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On the non existence of cyclical food-consumption

patterns in a model of non-addictive eating.

Davide Dragone�

January 22, 2009

Abstract

In a paper previously published in this journal, Levy (2002) [Levy A., 2002,

Rational eating: can it lead to overweightness or underweightness? Journal of

Health Economics 21, 887�899] presents a model of rational non-addictive eating

that is claimed to explain cyclical food-consumption patterns where binges and

strict diets alternate. I show that the model admits no oscillation at all, as the

unique internal steady state has saddle point stability.

JEL classi�cation: I12

Keywords: Weight, Food consumption

1 Introduction

Levy (2002) analyses rational food-consumption behavior in a model of non-addictive

eating by modeling the trade-o¤between the satisfaction from eating and the increasing

probability of dying as weight deviates from a physiologically optimal level. When

individuals are able to recognise this trade-o¤, they choose their path of intertemporal

consumption so as to maximise their expected lifetime-utility. Levy �nds that the

internal steady state corresponds to a condition of overweightness. The steady state is

claimed to be an unstable focus, with the consequence that small deviations from it are

followed by explosive oscillations, interpreted as binges and strict diets, and possibly

leading to a condition of chronic underweightness in a late stage of life. I show that

�Dipartimento di Scienze Economiche, Università di Bologna, Strada Maggiore 45, 40125, Bologna,

Italia; tel. +39.051.209.2664; e-mail: davide.dragone@unibo.it. I thank Luca Lambertini and Arsen

Palestini for useful suggestions. The usual disclaimer applies.
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this conclusion is invalid because the internal steady state has saddle point stability.

As a consequence, the model does not admit oscillations over the lifetime but, at most,

a pattern where either weight or food-consumption increases in the �rst stage of life

and decreases in the last one.

2 A rational eating model

In this section the model outlined in Levy (2002) is presented. Given an upper bound

T <1 on life expectancy and a physiologically optimal weight W � > 0, the intertem-

poral expected lifetime-utility is given by the following expression:

J =

Z T

0
e��tU(c(t))�((W (t)�W �)2)dt; (1)

where � > 0 is an exogenously given intertemporal discount rate, c(t) � 0 is food-

consumption at time t and U(c(t)) is an instantaneous utility function such that Uc > 0

and Ucc < 0. The term �((W (t)�W �)2) > 0 represents the probability of living beyond

t and is assumed to be decreasing and concave in the deviation from the optimal weight

W (t)�W �:

The equation of motion of weight is the following:

_W (t) = c(t)� �W (t) (2)

with � > 0:

Given the initial weight W (0) =W0; the current-value Hamiltonian Ĥ correspond-

ing to this optimal-control problem is:

Ĥ(t) = e��tU(c(t))�((W (t)�W �)2) + �(t)[c(t)� �W (t)] (3)

where �(t) is the associated costate variable. The set of necessary conditions for de-

termining the optimal path of consumption and weight over time is (omitting the

arguments when no confusion arises):

@Ĥ

@c
= e��tUc�+ � = 0 (4)

_� = � @H
@W

= �e��tU�W + �� (5)

_W = c� �W (6)

�(T )W (T ) = 0: (7)
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where �W � @�(�)
@W and (7) is the transversality condition considered in Levy (2002).

Di¤erentiating (4) w.r.t. time and substituting (5) and the value of � obtained from

condition (4) yields the following:

_c =
1

�Ucc

n
�(� + �)uc +�W

h
U � Uc _W

io
(8)

or, equivalently (see Levy 2002, eq. 12, p. 891):

Ucc
Uc
_c+

�W
�

_W � �W
�

U

Uc
= � + �: (9)

Substituting (6) in the above expression, the following optimal trajectory of food-

consumption obtains:

_c =
1

�Ucc
f�(� + �)Uc +�W [U � Uc (c� �W )]g (10)

that, together with (6), the initial condition W0 and the transversality condition (7)

completely describes the dynamic system of food-consumption and weight.

A steady state (W ss; css) must satisfy (6) and (10) with equality. From (6) one

obtains that there exists a linear relation between steady state food-consumption and

weight:

css = �W ss: (11)

Substituting in (10) and equating to zero implies that in steady state the following

relation must hold (Levy, 2002, eq. 14, p. 891):

�W (W
ss)U(css) + (� + �)�(W ss)Uc(c

ss) = 0 (12)

As both U(css) and �(W ss) are strictly positive, the above condition holds if �W is

negative, i.e. if the steady state weight corresponds to a condition of overweightness,

W ss > W �:

Levy (2002) then proceeds considering speci�c functional forms for the utility and

the survival function and concludes that the optimal control problem admits a steady

state that is an unstable focus (i.e. the eigenvalues of the Jacobian matrix computed

in the steady states are complex with positive real parts). This implies that deviations

from the internal steady state determine explosive oscillations of weight and food-

consumption. However this conclusion is invalid because the eigenvalues are real and

with opposite signs. As I show in next Section, this is not a consequence of the speci�c

functions that were chosen in the original paper, but a general result that applies
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whenever the set of necessary conditions (4)-(6) is su¢ cient to determine the optimal

path of food-consumption and weight. In the Appendix I show that this holds a fortiori

with the speci�cation used in Levy (2002).

3 Saddle point stability of the steady state

In a �nite-time horizon and with a linear transition equation, the set of necessary con-

ditions (4)-(6) is su¢ cient for the maximisation of J if the utility function is di¤eren-

tiable and concave in food-consumption and weight (Mangasarian, 1966). Considering

the Hessian matrix associated with the utility function

H(U(c;W )) =

"
Ucc� Uc�W

Uc�W U�WW

#
the concavity assumption requires Ucc < 0 and � � U � Ucc�WW � (Uc�W )2 > 0; which
is therefore satis�ed if �WW < 0, i.e. the survival function is concave. In the following

I assume that this is indeed the case at all points in time.

To assess the stability of the steady state implicitly de�ned by (11) and (12), con-

sider the Jacobian matrix associated to the dynamic system given by (6) and (10),

J =

"
a11 a12

a21 a22

#
, whose elements are de�ned as follows:

a11 =
@ _W

@W
= ��

a12 =
@ _W

@W
= 1

a21 =
@ _c

@W
=

1

�2Ucc
f[(c� �W )�W + ��]Uc � �WUg

+
�WW

� � Ucc
[U � (c� �W )Uc]

a22 =
@ _W

@W
=

1

� � U2cc
�
(� + �) �U2cc � [�WU + (� + �)�Uc]

	
Substituting the steady states conditions (11)-(12) allows to simplify a21 and a22 as

follows:

a21 =
1

�2Ucc
(��Uc � �WU)+

�WW

� � Ucc
U

=
U

(� + �) �2Ucc

�
(� + �) �WW�� (2� + �) �2W

�
> 0

a22 = � + �
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The eigenvalues of the Jacobian are

e1;2 =
1

2

h
��

p
�2 + 4�(� + �) + 4a21

i
:

Given that the discriminant is strictly positive, the two eigenvalues are real and with

opposite sign, which implies that the steady state is a saddle point. This is a general

property of the model that does not depend on the speci�cation of the utility and

survival function.

To visualize the optimal trajectories, it is useful to adopt the functional speci�ca-

tions for the utility and the survival function considered in Levy (2002):

U(c) = c� (13)

�(W ) = �0e
��(W�W �)2 (14)

with �;�0 2 (0; 1) and � > 0. Substituting (13)-(14) in (6)-(10) one obtains the

following dynamic system

_c

c
=

2�(W �W �) [(1� �)c+ ��W ]� �(�+ �)
�(1� �) (15)

_W = c� �W (16)

whose associated internal steady state is (Levy, 2002)

css =
�

2

 
W � +

s
W �2 +

2��(� + �)

��

!
(17)

W ss =
1

2

 
W � +

s
W �2 +

2�(� + �)

��

!
> W �: (18)

The transversality condition (7) is satis�ed if, at time T < 1; either the costate
variable or the optimal weight is zero. According to condition (4), the former case

would imply �((W (T ) � W �)2) = 0, i.e. the probability of living beyond T should

be nil (see Levy, 2002, eq. 5b, p. 890). As Levy (2002) considers an exponential

survival function, �(W ) = �0e��(W�W �)2 > 0; this is unfeasible and the transversality

condition is satis�ed only when W (T ) = 0 (which corresponds to no food-consumption

at time T ). The trajectory leading to the (0; 0) corner depends on the initial condition,

as shown in Fig. 1. For example, if W0 is large enough the optimal path of food-

consumption is non monotonic during the lifetime and strictly decreasing in weight, as

it is optimal to begin with a low food-consumption level, to increase it for some time
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and �nally decrease it in the late stage of life (path B). If, instead, the initial weight

is low, W0 < W ss; then consumption must steadily decrease over time, while weight

initially increases and �nally decreases when time approaches T (path A).

Figure 1: Phase diagram in the (W; c) space. Path A begins with
a low initial weight, path B with a high initial weight
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As a �nal remark, note that the model implies that, if T !1 and W0 > W
�, the

individual should steadily increase consumption until the stationary weight is reached.

This occurs because the transition equation implies that the rate of weight-decrease

depends on the level of weight, so that, for the same level of food-consumption, an

overweight person loses more weight than an underweight person just for the fact of

being overweight. On the contrary, if W0 < W
�; an underweight person must consume

more food than the steady state level if the stationary weight is to be reached.
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4 Appendix

Given the functional forms (13)-(14) proposed in Levy (2002), observe that the survival

function � is concave for W 2
�
W � �

q
1
2� ;W

� +
q

1
2�

�
: W ss stays in this interval if

either (i) � > �
1���; or (ii) � <

�
1��� and � >

1
2

h
���(1��)�

�W �

i2
: Assuming that concavity

holds, then the set of necessary conditions (4)-(7) is su¢ cient for identifying optimal

trajectories.

The elements of the Jacobian matrix, computed in the steady state, are:

a11 = ��
a12 = 1

a21 =
�

�(1� �)

n
�(1 + �) (� + �) +W �

h
��W � +

p
�� (2�(� + �) + ��W �2)

io
a22 = � + �

The corresponding eigenvalues are:

e1;2 =
1

2

h
tr(J)�

p
tr(J)2 � 4 det(J)

i
(19)

Since tr(J) = a11 + a22 = � > 0 and det(J) = �2��(�+�)+�W �(��W �+�)
b(1�b) < 0; where

� �
q
2���(� + �) + �2�2W �2, the discriminant of (19) is strictly positive and therefore

the two eigenvalues must be real and with opposite sign. This quali�es the steady state

as a saddle point.
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