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Abstract

We propose a simple method for characterising analytically the feedback

solution of oligopoly games with capital accumulation à la Solow-Swan. As

a result, it becomes possible to contrast the feedback equilibrium against

the corresponding one generated by open-loop information. Our method

accomodates extensions of the stripped down oligopoly model in several

directions. As an example, we expand the setup to include environmental

effects and Pigouvian taxation.

JEL Classification: C73, L13, Q55

Keywords: capacity, differential game, feedback equilibrium, Hamilton-
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1 Introduction

The Solow-Swan model of economic growth with capital accumulation (Solow,

1956, Swan, 1956) is, together with its general equilibrium counterpart

(Ramsey, 1928), a cornerstone of modern macroeconomics. Conversely, its

corresponding interpretation as a strategic model in the field of industrial

organization has received comparatively scanty attention. Yet, the availabil-

ity of a fully analytical solution of a strategic model describing the costly

accumulation of firms’ productive capacity would certainly be desirable, as

it would enable us to perform policy analyses in several relevant directions,

such as regulation and taxation, international trade and FDI, the environ-

mental implications of production and the exploitation of natural resources.

To the best of our knowledge, the only contributions to oligopoly theory

examining setups where investment is reversible but capacity is subject to

adjustment costs1 - as in the Solow-Swan model - are those of Fershtman

and Muller (1984) and Reynolds (1987, 1991), while Cellini and Lambertini

(1998, 2008) characterise the open-loop and (degenerate) feedback equilibria

of an oligopoly à la Ramsey, where capacity accumulation is not explicitly

costly but entails consumption (or sales) postponement.2

Here we propose a simpler (and more general) approach to the solution

of the linear-quadratic differential oligopoly game à la Solow-Swan originally

investigated by Reynolds (1987, 1991). His solution method involves the use

of trigonometric functions as well as some numerical calculations. This ad-

1A similar approach, whereby adjusting output levels is costly, is adopted by Driskill

and McCafferty (1989). The analysis of conjectural variations in a feedback oligopoly

game with adjustment costs is in Dockner (1992). For a thorough discussion of oligopoly

applications of differential game theory, see Jun and Vives (2004). A comprehensive

overview of this literature is in Long (2010).
2Applications of these models to trade theory and policy can be found in Calzolari

and Lambertini (2006, 2007).
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mittedly entails that the applicability of the model is hindered. Our method,

instead, relies on some reasonable symmetry assumptions that yield a fully

analytical solution of the Bellman equation of the representative firm.

This feedback solution is contrasted with the open-loop equilibrium of

the same game, in order to investigate the consequences of increasing the

amount of information used by firms on the limit properties of the model.

This exercise allows us to single out a few interesting results. In particular,

the maximum number of firms that can survive at the long run equilibrium is

infinitely large under open-loop information while it is finite under feedback

information. This fact is due to the higher degree of strategic interaction

characterising the feedback game as compared to the open-loop one. The

larger investment levels (i.e., higher costs) generated by the incentive to

preempt rivals when feedback effects are operating, poses an upper bound to

the population of firms. This, intuitively, implies that the long run industry

structure at the feedback equilibrium is too concentrated as compared to

what would be socially efficient.

To illustrate the potential applications of our solution method, we lay

out an extension of the model allowing for the presence of a negative envi-

ronmental externality associated with production, with firms being induced

to carry out green R&D efforts via the introduction of Pigouvian taxation.

The remainder of the paper is structured as follows. The model is laid

out in section 2. Section 3 illustrates the open-loop Nash solution. The feed-

back equilibrium is investigated in section 4. The analysis of the oligopoly

with environmental externality is in section 5. Concluding remarks and

suggestions for further applications are in section 6.
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2 The basic setup

We examine a differential oligopoly game in continuous time t ∈ [0,∞) , in
which N firms invest à la Solow-Swan to create productive capacity. Firm

i’s state and control variables are the capacity endowment ki (t) and the

instantaneous investment Ii (t) , respectively, and the kinematic equation of

capacity is
·
ki (t) = Ii (t)− δki (t) (2.1)

where δ ≥ 0 is the constant decay rate of capacity, symmetric across all

firms.

Firms operate at full capacity at every instant, and sell a homogeneous

good. The inverse market demand function is linear:

p (t) = A−
NX
j=1

kj (t) ; A > 0. (2.2)

Investment involves a convex instantaneous cost Γi (t) = qIi (t) + cI2i (t) /2.

To guarantee the positivity of outputs and profits, we pose A > q (δ + ρ) .

The marginal cost associated with the production of the consumption good

is constant, symmetric across firms and normalised to zero for the sake of

simplicity. Hence, the instantaneous profit function of firm i is:

πi (t) =

"
A−

NX
j=1

kj (t)

#
ki (t)− qIi (t)−

cI2i (t)

2
(2.3)

and firm i chooses Ii (t) ≥ 0 so as to maximise the discounted profit flow

Πi (t) =

Z ∞

0

πi (t) e
−ρtdt (2.4)

s.t. the set of dynamic constraints (2.1) and initial conditions ki (0) = ki0 >

0. The discount rate ρ > 0 is constant and common to all firms.
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In the original Reynolds’ model the state space is a compact set in the

positive quadrant in which the net revenue is increasing, whereas each control

variable is real. We intend to modify such hypotheses and replace them with

the requirement that both the state space and the control space coincide with

the positive orthant RN
+ .

3 The open-loop Nash equilibrium

Under open-loop information, firm i has to choose its instantaneous invest-

ment Ii (t) so as to maximise the Hamiltonian function:

Hi (t) = πi (t) + λii (t)
·
ki (t) +

X
j 6=i

λij (t)
·
kj (t) (3.1)

where λij (t) is the costate variable associated with the state kj (t) , under

the set of dynamic constraints given by the state equations (2.1) and initial

conditions ki (0) = ki0 > 0.

The necessary conditions are:

∂Hi (t)

∂Ii (t)
= −cIi (t)− q + λii (t) = 0 (3.2)

−∂Hi (t)

∂ki (t)
=

·
λii (t)− ρλii (t)⇔ (3.3)

·
λii (t) = λii (t) (δ + ρ)−A+ 2ki (t) + (N − 1) kj (t)

−∂Hi (t)

∂kj (t)
=

·
λij (t)− ρλij (t) (3.4)

where (3.4) can be disregarded as the rivals’ capacities do not enter (3.2-3.3).
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Using (3.2-3.3) and imposing the symmetry conditions Ii (t) = Ij (t) =

I (t); ki (t) = kj (t) = k (t) for all i, j, we obtain the following control dy-

namics:3
·
I =

(δ + ρ) (cI + q)−A+ k (N + 1)

c
(3.5)

whereby the steady state equilibrium point of the open-loop Nash game is

kOL =
A− q (δ + ρ)

N + 1 + cδ (δ + ρ)
; IOL = δkOL. (3.6)

The following can be shown to hold:4

Proposition 3.1. The steady state (kOL, IOL) is a saddle point equilibrium.

The resulting steady state profits are

πOL =

£
(A− qδ)

¡
2 + cδ2

¢
+
¡
2Acδ + q

¡
2N − cδ2

¢¢
ρ
¤
[A− q (δ + ρ)]

2 [N + 1 + cδ (δ + ρ)]2
> 0.

(3.7)

The equilibrium level of social welfare is:

SWOL = NπOL + CSOL =
N [A− q (δ + ρ)]Γ

2 [N + 1 + cδ (δ + ρ)]2
, (3.8)

where

Γ = A [N + 2 + cδ (δ + 2ρ)]− q
£
cδ2 (δ + ρ) + δ (N + 2)−Nρ

¤
. (3.9)

and CSOL = (NkOL)
2 /2 is the equilibrium level of consumer surplus. It is

then easily shown that the following result holds:

3In the remainder of the paper we omit the explicit indication of the time argument

for the sake of brevity.
4The proof is omitted as it replicates an analogous proof carried out by Reynolds

(1987) in the duopoly case.
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Proposition 3.2. At the open-loop steady state equilibrium, provided A >

q (δ + ρ) :

• kOL, πOL, SWOL > 0 for any finite value of N ;

• kOL and πOL are monotonically decreasing in N, while SWOL is mono-

tonically increasing in N ;

• limN→∞ kOL = limN→∞ πOL = 0.

That is, the profit incentive measured by steady state open-loop profits

attracts infinitely many firms to the market, and this is also socially effi-

cient. Accordingly, the limit properties of the open-loop solution fully fit

the acquired wisdom we are accustomed with from, say, the standard static

oligopoly literature (see, e.g., Novshek, 1980). We are about to see that this

is not the case when feedback effects are duly accounted for.

4 The feedback Nash equilibrium

Firms move simultaneously at every instant, generating a Nash equilibrium

under feedback information. Firm i’s Bellman equation is:

ρVi (k) = max
Ii

"
πi +

∂Vi (k)

∂ki

·
ki +

X
j 6=i

∂Vi (k)

∂kj

·
kj

#
(4.1)

where Vi (k) is firm i’s optimal value function that depends on the vector of

states k = (k1, k2, ...kN) . We guess the following form for Vi (k):

Vi (k) =
α

2
k2i + βki

X
j 6=i

kj + γki + ε
X
j 6=i

kj + φ, (4.2)
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where we attach no weight to any quadratic term k2j , j 6= i, as these do not

appear in the instantaneous payoff and in the set of state equations. More-

over, the choice of coefficients reflects the a priori symmetry characterising

the game. That is: (i) the weights that i attaches to its own quadratic and

linear terms, α and γ, are the same for all i; (ii) the weights that i attaches

to the mixed terms and the remaining linear ones involving rivals’ capacities,

β and ε, are the same for all i; (iii) the free term φ is symmetric across firms.

The solution procedure requires taking the set of first order conditions5

on the r.h.s. of (4.1), substituting their solutions into (4.1) and simplifying

the latter in order to obtain a second-degree polynomial in the states.

The first order condition for firm i is:

q + cIi =
∂Vi (k)

∂ki
= αki + β

X
j 6=i

kj + γ (4.3)

yielding:

I∗i =
αki + β

P
j 6=i kj + γ − q

c
. (4.4)

Now we plug all of the expressions I∗i into (4.1), and then impose symmetry

across players w.r.t. states, i.e., we set ki = kj = k for all i, j. This

amounts to saying that we focus our attention to a symmetric feedback

Nash equilibrium. This yields the following:

ρ
hα
2
k2 + (N − 1)βk2 + (γ + ε (N − 1)) k + φ

i
= (4.5)

(A−Nk) k − qI∗ − c

2
(I∗)2 +N [(α+ β (N − 1)) k + γ] (I∗ − δk)

which can be appropriately rewritten as follows:

k2

2c

£
2cN − α2 + β (N − 1) (2c (2δ + ρ)− 3β (N − 1))+

5Second-order conditions for concavity are satisfied by construction, in view of the

linear-quadratic form of the problem at hand.
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α (c (2δ + ρ)− 4β (N − 1))]+
k

c
[(α− β) ε−Ac+ γ (2β − α)− (αε+ β (2γ + (N − 2) ε))N+

(α+ 2β (N − 1)) q + c (γ + (N − 1) ε) (δ + ρ)] +

(q − γ) (γ + 2 (N − 1) ε− q)

2c
+ ρφ = 0 (4.6)

This gives rise to the following system of three equations:

2cN−α2−3β2 (N − 1)2+2cβ (N − 1) (2δ + ρ)+α (c (2δ + ρ)− 4β (N − 1)) = 0

(α− β) ε−Ac+ γ (2β − α)− (αε+ β (2γ + (N − 2) ε))N+

(α+ 2β (N − 1)) q + c (γ + (N − 1) ε) (δ + ρ) = 0 (4.7)

(q − γ) (γ + 2 (N − 1) ε− q)

2c
+ ρφ = 0

with five unknown parameters (α, β, γ, ε, φ) . Hence, we need two additional

conditions in order to attain a closed form solution. Such conditions are

to be constructed using economically plausible conditions that a priori the

model must necessarily satisfy. We propose the following two. The first

obtains exploiting the idea that, if N = 1, the model ceases to be a game

and becomes an optimal control model with a single agent (a monopolist).

Accordingly, the optimal control and state yielded by the feedback solution

must coincide with those produced by open-loop information. The second

comes from the opposite direction, as the limit of optimal controls and states

for N tending to infinity should intuitively be the same (in particular, zero)

under both feedback and open-loop information. That is, we invoke the ac-

quired wisdom whereby the limit of a free entry process drives the individual

firm’s size (or quantity, which here is the same as size) to zero, irrespective

of the information structure. In view of these additional constraints, the

system (4.7) becomes determined.
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To begin with,

φ =
(q − γ) (γ + 2 (N − 1) ε− q)

2cρ
(4.8)

Then, we solve the equation generated by the linear term w.r.t. γ, obtaining:

γ =
(α+ 2 (N − 1) β) q −Ac− ε (α+ (N − 1)β) (N − 1) + cε (N − 1) (δ + ρ)

α+ 2 (N − 1)β − (δ + ρ) c
(4.9)

Now we are left with the first equation in (4.7), that can be solved w.r.t. α:

α =
c (2δ + ρ)− 4 (N − 1)β ±

q
4β2 (N − 1)2 + c

¡
8N + c (2δ + ρ)2

¢
2

(4.10)

Stability requires us to pick the negative root in (4.10).

At this point, we proceed to construct a condition based on the monopoly

solution. The open-loop equilibrium capacity under monopoly is:6

kM =
A− q (δ + ρ)

2 + c (δ + ρ) δ
(4.11)

Imposing stationarity on (2.1) and solving it w.r.t. k, we obtain an expres-

sion k (β, ε) that must be equal to kM in N = 1. To this purpose, we solve

k (β, ε)− kM = 0 obtaining ε (β) , with

ε (β)|N=1 =
(q (δ + ρ)−A)

µ
c (2 + βρ) + β

q
c
¡
8 + c (2δ + ρ)2

¢¶
(2 + c (δ + ρ) δ)

µ
cρ+

q
c
¡
8 + c (2δ + ρ)2

¢¶ (4.12)

Finally, we are left with the issue of determining β. This problem can be

6See above, expression (3.6).
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tackled by solving:7

lim
N→∞

k (β, ε (β)) = 0⇒ (4.13)

β = − 2c

cρ+
q
c
¡
8 + c (2δ + ρ)2

¢ (4.14)

Optimal parameters can now be plugged recursively into one another as well

as in the expression of k (β, ε) to obtain the feedback equilibrium capacity

level kF :

kF =
4c [A− q (δ + ρ)] (2Ω+ cρ)

(2Θ+ cρ) [4ΘΩ− c (4 (N − 1) + ρ (2 (Ω−Θ) + cρ))]
(4.15)

where

Ω ≡ 1
2

q
c
¡
c (2δ + ρ)2 + 8

¢

Θ ≡ 1
2

vuutc

Ã
c (2δ + ρ)2 + 8N +

16c (N − 1)2

(2Ω+ cρ)2

! (4.16)

The corresponding equilibrium investment is IF = δkF . Also in this case,

the pair (kF , IF ) is a saddle point equilibrium.

It is then easily checked that the following holds:

limN→∞ kF = limN→∞ kOL = 0

kF |N=1 = kOL|N=1 =
A− q (δ + ρ)

2 + cδ (δ + ρ)

(4.17)

and we can adopt plausible values for exogenous parameters, e.g., A = 10,

q = c = 1, ρ = 1/20 and δ = 2ρ to plot relevant magnitudes and assess their

behaviour as market structure (measured by the number of firms N) varies:

7Here it is worth observing that since β < 0, the game exhibits what Figuières (2009)

defines as instantaneous gross payoff substitutability, in analogy with the concept of

strategic substitutability identified by Bulow et al. (1985) in the static Cournot game.

See also Long (2010, pp. 141-47).
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Figure 1: The individually optimal capacity at the feedback equilibrium

as a function of market structure
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Figure 2: The capacity endowment of the industry at the feedback

equilibrium as a function of market structure
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Figure 3: Individual feedback vs open-loop equilibrium capacity as a

function of market structure

That is, for all finite number of firms N ≥ 2, kF > kOL and consequently

IF > IOL. Consequently, πOL > πF holds as well. However, the incentive

to preempt (or equivalently, the intensified degree of strategic interaction)

created by the presence of feedback information causes the feedback equilib-

rium profits to drop to zero in correspondence of a finite number of firms.

In particular, with the numerical values we are using in this example, this

happens at N = 48.79. This, in view of the obvious integer constraint con-

cerning N , implies that the maximum number of firms that may survive

in the long run under feedback information is N = 48. Checking the sign

of ∂SWF/∂N at N = 48, we see that social welfare is increasing (because

consumer surplus is, as any additional firm would bring about an increase

in output and a decrease in price). This translates into:
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Proposition 4.1. At the feedback equilibrium, the population of firms sur-

viving with zero profits is smaller than socially optimal.

This is possibly the most striking difference between the industry per-

formance observed at the (subgame perfect) feedback equilibrium and that

emerging from the open-loop game, and it must be entirely traced back

to the excess investment in capacity driven by feedback effects intensifying

strategic interaction among firms.

5 Extensions: product differentiation, envi-

ronmental externalities and Pigouvian tax-

ation

Now we can extend the model to illustrate the potential applications of our

solution method. To begin with, we modify the demand function to allow for

product differentiation. Each firm i supplies a single variety whose inverse

instantaneous demand function is

pi = A− ki − s
X
j 6=i

kj (5.1)

where the constant parameter s ∈ [−1, 1] measures the degree of complemen-
tarity (when it is negative) or substitutability (when it is positive) between

any two varieties, while if s = 0 each firm is a pure monopolist in a separate

market (see, e.g., Singh and Vives, 1984).

Then, we pose that production involves a negative environmental exter-

nality (pollution) σ, evolving over time according to the state equation

·
σ = w

NX
j=1

ki − v
NX
j=1

xi − ησ (5.2)

13



where w, v and η are positive constants, and xi is the instantaneous R&D

effort carried out by firm i to reduce pollutants. The instantaneous individ-

ual cost of green R&D is Ci (xi) = zx2i , z > 0. In order to provide firms with

the appropriate incentives in this direction, a regulator has to impose on

them at every instant a Pigouvian tax T proportional to the current stock

of pollution, whereby T = τσ.8 For simplicity, we assume τ to be constant

over time.

As a result, the instantaneous profit function of firm i writes

πi =

Ã
A− ki − s

X
j 6=i

kj

!
ki − qIi −

cI2i
2
− zx2i − τσ. (5.3)

The firm chooses Ii and xi so as to maximise the discounted profit flow

Πi =

Z ∞

0

πie
−ρtdt (5.4)

s.t. the set of dynamic constraints (2.1), the dynamics of pollution (5.2) and

initial conditions ki (0) = ki0 > 0. The discount rate ρ > 0 is constant and

common to all firms.

5.1 Open-loop information

Here we briefly deal with the open-loop version of the game. The Hamilto-

nian of firm i is

Hi = πi + λii
·
ki +

X
j 6=i

λij
·
kj +'

·
σ (5.5)

where ' is the costate variable associated with σ. The necessary conditions

are:
∂Hi

∂Ii
= −cIi − q − λii = 0 (5.6)

8A thorough account of the related debate is outside the scope of the present paper.

See, e.g., Downing and White (1986), Milliman and Prince (1989), Benchekroun and Long

(1998) and Poyago-Theotoky (2007).
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∂Hi

∂xi
= −2zxi −'v = 0 (5.7)

−∂Hi

∂ki
=

·
λii − ρλii ⇔ (5.8)

·
λii = λii (δ + ρ)−A+ 2ki + s (N − 1) kj −'w

−∂Hi

∂σ
=

·
' − ρ'⇔ ·

' = ' (η + ρ) + τ (5.9)

It is worth stressing that the presence of the Pigouvian tax rate τ in the latter

expression forces firms to account for the environmental implications of their

primary activity. In absence of such regulation, they would simply solve

equation (5.9) by setting ' = 0 at all times, thereby disregarding pollution

altogether, and consequently investing nothing at all to abate pollution.

From (5.7), we have

' = −2zxi
v

and
·
xi = −

·
'v

2z
(5.10)

and, imposing symmetry across controls and states and proceeding along

much the same lines as in section 3, we obtain the following system of control

equations:

·
xi = (η + ρ)x− τv

2z
·
I =

2wzx+ v [(δ + ρ) (cI + q)−A+ k (2 + s (N − 1))]
cv

(5.11)

Then, imposing stationarity on the state-control system, we get the coordi-

nates of the unique steady state open-loop solution:

kOL =
[A− q (δ + ρ)] (η + ρ)− τw

(η + ρ) [2 + s (N − 1) + cδ (δ + ρ)]
; IOL = δkOL ; xOL =

τv

2z (η + ρ)
(5.12)

σOL =
N [2z ((η + ρ) (A− q (δ + ρ))− τw)w − τv2 (2 + s (N − 1) + cδ (δ + ρ))]

2zη (η + ρ) [2 + s (N − 1) + cδ (δ + ρ)]
(5.13)
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with

σOL ≥ 0∀ τ ∈
∙
0,

2wz (η + ρ) (A− q (δ + ρ))

[2 + s (N − 1) + cδ (δ + ρ)] v2 + 2zw2

¸
(5.14)

Moreover,

lim
N→∞

kOL = 0; kM =
(η + ρ) (A− q (δ + ρ))− τw

(η + ρ) (2 + c (δ + ρ) δ)
. (5.15)

5.2 Feedback information

We now consider the solution under feedback information. Firm i’s Bellman

equation is now:

ρVi (k, σ) = max
Ii,xi

"
πi +

∂Vi (k, σ)

∂ki

·
ki +

X
j 6=i

∂Vi (k, σ)

∂kj

·
kj +

∂Vi (k, σ)

∂σ

·
σ

#
(5.16)

where we guess the following form for Vi (k, σ):

Vi (k, σ) =
α

2
k2i + βki

X
j 6=i

kj + γki + ε
X
j 6=i

kj + ξσ + φ, (5.17)

since the problem is linear in σ. The first order conditions for firm i are:

q + cIi =
∂Vi (k, σ)

∂ki
= αki + β

P
j 6=i kj + γ

ξv + 2zxi = 0
(5.18)

yielding:

I∗i =
αki + β

P
j 6=i kj + γ − q

c

x∗i = −
ξv

2z
.

(5.19)

Now we substitute the set of expressions {I∗i , x∗i } into (5.16), and then impose
symmetry across players w.r.t. states. This gives rise to the following system

of four equations:

k [(η + ρ) (c (δ + ρ) (γ + ε (N − 1))−Ac−
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β (N − 1) (2γ + ε (N − 1)− 2q) + α (γ + ε (N − 1)− q))−Ncτw] = 0

k2 [c (2 (1 + s (N − 1)) + (2δ + ρ) (α+ 2β (N − 1)))−

(α+ β (N − 1)) (α+ 3β (N − 1)) = 0 (5.20)

[(η + r) ξ + τ ]σ = 0

ρφ−
∙
(2N − 1) τ 2v2

z (η + ρ)2
− (q − γ) (γ + 2 (N − 1) ε− q)

2c

¸
= 0

with six unknown parameters (α, β, γ, ε, ξ, φ) . As in section 4, we will use

the above system to determine four parameters and then resort to the limit

properties of the steady state equilibrium to determine the remaining two.

From the last two equations we obtain

ξ = − τ

η + ρ
, (5.21)

and

φ =
(2N − 1) τ 2v2

z (η + ρ)2 ρ
+
(q − γ) (γ + 2 (N − 1) ε− q)

2cρ
(5.22)

from which it appears immediately that, should τ = 0, the coefficient φ

would indeed coincide with (4.8). Then, we solve the remaining two equa-

tions w.r.t. γ and α, obtaining:

γ =
(α+ 2 (N − 1) β) q −Ac− ε (α+ (N − 1)β) (N − 1) + cε (N − 1) (δ + ρ) + cNτ

α+ 2 (N − 1)β − (δ + ρ) c
(5.23)

which coincides with (4.9) if τ = 0, and

α =
c (2δ + ρ)− 4 (N − 1)β −

q
4β2 (N − 1)2 + c

¡
8N + c (2δ + ρ)2

¢
2

(5.24)

which is exactly the same as in section 4.
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Now we impose stationarity on (2.1) and solve it w.r.t. k, to obtain an

expression k (β, ε) that must be equal to kM in N = 1, as well as

lim
N→∞

k (β, ε) = lim
N→∞

kOL = 0,

whereby we get

ε (β)|N=1 =
β
q
c
¡
8 + c (2δ + ρ)2

¢
[τw − (η + ρ) (A− (δ + ρ) q)] + Ξ

(η + ρ) (2 + c (δ + ρ) δ)

µ
cρ+

q
c
¡
8 + c (2δ + ρ)2

¢¶
(5.25)

where

Ξ ≡ c [τw (βρ− 2 (2− s)) + (η + ρ) (δ + ρ) (βρ+ 2s) q]−
Ac (η + ρ) (βρ+ 2s) (5.26)

and finally

β =
2c [s (η + ρ) (A− (δ + ρ) q) + (2− s+ c (δ + ρ) δ) τw]µ
cρ+

q
c
¡
8 + c (2δ + ρ)2

¢¶
[(η + ρ) (A− (δ + ρ) q)− τw]

. (5.27)

It is relatively quick to verify that, when the goods are perfect substitutes

and there is no taxation, i.e. s = 1 and τ = 0, the coefficients ε (β) and β

coincide with (4.12) and (4.14), respectively.

A comparative assessment of open-loop and feedback outcomes might

seem cumbersome, in view of the lengthy expressions of the coefficients of

the value function. In fact, a key result is very easily singled out:

Proposition 5.1. Given τ , at the feedback equilibrium the firms’ green R&D

efforts are the same as under open-loop information. However, the steady

state amount of externality is lower.
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Proof To prove this result, it is sufficient to observe that, using (5.21), one

gets

x∗ = xOL =
τv

2z (η + ρ)
. (5.28)

That is, for any exogenously given tax rate, the intensity of R&D is un-

affected by the structure of information, the reason being the linearity

of the Bellman equation w.r.t. σ. Yet, as we already know from the

foregoing discussion, feedback information brings about a reduction

in industry output (either because of a contraction in the individual

firm’s output for a given industry structure, or because of an increase

in concentration, or both). As a consequence, the resulting amount

of pollution affecting the industry at the feedback equilibrium is lower

than that associated with the open-loop solution purely because of the

output reduction.¥

6 Concluding remarks

Here we have proposed a fully analytical and relatively compact solution to

the feedback problem faced by a population of oligopolistic firms involved

in a differential game with costly capacity adjustment à la Solow-Swan. We

have shown that the limit properties of the feedback equilibrium drastically

differ from those characterising the open-loop one, in particular because the

maximum number of firms that may survive in the long run is infinitely high

under open-loop information while it is finite under feedback information.

Alongside with the basic model, we have also illustrated its extension to a

case where there exist environmental externalities increasing in the industry

output. Applications of our solution method for the feedback equilibrium

can of course be envisaged in several other directions, such as the analysis

of horizontal mergers, corporate taxation, intraindustry trade and foreign

19



direct investments. This task is left for future research.
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