term rate is stronger than

long term one, highlighting a smoothed out effect, as it is customary for term structure

models.

Overall, the impulse response functions provide evidence of patterns similar to those of

the standard New Keynesian model, with the additional feature of the interplay between

short and long term interest rates. Under this perspective, the inclusion of two bonds does

not generate any counter-intuitive or bizarre behavior of the response of the system to the

shocks considered.
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4 An analytic solution for the pricing kernel

4.1 Model solution and the kernel

The first step consists in log-linearizing the model around the deterministic steady state.

This is now a standard procedure and we are not going to describe it in full detail. A

technical appendix with the full log-linearized version is available upon request. The results

from our dimension-reduction solution can be collected in the following proposition:

Proposition 1 The reduced form model can be represented as follows:

πt+1 =
1

β
πt −

k

β
ηyaat −

k

β
ηyggt (43)

b2t+1 + ηπ1πt+1 + ηba2at+2 + ηba1at+1 + ηbg2gt+2 + ηbg1gt+1 =

= ηb2b2t − ηππt − ηbaat − ηbggt
(44)

where coefficients ηya, ηyg, ηπ1, ηba2, ηba1, ηbg2, ηbg1, ηb2, ηπ, ηba, ηbg are given in Appendix

1.

Proof 1 See Appendix 2.

The functional form of the model described in (43) and (44) can be directly employed in the

analytical solution of the kernel, which is explicitly discussed in the following proposition.

Proposition 2 The analytical solution to the pricing kernel is:

mt+1 = λ0 + λ1at − λ2gt − η1a
1/2
t σaǫ

a
t+1 − η2g

1/2
t σgǫ

g
t+1 (45)

where coefficients are:

λ0 = δ − fπ − (1− ρa) a
(ηca
σ

+ αa

)
+ (1− ρg) g

(ηcg
σ

− αg

)

λ1 =
ηca (1− ρa)

σ
− αaρa

λ2 =
ηcg (1− ρg)

σ
+ αgρg

η1 =
ηca
σ

+ αa

η2 =
ηcg
σ

+ αg

Proof 2 See Appendix 2.

The solution presented in the previous proposition depends on the assumptions of the

microfounded model. We should stress that we do not need a numerical solution of the

model written in state-space form to price government bonds in our framework. Differently
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from most contributions in macro-finance, we obtain an analytical solution for the pricing

kernel that is fully consistent with the model structure.

4.2 Bond pricing

The structural model has two state variables governing the dynamics of the pricing kernel,

namely at and gt. Since the pricing kernel is conditionally lognormal, the short term rate

R1t is given by:

R1t = − logEt exp (mt+1) (46)

which, given lognormality, becomes:

R1t = −Etmt+1 −
1

2
vart (mt+1) (47)

Equation (47) shows that fluctuations in the short rate depend on a combination of changes

in the conditional mean and variance of the pricing kernel. The conditional mean of the

log of the pricing kernel is given by:

Etmt+1 = λ0 + λ1at − λ2gt (48)

while conditional variance is:

vart (mt+1) = η21atσ
2
a + η22gtσ

2
g (49)

Interestingly, this model allows for time variation in the conditional variance of the

kernel, owing to the time-varying volatility of the shocks. The types of shocks included

here capture business cycle patterns, in the case of a technology shock, and a policy-related

shock, in the case of the fiscal policy shock. To get a constant conditional variance, we

can set η1 = η2 = 0. However, this condition is fairly restrictive, since we have seen that

coefficients η1, η2 are function of the core parameters of the model.

By combininig (47) with (48) and (49), the solution of the short-rate interest rate can

be written as:

R1t = −λ0 −

(
λ1 +

η21
2
σ2a

)
at +

(
λ2 −

η22
2
σ2g

)
gt (50)

We can now further generalize the previous argument by extending the pricing scheme to

longer-term government bond. In what follows, we present a general formulation to price

a k-maturity bond and to extend the analytics to illiquid bonds.

Following Atkeson and Kehoe (2008), let us consider the price of a k-th period maturity
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bond pkt :

pkt = logEt exp
(
mt+1 + pk−1

t+1

)
(51)

Our goal is to derive the affine recursive pricing formula. We set the price of a k-th period

maturity bond as a function of the state variables at and gt, as follows:

pkt = −Ak −Bkat − Ckgt (52)

The solution is collected in the following Proposition.

Proposition 3 The affine recursive coefficients of k-th maturity bond prices are given by:

Ak = −λ0 +Ak−1 +Bk−1 (1− ρa) a+ Ck−1 (1− ρg) g (53)

Bk = ρaBk−1 −
σ2a
2

(
η21 +B2

k−1

)
− λ1 (54)

Ck = λ2 + ρgCk−1 −
σ2g
2

(
η22 − C2

k−1

)
(55)

with A1 = λ0, B1 = λ1 +
η2
1
σ2a
2 , C1 =

η22σ
2
g

2 − λ2.

Proof 3 See Appendix 2.

The yield Rkt on a k maturity bond can be expressed as:

Rkt = −
pkt
k

(56)

which, by using (52), becomes:

Rkt =
1

k
(Ak +Bkat + Ckgt) (57)

We can now compute the term spread, i.e. the difference between long-term Rkt and

short-term yield R1t, which by using (50) and (57), becomes:

Rkt −R1t =

(
Ak
k

+ λ0

)
+

(
Bk
k

+ λ1 +
η21σ

2
a

2

)
at +

(
Ck
k

− λ2 +
η21σ

2
g

2

)
gt (58)

Differently from Atkeson and Kehoe (2008), our setting does not allow for a parallel

shift in the yield curve, since all yield change differently after a shock to at or gt. This

is due to the assumptions made in (24) (38), which are not random walk. Moreover, this

implies a general set of formula for recursive terms of the affine coefficients Ak and Bk

which are non-linear, as proved in Proposition 3. On the other hand, equation (58) shows
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that the difference between a k -maturity bond and the short-rate bond is mainly due to

exogenous shock fluctuations. Other than this, the two yields differ for a constant term

captured by
(
Ak

k + λ0

)
.

We can now pin down the equations governing the long-term rate for k = 2.. We can

collect the results in the following Corollary:

Corollary 1 For a two-period bond, the yield and the term spread are respectively given

by:

R2t =
1

2
(A2 +B2at + C2gt) (59)

R2t −Rt =

(
A2

2
+ λ0

)
+

(
B2

2
+ λ1 +

η21σ
2
a

2

)
at +

(
C2

2
− λ2 +

η22σ
2
g

2

)
gt (60)

where the coefficients are:

A2 = B1 (1− ρa) a+ C1 (1− ρg) g (61)

B2 = ρaB1 −
σ2a
2

(
η21 +B2

1

)
− λ1 (62)

C2 = λ2 + ρgC1 −
σ2g
2

(
η22 − C2

1

)
(63)

with B1 and C1 defined in Proposition 1

Proof 4 By setting k = 2 in (52), (53)-(55), (57) and (58), rearrange and simplify, it is

immediate to get the results stated in the text.

We can rewrite equation (60) in a more suitable fashion, so that the link between

return on long term bond and short term bond can be represented by:

R2t = Rt + η0 + ηaat + ηggt (64)

where:

η0 =

(
A2

2
+ λ0

)
(65)

ηa =

(
B2

2
+ λ1 +

η21σ
2
a

2

)
(66)

ηg =

(
C2

2
− λ2 +

η22σ
2
g

2

)
(67)

From equation (64), if the stochastic processes for at and gt are removed, then the two

returns Rt and R2t differ only for a constant term. Therefore, in general equilibrium, two

interest rates may coexist with a constant wedge if there is no uncertainty. Second, the
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wedge between the two fluctuates with a drift if uncertainty is added. We would get a

similar result if we imposed exogenously a relation between liquid and illiquid bonds, like

the one in equation (64). For example, this can be obtained by assuming that the relation

between the two rates evolves according to:

R2t = HRtZ
ν
t (68)

with H is a constant, Zt is stochastic term, for which we can assume an autoregressive

structure. The log-linearized version of (68) is:

R̃2t = η0 + R̃t + νζt (69)

where η0 = logH, ζt = logZt − logZ, where the letter without time subscript indicates

the steady state for the same variable. If we express ζt as a linear combination of at, gt

we can immediately get a representation very similar to that reported in (64):

R̃2t = η0 + R̃t + ν (ξat + (1− ξ) gt) (70)

The representation under (70) is qualitatively similar to (68). In fact, if the focus of

the analysis is on determinacy conditions of a REE induced by term structure, the

two representations under (68)-(70) do not imply any differences in the outcome for

determinacy. In other words, it does not matter for determinacy whether the link between

the rates of return of short and long term bonds is imposed in an exogenous way - like in

the case of equation (70) -, or whether it is explicitly derived by following the procedure

leading to (68). The advantage from the endogenous derivation of the link between R2t

and Rt consists in the fact that coefficients are functions of all the core parameters of the

model.

The approach resulting in equations (68)-(70) is also considered in Marzo and Zagaglia

(2008). The different results obtained in Marzo and Zagaglia (2008) arise mainly from

the modelling strategy for the nature of the bonds. In fact, in Marzo and Zagaglia

(2008), illiquid bond are subject to transaction costs in the representative agent’s budget

constraint. This delivers a different functional form for the aggregate supply function which

explictly depends on the short term interest rate, thereby creating a different transmission

channel of the short term rate to term structure.

A final remark is due about the Expectations Hypothesis (EH). Taking advantage of the

log-linearized reduced form of the model, we can derive the following relation (expressed

in log-linear terms) between long and short rate:

R2t = R1t +R1t+1 (71)
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Equation (71) is the log-linear representation of the expectations hypothesis. In other

words, the inclusion of bonds in the utility in a weakly separable way, does not induce

a violation of the EH. To get a model setting where the EH appears to be violated, it

would be necessary to include stronger frictions among different types of bonds or money,

as outlined in a preliminary work done by Marzo and Zagaglia (2008).

5 Determinacy of rational expectations equilibria

In this section we study the determinacy properties of the model. Each determinacy

condition is derived conditional to a specific monetary policy rule. We consider seven

variants of the rules proposed in (41)-(42): a contemporaneous absolute inflation targeting

rule, a backward-looking and a forward-looking rule for absolute inflation targeting. In

addition, we study a set of flexible inflation-targeting rule that include output targeting.

In this case, the rules studied are based on the combination of current inflation and output

targeting, forward inflation and current output, as well as current inflation and output

coupled with interest rate smoothing.

Using the log-linearized version of the model, we can reduce the system to the aggregate

supply function (43), the Taylor rule (42), the government budget constraint (44) and the

following version of the intertemporal IS equation:

Etyt+1 − SgEtgt+1 + σScEtπt+1 = yt − Sggt + σScR1t (72)

where Sg and Sc indicate, respectively, the share of public expenditure and consumption

over GDP. Another equation of the system is given by the aggregate supply curve given

by (33). For what concerns determinacy analysis we can drop from the aforementioned

equations all terms involving exogenous stochastic processes at and gt , since they do

not impact on the dynamic properties of the model. As a general remark, after plugging

the Taylor rule for R1t into equation (72) and in the reduced form government budget

constraint (37), we can reduce further the model down to a three-equation system in the

variables πt,yt and b2t. This system can then be represented in matrix form as follows:

AZt+1 = BZt (73)

where vector Zt is given by Zt = [πt, yt, b2t]
′, and matrices A and B are properly defined

according the specific setting adopted. We can rewrite the system as follows:

Zt+1 = ΓZt (74)

with Γ = A−1B. Matrix Γ includes the driving dynamical properties of the system and

the determinacy analysis is entirely focused on it.
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5.1 Pure inflation targeting

The monetary policy rule here studied are given by:

R1t = φππt (75)

R1t = φππt+1 (76)

R1t = φππt−1 (77)

Rule (75) is a simple representation of the pure inflation target regime, while (76) indicates

a pure expected inflation targeting, and (77) represents a lagged inflation targeting.

These policy rules have been analysed also by Bullard and Mitra (2002) and Lubik and

Marzo (2007) in a model with one type of bond and money in the utility function with

strongly-separable preferences. After including rules (75)-(77) into (72) and (37) and

re-arranging, we obtain a three-equation system which can be represented as (74).

The determinacy conditions for a REE induced by the two rules (75) and (76) are

stated in Proposition 4. The backward inflation targeting rule implies an upper bound for

the coefficient φπ that is discussed in Proposition 5.

Proposition 4 Given φπ > 0, conditions for determinacy of a REE to be unique under

a Taylor Rule of types (75)-(76) are given by:

φπ > 1 (78)

1− β < ψ < 1 + β (79)

Or, alternatively:

φπ < 1 (80)

1− β > ψ ψ > 1 + β (81)

Proof 5 See Appendix 2.

According to the results outlined in Proposition 4, the Taylor principle for a model with

the term structure does hold with a pure inflation-targeting rule. This is not the case for

a model where the monetary policy rule involves a backward-looking inflation targeting,

such as (77):

Proposition 5 Given φπ > 0, conditions for determinacy of a REE to be unique under

a Taylor Rule (77) are given by:

1 < φπ < 1 +
2 (1 + β)

σSck
(82)

1− β < ψ < 1 + β (83)
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Or, alternatively:

φπ < 1 (84)

1− β > ψ ψ > 1 + β (85)

Proof 6 See Appendix 2.

From these results, we observe that the rule for backward inflation targeting generates

an upper bound for the inflation targeting coefficient. In this sense, the model partially

confirms the findings from the existing literature based on models with the term structure.

Our framework replicates the interaction active-monetary, passive-fiscal regime outlined

in Leeper (1991) and shows the perfect dualism of the inflation targeting procedure. A

perfectly determinate equilibrium can be reached also with an inflation targeting coefficient

lower than one (φπ), provided that fiscal policy is set to be active, or non-responding to

the outstanding path of debt. The novelty consists in the presence of an upper bound for

the backward-looking inflation targeting rule.

5.2 Flexible inflation targeting

We also consider a set of monetary policy rules with a flavor for output stabilization.

These rule fall under the headline of flexible inflation targeting according to Svensson

(2003). In what follows we focus on two variants, including a standard Taylor rule with

contemporaneous targeting of inflation and output, and an alternative including expected

inflation targeting together with current output targeting.

The results for the classical Taylor rule are collected in the following Proposition:

Proposition 6 Under simple Taylor Rule with contemporaneous inflation and output

targeting given by:

R1t = φππt + φyyt (86)

Provided that φπ, φy > 0 conditions for determinacy of a REE to be unique are:

kφπ + φy >
1− β

σScβ
(87)

and:

k (φπ − 1) + φy (1− β) > 0 (88)

1− β < ψ < 1 + β (89)
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Alternatively, the REE is determinate if either (87) or (88) or both have the reverted

inequality and:

φπ < 1 (90)

1− β > ψ ψ > 1 + β (91)

Proof 7 See Appendix 2.

Conditions (87)-(89) highlight a tension between φπ and φy, provided that φπ > 1. These

results confirm the findings by Bullard and Mitra (2002) and Lubik and Marzo (2007).

A second type of Taylor rule is represented by an expected inflation targeting coupled

with an objective for current output targeting. This is obtained by setting ρ = 0 in (42),

and by replacing current inflation with the expected inflation rate:

R1t = φπEt+1πt+1 + φyyt (92)

The results relative to the rule (92) are summarized in the following Proposition.

Proposition 7 Undet expected inflation and current output targeting rule given by (92),

provided that φπ > 0, φy > 0, conditions for a REE to be unique are:

1 < φπ <
2 (1 + β)

kσScσ
+ φy

2 (1 + β)

k
+ 1 (93)

and:

1− β < ψ < 1 + β (94)

Alternatively, the REE is determinate if either (93) is not satisfied to get determinacy,

condition (94) must be replaced by:

1− β > ψ ψ > 1 + β (95)

Proof 8 See Appendix 2.

Even in this case, condition (93) identifies an upper bound for the inflation targeting

coefficient, conditional to the size of the output targeting. Fiscal policy inserts

another degree of freedom, letting policy maker to choose between the combination

active-monetary and passive-fiscal or vice-versa.

5.3 Interest-rate smoothing

By setting ρ 6= 0, we obtain a Taylor rule with interest rate smoothing, as represented in

equation (42). In this case the results are collected in Proposition 8:
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Proposition 8 With rule (42), provided that φπ, φy, ρ > 0, conditions for a REE to be

unique are:

k (φπ + ρ− 1) + (1− β)φy > 0 (96)

ρ < β (97)

1− β < ψ < 1 + β (98)

Alternatively, if either (96) or (97) are not satisfied, REE determinacy is obtained by

replacing (98) by:

1− β > ψ ψ > 1 + β (99)

Proof 9 See Appendix 2.

The results about determinacy here stated confirm what has been obtained in a simple

New Keynesian model without the term structure. Therefore, under this perspective, the

insertion of the term structure appears to be irrelevant in terms of determinacy analysis,

since Taylor principle is fully satisfied, as discussed in Bullard and Mitra (2002). A possible

interpretation of these findings involves the role of the EH, which holds perfectly in the

log-linear version of the model. The following step consists in testing if these results are

still obtained when a different assumption is made for the transaction services provided

by the government bonds.

6 Robustness analysis

To what extent are the results presented in the previous sections are model-dependent?

Would alternative assumptions on bond transaction services confirm the determinacy

results obtained earlier? To provide a proper answer to this question, we change the

functional form of instantaneous utility, and consider a weakly separable utility with bonds

and consumption:2

ut =

[
Cγt b

1−γ
1t

]1− 1

σ

1− 1
σ

−
L
1+ 1

η

t

1 + 1
η

(100)

with b1t = B1t/Pt. From (100), we observe that short-term bond b1t are treated as if they

were money, since they directly provide utility to the representative agent with a direct

interaction with consumption. The First Order Condition with respect to consumption

2In the following notation, we drop the household index i, for simplicity.
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(4) is now replaced by:

γC
γ(1− 1

σ )−1

t b
(1−γ)(1− 1

σ )
1t = λt (101)

Moreover, the first-order condition with respect to b1t is now given by:

(1− γ)C
γ(1− 1

σ )
t b

(1−γ)(1− 1

σ )−1

1t + βEt
λt+1

πt+1
=

λt
R1t

(102)

Thus, rearranging (101) and (102), the demand for b1t is now given by:

b1t =
(1− γ)

γ
Ct

R1tR2t

(R2t −R1t+1R1t)
(103)

It is not difficult to check that short-term bond demand (103) still respects the usual

properties: it is increasing in consumption Ct and R1t, R1t+1 and decreasing with respect

to R2t.

In order to reduce the model, we can write the log-linearized version of the First-Order

Condition with respect to Ct given in (101) as follows:

[
γ

(
1−

1

σ

)
− 1

]
ct + (1− γ)

(
1−

1

σ

)
b1t = λt (104)

The log-linearized version of the demand for liquid bonds (103) is instead:

b1t = ct +
1

(1− βR1)
R1t −

R1β

(π − βR1)
R2t +

R1β

(π − βR1)
R1t+1 (105)

Equations (104)-(105) represent the key ingredients to figure out the key aspect of the

model. In equation (104), the Lagrange multiplier depends on nominal rates through

equation (105), differently from the standard case, where λt depends on Ct only. This

feature produces a strong impact on the functional form of Intertemporal IS and aggregate

supply equation. In fact, the intertemporal IS curve depends on both expected and current

short term rate in log-linear terms:

yt+1 − σScαR1R1t+1 + σScπ1t+1 + gσgt+1 = yt − σScαRR1t + gσgt (106)

while aggregate supply now becomes:

βπt+1 = πt − kyt + ηasat + ηgsgt + ηRSR1t (107)

where all coefficients are reported in Appendix 1.

From equation (107) we note that the introduction of weak separability in the utility

function modifies the functional form of the AS equation in a substantial way, since now the
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short term interest rate directly affects the expected inflation rate together with exogenous

shocks. A similar result would have been obtained after the introduction of transaction

costs in the representative agent’s budget constraint. Intuitively, this means that monetary

policy, by controlling the short term rate R1t, directly affects the firm’s costs and her ability

to borrow from banks. An increase in short term rate R1t has the effects of increasing the

cost structure of firms, implying an increase of expected inflation as direct consequence.

On the other hand, it is not difficult to check that the EH holds in log-linear terms, and

equation (71) applies to this context too.

The model can be reduced by following exactly the same steps adopted in the

benchmark case previously examined and the system can be set in the form highlighted

by (73), with vector of variables still given by: Zt = [πt, yt, b2t]
′. Matrices A and B from

(73) are now given by:

A =




β 0 0

[σSc (1− αRφπ)] (1− σScαR1φy) 0

µπ1 µy1 1


 (108)

B =




(1 + ηRSφπ) − (k − ηRSφy) 0

αRσScφπ (1− σScαRφy) 0

µπ µy
(1−ψ)
β


 (109)

while matrix Γ becomes:

Γ =




(1+ηRSφπ)
β −

(k−ηRSφy)
β 0

ϕ1 ϕ2 0

ϕ3 ϕ4
(1−ψ)
β


 (110)

where all coefficients are reported in Appendix 1.

With the present setting at hands, the following result holds:

Proposition 9 With rule (42), provided that φπ, φy, ρ > 0, conditions for a REE to be

unique are:

argmax
{
φ̄π2, φ̄π3

}
< φπ <

k − ηRSφy
kαR (1 + ηRS) + ηRSφy

(111)

1

σScαR1
< φy (112)

with

φ̄π2 =
σScφy (αR + βαR1)− (1 + β)

ηRS (1− kScαR)

φ̄π3 =
(1− β) σScφy + ηRSσScφy − σSck

ηRSσScφy + kαR (σSc − ηRS)
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1− β < ψ < 1 + β (113)

Alternatively, if either (111) or (112) are not satisfied, REE determinacy is obtained by

replacing (113) by:

1− β > ψ ψ > 1 + β (114)

Proof 10 See Appendix 2.

These results highlight the presence of a set of non-linear bounds for monetary

policy parameters φπ and φy. This property depends entirely on the setting adopted

for bond modelling approach. In fact, under the assumption of weakly separable utility

function between consumption and short-term bonds modifies both aggregate supply and

intertemporal IS curve. This makes the Taylor principle no longer a sufficient condition

for determinacy, since inflation targeting coefficient is now dependent on output targeting

coefficient.

To provide a visual representation of the implications of the results from Proposition

9, we simulate the evolution pattern of φπ and φy conditional to two different values for

the parameter representing the intertemporal elasticity of substitution in consumption

σ. Figure 3 reports the evolutions of bounds: φy has a range between 0 and 10. The

parameters of the model are exactly the same as those described in Table 1, apart from γ,

which has been set equal to 0.8, in order to assign a larger weight to consumption in the

instantaneous utility. The top panel in Figure 3 is plotted for a value of σ equal to 2, while

in the bottom panel we set σ = 0.5. In both pictures, the determinacy region is denoted

by a text label. Outside the bounds, we obtain indeterminacy unless we change the fiscal

policy stance, as described by condition (114). Therefore, Figure 3 has been drawn by

considering a fiscal policy setting based on equation (113), which identifies a passive fiscal

policy. From the top panel of Figure 3, we observe that determinacy when σ = 2 obtains

only when there is an almost one-to-one increase in both φπ and φy.

From an intuitive point of view, with σ > 1, the marginal utility of consumption is

decreasing with respect to b1t. In this case, a negative shock to inflation implies an increase

in demand for b1t, a lower marginal utility of consumption, and a lower labor supply. On

the other hand, if σ < 1, the marginal utility of consumption is decreasing with respect to

b1t. Hence, a negative shock to inflation implies a decrease in demand for short-term bonds

b1t together with an increase in marginal utility of consumption and higher labor supply.

Therefore, elasticity of intertemporal substitution is crucial to determine the determinacy

region induced by Taylor rule. Differently from a model with a strongly separable utility

function, in the present context, the core parameters of the model play a crucial role in

the definition of the determinacy region.
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7 Conclusion

This paper explores the role of the term structure of interest rates in a simple New

Keynesian mode. We focus on the ability of simple Taylor rules to generate determinate

equilibria. The results show that what really matters for determinacy is not just the

inclusion of both long and short term bonds in a full-fledged dynamic macro model.

Rather, the key issue lies in the way the transaction services of alternative bonds are

modelled.

We show that, with short-term bonds entering the utility function in a weakly separable

way with consumption, the requirement for monetary policy parameters to generate

determinate equilibria are very similar to what is obtained in the literature for models

without the term structure. However, if transaction services enter the utility function in a

weakly separable way, the bounds for the inflation targeting coefficient of the Taylor rule

becomes non-linear. The results are then no longer clear-cut, since the bounds depend

strongly on other core parameters of the model, such as the elasticity of intertemporal

substitution of consumption.

In our framework, the expectations hypothesis holds and bond pricing scheme follows

an affine structure. Under this perspective, the difference between long and short-term

interest rates in a log-linear approximation is due to exogenous shocks hitting both the

level and the slope of the term structure. Our results shed light on the role of modelling

liquidity services in the definition of determinacy conditions and internal dynamics of the

model. The role of fiscal policy becomes also evident in affecting bond pricing through a

government spending shock. Assigning a proper role to the fiscal stance, as in the Fiscal

Theory of the Price Level, allows for a wider characterization of the equilibrium conditions

compared with what has been proposed in the literature.

Several extensions can be envisaged. At first sight, the introduction of money would

provide an additional buffer, whose role for the determinacy of equilibria should be

assessed. With the modelling of money balances, the role of money supply rules should

be contrasted with that of standard interest rate rules.
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A Coefficients

A.1 Model equations (sections 2-6)

ηca ≡
σ
(
1 + 1

η

)

Scσ
(
1
η + 1− α

)
+ α

ηcg ≡
Sgσ

(
1 + 1

η

)
− α

Scσ
(
1
η + 1− α

)
+ α

ηya ≡
σ
(
1 + 1

η

)
− αηca

σ
(
1 + 1

η

)

ηyg ≡
αηcg

σ
(
1 + 1

η

)

ηb =

{[
χ

(
1−

1

σ

)
− 1

](
1−

βR1

π

)}
−1

ηπ1 =
φπ
β

+
1

β

(
bηbβ

π
− 1

)
−
bR2 (1 + ηb)φπ

R1
+

(1− ψ)

π

[
bR2 +

R2

R1
− bηbβR1R2

]

ηba2 ≡ φyηya +
bηbβηca
R2σπ

−
ηca
σ

ηba1 ≡
ηca
σ

−
bηbηcaπ

βσ
+
b (1− ψ) ηbR

2
1ηca

σπ
−

(
bηbβ

π
− 1

)
kηya − φπkηya+

−
b (1 + ηb)R2φyηya

R1

ηbg2 ≡ φyηyg −
bηbβηcg
σπ

+
ηcg
σ

ηbg1 ≡
bηbηcgR2

σR1
−
ηcg
σ

+
b (1− ψ) ηbR

2
1ηcg

σπ
−
gR2

b2
− kφπηyg+

−

(
bηbβ

π
− 1

)
kηyg −

b (1 + ηb)R2φyηyg
R1

ηb2 ≡
R2

π

(
1

R1
− ψ

)

ηπ ≡ φπ

[
b (1− ψ)

π
ηbR2 +

1

β

]

ηba ≡ φyηya

[
b (1− ψ)

π
ηbR2 +

1

β

]
+
b (1− ψ)R1ηbηca

βσ
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ηbg ≡
b (1− ψ)R1ηbηcg

βσ
− φyηyg

[
b (1− ψ)

π
ηbR2 +

1

β

]

A.2 Variant discussed in Section 7

αR1 = (1− γ)

(
1−

1

σ

)
ηbR

αR = (1− γ)

(
1−

1

σ

)
ηbR − 1

ηbR =
(π − βR1)− βR1 (1− βR1)

(π − βR1) (1− βR1)

k =
(1− δ) (1− δβ)

δ

{
σSc (1 + η (1− α)) + αη

σSchs

}

ηas =
(1 + η)

hs

[
(1− δ) (1− δβ)

δ

]

ηgs =
gαη

σSchs

[
(1− δ) (1− δβ)

δ

]

ηRs =
gαηαRS
hs

[
(1− δ) (1− δβ)

δ

]

hs = αη (1− θ) + θ (1 + η)

µπ1 =
R2

b2

{
b1ηbRφπ
R1

−
b1φπ
R1

−
b2φπ
R2

−
b2φπ
R2β

(1 + ηRSφπ)−
b2φyfp
R2

}

fp =
1

1− σScαR1

[
σSc
β

(αRφπ − 1) (1 + ηRSφπ)− αRσScφπ

]

fy =
1

1− σScαR1

[
1−

σSc
β

(αR1φπ − 1) (k − ηRSφy)− αRσScφy

]

µy1 =
R2

b2

{
b1

R1Sc
+
b1ηbRφy
R1

−
b1φy
R1

−
b2φy
R2

−
b2φπ
R2β

(k − ηRSφy)−
b2φyfy
R2

}

µπ =
R2

b2

{
b1 (1− ψ) ηbRφπ

π
− (1− ψ)

(
b1
π

+
b2
πR1

)
−

(1− ψ) b2φπ
πR1

}

µy =
R2

b2

{
b1 (1− ψ)

πSc
+

(1− ψ) b1ηbRφy
π

−
(1− ψ) b2φy

πR1

}
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ϕ1 =
σScφπηRS (αRφπ − 1) + αRφπσSc (1− β)− σSc

β (1− σScαR1φπ)

ϕ2 =
(k − ηRSφy) σSc (1− αRφπ) + β (1− αRσScφy)

β (1− σScαR1φπ)

ϕ3 = α31 (1 + φπηRS)− α32αRσScφπ + µπ

ϕ4 = (ηRSφy − k)α31 + α32 (1− αRσScφy) + µy

α31 =
σSc (1− αRφπ)µy1 − (1− σScαR1φy)µπ1

β (1− σScαR1φy)

α32 = −
µy1

1− σScαR1φy

B Schur-Cohn criterion

B.1 2× 2 matrix

The characteristic polynomial for a generic 2× 2 matrix A is x2 − tr (A) x+ det (A) = 0.
From La Salle (1986), conditions for the two roots to lie outside the unitary circle are
given by:

|det (A)| > 1 (115)

|tr (A)| < 1 + det (A) (116)

In particular, condition (116) can be split in the following two inequalities:

1 + det (A) + tr (A) > 0 (117)

1 + det (A)− tr (A) > 0 (118)

3× 3 Matrix

We collect in what follows the full set of conditions to be satisfied by a generic 3 × 3
matrix B to obtain one root inside and two roots outside the unit circle. The characteristic
polynomial for a 3× 3 matrix is:

P (λ) = λ3 +A2λ
2 +A1λ+A0 (119)

where A0 = − det (B); A2 = −tr (B); A1 = −tr (B); A0 = (b11b12 − b21b12) +
(b22b33 − b32b23) + (b11b33 − b31b13). Therefore, necessary and sufficient conditions ar
egiven by the following restrictions on the coefficients of the characteristic polynomial
(119). Thus, either:

1. CASE 1

1 +A2 +A1 +A0 < 0 (120)

−1 +A2 −A1 +A0 > 0 (121)

or:
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2. CASE 2

1 +A2 +A1 +A0 > 0 (122)

−1 +A2 −A1 +A0 < 0 (123)

A2
0 −A0A2 +A1 − 1 > 0 (124)

or:

3. CASE 3

1 +A2 +A1 +A0 > 0 (125)

−1 +A2 −A1 +A0 < 0 (126)

A2
0 −A0A2 +A1 − 1 < 0 (127)

|A2| > 3 (128)

C Proofs

C.1 Proof of proposition 1

From the log-linearization of the First Order Condition on labor (5) and the production
function, we find:

yt =

(
1 + 1

η

1 + 1
η − α

)
at −

α

σ
(
1
η + 1− α

)ct (129)

Given (129) and the resource constraint log-linearized (see the technical appendix for
details), we obtain the following equations linking consumption to the core shock hitting
the economy:

ct = ηcaat − ηcggt (130)

where coefficients were reported in Appendix 1. Taking advantage of (130) we can also
define the output equation, as follows:

yt = ηyaat − ηyggt (131)

with the coefficients ηya, ηyg in Appendix 1. The log-linearized equation for liquid bond
is:

b1t = ηbλt − ηbR1t + ηb
βR1

π
πt+1 − ηb

βR1

π
λt+1 (132)
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Moreover, the log-linearized version of the Taylor rule with contemporaneous inflation and
output targeting is:

R1t = φππt + φyηyaat − φyηyggt (133)

after having substituted out for (131). Moreover, after further substitutions, equation
(132) can be rewritten as follows:

b1t = −
ηbηca
σ

at+
ηbηcg
σ

gt− ηbR1t+
ηbβR1

π
πt+1 + ηb

βR1ηca
σπ

at+1 − ηb
βR1ηcg
σπ

gt+1 (134)

From FOC with respect to b2t, after rearrangement, we obtain the following expression
for R2t:

R2t = −
1

σ
ηcaat +

1

σ
ηcggt +

1

σ
ηcaat+1 −

1

σ
ηcggt+1 + πt+1 −R1t+1 (135)

From the aggregate supply function, we have:

πt+1 =
1

β
πt −

k

β
ηyaat −

k

β
ηyggt (136)

Let the ratio between liquid and illiquid bonds to be: b = b1/b2. Taking advantage of
both (43) and (133) together with their respective forward versions we obtain the following
expression for the government budget constraint:

b2t+1 + ηπ1πt+1 + ηba2at+2 + ηba1at+1 + ηbg2gt+2 + ηbg1gt+1 =

= ηb2b2t − ηππt − ηbaat − ηbggt
(137)

Q.E.D.

C.2 Proof of proposition 2

In order to achieve a solution for the full model, we start by noting that equation (43)
does not depend on b2t. Therefore, we can solve for πt from (43) and then substitute out
into (44) to solve for b2t. From (43), we note immediately that β−1 > 1. This implies an
explosive root. Therefore, following Sargent (1979), we can solve (43) as follows:

πt+1 =
−

(
1
µ2

)
L−1

(
1− 1

µ2
L−1

) [ηyaat + ηyggt] (138)

Where µ2 is the explosive root of (43). By applying lag polynomial L to (138) we find:

πt+1 =
−

(
1
µ2

)

(
1− 1

µ2
L−1

) [ηyaat+1 + ηyggt+1] (139)
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By using the definition of lag polynomial as in Sargent (1979):

πt+1 = −
k

µ2

∞∑

i=0

(
1

µ2

)i
[ηyaat+1 + ηyggt+1] =

=
kηya
µ2

∞∑

i=0

(
1

µ2

)i
at+i+1 +

kηyg
µ2

∞∑

i=0

(
1

µ2

)i
gt+i+1

(140)

Applying the definition of stochastic processes for at and gt given in (24) and (38) and
developing the series in (140).

πt+1 =
kηya
µ2

[
(1− ρa) a

1− 1
µ2

+

∞∑

i=0

(
ρa
µ2

)i
at+1

]
+

+
kηyg
µ2

[
(1− ρg) g

1− 1
µ2

+
∞∑

i=0

(
ρg
µ2

)i
gt+1

] (141)

Thus, applying the formula to compute the sum of infinite terms:

πt+1 =
kηya
µ2

(1− ρa) aµ2
(µ2 − 1)

+
kηya
µ2

(
µ2

µ2 − ρa

)
at+1+

+
kηyg
µ2

(1− ρg) gµ2
(µ2 − 1)

+
kηyg
µ2

(
µ2

µ2 − ρg

)
gt+1

(142)

Thus, simplifying and considering the definition of the root µ2 = β−1, after rearranging,
we obtain the following solution for πt:

πt = fπ + αaat + αggt (143)

where:

fπ =
kηya (1− ρa) aβ

(1− β)
+
kηyg (1− ρg) gβ

(1− β)

αa =
kηyaβ

(1− βρg)

αg =
kηygβ

(1− βρg)

To solve for b2t, insert the solution for πt from (143) together with the expression for (24)
and (38) into (44). After rearranging, we obtain the following expression for b2t ready to
be solved:

b2t+1 = h+ ηb2b2t − δaat+1 − δggt+1 (144)
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where:

γ0 ≡ ηπ1αa + ηba2 (1− ρa) a+ ηbg2 (1− ρg) g + ηπfπ

h ≡
γa (1− ρa) a

ρa
+
γg (1− ρg) g

ρg
− γ0

δa ≡ ηπ1αa + ηba2ρa + ηba1 +
γa
ρa

δg ≡ ηπ1αg + ηba2ρg + ηbg1 +
γg
ρg

By applying standard methods, we can rewrite and solve (144) as follows (see Sargent
(1979)):

b2t+1 =
h

1− ηb2L
−

1

1− ηb2L
(δaat+1 + δggt+1) =

=
h

1− ηb2
− δa

∞∑

i=0

ηib2at−i+1 − δg

∞∑

i=0

ηib2gt−i+1 =

=
h

1− ηb2
− δa

∞∑

i=0

(ρaηb2)
i at+1 − δg

∞∑

i=0

(ρgηb2)
i gt+1

(145)

Where in the last line we took advantage of (24) and (38). Finally, by applying the infinite
sum of series, the solution to equation (145) can be rewritten as:

b2t+1 =
h

1− ηb2
−

δa
1− ρaηb2

at −
δg

1− ρgηb2
gt (146)

Therefore, the solution of system is fully captured by equations (143) and (146). We can
now solve explicitly for the pricing kernel. Thus, taking advantage of the definitions of
shocks, the first order conditions on consumption log-linearized, the resource constraint
log-linearized and the definition of the stochastic processes, we obtain:

ct+1 − ct = ηca (at+1 − at)− ηcg (gt+1 − gt) =

= ηca (1− ρa) a+ ηca (ρa − 1) a+ ηcaa
1/2
t σaǫ

a
t+1 − ηcg (1− ρg) g+

− ηcg (ρg − 1) g − ηcgg
1/2
t σg

(147)

Using (147) and (143) lagged forward for πt+1, after using again the shocks definition, we
obtain the solution for the kernel equation (21) as a function of the exogenous forces of
the system at, gt reported in the text.
Q.E.D.
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C.3 Proof of proposition 3

Let us start with k = 1. To find the price of liquid, short term bond, let us set p0t+1 = 0
in (52) to get:

p1t = logEt exp
(
mt+1 + p0t+1

)
= logEt exp (mt+1) =

= Etmt+1 +
1

2
vart (mt+1) =

= −A1 −B1at −C1gt (148)

Now, by using (50) together with (148):

−A1 −B1at − C1gt = −λ0 −

(
λ1 +

η21
2
σ2a

)
at +

(
λ2 −

η22
2
σ2g

)
gt (149)

After equating coefficients it is immediate to get the definitions of A1, B1, C1, as stated
in the text.
For k > 1, we need to write coefficients of k as functions of coefficients at k − 1. We can
rewrite (52) as follows:

pk−1
t+1 = −Ak−1 −Bk−1at+1 − Ck−1gt+1 (150)

Thus, by applying the definition of (24) and (38), we obtain:

pk−1
t+1 = −Ak−1 −Bk−1

[
(1− ρa) a+ ρaat + a

1/2
t σaǫ

a
t+1

]
−

+ Ck−1

[
(1− ρg) g + ρggt + g

1/2
t σgǫ

g
t+1

] (151)

Therefore, by using (48)-(49) together with (151)

Et

(
mt+1 + pk−1

t+1

)
= λ0 + λ1at − λ2gt −Ak−1 −Bk−1 (1− ρa) a−Bk−1ρaat−

+Ck−1 (1− ρg) g − Ck−1ρggt
(152)

V art

(
mt+1 + pk−1

t+1

)
=

1

2

[
σ2a

(
η21 +B2

k−1

)
at + σ2g

(
η22 − C2

k−1

)
gt
]

(153)

Therefore, given lognormality, we can combine bond pricing (51)-(52) with (152)-(153):

−Ak −Bkat − Ckgt = λ0 + λ1at − λ2gt −Ak−1 −Bk−1 (1− ρa) a−

+Bk−1ρaat − Ck−1 (1− ρg) g − Ck−1ρggt+

+
σ2a
2

(
η21 +B2

k−1

)
at +

σ2g
2

(
η22 − C2

k−1

)
gt

(154)

By equating coefficients, we obtain the claim of the proposition.
Q.E.D.
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C.4 Proof of proposition 4

We divide the proof in three parts, each relative to a specific monetary rule (75)- (77).

C.4.1 Current inflation rule (75)

With the insertion of (75) in (43),(44) and (72) we can set the system in the form (74),
where matrix Γ is defined as:

Γ =




β−1 −kβ−1 0
−

(
σScβ

−1 + σScφπ
) (

1 + kσScβ
−1

)
0

αγ1 −αγ2 β−1 (1− ψ)


 (155)

Coefficients are given by:

απ1 =
1

β

(
bR1ηb
β

− 1

)
+
φπ
β

(1− bπ − bR1ηb)+

+R1 (1− ψ)

[
1

β

(
b+

1

R1

)
−
bR1ηbηcg

π

]

αy =
k

β

[
1−

bR1ηb
β

− φπ

]

απ = −
(1− ψ)φπ

β

αγ1 =
1

β
(σScαy − απ1)− αyσScφπ − απ

αγ2 =
k

β
(σScαy − απ1) + αy

To get determinacy, we need two roots of matrix (155) to be outside the unit circle, and one
inside since public debt b2t is a predetermined variable. Since (155) is upper triangular,
we can concentrate on the submatrix A11 given by:

A11 =

[
β−1 −kβ−1

−
(
σScβ

−1 + σScφπ
) (

1 + kσScβ
−1

)
]

(156)

Trace and determinant of submatrix A11 are, respectively:

tr (A11) = 1 +
1

β
−
σkSc
β

(157)

det (A11) =
1 + kσScφπ

β
(158)

It is immediate to verify that condition (115) is automatically verified if φπ > 0. In the
same way, condition (117) is verified if φπ > 1, while by setting φπ > 0 it is sufficient
to verify condition (118). This ensures that submatrix A11 has one root inside and one
outside the unit circle. To get another root inside the unit circle we need the following

36



condition to be satisfied:

|1− ψ|

β
< 1 (159)

which delivers the result stated in the text.
When both conditions φπ > 1 and (159) are satisfied, two roots are inside and one is
outside the unit circle. If, on the other hand, φπ < 1, then two roots will already be inside
the unit circle. Therefore, to get one root inside the unit circle, we require the following
additional condition on fiscal policy:

|1− ψ|

β
> 1 (160)

which implies:

ψ < 1− β ψ > 1 + β (161)

This proves the result for the current absolute inflation targeting rule (75).
Q.E.D.

C.4.2 Expected inflation rule (76)

Given the monetary rule under (76), matrix Γ and B in the system (74) is given by:

Γ =




β−1 −kβ−1 0
−σScβ

−1 (1− φπ) 1− kσScβ
−1 (1− φπ) 0

α31 −kα31 + αy β−1 (1− ψ)


 (162)

where:

απ3 = bR1ηb − 1−
2bπφπ
β

+
φπ
β

[
1−

k

β
σSc (φπ − 1)

]
+
R1 (1− ψ)

β

(
b+

1

R1

)
+

+
(1− ψ)

β
φπ +

b (1− ψ)R1ηb
β

φπ −
bR2

1

βπ
(1− ψ) ηbβηcg

αy2 =
kφπ
β

[
1 +

1

β
−
σSck (φπ − 1)

β

]
+
k

β

(
bR1ηb − 1−

2bπφπ
β

)

α31 = −
σSc (1− φπ)αy2 + απ3

β

Again, we observe that the structure of matrix Γ in (162) is upper-left triangular. We can
then concentrate on the submatrix A11 given by:

A11 =

[
β−1 −kβ−1

−σScβ
−1 (1− φπ) 1− kσScβ

−1 (1− φπ)

]
(163)
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To get determinacy for the full system we require that two eigenvalues of the system to be
outside the unitary circle and one inside, since public debt b2t is a predetermined variable.
Trace and determinant of submatrix (163) are given, respectively, by:

tr (A11) = 1 +
1

β
−
σkSc (1− φπ)

β
(164)

det (A11) =
1

β
(165)

From the Schur-Cohn criterion, it is immediate to check that condition (115) is fully
satisfied. Condition (117) implies:

σkSc (φπ − 1) + 2(1 + β) > 0 (166)

which is satisfied if and only if φπ > 1. From (118), we obtain:

σkSc (1− φπ) > 0 (167)

which can be rewritten as:

−σkSc (φπ − 1) < 0 (168)

which is satisfied if and only if φπ > 1, as well.
The remaining part of the proof follows exactly the same steps described for the current
inflation targeting rule outlined earlier. Q.E.D.

C.5 Proof of proposition 5

Rule (77) requires a different setting for the analysis, given the time-indexing of the system.
Therefore, let us define the vector Zt = [R1t, πt, yt, b2t]

′. Matrix Γ in this case is:

Γ =




0 φπ 0 0

0 1
β − k

β 0

σSc −σSc

β

(
1 + kσSc

β

)
0

α41 α42 α43
1−ψ
β




(169)

where:

απ4 =
bR1ηb
πβ

−
1

β
+ φπ +

(1− ψ)

β

(
b+

1

R1

)
−
bR2

1 (1− ψ)

π
ηbηcg

αy3 =
k

β

[
(1− ψ)

β

(
b+

1

R1

)
− 1 +

bηbR1

π

]

αR1 =
πbηb
β

+
bR1

β

αR =
(1− ψ)

β

(
1 +

bR1ηb
π

)
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α41 = αy3σSc − αR

α42 = φπαR1 −
1

β
(σScαy3 + απ4)

α43 = αy3 +
k

β
(σScαy3 + απ4)

To get determinacy, we need two roots of the matrix (169) to be outside the unit circle
and two inside. Given the upper block-triangular structure of the matrix Γ in (169), we
can concentrate on the submatrix Γ11, given by:

Γ11 =




0 φπ 0

0 1
β − k

β

σSc −σSc

β

(
1 + kσSc

β

)


 (170)

We apply the Schur-Cohn criterion in order to detect the presence of two roots inside and
one outside the unit circle for submatrix Γ11 in (170). In this case, A0 = β−1, A1 = β−1,
A2 = −

(
1 + β−1 + β−1σkSc

)
. It it then immediate to check that by applying conditions

(120)-(121) for Case 1 we obtain a contradiction. Therefore, from condition (122) of Case
2, we obtain (after simplifying):

σSck (φπ − 1) > 0 (171)

which is satisfied if and only if φπ > 1. On the other hand, from condition (123) we find:

−2 (1 + β) + σSck (φπ − 1) < 0 (172)

which is certainly satisfied if and only if:

φπ < 1 +
2 (1 + β)

σSck
(173)

Finally, in order to verify condition (124), after substituting out the definitions for A0,
A1, A2 given previously and simplifying, we need to check if the following inequality is
satisfied:

φ2πk
2σ2S2

c

β
+ φπkσSc

(
1 +

1

β
+
σSck

β

)
+ (1− β) > 0 (174)

which is certainly satisfied since β < 1. These conditions ensures we have two roots inside
and one outside the unit circle. To get another root inside the unit circle, condition (159)
needs to be satisfied. As we have seen before, this implies confition (79), stated in the
text.
On the other hand, if condition φπ > 1 is not satisfied, then the same reasoning applied
in the proof of Proposition 2 can be reapeted here without any further change.
Q.E.D.

39



C.6 Proof of proposition 6

With rule (86) matrix Γ of the system (74) can be written as:

Γ =




1
β − k

β 0

σSc

(
φπ −

1
β

)
kσSc

β + 1 + σScφy 0

γ31 γ32
(1−ψ)
β


 (175)

where:

γy1 = φy

(
1 +

kσSc
β

+ σScφy

)
−
bπφy
β

(1 + ηb) +
k

β
(1− bR1ηb)−

kφπ
β

γy2 =
(1− ψ)

β
(1 + bR1ηb)φy

γπ1 =
bηb
β

(R1 − πφπ) +
φπ
β

(1− bπ) + φyσSc

(
φπ −

σSc
β

)
1

β
+

+ (1− ψ)R1

(
1

β

(
b+

1

R1

)
−
b

π
ηbR1ηcg

)

γπ2 =
(1− ψ)

β
(1 + bR1ηb)φπ

γ31 =
1

β
(σScγy1 − γπ1)− γy1σScφπ − γπ2

γ32 = −
k

β
(σScγy1 − γπ1)− γy1 (1 + σScφy)− γy2

Even in this case, to get determinacy we need two roots of matrix (175) outside and one
inside the unit circle. Given the upper-left triangular structure of the matrix Γ in (175),
we can concentrate on the 2× 2 submatrix G11, here given by:

G11 =

[
1
β − k

β

σSc

(
φπ −

1
β

) (
kσSc

β + 1 + σScφy

)
]

(176)

Therefore, trace and determinant of matrix (176) are, respectively, given by:

tr (G11) = 1 +
1

β
+
σkSc
β

+ σkScφy (177)

det (G11) =
1 + σSc (φy − kφπ)

β
(178)

From Schur-Cohn criterion, condition (115) can be split in two parts: i) det > 1 is
immediately satisfied, given the assumption φπ, φy > 0; ii) det > −1, identifies the
following bound:

kφπ + φy >
1− β

σScβ
(179)
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Condition (117) is immediately satisfied, given that φπ, φy are assumed to be positive. On
the other hand, condition (118) directly implies:

k (φπ − 1) + φy (1− β) > 0 (180)

With conditions (179)) and (180) we have that one root of submatrix G11 in (176) will
be inside and another root will be outside the unit circle. To get determinacy for the full
system subsumed by matrix (175) we need another root to be inside the unit circle. This
is obtained by considering condition (159): this implies condition (89), stated in the text.
However, if conditions (179)-(180) are violated, then the same reasoning applied in the
proof of Proposition 2 applies here.
Q.E.D.

C.7 Proof of proposition 7

With rule (92) matrix Γ of system (74) is now given by:

Γ =




1
β − k

β 0
σSc(1−φπ)

β
kσSc

β + 1 + σScφy 0

λ31 λ32
(1−ψ)
β


 (181)

where:

λπ =
φπ
β2

[1 + kσSc (1− φπ)] + +
bR1 (1− ψ)

βπ
ηbφπ −

φyσSc (1− φπ)

β
−
bR2

1 (1− ψ) ηbηcg
π

+

+
bηbR1

βπ
−
bπηb
β2

φπ −
bR1

β2
φπ −

1

β
+

(1− ψ)

β2

(
b+

1

R1

)
+

(1− ψ)

β2

λy1 =
πbηbφy
β

+
bR1φy
β

+
(1− ψ)

β
(φy + kφπ)−

kπbηbφπ
β2

+
kπbηbφπ
βπ

−
kbR1φπ
β2

−

+
k (1− π)

β

(
b+

1

R1

)
kφπ
β2

+

(
kφπ
β

− φy

)[
1 + σScφy +

kσSc (1− φπ)

β

]

λy =
bR1 (1− ψ) ηbφy

βπ

λ31 = −
σSc (1− φπ)λy1 + λπ

β

To get determinacy, we need two roots of matrix (181) to be outside and one inside the unit
circle. Once again, given the upper-left triangular structure of (181) we can concentrate
on the 2× 2 submatrix H11, here given by:

H11 =

[
1
β − k

β
σSc(1−φπ)

β

(
kσSc

β + 1 + σScφy

)
]

(182)
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Trace and determinant of H11 in (182) are, respectively, given by:

tr (H11) = 1 +
1

β
+
σkSc (1− φπ)

β
+ σScφy (183)

det (H11) =
1 + σScφy

β
(184)

Condition (115) is immediately satisfied, given that φπ, φy > 0. Condition (117) implies
the following upper bound:

φπ = 1 +
2 (1 + β)

kσSc
+ φy

(1 + β)

k
(185)

On the other hand, condition (118) implies:

k (φπ − 1) + φy (1− β) > 0 (186)

which is certainly satisfied if φπ > 1. With conditions (185)) and (186), one root of
submatrix H11 in (186) will be inside and another root outside the unit circle. To get
determinacy for the full system we need the additional conditions on fiscal policy, which
will capture the position of the third root. Implementing condition (159) will imply (94),
stated in the text.
When one of (185) or (186), or both, are violated, then the same reasoning applied in the
proof of Propositions 2-4 applies here, originating bounds (95).
Q.E.D.

C.8 Proof of proposition 8

With rule (42) matrix Γ of system (XX) is now given by:

∆ =




δ11 δ12 −δ13 0

0 1
β − k

β 0

σSc
σSc

β

(
1 + kσSc

β

)
0

−δ41 δ42 δ43
(1−ψ)
β




(187)
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where vector Zt is given by as Zt = [R1t, πt, yt, b2t]
′. where:

δ11 = ρ+ φyσSc

δ12 =
φπ − φyσSc

β

δ13 =
k

β
(φπ − φyσSc) + φy

δ41 =

[
φyσSc + ρ−

b

β
(πηb +R1)

]
(ρ+ φyσSc) +

+δyσSc +
(1− ψ)

β

(
1 +

bR1

π
ηb

)

δ42 =
1

β
[σScδy − (φπ − φyσSc) δρ1 − δπ1]

δy = φy −
k

β

[
bηbR1

π
− 1 +

(1− ψ)

β

(
b+

1

R1

)
− φyσSc

]

δρ1 = ρ+ φyσSc −
b

β
(πηb +R1)

δπ1 =
1

β

[
bηbR1

π
− 1 +

(1− ψ)

β

(
b+

1

R1

)
− φyσSc

]
−
bR2

1 (1− ψ) ηbηcg
π

Matrix (187) is upper-left triangular. In this case, to get determinacy we need two roots
inside and two outside the unit circle, since both R1t and b2t are predetermined. We can
start by focusing on the 3× 3 submatrix D11 given by:

D11 =



δ11 δ12 −δ13
0 1

β − k
β

σSc
σSc

β

(
1 + kσSc

β

)


 (188)

By applying apply now the Schur-Cohn criterion for 3× 3 matrix, from (119), we have:

A0 = −
ρ

β
(189)

A1 =
1

β
+ ρ+

ρ

β
+ ρ

kσSc
β

+
φyσSc
β

+ φπ
kσSc
β

(190)

A2 = ρ+ φyσSc +
1

β
+ 1 +

kσSc
β

(191)

Let us start with Case I. From condition (120), we obtain: k (φπ + ρ− 1)+(1− β)φy < 0.
Moreover, from condition ((121), we obtain a contradiction, given our assumptions on
parameters’ sign. Consider now Case II. Condition (122) implies:

k (φπ + ρ− 1) + (1− β)φy > 0 (192)
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which is satisfied if φπ > 1condition (123) is immediately satisfied. By applying condition
(124), we obtain:

ρ2

β2
−
ρ

β

(
ρ+ φyσSc +

1

β
+ 1 +

kσSc
β

)
+
ρ

β
+ ρ+

+
1

β
+
kσSc
β

(φπ + ρ) + φy
σSc
β

− 1 > 0

(193)

After adding and subtracting kσSc

β to (193) and rearrange, we obtain:

φy
σSc
β

(1− ρ) +
kσSc
β

(φπ + ρ− 1) +
kσSc
β

(β − ρ)

β
+

+

[
ρ2

β2
−
ρ2

β
+ ρ− 1 +

1

β
−

ρ

β2

]
> 0

(194)

Adding and subtracting ρ
β to the term in square bracket of (194) and rearrange, we obtain

that the inequality in (194) can be satisfied if and only if:

(
1−

ρ

β

)
(1− ρ)

(1− β)

β
> 0 (195)

which is satisfied if and only if ρ < β, as stated in the text, since β < 1, by assumption.
When these conditions are satisfied, one root will be inside and two outside the unit circle.
To get determinacy for the system captured by matrix (187) we need another root inside
the unit circle, which is obtained by setting:

|1− ψ|

β
< 1 (196)

which, after taking advantage of the absolute value properties, delivers the result stated
in (98).
When condition (96) or (97), or both, are not satisfied we require the following condition
on fiscal policy, such that:

|1− ψ|

β
> 1 (197)

which implies condition (99) stated in the text.
Q.E.D.

C.9 Proof of proposition 9

As in previous case, we can concentrate our attention on the 2× 2 submatrix given by:

Γ11 =

[
(1+ηRSφπ)

β −
(k−ηRSφy)

β

ϕ1 ϕ2

]
(198)
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The determinant is given by:

det (Γ11) =
1− αRσScφy + φπηRS (1− kαRSc)

β (1− αR1σScφy)
(199)

The trace is:

tr (Γ11) =
1 + ηRSφπ

β
+
σSc (k − ηRSφy) (1− αRφπ) + β − βαRσScφy

β (1− σScαR1φy)
(200)

Condition det > 1 from (115) implies :

1− αRσScφy + φπηRS (1− kαRSc) > β (1− αR1σScφy) (201)

which, after rearrangement becomes:

φπ >
φyσSc (αR − βαR1)− (1− β)

ηRS (1− αRkSc)
≡ φ̄π1 (202)

On the other hand, condition det > −1, is satisfied if and only if:

φπ >
σScφy (αR + βαR1)− (1 + β)

ηRS (1− kScαR)
≡ φ̄π2 (203)

Bounds φ̄π1 and φ̄π2 previously defined are both upper bounds. To establish which of the
two bounds in (202)-(203) are binding, let us verify if φ̄π2 > φ̄π1. This condition is verified
if and only if:

σScφy (αR + βαR1)− (1 + β) > φyσSc (αR − βαR1)− (1− β) (204)

which is verified if:

φy >
1

σScαR1
(205)

Therefore, if condition (205) is verified, bound φ̄π2 given in (203) applies.
Moreover condition (118) is satisfied if and only if:

σSck+2 (1 + β)− βσScφy (αR + αR1)− σSc (αR + αR1)φy − σScφyηRS >

φπ (σScαRk + ηRSkαRSc − 2ηRS + σScφyηRS)
(206)

which, after rearrangement, becomes:

φπ <
σSck + 2 (1 + β)− σScφy (αR + αR1) (1 + β)− σScφy

σScαRk + ηRSkαRSc − 2ηRS + σScφyηRS
(207)

As ancillary result, it is not difficult to prove that (αR1 − αR) = 1. From condition (117),
we obtain:

φπ >
(1− β) σScφy + ηRSσScφy − σSck

ηRSσScφy + kαR (σSc − ηRS)
≡ φ̄π3 (208)
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Therefore, by reshuffling the above conditions, we can show that determinacy obtains if
and only if:

argmax
{
φ̄π2, φ̄π3

}
< φπ <

k − ηRSφy
kαR (1 + ηRS) + ηRSφy

(209)

1

σScαR1
< φy (210)

Conditions (209)-(210) identify the presence of one root inside and another outside the
unit circle for submatrix (198). To check determinacy for the whole system, we need an
additional conditions on the fiscal policy side in order to have an additional roots inside
the unit circle. This is obtained by setting:

|1− ψ|

β
< 1 (211)

which is equivalent to state:

1− β < ψ < 1 + β (212)

Alternatively, if one or all of (209)-(210) do not hold, conditions (211) should be replaced
by:

|1− ψ|

β
> 1 (213)

Or, equivalently:

1− β < ψ; ψ > 1 + β (214)

Q.E.D.
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Table 1: Parameter Values

Parameter Value

β 0.99
σ 0.5
η 1
α 0.67
δ 2/3
θ 6
ψ 0.05
ρA 0.9
ρG 0.5
σA 0.007
σG 0.01
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Figure 3: Determinacy regions for model with weakly separable utility
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Both panels represent the simulations relative to bounds established by condition (111) by varying paramter
φy. The top panel is obtained by setting σ = 2, while bottom panel is obtained with σ = 0.5.
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