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Abstract

We introduce two bonds in a standard New-Keynesian model to study the
role of segmentation in bond markets for the determinacy of rational expectations
equilibria. We use a strongly-separable utility function to model short-term bonds
providing transaction services for the purchase of consumption goods. Long-term
bonds, instead, provide the standard services of store of value. We obtain a fully
analytical solution for the bond pricing kernel, allowing to endogenize the term
spread within the model. In this way, we study equilibrium determinacy properties
within a context embedding the full information derived from term structure of
interest rates. Our results show that, when utility is weakly separable between
consumption and bonds, the Taylor principle holds only conditional to a non-linear
relation between output and inflation targeting coefficients of monetary policy rule.
Achieving solution determinacy requires to constraint policy coefficients to lie within
bounds depending on structural parameters of the model. This paper provides an
analytical setting useful for several generalizations to address the stability properties in
dynamic models including the term structure of interest rates, induced by policy rules.
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1 Introduction

The Taylor principle has become one of the pillars of modern normative analysis of
monetary policy. In a nutshell, it prescribes that the central bank should adjust the
nominal rate of interest more than one-for-one as a response to changes in the inflation
rate. In the standard New Keynesian models, the Taylor principle alone pins down
the equilibrium inflation rate. The recent experience of ‘quantitative easing’ measures
implemented by several central banks has stressed once more the strict link existing
between the maturity structure of government bonds and the implementation of monetary
policy.

In what follows, we focus on the role of term structure of interest rates and of
endogenous term spreads in defining the conditions for determinacy of a Rational
Expectation Equilibrium (REE, henceforth). Our goal is to study the role of interest
rates associated to bonds of different characteristics to understand if the standard ‘Taylor
principle’ of monetary policy is still valid. The Taylor principle, as discussed by Taylor
(1993) and states that policy rate should react more than proportionally with respect to
changes in inflation rate.

We consider a cashless economy where bonds provide transaction or ‘liquidity’ services
in place of money. The model includes two types of bonds, namely liquid and illiquid.
Liquid bonds are providers of services that facilitate transactions in the market for
consumption goods. They play the same role of real money balances in the New Keynesian
monetary models. Like for real money balances, we include the real quantity of liquid
bonds directly into the utility function. Illiquid bonds are mere forms of financial
investments that allow to carry income across time periods and, as such, enter the
intertemporal budget constraint. An alternative to this formulation consists in including
transaction costs in the consumer’s budget constraint, like in Sims (1994).

After modelling bonds that provide transaction services and those that do not, we
go one step forward. We suggest that there is a relation between the provision of
transaction services and the maturity structure of government bonds. We interpret
short-term securities as imperfect substitutes for consumption, and long-term bonds as
perfect substitutes. Thus, short-term public debt performs the function traditionally
attributed to ‘money’ as a medium of exchange. This approach can be motivated from
several points of view. This way, we model two bonds with different intrinsic characteristics
in general equilibrium. The function of each bond refers to a different maturity.

In our framework, purchasing long-dated bonds and holding them until maturity
implies that a households receives a stream of interest-rate income and ‘stores the face
value of a bond’ until the maturity period. This way, a household ‘locks in’ the resources
for the face value of the bond. Hence, the longer the maturity of a bond, the more limited

its capability of providing opportunities for consumption smoothing until expiry, should



negative shocks occur.

The spirit of our framework is similar to the proposition of Tobin (1958) about the idea
of liquidity preferences as a proxy for risk attitude. In a world with money, the demand
for transactions in the consumption-good market generates a demand for liquidity services
in the asset market. This is the so-called transaction demand for money. The key point
is that the demand for liquidity services is related to the maturity profile of a portfolio of
financial assets. In particular, the longer the maturity, the larger the propensity to adjust
portfolio holdings between the assets and money balances.!

This paper aims to present the most simplified model which allows the simultaneous
presence of two interest rates in a general equilibrium model with otherwise standard
features of real and nominal rigidities. We abstract from an explicit role for money
because we intend to focus on the role of the short-term interest rate in the monetary
transmission mechanism. In this sense, modelling money would allow us to account only
for an additional buffer in the transmission of shocks. This choice allows us to deal with
the most tractable and transparent model available. Moreover, as argued by Woodford
(2003), the absence of money is not at odds with neutrality proposition.

In the present framework, the term structure emerges as an affine representation
where the expectation hypothesis holds in log-linear approximation. If bonds providing
transaction services are part of the utility function in a strongly separable way, as in the
standard neo-keynesian model, the parameters of the monetary policy rule should lie in
the same region described in the literature for models built without the term structure for
determinacy to hold. Hence, regardless of the vehicle providing liquidity services, what
really matters for determinacy is whether the demand for transaction services is linear with
respect to consumption. Instead, when the liquidity services enter in a weakly separable
way, the standard Taylor principle does not hold any longer. In the region of determinate
solutions, there is a nonlinear relation between the inflation targeting coefficient and the
output targeting coefficient. Thus, modelling several government bonds with strongly
separable utility does not determine an important change in determinacy conditions. The
dramatic change occurs only with a weakly separable utility, for which the determinacy
conditions are no longer standard.

Rational expectations equilibria are affected by the interplay between fiscal and
monetary policy. The role of fiscal policy is essential since this allows to widen the range
of parameters for which determinacy exists. In the language of Leeper (1991) and Sims
(1994), we find that determinacy is obtained either by considering active-monetary with

passive-fiscal or, alternatively, a passive-monetary with active-fiscal regime. A passive

!The discussion of Tobin (1958) also introduces the idea imperfect substitutability between different
types of bonds and money. This is indeed at the heart of a variety of recent contributions, including
Andres, Lopez-Salido, and Nelson (2004), Canzoneri and Diba (2005) and Canzoneri, Cumby, Diba, and
Lépez-Salido (2011).



fiscal policy arises from setting the tax revenues to react to the outstanding real level of
total public debt.

The explanation for our results has to do with our modelling assumption that make two
interest rates coexist in a general equilibrium. Including multiple bonds is irrelevant for
the determinacy conditions of the model with strongly separable utility, since it does not
change how the parameters of monetary policy rules enter the model. This changes for the
case with weakly separable arguments, where the traditional arguments for determinacy
are strongly dependent on the core model parameters.

This paper fills a gap in the current literature on determinacy and monetary policy
initiated by Bullard and Mitra (2002). In particular, we consider an explicit role for the
term structure of interest rates and solving for an endogenous term spread. A similar
question is addressed by McCough, Rudebusch, and Williams (2005). However, their
model does not allow to solve analytically for an endogenous term spread in the standard
New Keynesian setting. It should be stressed that we obtain a full analytical solution
for bond prices without imposing any ad-hoc assumption on the pricing kernel, or on the
role of the expectations hypothesis of interest rates. Part of the results contained in this
paper challenge what has been considered by Canzoneri, Cumby, Diba, and Loépez-Salido
(2011), where Taylor principle does not hold when bonds together with money provide

transaction services.

The remainder of the paper is organized as follows. The following section introduces
the reader to the main modelling framework. Section 3 describes the calibration of
the benchmark model. We also comment on selected impulse responses to compare the
coherence of the model with the patterns documented in the current literature. Section
4 discusses the model reduction, derivation of the pricing kernel, and the pricing of
government bonds. Section 5 presents the main results of the model about determinacy.
Section 6 extends to the case of a household utility that is weakly-separable between
consumption and liquid bonds. Section 7 concludes. An additional appendix material

contains the set of proofs of analytical results.

2 The Model

The general feature of our model is to consider the explicit role of bonds as providers of
transactional services. We assume the existence of two types of bonds: liquid and illiquid.
For their intrinsic nature, liquid bonds perform the function of ‘money’. They are held
by the representative agent in order to facilitate liquidity services. Illiquid bonds are held
for investment purposes. Both types of bonds pay an interest rate which in equilibrium

differs because of two elements, namely the explicit role of transaction services and the



endogenously determined term premia.

2.1 Households

We assume the existence of an infinite number of heterogeneous agents indexed on the

real line between 0 and 1. Each i-th agent maximizes the following utility function:

0 B,
Ut = Z ﬁtu (Cita ?it, th> (1)
t=0

where the instantaneous utility function u (...) is defined as:
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where Cj; indicates the amount of consumption expressed by each i-th agent, B;1; indicates
the amount of short-term bond holdings (here indexed with 1); the general price level is
given by P,. Instantaneous utility depends positively from Cj and B;i¢, while negatively
from labor supply L;;. In (2), o indicates the intertemporal elasticity of substitution, y is
a scale parameter and 7 is the Frisch labor elasticity. The structure of financial assets of
the present model economy is similar to Ljungqvist and Sargent (2007). The Government
issues two types of bonds: one is a one-period bond, By, the short term bond. A second
type of bond, B9, lives for two periods. Both bonds pay a return each period Ri; for
the one-period bond, and Ro; for the two-period bond, in gross terms. The price of both
bonds is the reciprocal of their respective gross returns.

The representative agent solves an intertemporal portfolio allocation problem by

maximizing the utility function subjected to the budget constraint:

Bt Biat _ Biii—1  Bigi—1 +WtLit
RyP; Ry Py P, Ry Py Py

- Cy —T; (3)

where W; is the nominal wage, Tj; is the tax collected, assumed to be lump sum. Given
the structure of financial assets, from (3), the two-period bond issued at time ¢t — 1, when
it comes at t it has one period left before maturity: this makes it like a one-period bond.
Therefore, the price of a two period bond with one period left until maturity is given
by 1/Ry:. Clearly, the structure of financial markets assumed in this paper allows the
presence of a secondary market. This setting generalizes what has been introduced by
Andres, Lopez-Salido, and Nelson (2004), Marzo and Zagaglia (2008) and Harrison (2012)
by presenting a model with mild assumptions underlying the introduction of term structure
of interest rates. In particular, we do not consider any explicit role for transaction costs:

short-term bond B,y is inserted in the utility function, playing a similar role of money in



traditional monetary models. This allows the definition of a bond pricing kernel depending
on preference parameters. The first order conditions with respect to Cj;, L, B;1¢ and Bjay,

are given, respectively, by:

0,7 = A (1)
Li = AW (5)
R (©)

Equation (4) indicates the first order with respect to consumption; equation (5) defines
the optimal labor supply choice and equates the disutility from work effort to the real wage
weighted by the marginal utility of consumption; equation (6) is the optimal intertemporal
allocation of short-term (one period) bonds B;j; and (7) is the result of the optimal choice
of long-term (two periods) bonds Bjo;; A¢ is the Lagrange multiplier. In particular, we
expressed the bond demand in real terms, after having defined b;1; = Bj1¢/ Py, bior =
Bioy/ P;.

By reshuffling (6) - (7) we get the following expression for the demand of liquid bonds:

x(1-2)-1 _ [Rar — Ry By Ry
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It is immediate to verify that demand for liquid bonds (after dropping subscript index i)

satisfies the following properties, provided that y (1 — l) <1:
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The intuition goes as follows. The increase in consumption increases the demand for
short bonds, since they are employed for transaction. On the other hand, the increase
in current, Rj;, and expected rate of return on short-term bonds, Rj;11, increases the
demand for short bonds, since investors tend to favour investment with higher return,
given the same level of risk. In the same guise, the increase in the return of long-term
bonds, Ro;, depresses the demand for short-term bonds.

To complete the demand side, we assume the existence of a large number of
differentiated goods indexed over the real line between 0 and 1. This allows each firm
to have a control of the price of her final good to be sold, since output becomes demand
determined. Following the approach by Dixit and Stiglitz (1977), we assume that the
consumption bundle C;; demanded by each agent i € [0, 1] is a CES type aggregate of all



the j € [0, 1] varieties of final goods produced in this economy, as described by:

0
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where 6 is the elasticity of substitution between different varieties of goods produced by
each firm j. To guarantee the existence of an equilibrium, the elasticity 6 is restricted to be
bigger than one. Standard optimization problem for the choice of the optimal composition

of bundle (9) lead to the following constant-elasticity inverse demand function:

() _ {me ] - (10)

where p; (j) is the price of variety j and P, is the general price index defined as:

P, = [ /0 () dj] - (11)

As 0 — oo, the demand function becomes perfectly elastic, and the differentiated goods are
perfect substitutes. The aggregate price level P, is beyond the control of each individual
firm. Similar steps can be applied to public expenditure G, so that aggregate demand
is defined as the sum of private and public consumption for each variety goods: C; (j) +
Gt (j) = Y; (j), which after aggregating over all varieties j € [0,1] becomes: C; + G =Y;.

In order to simplify, we assume the existence of a symmetric equilibrium where all
agents make the same choice ez-post. Therefore, we can drop index 7 from all equations

in the model.

2.2 The pricing kernel

Including bonds into the utility function makes the intertemporal pricing scheme of bonds
peculiar. To shed further light on this, let us consider a model with no short-term bonds
in the utility function, obtained by setting x = 0. In this case, following Ljungqvist and
Sargent (2007), we obtain:

BEtﬂ — ﬁ (12)
Ti+1 Ryt
ﬁEtL — ﬁ (13)
M1 R1e41 Ray

The pricing kernel M, is defined as:

A
My = BE: a8 (14)
|



As it is well known, the pricing kernel is the tool to price recursively the entire term
structure, starting from the shortest maturity bond. In our case, it is obvious to see that
the pricing of the two-periods bond is, after a recursive application of the kernel, given
by:

Atz M

’E
B E; = —
T1Tere Rt

(15)

By the same sort of argument, if we generalize to j-th period bond, we obtain:

, Aros

,BjEt t+j — R‘;l (16)
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The classical approach to the term structure implies that expected future short term

interest rates determine long-term interest rates. This defines the well known expectations

hypothesis (EH, henceforth), which in our case can be simply stated as: Ro; = Ry E Ryi41.

From equation (13), we obtain:

_ At+1 - Al -
R2t1 e ﬁEt |:7Tt+1)\t:| Etth:}Fl + CO/Ut [ﬁm?th}Fl (17)

which, after using (12) becomes:

_ _ _ At41 e
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From (18), we observe that the EH holds if and only if utility is linear in consumption,
such that % = 1, and when the stochastic process of 7, so that the covariance term
becomes zero. In the case under exam, instead, with the inclusion of bonds into the utility
function, we observe that the pricing kernel is affected by utility terms. In fact, by taking
advantage of the first order conditions (6)-(7), we can rewrite (18) as follows:
x(1-1)-1
_ Xblt( )

R2_tl _ Rt_ 1 )\t

_ A _
EyRyL + covy [Bﬁ,}%uil] (19)

Thus, by setting x = 0 in (19) we obtain exactly the setting outlined in (18). From (19)

we immediately obtain the kernel expression such that:

A
My = ﬂEtAt“ = (20)
tTt+1
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Thus, by plugging (21) into (19), we observe that the interaction between the preference



structure and the pricing structure is also reflected in the second order terms. This shows
that including bonds with a sort of ’liquidity preference’ motivation in the model delivers
a non-standard representation of the stochastic pricing equations for all financial assets.

Finally, taking advantage of (4) into (14), we have:

1
Cy )3 1
My 1 = pBE — 21
t+1 = BE} <Ct+1 _— (21)
To obtain a version of the pricing kernel (14) that can be used for the analysis, we

need a solution for consumption and inflation as a function of the shocks of the system.

2.3 Firms

We assume the presence of a continuum of monopolistically competitive firms distributed
on the unit line [0, 1], indexed by j € (0,1). Each individual firm faces a downward sloped
demand curve for her differentiated product Y;(j):

Py(j) = [M]é P, (22)

It is well known that demand function (22) can be directly derived by following the details
from Dixit and Stiglitz (1977).

The production function of each variety j employs only labor as input and it is given by:
Yi (j) = AL{ (j) (23)

Note that all firms producing j varieties are subjected to an homogenous technological

shock Ay, for which we assume the following structure (in log-linear terms):
_ /2 a
ar = (1 — pg) a + paat—1 + a;' “0q€; (24)

where € is an innovation term distributed according to a standardized Normal
distribution. The structure of the equation (24) includes an heteroskedastic innovation.
As it will be clear later, the term structure will be dependent on the shocks of the system:
technically speaking the shock of the model represent the principal component of the
yield curve, interpreted according to the specificity modelled. One factor is here modeled
as business cycle component modeled via (24). Nominal rigidities are modeled via price
rigidities modeled through Calvo (1983) method of price adjustment. Each seller sets each
period a new price with probability 1 — «, with « € (0, 1), independent of time since last
change. Parameter « indicates the degree of price stickiness.

Let us define the evolution of the price level. Let P; be the general price level index,



and be g; the new price chosen at date ¢, by all sellers . Thus the price level is given by:

1 1
R = [ noai] = - ol [ s a (25)
0 0
which is equivalent to write, given the definition of the general price level:
Ptlie =(1- 0‘)60%79 + O‘Pt1:19 (26)

To determine the price level we need the choice of ;. It is interesting to note that the
optimal choice of @; depends only upon the current and the expected future evolution
of the entire sequence of {P;};7, so there is no need to know other aspects of the price
distribution.

Firms set their own price by maximizing the following profit function:
= E, Z (@) [\era ()P0 ) PEaYeer — @ (pe() " Py Vi) (27)

By taking the First Order Condition with respect to p;(j), we obtain:

-0
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Py,

After simplifying we have:
E Z B Ak (mi(f) — ()L =0 (29)
0—1

After imposing the ex-post homogeneity condition (assuming that the pricing problem
solved by each firm is equal for all firms producing the i-th varieties), and the resource

constraint, we obtain:

0o . AN —0
BY () [ 0ise) - (527)« (YM (m2) )] ~0 (30)

where w (+) is the utility function representing the preferences towards work vs. leisure,

which in our case is given by:

1+1
L.,"
w() = 2 31
() =iy (31
n
In this paper we abstract from the explicit definition of price distortions induced by

monopolistic competition and nominal price rigidities. For a more general treatment,



we address the reader to Woodford (2003) and Schmitt-Grohé and Uribe (2005),
Schmitt-Grohé and Uribe (2007). Taking advantage of the production function, the first
order condition on consumption given by, the first order condition of the pricing problem

is given by:

E <z‘>]1‘9+§<”%> -t (140 () () (3)

P, -1« n) At !

After log-linearization, we obtain the following expression for the aggregate supply

function:
Bmepr = T = kye + patt + figgs (33)
where:
p - (=9 §1 ) {Ugs[a[j] (+1 n(;)+n9)](1++az]) } (34)
e = (1—5)((51—56) [an(l—;)trna(un)} (35)
w o= 0 ((51 — [Sco [ (1 —ag)ng o1+ n)]] (36)

Interestingly, the aggregate supply function given in (33) depends on the exogenous shocks
of the system, a;, g;. The traditional formulation of the model is often expressed in terms
of the output gap: this would allow to get rid of the explicit formulation of the shock
from the AS curve, since the definition of the potential output is a linear combination of
the shock. We keep this formulation in terms of actual output, since it allows a neater
derivation of the kernel, given the solution of the full model in terms of the shocks of the

system.
2.4 Fiscal policy

The Government Budget Constraint in nominal terms is given by:

By By, Bii—1  Bgia
+ = + + Gy =T, 37
RyP,  RyP, P, ' Ryp " ' (37)

where Gy indicates the government expenditure, net of interest expenses. We assume
that bond demand expressed by each i-the agent matches the supply supplied by the

government according to the following equilibrium conditions:

1 1
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In the same fashion, total fiscal revenues are equal to the sum of taxes paid by each i-the

agent:

1
T —/ Tidi
0

Government spending follows a stochastic process given by:

1/2
gt = (1= pg) g+ pggi—1 + g og€f (38)

Equation (38) represents a policy shock included in the model, €/ is an i.i.d. standard
normal shock with zero mean and constant volatility 03. The solution of the pricing kernel
and the term structure is a function of two shocks: a technological shock, representing
business cycle fluctuations, and a policy shock, represented by g¢; in (38). This opens
interesting questions about the response of both short and long rates with respect to
policy changes and their feedback into the entire model economy, as we will see later.

According to the fiscal theory of price level determination (FTPL, henceforth), the
comparative evaluation of alternative monetary policy rules should not be thought in
isolation from an explicit design of the fiscal policy stance. As suggested by Leeper (1991)
and Sims (1994), we introduce a fiscal rule whereby taxes react to the outstanding level
of real public debt:

By Boy
Ty =+ =g + =5

(39)

The parameter capturing the strength of the tax response to debt fluctuations is given by
1, which is set equal for both short and long-term debt. We follow Leeper (1991) and

define fiscal policy as ‘passive’ for:

67 —y] <1 (40)

and active otherwise.

Given the model structure, for short-term bonds we have an explicit demand function
that depends on the preference structure of the investor. The demand for long-term
bonds is derived endogenously, thus representing a residual adjustment in the government
budget constraint. This amounts to saying that long-term bonds absorb residual demand
that is not satisfied by the supply conditions for short-term bonds. Implicitly, our model
designs the behavior of a secondary market for government bonds by allowing for trading
of long-term bonds (with a two-period maturity, as it is assumed here) at each point in

time.
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2.5 Monetary policy

We consider the role of monetary policy rules in tying down the determinacy properties
of a REE. We study the role of variants of the standard interest rate rule proposed by
Taylor (1993):

n br Y, n by R o R
Ry = Ry (%) ( t+ y> ( ltng 1) (a1)

Y )

where ¢, ¢, and ¢r indicate the response of the policy rate Ri; to inflation, output and
lagged Ry over different time horizons (nr, n, , n;). All the parameters of the policy rule

are restricted to be positive. This general setting can be simplified as:

Riy = (1 = p) (¢ + dyyr) + pR1i—1 (42)

Given (41), the demand for short term bonds is fully determined.

3 Calibration and impulse responses

In this section we present the procedure adopted to calibrate the model together with
a short impulse-response analysis, in order to discover the main dynamic properties of
model economy under study. The scope of this section is to show the basic properties of
the model conditional to the evolution of exogenous shocks.

The model is calibrated on quarterly U.S. data from for the period 1960:1-2010:3. The
parameter values are reported in Table 1. The annual inflation rate for the sample period
is 4.09%. The steady-state short-term interest rate Ry is 5.58%, obtained as the mean of
3-month Treasury Bill Rate. To capture the steady state value of long-term bonds, we take
the mean of the 10-year return of government bond, given by 6.5 %. The steady state level
of output has been obtained as the mean of quarterly GDP, constant prices, seasonally
adjusted over the sample period 1960:1-2010:3. This number has been normalized by
considering the civilian population considered over the same sample period, according
to the methodology described by Kim (2000). The intertemporal discount rate implied
by above informations is set equal to 0.99, as it is standard in the current literature.
We also assume that the inverse of risk aversion coefficient in the utility function ¢ has
been set equal to 0.5, together with Frisch labor supply elasticity 7 equal to 1, and the
scale parameter x has been set equal to 0.3, as in Gali (2008). The labor share in the
production function « is set equal to 0.67, as it is customary in the current real business
cycle literature. The share of consumption over GDP is set to be 0.57, implying a public
expenditure to GDP ratio equal to 0.43, an high value if compared to the true data, given

the absence of investments from the model. Price rigidity parameter ¢§ is set equal to

12



2/3, implying an average price duration of three quarters, consistent with the empirical
evidence. In the same way, the elasticity of substitution between differentiated goods is
equal to 6, as commonly assumed in the traditional New Keynesian models. The parameter
representing the response of fiscal revenue to outstanding short and long term debt is set to
be 0.05. The steady state level of labor supply is given by L = 0.33, implying a 1/3 ratio of
working activities to non-working activities. The steady state level of total public debt is
set to 33% over GDP, equal to the average of US Federal public debt to GDP ratio for the
sample period considered. The short term debt has been left to be free: for the simulation
reported, we set as a benchmark value 40% of the total level of debt, implying a 60% of
the long term debt. Finally, the monetary policy assumed for impulse-response function is
the standard Taylor rule with both contemporaneous inflation and output targeting, with
¢r = 1.5 and ¢, = 0.5 and p = 0.

The autoregressive coefficient for the shocks are: ps = 0.9, p4 = 0.5, for technological
and public expenditure shock, respectively. Standard deviation are, instead: o4 = 0.007,
and og = 0.01, as considered in the current literature (for o4) and according to the
standard deviation of the public consumption for the US economy for the sample period
considered.

The model is log-linearized around the deterministic steady state. We report the
impulse response functions from a one-standard deviation shock to technology and public
expenditure in Figures 1 and 2, respectively. From Figure 1 we observe that technological
shock expands output and consumption but reduces labor effort. The increase in aggregate
demand raises inflation rate, with a consequent increase of both short and long nominal
interest rates. The level of both short and long term bonds in real terms decreases because
of the increase of the inflation rate. This determines a reduction of tax revenue. Labor
supply decreases, because the productivity shock is perceived as a windfall gain.

The results for an expansionary government expenditure shock are reported in Figure 2:
output increases, consumption increase, inflation and both short term and long term rates
increase. Obviously, the increase of public debt (both short and long term in real terms)
make taxes to increase, too. Interestingly, the reaction of short term rate is stronger than
long term one, highlighting a smoothed out effect, as it is customary for term structure
models.

Overall, the impulse response functions provide evidence of patterns similar to those of
the standard New Keynesian model, with the additional feature of the interplay between
short and long term interest rates. Under this perspective, the inclusion of two bonds does
not generate any counter-intuitive or bizarre behavior of the response of the system to the

shocks considered.
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4 An analytic solution for the pricing kernel

4.1 Model solution and the kernel

The first step consists in log-linearizing the model around the deterministic steady state.
This is now a standard procedure and we are not going to describe it in full detail. A
technical appendix with the full log-linearized version is available upon request. The results

from our dimension-reduction solution can be collected in the following proposition:

Proposition 1 The reduced form model can be represented as follows:

1 k k
Ti+1 = Bﬂt - Bnyaat - Bﬁyggt (43)

bot+1 + Ne1 41 + Mba2Gt+2 + Moa1@t+1 + Mog29t+2 + Mgl G141 = (44)

= Mp2bat — NaTs — Mpa@t — Nbg Gt

where coefficients Nya, Myg, Mris Ma2, Mals Mog2s Mogls M2 Trs Moas Mg are given in Appendiz
1.

Proof 1 See Appendiz 2.

The functional form of the model described in (43) and (44) can be directly employed in the

analytical solution of the kernel, which is explicitly discussed in the following proposition.

Proposition 2 The analytical solution to the pricing kernel is:
1/2 1/2
Mes1 = Ao+ Mar — Aoge — may “oaelyy — 129, Tg€li1 (45)

where coefficients are:

Moo= 0= fr—(1=p)a (T +aq) +(1—py)g (L2 —ay)

o
1 —
)\1 — —nca( pa)_aapa
o
1—
Ny = 7769( Pg)+agpg
o
m = @"’_aa
o
n = %+ag

Proof 2 See Appendix 2.

The solution presented in the previous proposition depends on the assumptions of the
microfounded model. We should stress that we do not need a numerical solution of the

model written in state-space form to price government bonds in our framework. Differently
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from most contributions in macro-finance, we obtain an analytical solution for the pricing

kernel that is fully consistent with the model structure.

4.2 Bond pricing

The structural model has two state variables governing the dynamics of the pricing kernel,
namely a; and g;. Since the pricing kernel is conditionally lognormal, the short term rate

Ry, is given by:
Ry; = —log Ey exp (m441) (46)
which, given lognormality, becomes:
1
th == —Ethl - §vart (mt+1) (47)

Equation (47) shows that fluctuations in the short rate depend on a combination of changes
in the conditional mean and variance of the pricing kernel. The conditional mean of the

log of the pricing kernel is given by:

Eymip1 = Ao + A1ar — Aagt (48)
while conditional variance is:

var (meg1) = nia0; + 1590, (49)

Interestingly, this model allows for time variation in the conditional variance of the
kernel, owing to the time-varying volatility of the shocks. The types of shocks included
here capture business cycle patterns, in the case of a technology shock, and a policy-related
shock, in the case of the fiscal policy shock. To get a constant conditional variance, we
can set 1 = n2 = 0. However, this condition is fairly restrictive, since we have seen that
coefficients 7, 12 are function of the core parameters of the model.

By combininig (47) with (48) and (49), the solution of the short-rate interest rate can

be written as:
n 3
th = —)\0 — <)\1 + éai) Q¢ + <)\2 — —20'§> gt (50)

We can now further generalize the previous argument by extending the pricing scheme to
longer-term government bond. In what follows, we present a general formulation to price
a k-maturity bond and to extend the analytics to illiquid bonds.

Following Atkeson and Kehoe (2008), let us consider the price of a k-th period maturity
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bond p}:
i =logE, ) 51
Dt 0g Ly exXp | M1 + Pt ( )

Our goal is to derive the affine recursive pricing formula. We set the price of a k-th period

maturity bond as a function of the state variables a; and g, as follows:
p; = —Ap — Bray — Crg (52)

The solution is collected in the following Proposition.

Proposition 3 The affine recursive coefficients of k-th maturity bond prices are given by:

Ay ==X+ A1+ Br1 (1 —pa)a+Cr1 (1 —pg)yg (53)
02 2 2
By = paBr-1 — > (7 + Bi—1) — M1 (54)
s 2 2
Cr = A2+ pyCr1 — ?g (m — Ci-1) (55)

2 2 2 2
withAl:)‘O; Blz)\1+n12aaf 01:%7)‘2-

Proof 3 See Appendix 2.

The yield Ry on a k maturity bond can be expressed as:

k
by
Ryt = —— 56
o= 0 (56)
which, by using (52), becomes:
1
Ry = o (A + Brae + Crgr) (57)

We can now compute the term spread, i.e. the difference between long-term Rj; and

short-term yield Ry, which by using (50) and (57), becomes:

A B 202 C 77202
Ryt — Ry = (7'“+>\0> + (7'“+>\1+m2 >at—|— (f—)ajt 129 g (58)

Differently from Atkeson and Kehoe (2008), our setting does not allow for a parallel
shift in the yield curve, since all yield change differently after a shock to a; or g;. This
is due to the assumptions made in (24) (38), which are not random walk. Moreover, this
implies a general set of formula for recursive terms of the affine coefficients A and By

which are non-linear, as proved in Proposition 3. On the other hand, equation (58) shows
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that the difference between a k-maturity bond and the short-rate bond is mainly due to
exogenous shock fluctuations. Other than this, the two yields differ for a constant term
captured by <% + )\0).

We can now pin down the equations governing the long-term rate for £ = 2.. We can

collect the results in the following Corollary:

Corollary 1 For a two-period bond, the yield and the term spread are respectively given

by:
1
Ry = 3 (A2 + Baay + Cogy) (59)
A B 252 C 02
Roy— Ry = (72+>\0> + (72+/\1+7’120“>at+ (72—/\2+ 77229 g (60)

where the coefficients are:

Ay =B1(1—pa)a+Ci(1—pg)g (61)
‘72 2 2
By = p,B1 — > (i + Bf) — M1 (62)
52
Cy = X+ pgC1 — 79 (n5 — C}) (63)

with By and Cy defined in Proposition 1

Proof 4 By setting k =2 in (52), (53)-(55), (57) and (58), rearrange and simplify, it is

immediate to get the results stated in the text.

We can rewrite equation (60) in a more suitable fashion, so that the link between

return on long term bond and short term bond can be represented by:

Roy = Ry + mo + naas + ngg: (64)
where:
A
m = () (65)
(B2 ir
Na = (2+A1+ 5 (66)
c o
ng = <72—A2+% (67)

From equation (64), if the stochastic processes for a; and g; are removed, then the two
returns R; and Ro; differ only for a constant term. Therefore, in general equilibrium, two

interest rates may coexist with a constant wedge if there is no uncertainty. Second, the
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wedge between the two fluctuates with a drift if uncertainty is added. We would get a
similar result if we imposed exogenously a relation between liquid and illiquid bonds, like
the one in equation (64). For example, this can be obtained by assuming that the relation

between the two rates evolves according to:
Roy = HRyZ/ (68)

with H is a constant, Z; is stochastic term, for which we can assume an autoregressive

structure. The log-linearized version of (68) is:
Roy = o + Ry + ¢ (69)

where g = log H, (; = log Z; — log Z, where the letter without time subscript indicates
the steady state for the same variable. If we express (; as a linear combination of az, g¢

we can immediately get a representation very similar to that reported in (64):
Roy = no + Ry + v (ar + (1 — &) gy) (70)

The representation under (70) is qualitatively similar to (68). In fact, if the focus of
the analysis is on determinacy conditions of a REE induced by term structure, the
two representations under (68)-(70) do not imply any differences in the outcome for
determinacy. In other words, it does not matter for determinacy whether the link between
the rates of return of short and long term bonds is imposed in an exogenous way - like in
the case of equation (70) -, or whether it is explicitly derived by following the procedure
leading to (68). The advantage from the endogenous derivation of the link between Ra;
and R; consists in the fact that coefficients are functions of all the core parameters of the
model.

The approach resulting in equations (68)-(70) is also considered in Marzo and Zagaglia
(2008). The different results obtained in Marzo and Zagaglia (2008) arise mainly from
the modelling strategy for the nature of the bonds. In fact, in Marzo and Zagaglia
(2008), illiquid bond are subject to transaction costs in the representative agent’s budget
constraint. This delivers a different functional form for the aggregate supply function which
explictly depends on the short term interest rate, thereby creating a different transmission
channel of the short term rate to term structure.

A final remark is due about the Expectations Hypothesis (EH). Taking advantage of the
log-linearized reduced form of the model, we can derive the following relation (expressed

in log-linear terms) between long and short rate:

Rot = Ryt + Ry (71)
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Equation (71) is the log-linear representation of the expectations hypothesis. In other
words, the inclusion of bonds in the utility in a weakly separable way, does not induce
a violation of the EH. To get a model setting where the EH appears to be violated, it
would be necessary to include stronger frictions among different types of bonds or money,

as outlined in a preliminary work done by Marzo and Zagaglia (2008).

5 Determinacy of rational expectations equilibria

In this section we study the determinacy properties of the model. Each determinacy
condition is derived conditional to a specific monetary policy rule. We consider seven
variants of the rules proposed in (41)-(42): a contemporaneous absolute inflation targeting
rule, a backward-looking and a forward-looking rule for absolute inflation targeting. In
addition, we study a set of flexible inflation-targeting rule that include output targeting.
In this case, the rules studied are based on the combination of current inflation and output
targeting, forward inflation and current output, as well as current inflation and output
coupled with interest rate smoothing.

Using the log-linearized version of the model, we can reduce the system to the aggregate
supply function (43), the Taylor rule (42), the government budget constraint (44) and the

following version of the intertemporal IS equation:
Eiyii1 — SgEigip1 + 0ScEymip1 = yp — Sqgt + 0S8Rt (72)

where S, and S, indicate, respectively, the share of public expenditure and consumption
over GDP. Another equation of the system is given by the aggregate supply curve given
by (33). For what concerns determinacy analysis we can drop from the aforementioned
equations all terms involving exogenous stochastic processes a; and ¢; , since they do
not impact on the dynamic properties of the model. As a general remark, after plugging
the Taylor rule for Rj; into equation (72) and in the reduced form government budget
constraint (37), we can reduce further the model down to a three-equation system in the

variables 7,1 and bg;. This system can then be represented in matrix form as follows:
AZi 1 = BZ, (73)

where vector Z; is given by Z; = [m, yt, bgt]/, and matrices A and B are properly defined

according the specific setting adopted. We can rewrite the system as follows:
Zii1 =12, (74)

with I' = A~'B. Matrix I' includes the driving dynamical properties of the system and

the determinacy analysis is entirely focused on it.
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5.1 Pure inflation targeting

The monetary policy rule here studied are given by:

Ry = o¢rm (75)
Ry = ¢rmiqn (76)
Ry = ¢rm (77)

Rule (75) is a simple representation of the pure inflation target regime, while (76) indicates
a pure expected inflation targeting, and (77) represents a lagged inflation targeting.
These policy rules have been analysed also by Bullard and Mitra (2002) and Lubik and
Marzo (2007) in a model with one type of bond and money in the utility function with
strongly-separable preferences. After including rules (75)-(77) into (72) and (37) and
re-arranging, we obtain a three-equation system which can be represented as (74).

The determinacy conditions for a REE induced by the two rules (75) and (76) are
stated in Proposition 4. The backward inflation targeting rule implies an upper bound for

the coefficient ¢, that is discussed in Proposition 5.

Proposition 4 Given ¢, > 0, conditions for determinacy of a REE to be unique under
a Taylor Rule of types (75)-(76) are given by:

x> 1 (78)
1-8 < v<1+8 (79)

Or, alternatively:

o < 1 (80)
1-8 > ¢ ¢Y>1+p (81)

Proof 5 See Appendiz 2.

According to the results outlined in Proposition 4, the Taylor principle for a model with
the term structure does hold with a pure inflation-targeting rule. This is not the case for
a model where the monetary policy rule involves a backward-looking inflation targeting,
such as (77):

Proposition 5 Given ¢, > 0, conditions for determinacy of a REFE to be unique under

a Taylor Rule (77) are given by:
2(1+P)

oSk
1-8 < ¢<1+p (83)

I < o<1+ (82)
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Or, alternatively:

or < 1 (84)
1-8 > P>14+p (85)

Proof 6 See Appendix 2.

From these results, we observe that the rule for backward inflation targeting generates
an upper bound for the inflation targeting coefficient. In this sense, the model partially
confirms the findings from the existing literature based on models with the term structure.
Our framework replicates the interaction active-monetary, passive-fiscal regime outlined
in Leeper (1991) and shows the perfect dualism of the inflation targeting procedure. A
perfectly determinate equilibrium can be reached also with an inflation targeting coefficient
lower than one (¢, ), provided that fiscal policy is set to be active, or non-responding to
the outstanding path of debt. The novelty consists in the presence of an upper bound for

the backward-looking inflation targeting rule.

5.2 Flexible inflation targeting

We also consider a set of monetary policy rules with a flavor for output stabilization.
These rule fall under the headline of flexible inflation targeting according to Svensson
(2003). In what follows we focus on two variants, including a standard Taylor rule with
contemporaneous targeting of inflation and output, and an alternative including expected
inflation targeting together with current output targeting.

The results for the classical Taylor rule are collected in the following Proposition:

Proposition 6 Under simple Taylor Rule with contemporaneous inflation and output

targeting given by:
Ryt = ¢rmy + Oyt (86)

Provided that ¢, ¢, > 0 conditions for determinacy of a REE to be unique are:

ow+ 6, > o (87)
and:

B(bn—1)+6,(1—8) >0 (39)

1-<y<1+p (89)
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Alternatively, the REE is determinate if either (87) or (88) or both have the reverted
imequality and:

b < 1 (90)

1-8 > 9 P >14p (91)

Proof 7 See Appendix 2.

Conditions (87)-(89) highlight a tension between ¢, and ¢,, provided that ¢, > 1. These
results confirm the findings by Bullard and Mitra (2002) and Lubik and Marzo (2007).

A second type of Taylor rule is represented by an expected inflation targeting coupled
with an objective for current output targeting. This is obtained by setting p = 0 in (42),

and by replacing current inflation with the expected inflation rate:

Ryt = ¢or By p1mip1 + Gy (92)

The results relative to the rule (92) are summarized in the following Proposition.

Proposition 7 Undet expected inflation and current output targeting rule given by (92),
provided that ¢ > 0, ¢, > 0, conditions for a REE to be unique are:

2(1 2(1
1<y < liaif)wy (;ﬁ)+1 (93)
and:
1-<y<1+p (94)

Alternatively, the REE is determinate if either (93) is not satisfied to get determinacy,
condition (94) must be replaced by:

1-8>¢y  ¢>1+8 (95)
Proof 8 See Appendix 2.

Even in this case, condition (93) identifies an upper bound for the inflation targeting
coefficient, conditional to the size of the output targeting. Fiscal policy inserts
another degree of freedom, letting policy maker to choose between the combination

active-monetary and passive-fiscal or vice-versa.

5.3 Interest-rate smoothing

By setting p # 0, we obtain a Taylor rule with interest rate smoothing, as represented in

equation (42). In this case the results are collected in Proposition 8:
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Proposition 8 With rule (42), provided that ¢, ¢y, p > 0, conditions for a REE to be

unique are:

k(¢pn+p—1)+(1—=8)¢y, >0 (96)
p<p (97)
1-B<y<1+4p (98)

Alternatively, if either (96) or (97) are not satisfied, REE determinacy is obtained by
replacing (98) by:

1-p>79 Y>1+p (99)
Proof 9 See Appendix 2.

The results about determinacy here stated confirm what has been obtained in a simple
New Keynesian model without the term structure. Therefore, under this perspective, the
insertion of the term structure appears to be irrelevant in terms of determinacy analysis,
since Taylor principle is fully satisfied, as discussed in Bullard and Mitra (2002). A possible
interpretation of these findings involves the role of the EH, which holds perfectly in the
log-linear version of the model. The following step consists in testing if these results are
still obtained when a different assumption is made for the transaction services provided

by the government bonds.

6 Robustness analysis

To what extent are the results presented in the previous sections are model-dependent?
Would alternative assumptions on bond transaction services confirm the determinacy
results obtained earlier? To provide a proper answer to this question, we change the

functional form of instantaneous utility, and consider a weakly separable utility with bonds

and consumption:?
14117 1
{Cgblt v] I
_ t
U = il — il (100)
11— L+

with by = B/ P,. From (100), we observe that short-term bond by are treated as if they
were money, since they directly provide utility to the representative agent with a direct

interaction with consumption. The First Order Condition with respect to consumption

2In the following notation, we drop the household index i, for simplicity.
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(4) is now replaced by:
“1)_1 (1-m)(1-1
’)/C;/(l o) 1b$ 7)(1 0) =\ (101)

Moreover, the first-order condition with respect to by; is now given by:

_1 _ _1y_
(1= U 0e) 7t g det A (102)
1 R

Thus, rearranging (101) and (102), the demand for by; is now given by:

(1—7) c, Rt Roy
(Rot — Rit1R1t)

biy = (103)
It is not difficult to check that short-term bond demand (103) still respects the usual
properties: it is increasing in consumption Cy and Ry, Ri;+1 and decreasing with respect
to RQt.

In order to reduce the model, we can write the log-linearized version of the First-Order

Condition with respect to Cy given in (101) as follows:

[7(191] ce+(1—7) (1%) bie = M (104)

The log-linearized version of the demand for liquid bonds (103) is instead:

R Ry

by = ——— Ry + ———=—R
1t =c+ (7 — Ry 2t+(7T—,8R1) 141

1t — (105)

1
(1—BR1)
Equations (104)-(105) represent the key ingredients to figure out the key aspect of the
model. In equation (104), the Lagrange multiplier depends on nominal rates through
equation (105), differently from the standard case, where A; depends on C; only. This
feature produces a strong impact on the functional form of Intertemporal IS and aggregate
supply equation. In fact, the intertemporal IS curve depends on both expected and current

short term rate in log-linear terms:

Yey1 — 0Scari Rigy1 + 0Semii41 + 90 gir1 = y¢ — 0ScarRiy + gog: (106)
while aggregate supply now becomes:

Biy1r = T — kYt + Nass + Ngsgt + NrRs Rt (107)

where all coefficients are reported in Appendix 1.
From equation (107) we note that the introduction of weak separability in the utility

function modifies the functional form of the AS equation in a substantial way, since now the
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short term interest rate directly affects the expected inflation rate together with exogenous
shocks. A similar result would have been obtained after the introduction of transaction
costs in the representative agent’s budget constraint. Intuitively, this means that monetary
policy, by controlling the short term rate Ri¢, directly affects the firm’s costs and her ability
to borrow from banks. An increase in short term rate Ry; has the effects of increasing the
cost structure of firms, implying an increase of expected inflation as direct consequence.
On the other hand, it is not difficult to check that the EH holds in log-linear terms, and
equation (71) applies to this context too.

The model can be reduced by following exactly the same steps adopted in the
benchmark case previously examined and the system can be set in the form highlighted
by (73), with vector of variables still given by: Z; = [ms, v, o). Matrices A and B from

(73) are now given by:

B 0 0
A= [0S (1 —args)] (1—o0Scarigy) O (108)
L Hr1 oyl 1

(1+nrs¢x) —(k—nrsdy) 0O
B = aroScpr (1 —oScardy) 0 (109)

17
Hr My ( 5w)

while matrix I becomes:

I'= 1 1)) 0 (110)

(1—v)
¥3 P4 B

(I4nrs¢r) (k=nrsPy)
B B

where all coefficients are reported in Appendix 1.

With the present setting at hands, the following result holds:

Proposition 9 With rule (42), provided that ¢, ¢y, p > 0, conditions for a REE to be

unique are:

3 o b k —nrsoy
argmaz | ¢x2, Or < b < 111
g {Qb 2,0 3} ) fon (1 n URS) n URSd)y ( )
1
112
oS.ap1 < %y (112)
with
by = I5etylontfam)—(1+5)
" nrs (1 — kSear)
¢_5 3 = (1 - B) USc¢y + nRSUSc¢y — oSk

NrsoScpy + kar (0S. — nrs)
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1-p<y<1+p (113)

Alternatively, if either (111) or (112) are not satisfied, REE determinacy is obtained by
replacing (113) by:

1-8>¢  ¢>1+4 (114)
Proof 10 See Appendiz 2.

These results highlight the presence of a set of non-linear bounds for monetary
policy parameters ¢, and ¢,. This property depends entirely on the setting adopted
for bond modelling approach. In fact, under the assumption of weakly separable utility
function between consumption and short-term bonds modifies both aggregate supply and
intertemporal IS curve. This makes the Taylor principle no longer a sufficient condition
for determinacy, since inflation targeting coefficient is now dependent on output targeting
coefficient.

To provide a visual representation of the implications of the results from Proposition
9, we simulate the evolution pattern of ¢, and ¢, conditional to two different values for
the parameter representing the intertemporal elasticity of substitution in consumption
o. Figure 3 reports the evolutions of bounds: ¢, has a range between 0 and 10. The
parameters of the model are exactly the same as those described in Table 1, apart from -,
which has been set equal to 0.8, in order to assign a larger weight to consumption in the
instantaneous utility. The top panel in Figure 3 is plotted for a value of o equal to 2, while
in the bottom panel we set ¢ = 0.5. In both pictures, the determinacy region is denoted
by a text label. Outside the bounds, we obtain indeterminacy unless we change the fiscal
policy stance, as described by condition (114). Therefore, Figure 3 has been drawn by
considering a fiscal policy setting based on equation (113), which identifies a passive fiscal
policy. From the top panel of Figure 3, we observe that determinacy when ¢ = 2 obtains
only when there is an almost one-to-one increase in both ¢, and ¢,.

From an intuitive point of view, with ¢ > 1, the marginal utility of consumption is
decreasing with respect to by;. In this case, a negative shock to inflation implies an increase
in demand for by, a lower marginal utility of consumption, and a lower labor supply. On
the other hand, if o < 1, the marginal utility of consumption is decreasing with respect to
b1¢. Hence, a negative shock to inflation implies a decrease in demand for short-term bonds
bi¢ together with an increase in marginal utility of consumption and higher labor supply.
Therefore, elasticity of intertemporal substitution is crucial to determine the determinacy
region induced by Taylor rule. Differently from a model with a strongly separable utility
function, in the present context, the core parameters of the model play a crucial role in

the definition of the determinacy region.
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7 Conclusion

This paper explores the role of the term structure of interest rates in a simple New
Keynesian mode. We focus on the ability of simple Taylor rules to generate determinate
equilibria. The results show that what really matters for determinacy is not just the
inclusion of both long and short term bonds in a full-fledged dynamic macro model.
Rather, the key issue lies in the way the transaction services of alternative bonds are
modelled.

We show that, with short-term bonds entering the utility function in a weakly separable
way with consumption, the requirement for monetary policy parameters to generate
determinate equilibria are very similar to what is obtained in the literature for models
without the term structure. However, if transaction services enter the utility function in a
weakly separable way, the bounds for the inflation targeting coefficient of the Taylor rule
becomes non-linear. The results are then no longer clear-cut, since the bounds depend
strongly on other core parameters of the model, such as the elasticity of intertemporal
substitution of consumption.

In our framework, the expectations hypothesis holds and bond pricing scheme follows
an affine structure. Under this perspective, the difference between long and short-term
interest rates in a log-linear approximation is due to exogenous shocks hitting both the
level and the slope of the term structure. Our results shed light on the role of modelling
liquidity services in the definition of determinacy conditions and internal dynamics of the
model. The role of fiscal policy becomes also evident in affecting bond pricing through a
government spending shock. Assigning a proper role to the fiscal stance, as in the Fiscal
Theory of the Price Level, allows for a wider characterization of the equilibrium conditions
compared with what has been proposed in the literature.

Several extensions can be envisaged. At first sight, the introduction of money would
provide an additional buffer, whose role for the determinacy of equilibria should be
assessed. With the modelling of money balances, the role of money supply rules should

be contrasted with that of standard interest rate rules.
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Model equations (sections 2-6)
o (1 + %)
Nea =
SCU(%—Fl—a) + «
Sqo <1 + %) —«
Neg =
SCU(%—Fl—a) + «
o (1 + l) — Acq
Tya = i
o (1 + %)
77 — ancg
vg = T N\
1
o (1 + ﬁ)

w={[x(-0)-1 (-2

Ox 1<bnbﬁ )_bR2<1+m)¢ﬂ+<1;w>[

moy - -

R
777r1: B 6 bR2+_2_b7]bBR1R2

Ry

b1 BMeca ~ MNea
Room o

Mba2 = ¢y77ya +

ca bnpTca b(l— R2 - b
_ Mllea™ 0 (1 — ) mBin —(iiﬁ—l)knya_%knymL

Tbal = 7 — BO- -

b(1 +m) Radynya

Ry
Mhg2 = Dyilyg — bnbaﬁwncg * %
N
- <@ B 1) knyg — b+ m})%lR?%Uyg
M2 = @ <RL1 — ¢>
n = [b(l )+ %]

1:| + b(l — qzb) Rlnbnca
Bo

28



b(l—-1Y)R B b(l— 1
Mg = (1 ZZ,)B)U LbTeg ¢y77yg [ ( . ¢) mBRo + E
Variant discussed in Section 7
1
apr = (1—7) (1 - E) MR
ar = (1_7)<1_§>77b1%—1
_ (m—pBRy1) — BR1 (1 — BRy)
e (x — BRy) (1 - BRy)
p = (1-10)(1-46p) JSC(1+77(1oz))+om}
N 1) oSchg
~ (A+mn) (15)(15ﬁ)]
Nas = I 5
_ gom [(1—5)(1—56)]
os = GS h, 5
_ ganags [(1 —0) (1 - 5ﬁ)]
NRs = hs s

hs = an(l—0)+60(1+n)

_ R [bimpror bidr  bagn  bagr by fp
fmt = by { Ri R Ry Ryp3 (1+ nrsdx) Ry }
1 S.
I = T oSom [% (arpr — 1) (1 +nrsdr) — aRUSc¢ﬂ:|
1 Se
fy = m [1 - % (04R1¢7r - 1) (k - 77RS¢y) - OZRUSchy]
_ Ref b bimroy  bidy  bogy  badr by fy
Fot = by {Rlsc * Ry Ry Ry Ry (k= nrsdy) Ry }
R (b1 (1 =) mros by | by (1 —9)ba¢x
fm = E{ m _(1_¢)<?+7TR1>_ TRy }
B & b1 (1 - Q;Z)) i (1 - ¢) b177bR¢y . (1 - ¢) b2¢y}
Hy = b TS, T TR,
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O'chbw'r/RS (O[RQSW - 1) + O‘RQSWO'SC (]- - ﬁ) - USC

[ B (1 - O'SCOZRIQSW)
o = (k — 77RS¢y) 0S. (1 —agros)+ B (1— QRUSc¢y)
B (1 - JSCaR1¢W)
3 = az1 (14 ¢rnrs) — @320R0Schr + fix
01 = (Mrsdy — k) as1 + asz (1 — aroScoy) + 1y
a3 = oSe (1 - OZR¢7r) Myl — (1 - UScaR1¢y) K
B (1 - JScaR1¢y)
Q39 = Hy1

1 0S:0R1 Oy

B Schur-Cohn criterion

B.1 2 x 2 matrix

The characteristic polynomial for a generic 2 x 2 matrix A is 22 — tr (A) x + det (A) = 0.

From La Salle (1986), conditions for the two roots to lie outside the unitary circle are
given by:

|det (A)] > 1 (115)

[tr (A)] < 14 det(A) (116)

In particular, condition (116) can be split in the following two inequalities:

1+ det (A) +tr (A) > 0 (117)
1+ det (A) —tr (4A) > 0 (118)

3 x 3 MATRIX

We collect in what follows the full set of conditions to be satisfied by a generic 3 x 3
matrix B to obtain one root inside and two roots outside the unit circle. The characteristic
polynomial for a 3 x 3 matrix is:

P(A) = N 4 Ao\ + A\ + A (119)

where Ag = —det (B)7 Ay = —tr (B), A = —tr (B), Ay = (1)11612 — 521512) +
(boobss — b3abas) + (b11b3s — bs1b13). Therefore, necessary and sufficient conditions ar
egiven by the following restrictions on the coefficients of the characteristic polynomial
(119). Thus, either:

1. CASE 1
1+A2+A1+4 < O (120)
—14+Ay—A1+4, > 0 (121)
or:
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2. CASE 2

1+A+A1+4 > 0 (122)
—1+A4,—-A1+4, < (123)
A% —AgAs+A1 -1 > 0 (124)
or:
3. CASE 3
1+ As+A1+4 > 0 (125)
—14+A—A1+A4 < O (126)
A% —AgAs+A1 -1 < O (127)
4] > 3 (128)
C Proofs

C.1 Proof of proposition 1

From the log-linearization of the First Order Condition on labor (5) and the production
function, we find:

141 o
Yp = fn a — ————C¢ (129)
1+ﬁ_o‘ 0(%+1—a)

Given (129) and the resource constraint log-linearized (see the technical appendix for
details), we obtain the following equations linking consumption to the core shock hitting
the economy:

Ct = NeaQt — NegGt (130)

where coefficients were reported in Appendix 1. Taking advantage of (130) we can also
define the output equation, as follows:

Yt = NyaQt — TlygJt (131)

with the coefficients 7,4, 7y4 in Appendix 1. The log-linearized equation for liquid bond
is:

R R
bie = mpAe — mp Rt + ﬁb%ﬂtﬂ - nb%)\t+l (132)
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Moreover, the log-linearized version of the Taylor rule with contemporaneous inflation and
output targeting is:

Ryp = ¢rmy + ¢y77yaat - ¢y77yggt (133)

after having substituted out for (131). Moreover, after further substitutions, equation
(132) can be rewritten as follows:

nb/BRl ﬁRlnca ﬁRlncg
Te+1 1+ b at+1— 1M
e am am

g1 (134)

b b
Wllea Molleg ch gt — Rt +

blt = — a; +
o
From FOC with respect to by, after rearrangement, we obtain the following expression
for Ro;:

1 1 1 1
Rot = ——MNeats + —MNegGt + —Mealit1 — —TegGi+1 + Te1 — Ripya (135)
(o2 g (o2 (o

From the aggregate supply function, we have:

1 k k
Tg4+1 = Bﬂt - Enyaat - Enyggt (136)

Let the ratio between liquid and illiquid bonds to be: b = by /by. Taking advantage of
both (43) and (133) together with their respective forward versions we obtain the following
expression for the government budget constraint:

bt 1 + N1l + Ma20t4+2 + Moa1Gig1 + Mog2Gt+2 + Mgl Gt 41 =

(137)
= My2bot — NrTt — Mpa@t — Moy Gt

Q.E.D.

C.2 Proof of proposition 2

In order to achieve a solution for the full model, we start by noting that equation (43)
does not depend on by;. Therefore, we can solve for m; from (43) and then substitute out
into (44) to solve for by From (43), we note immediately that 5! > 1. This implies an
explosive root. Therefore, following Sargent (1979), we can solve (43) as follows:

_1) [Myatts + 11yq9:] (138)
Where puy is the explosive root of (43). By applying lag polynomial L to (138) we find:

- (&)

Tyl = [Mya@is+1 + MygGe+1] (139)
112
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By using the definition of lag polynomial as in Sargent (1979):

k(1Y
T4l = —— — ) [yatts1 + Mygges1] =
o ; <u2> . v
Enya o= [ 1 ‘ kn
= —% Z (E) Qt+i+1 + ﬂ Z Gt+i+1

H2 =5

(140)

Applying the definition of stochastic processes for a; and g; given in (24) and (38) and
developing the series in (140).

Fnya | (1= pa)a | x= [ pa)’
T == T+ <_“> ap+1| +
H2 1- s i—o \H2
= g A (141)
k 1— !
4 Kty ( pﬁ)g+z<p_g> ot
M2 1-— s i—o \H2
Thus, applying the formula to compute the sum of infinite terms:
k 1-— a k
roey = e (L= pa) apts | Ko ( 2 ) Gt
p2 o (p2 —1) 2 \ K2 = pa (142)
+ knyg (1 — pg) gpz i knyg ( 2 > Gen1
p2 (p2—1) po \ p2 — pg

Thus, simplifying and considering the definition of the root s = B!, after rearranging,
we obtain the following solution for m:

Tt = f7r + Qg0 + gy (143)
where:

£o— kiiya A = pa) aB | kiiyg (1 = pg) 95

" (1-5) (1-23)
o, = knyaﬁ

¢ (1 - /Bpg)

_ kriyg 8

Qo = (1 - /Bpg)

To solve for by, insert the solution for m; from (143) together with the expression for (24)
and (38) into (44). After rearranging, we obtain the following expression for by, ready to
be solved:

botr1 = h + maba — dqai11 — dggi+1 (144)
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where:

Y = e+ Ma2 (1= pa) @+ myg2 (1 — pg) g+ 0x fr
1-— 1-—
- Ya ( Pa)a+79( pg)g—’Yo

Pa Pg

_ Ya

0 = Na1Qq + Mba2Pa + Mbal + P_

a

_ Vg

59 = Nr1Qyg + Tba2Pg + Mbg1 + p_

g

By applying standard methods, we can rewrite and solve (144) as follows (see Sargent
(1979)):

h 1
b = — 5 5 -
241 = T P S (0gai+1 + ggt+1)

h s >

= - 5 : —1 - 5 2 i =

1 — e a ZZ; Mp2 At —i+1 g ZZ; Mp29t—i+1 (145)

h ad 4 > '

Tl Oa Z (Pamma)" a1 — dg Z (Pgm2)" Gt+1

=0 i=0

Where in the last line we took advantage of (24) and (38). Finally, by applying the infinite
sum of series, the solution to equation (145) can be rewritten as:

h 5 5,
— a —
L=y 1—pape = 1- PgMb2

baty1 = gt (146)

Therefore, the solution of system is fully captured by equations (143) and (146). We can
now solve explicitly for the pricing kernel. Thus, taking advantage of the definitions of
shocks, the first order conditions on consumption log-linearized, the resource constraint
log-linearized and the definition of the stochastic processes, we obtain:

Ct+1 — Ct = Nca (Gt+1 - at) —necg (gt+1 - Qt) =
1/2
= TNeca (1 - Pa) a —+ Nea (Pa - 1) a—+ 77caat/ Ua€g+1 — Neg (1 - pg) g+ (147)
1/2
— Neg (pg - 1) g — Neggy Og

Using (147) and (143) lagged forward for 711, after using again the shocks definition, we
obtain the solution for the kernel equation (21) as a function of the exogenous forces of
the system a;, g; reported in the text.

Q.E.D.
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C.3 Proof of proposition 3

Let us start with £ = 1. To find the price of liquid, short term bond, let us set pg 1 =0
in (52) to get:
pi = log Erexp (mir1 + piyy) = log By exp (mig1) =

1
= Eymyq + §Vart (Mmyg1) =

= —A; — Biag — Cigs (148)

Now, by using (50) together with (148):

2 2
—Ay — Biag — Cigt = —X\o — <)\1 + %Uﬁ) at + <)\2 - %20§> gt (149)

After equating coefficients it is immediate to get the definitions of Ay, By, C1, as stated
in the text.

For k£ > 1, we need to write coefficients of k as functions of coefficients at kK — 1. We can
rewrite (52) as follows:

Pi = —Ak—1 — Br—raii1 — Cro19m1 (150)

Thus, by applying the definition of (24) and (38), we obtain:

— 1/2
pf+11 = —Ak,1 — Bk,1 [(1 - pa) a—+ pgay + at/ 0'a6?+1:| -

s (151)
+ Cr1 [(1 — Pg) 9+ Pggt + 9 Ugﬁtg+1]
Therefore, by using (48)-(49) together with (151)
E; (mt+1 + p,]f;ll) =X+ Mar — Xage — Ap—1 — Br—1 (1 — pa) a — Br_1pgai— (152)
+ Ck—1 (1 = pg) g — Cr-1pggt
_ 1
Var, (mt+1 +pf+11) =5 [oa (0 + Bi_y) ar+ og (05 — Cia) 1] (153)

Therefore, given lognormality, we can combine bond pricing (51)-(52) with (152)-(153):

—Ap — Bray — Crgr = Ao+ May — Aagr — Ap—1 — Bi—1 (1 — pg) a—

+ Bi—1paa; — Cr—1 (1 — pg) g — Cr—1pg9:+ (154)
o2 o2
+ 5t (0f + Bioy) a+ = (3 — CE) g

By equating coefficients, we obtain the claim of the proposition.
Q.E.D.
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C.4 Proof of proposition 4

We divide the proof in three parts, each relative to a specific monetary rule (75)- (77).

C.4.1 Current inflation rule (75)

With the insertion of (75) in (43),(44) and (72) we can set the system in the form (74),
where matrix I' is defined as:

5—1 —kﬁ_l 0
D= |- (0S8 +050¢z) (1+koS.57) 0 (155)
Q1 —Qy2 B_l (1 - ¢)

Coefficients are given by:

1 (bR x

B\ B p
oy o)
oot
= % (0ucty — n1) — g0 Suchr — i
s — % (0Sey — am) + ay

To get determinacy, we need two roots of matrix (155) to be outside the unit circle, and one
inside since public debt by is a predetermined variable. Since (155) is upper triangular,
we can concentrate on the submatrix Ap; given by:

Bt k!

All e (0'805_1 + USC¢7r) (1 + kO'SCB_l) (156)
Trace and determinant of submatrix Ay are, respectively:
1  okS.
tr(An) = 1+ R (157)
14+ koScor
det (A1) = —|—+¢ (158)

It is immediate to verify that condition (115) is automatically verified if ¢, > 0. In the
same way, condition (117) is verified if ¢, > 1, while by setting ¢, > 0 it is sufficient
to verify condition (118). This ensures that submatrix A;; has one root inside and one
outside the unit circle. To get another root inside the unit circle we need the following

36



condition to be satisfied:

=9l (159)

s

which delivers the result stated in the text.

When both conditions ¢, > 1 and (159) are satisfied, two roots are inside and one is
outside the unit circle. If, on the other hand, ¢, < 1, then two roots will already be inside
the unit circle. Therefore, to get one root inside the unit circle, we require the following
additional condition on fiscal policy:

% >1 (160)

which implies:
Pp<1-0 v>1+0 (161)

This proves the result for the current absolute inflation targeting rule (75).
Q.E.D.

C.4.2 Expected inflation rule (76)

Given the monetary rule under (76), matrix I" and B in the system (74) is given by:

gt kB! 0
I'=|-0S.871(1—¢z) 1—koS.87 (1~ ¢r) 0 (162)
o3 —kas1 + ay (11—
where:
Qrz =bRimp — 1 — 2b;¢ﬂ + % [1 — %JSC (or — 1)] + Ll (1,8_ ¥) (b+ Ril) +
1— b(1—v9)R bR?
i BWW el g’) e
Oéy2 - % [14—%— W] +% (lenb_ 1— 2b7[;¢7r>
oSe (1 - ¢7r) Q2 + Q3
a3l = —

B

Again, we observe that the structure of matrix I" in (162) is upper-left triangular. We can
then concentrate on the submatrix Ay given by:

_ gt —kB1
A= [—oScﬁl (1—¢r) 1—koS.871(1— ¢W)] (163)
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To get determinacy for the full system we require that two eigenvalues of the system to be
outside the unitary circle and one inside, since public debt by; is a predetermined variable.
Trace and determinant of submatrix (163) are given, respectively, by:

tr(An) = 1+%—W (164)
det (A1) = % (165)

From the Schur-Cohn criterion, it is immediate to check that condition (115) is fully
satisfied. Condition (117) implies:

okSc(pr —1)+2(14+5) >0 (166)
which is satisfied if and only if ¢, > 1. From (118), we obtain:

okS. (1 —¢z) >0 (167)
which can be rewritten as:

—0kS. (¢ —1) <0 (168)

which is satisfied if and only if ¢, > 1, as well.
The remaining part of the proof follows exactly the same steps described for the current
inflation targeting rule outlined earlier. Q.E.D.

C.5 Proof of proposition 5

Rule (77) requires a different setting for the analysis, given the time-indexing of the system.
Therefore, let us define the vector Z; = [Rys, 7, yt, bag]’. Matrix I' in this case is:

0 o 0 0
0 1 —k 0
B B
I'= oS, koS, (169)
0S. —° (1 + o ) 0
Q41 Q42 Q43 %
where:
bRim, 1 (1-v) 1 bR? (1 — 1)
T4 = - 5 T b - | - c
Qg 5 ﬁ+¢+ 3 +R1 Mp7eg
k[(1—1) 1 by Ry
== — ) -1
Oéy3 ,3 l: ,3 <b+ R1> + T
b bR
QR1 = 7777711 + 71

op = (1—-19) (1 N bR177b>
15} T
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Qg1 = ay3USc — QR

1
Q42 = ¢7r05R1 - E (UScay3 + O47r4)

k
Qa3 = a3 + — (0Scoys + ara)

B

To get determinacy, we need two roots of the matrix (169) to be outside the unit circle
and two inside. Given the upper block-triangular structure of the matrix I" in (169), we
can concentrate on the submatrix I'11, given by:

0 ¢ 0
1 k
ry=1 0 3 -3 (170)
aS¢ kaSe

We apply the Schur-Cohn criterion in order to detect the presence of two roots inside and
one outside the unit circle for submatrix I';; in (170). In this case, Ag = 871, A = 71,
Ay = — (1 + 87+ 5_10k50). It it then immediate to check that by applying conditions
(120)-(121) for Case 1 we obtain a contradiction. Therefore, from condition (122) of Case
2, we obtain (after simplifying):

0Sck(pr —1) >0 (171)
which is satisfied if and only if ¢ > 1. On the other hand, from condition (123) we find:

—2(14+8)+0Sck(pr—1) <0 (172)
which is certainly satisfied if and only if:

2(14p)

<1
Or <1+ = o7

(173)

Finally, in order to verify condition (124), after substituting out the definitions for Ay,
Ay, As given previously and simplifying, we need to check if the following inequality is
satisfied:

1 oS:k

212 2Q2
Oh 05 | 4 hos, <1+—+

B g B

which is certainly satisfied since 5 < 1. These conditions ensures we have two roots inside
and one outside the unit circle. To get another root inside the unit circle, condition (159)
needs to be satisfied. As we have seen before, this implies confition (79), stated in the
text.

On the other hand, if condition ¢, > 1 is not satisfied, then the same reasoning applied
in the proof of Proposition 2 can be reapeted here without any further change.

Q.E.D.

>+(1—5)>0 (174)
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C.6 Proof of proposition 6
With rule (86) matrix I' of the system (74) can be written as:

k

3 —5 0
P=| oS (6r—%) 414080, 0 (175)

V31 V32 (1;#)

where:
c k ko
Yyl = Gy <1 + ho 3 + USCQ%) - m (1 +m) + 5 (1 —bRymp) — ¢
B B B
Yy2 = ( ﬁ?/)) (1 +bRimp) &y
Yl :% (Rl — 7T¢7r) + % (1 — bﬂ) + QbyJSC (¢7r — %) %4’
1 1 b
+ (1 - w) Rl <B (b + R_1> - ;anlncg>
(1-19)

T2 =g (14 bRymy)
1
Y31 = B (USC’Yyl - 77r1) - 7y1050¢7r - Y2

k
V32 = _B (USC'Yyl - ’Yfrl) - Yyl (1 + USc¢y) - Vy2

Even in this case, to get determinacy we need two roots of matrix (175) outside and one
inside the unit circle. Given the upper-left triangular structure of the matrix I" in (175),
we can concentrate on the 2 x 2 submatrix G171, here given by:

1 k

B "B
Gu = 1\ (koSe ] (176)

O'SC (¢7T_3) (T+1+O'Sc¢y)
Therefore, trace and determinant of matrix (176) are, respectively, given by:
1 kS,
(i) = 145+ Uﬁ + okS.é, (177)
14 0S.(¢dy — kodn

det (Gry) = 17 (gy Ox) (178)

From Schur-Cohn criterion, condition (115) can be split in two parts: i) det > 1 is
immediately satisfied, given the assumption ¢, ¢, > 0; ii) det > —1, identifies the
following bound:

ko + by > 1-75

55 (179)
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Condition (117) is immediately satisfied, given that ¢, ¢, are assumed to be positive. On
the other hand, condition (118) directly implies:

k(dpr—1)+dy(1—5)>0 (180)

With conditions (179)) and (180) we have that one root of submatrix G1; in (176) will
be inside and another root will be outside the unit circle. To get determinacy for the full
system subsumed by matrix (175) we need another root to be inside the unit circle. This
is obtained by considering condition (159): this implies condition (89), stated in the text.
However, if conditions (179)-(180) are violated, then the same reasoning applied in the
proof of Proposition 2 applies here.

Q.E.D.

C.7 Proof of proposition 7
With rule (92) matrix I' of system (74) is now given by:

1 k

B ~B 0
P=| 2020 kefe 114056, 0 (181)
A1 A32 (1;”
where
_ 2 _
Ae = 2 (14 koS, (1 — g+ + =) 9005 (1 m On)  DRTTLZ V) iy
B B B T
bRy brm, . bR 1 (1—v) < i) (1-4)
T e et e TR TR
_ mbmpypy  bRi1g, (1 —1) krbnydr  kmnbydr kbR ¢«
=T T T e R T T
k(l_ﬂ)< i)% (%_ > |: kgSc(1_¢w)
=g b)) T (T ) LSty +
- le (1 _¢) 77b¢y
Yy = Bﬂ
7Se (1= ¢x) Ayt + A
A3l = — 5

To get determinacy, we need two roots of matrix (181) to be outside and one inside the unit
circle. Once again, given the upper-left triangular structure of (181) we can concentrate
on the 2 x 2 submatrix Hq1, here given by:

1 k
= _k
Hll 0Sc(1—¢x koSe 5 (182)
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Trace and determinant of Hyy in (182) are, respectively, given by:

1 okS.(1—¢r)

tI‘(HH) = 1+B+ ,B +0'Sc¢y (183)
det(Hn) = HUTgchby (184)

Condition (115) is immediately satisfied, given that ¢, ¢, > 0. Condition (117) implies
the following upper bound:

2(1+5)
koS,

(1+5)

O =1+ + ¢y A (185)

On the other hand, condition (118) implies:

k(dr—1)+dy(1—5)>0 (186)

which is certainly satisfied if ¢, > 1. With conditions (185)) and (186), one root of
submatrix Hp; in (186) will be inside and another root outside the unit circle. To get
determinacy for the full system we need the additional conditions on fiscal policy, which
will capture the position of the third root. Implementing condition (159) will imply (94),
stated in the text.

When one of (185) or (186), or both, are violated, then the same reasoning applied in the
proof of Propositions 2-4 applies here, originating bounds (95).

Q.E.D.

C.8 Proof of proposition 8
With rule (42) matrix I" of system (XX) is now given by:

o 012 —013 0
0 3 —5 0
A= oS, koSe (187)
O'Sc T (1 + T) 0
—041 042 043 (1?)
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where vector Z; is given by as Z; = [Ryy, ¢, s, bat| . where:

o = pt+PyoSe
510 _ Or — ¢yUSc
B
k
513 - B (¢7T - ¢yUSc) + Qby
oy = [ yOSe + p — % (7np + R1)] (p+ ¢yoSe) +
S )
0y0Se
+ + — 3 ﬁb
by = % (0528, — (6 — ¢yos )81 — O]
k [bnyR
5, = %—B[”;l— <b+ >—¢yJSC]
(5/)1 = p—l—(bydsc—%(ﬂnb-f—Rl)
B by Ry (1—4) 1 bRT (1 — ) myieg
e 1 e G R

Matrix (187) is upper-left triangular. In this case, to get determinacy we need two roots
inside and two outside the unit circle, since both R1; and by are predetermined. We can
start by focusing on the 3 x 3 submatrix Dj; given by:

511 612 _613
1 k
Dyu=1| 0 3 -5 (188)
ogSe koS.
oS, 3 (1 + =5 )

By applying apply now the Schur-Cohn criterion for 3 x 3 matrix, from (119), we have:

Ay = —% (189)
1 p koS.  ¢y0S. kaS.
A = = L .
1= et g+ T g (190)
1 koS,
A = proeSet g 5 (191)

Let us start with Case I. From condition (120), we obtain: k (¢ +p— 1)+ (1 — 8) ¢, < 0.
Moreover, from condition ((121), we obtain a contradiction, given our assumptions on
parameters’ sign. Consider now Case II. Condition (122) implies:

kbt p—1)+(1=B) ¢, >0 (192)
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which is satisfied if ¢, > lcondition (123) is immediately satisfied. By applying condition
(124), we obtain:

2 1 koS,
p—2—£< +y0Se+ =+ 14 2 >+£+p+
g B s s p (193)
it B o g+ 0, T 150
CREN AR
After adding and subtracting % to (193) and rearrange, we obtain:
oS, koS, koS, (8 —
6,758 (1= )+ 275 (5, 4 p ) 4 H2 )
B b ER o)
PP 1 p (194
+lsm -5 +tp—1+-5——5|>0
[/32 R

Adding and subtracting % to the term in square bracket of (194) and rearrange, we obtain
that the inequality in (194) can be satisfied if and only if:

P (1-75)
(1_B> (1—p) 5 >0 (195)

which is satisfied if and only if p < 3, as stated in the text, since 5 < 1, by assumption.
When these conditions are satisfied, one root will be inside and two outside the unit circle.
To get determinacy for the system captured by matrix (187) we need another root inside
the unit circle, which is obtained by setting:

|1;¢| <1

which, after taking advantage of the absolute value properties, delivers the result stated
in (98).

When condition (96) or (97), or both, are not satisfied we require the following condition
on fiscal policy, such that:

(196)

|1 gw\ -1 (197)

which implies condition (99) stated in the text.
Q.E.D.

C.9 Proof of proposition 9

As in previous case, we can concentrate our attention on the 2 x 2 submatrix given by:

(I4nrs¢r)  (k—mrsdy)
Iy = B B (198)
¥1 ®2

44



The determinant is given by:

1— QRUSc¢y + ¢7r77RS (1 - kaRSc)

det (I'11) = 199
(1) 51— aroS.dy) (199)
The trace is:
L+nrs¢r | 0Sc(k —nrsdy) (1 — argx) + B — BaraScpy
tr (I = + 200
(') B B(1—oScapidy) (200)
Condition det > 1 from (115) implies :
1-— aRaSc¢y + OxNRS (1 — k?OéRSC) > (1 — aR1050¢y) (201)

which, after rearrangement becomes:

¢y0Se (ar — Bar) —(1—6) _ -
On > (= arkSy) = o

On the other hand, condition det > —1, is satisfied if and only if:

0S¢y (ar + Bag) —(1+8) _ -
nrs (1 — kScar) ikt 20

On >

Bounds ¢ and ¢, previously defined are both upper bounds. To establish which of the
two bounds in (202)-(203) are binding, let us verify if ¢ro > ¢-1. This condition is verified
if and only if:

0S:0y (ar + Bary) — (14 8) > ¢y0Se (ar — Bagy) — (1 = B) (204)

which is verified if:

1
205
Therefore, if condition (205) is verified, bound ¢.2 given in (203) applies.
Moreover condition (118) is satisfied if and only if:
0Sck+2(1+ B) — poSeoy (ar + ar1) — 0Se (r + ar1) ¢y — 0Scdynrs > (206)
¢)7r (UScaRk + WRSkaRSc - 277RS + USc¢ynRS)
which, after rearrangement, becomes:
b < 0Sck +2(1+ ) —0Scpy (ar + ari) (14 B) — 0Scdy (207)

oScark +nrskarS. — 2nrs + 0Sc.dyNrs

As ancillary result, it is not difficult to prove that (a¢g1 — ar) = 1. From condition (117),
we obtain:

(1 —=p)0Sctpy +nrsoScpy — 0Sck =3 (208)
WRSUSCQby + kag (GSC - nRS) -

r >
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Therefore, by reshuffling the above conditions, we can show that determinacy obtains if
and only if:

o k —nrsoy
Ly YT ™ 2
argmax {¢ 2, 3} < ¢r < kag (1 + 77RS) + 77RS¢y ( 09)
1
21
oS.apR1 < % -

Conditions (209)-(210) identify the presence of one root inside and another outside the
unit circle for submatrix (198). To check determinacy for the whole system, we need an
additional conditions on the fiscal policy side in order to have an additional roots inside
the unit circle. This is obtained by setting:

11— 4|
<1 211
5 (211)
which is equivalent to state:
1-p<y<1+p (212)
Alternatively, if one or all of (209)-(210) do not hold, conditions (211) should be replaced
by:
11—
—>1 213
5 (213)
Or, equivalently:
1-f<v;  U>1+8 (214)
Q.E.D.
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Table 1: Parameter Values

Parameter Value
I3 0.99
o 0.5
n 1
« 0.67
1) 2/3
0 6
P 0.05
PA 0.9
PG 0.5
oA 0.007

lofe 0.01
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Figure 3: Determinacy regions for model with weakly separable utility

DETERMINACY

DETERMINACY
-0.02-

-0.04

-0.06 -

-0.08 L L L L L L I I I

Both panels represent the simulations relative to bounds established by condition (111) by varying paramter
¢y. The top panel is obtained by setting o = 2, while bottom panel is obtained with ¢ = 0.5.
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