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Abstract

The relationship amongst state-redundancy and time consistency
of differential games is investigated. A class of state-redundant games
is detected, where the state dynamics and the payoff functions of all
players are additively separable w.r.t. control variables. We prove
that, in this class of games, open-loop Nash and degenerate feedback
Stackelberg equilibria coincide, both being subgame perfect. This
allows us to bypass the issue of the time inconsistency that typically
affects the open-loop Stackelberg solution.
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1 Introduction

The time consistency of equilibria is a crucial and long standing issue in
dynamic game theory. In general, open-loop Nash (i.e., simultaneous play)
equilibria are only weakly time consistent while open-loop Stackelberg (i.e.,
sequential play) equilibria are time inconsistent, and there exists a relevant
stream of literature investigating special classes of games where these prob-
lems do not arise. Starting from Clemhout and Wan (1974), several types of
games producing strongly time consistent (or subgame perfect) Nash equi-
libria under open-loop information have been identified.1 Attaining time
consistency in Stackelberg game is a somewhat more challenging enterprise.
After the seminal contributions of Simaan and Cruz (1973a,b), the idea that
hierarchical dynamic games yield time inconsistent Stackelberg equilibria has
dominated the related literature in economics and, more generally, in the so-
cial sciences as a whole. This is made even more troublesome by the fact that
appropriate tools for the analytical solution of feedback Stackelberg equilibria
are missing.
Here we focus our attention on dynamic games in continuous time, i.e.,

differential games. Our aim is to characterise a class of games which are
additively separable w.r.t. control variables. More precisely, what we label as
an additively separable differential game is one where both the state dynamics
and the instantaneous payoff functions are additively separable with respect
to players’ controls. If this property holds, any player’s first order condition
is independent of the rivals’ controls, which in turn entails that instantaneous
best response functions are orthogonal to each other. On this basis, we prove
two main results:

• If a differential game is additively separable w.r.t. control variables,
then its feedback Nash and Stackelberg equilibria coincide.

• Additionally, if the open-loop Nash solution of the same game is sub-
game perfect, then the feedback Stackelberg equilibrium collapses onto
the open-loop Nash one, precisely because the latter also coincides with
the feedback Nash equilibrium.

1Classes of tractable open-loop differential games have been identified by Dockner et
al. (1985). Several other contributions illustrate specific games whose open-loop solutions
are subgame perfect. For exhaustive surveys of such games, see Mehlmann (1988, ch. 4)
and Dockner et al. (2000, ch 7).
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Note that the above points hold irrespective of whether the open-loop
Stackelberg solution is time consistent or not. Accordingly, this makes un-
necessary to deal explicitly with the eventual time inconsistency that might
well affect the open-loop hierarchical game, as the feedback Stackelberg equi-
librium, which is subgame perfect by definition, can be easily characterised
by solving the open-loop Nash setup.
We complete the picture by briefly illustrating the applicability of our

framework to well known economic examples where additive separability and
subgame perfection may (or may not) hold jointly.
The remainder of the paper is organised as follows. The basic structure is

laid out in section 2. The time (in)consistency issue is revisited and defined
in section 3. Section 4 contains the definition of additive separability, and
investigates this property in connection with time consistency of Nash and
Stackelberg equilibria. Section 5 illustrates two additively separable differ-
ential games where, alternatively, open-loop Nash equilibria are or are not
subgame perfect. Concluding remarks are in section 6.

2 The basic setup

Consider an infinite horizon differential game with the following features:

• n is the number of players;

• x(t) = (x1(t), . . . , xm(t)) ∈ X ⊂ Rm, where X is a compact set, is a
vector of state variables;

• u(t) ∈ U := U1 × . . . × Un, where Ui is a compact set for every i =
1, . . . , n, is a vector of control variables; ui(t) is the control related to
the i-th player;

• the i-th player is endowed with the instantaneous payoff πi(x(t), u(t), t)
and is supposed to maximize the discounted objective functional:

Ji ≡
Z ∞

t0

e−ρitπi(x(t), u(t), t)dt (2.1)

subject to the kinematic equation:(
ẋs(t) = gs(x(t), u(t), t)

xs(t0) = xs0
, (2.2)
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where gs(·) ∈ C2(X×U × [t0,∞)), s = 1, . . . ,m and ρi is the constant
force of interest for the i-th agent.

The Hamiltonian function of each agent shows as follows:

Hi(·) = e−ρit

"
πi(x(t), u(t), t) + λii(t)gi(x(t), u(t), t) +

X
s6=i

λis(t)gs(x(t), u(t), t)

#
,

where λis(t) = e−ρitµis(t) is the costate variable associated by player i with
state variable xs; suppose Hi ∈ C2(X × U ×Rn×m × [t0,∞)).

Definition 2.1. A decision rule eui(·) ∈ Ui for the i-th player is called:

• an open-loop strategy if it depends on time t and on the given initial
condition x0;

• a closed-loop strategy if it depends on t, x, x0 and if it is continuous
in t and uniformly Lipschitz in x for each t;

• a feedback strategy if it depends on t, x and if it is continuous in t
and uniformly Lipschitz in x for each t.

Definition 2.2. An n-tuple of strategies (u∗1, . . . , u
∗
n) ∈ U such that:

Ji(u
∗
1, . . . , u

∗
n) ≥ Ji(u

∗
1, . . . , u

∗
i−1, ui, u

∗
i+1, . . . , u

∗
n), i = 1, . . . , n (2.3)

is:

1. an open-loop Nash equilibrium if u∗i is an open-loop strategy for
all i, and if (2.3) holds for all open-loop strategies ui;

2. a closed-loop Nash equilibrium if u∗i is a closed-loop strategy for
all i, and if (2.3) holds for all closed-loop strategies ui;

3. a feedback Nash equilibrium if u∗i is a feedback strategy for all i,
and if (2.3) holds for every possible initial condition (t0, x0) of (2.2).

Every feasible control path u∗(·) ∈ U1 × . . . × Un has a corresponding
state trajectory x∗(t) ∈ X1 × . . . × Xm, which can be deduced from (2.2);
alternatively, another approach can be followed:
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Definition 2.3. The optimal value function for the i-th player is:

V i(x(t), t) = sup
ui∈Ui

½Z ∞

t0

e−ρitπi(x(t), u(t), t)dt

¾
.

Every V i(x(t), t) satisfies the following partial differential Hamilton-
Jacobi-Bellman equation:

−∂V
i(x, t)

∂t
+ ρiV

i(x, t) = max
ui∈Ui

(
πi(x, u, t) +

mX
s=1

∂V i(x, t)

∂xs
gs(x, u, t)

)
.

(2.4)
The feedback Nash equilibrium can be calculated by solving the n equations
(2.4), whenever that is possible.
Reinganum (1982) and Fershtman (1987) identify some classes of differ-

ential games for which open-loop and feedback Nash strategies coincide, but
in general that is not true. In next Sections we will introduce the main topics
on time consistency and subsequently link them to the theory of equilibria.

3 The issue of time consistency

Definition 3.1. An equilibrium trajectory x̃(t) is called:

1. weakly time-consistent if its truncated part in the time interval
[T,∞), where T > t0, represents an equilibrium also for any subgame
starting in t = T , given the vector of initial conditions x̃(T ).

2. strongly time-consistent if its truncated part in the time interval
[T,∞), where T > t0, represents an equilibrium also for any subgame
starting in t = T , independently on the initial conditions x̃(T ).

Strong time-consistency corresponds to subgame perfection, since it re-
quires the ability on the part of each player to account for the rival’s be-
haviour at any time instant. Weak time-consistency is a milder requirement
and does not ensure, in general, that the resulting Nash equilibrium be sub-
game perfect.
On the other hand, the property of subgame perfection affects feedback

strategies as shown by the classical following result:
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Proposition 3.1. Given an n-tuple of feedback strategies bu∗(·) ∈ U , if the
induced n-tuple of feedback strategies of every subgame starting in T , indepen-
dently on the initial conditions ex(T ), can be played, then bu∗(·) is a subgame
perfect equilibrium.

Proof: See Mehlmann (1988, pp. 65-67).

A well-known technique to detect equilibria is based on Pontryagin’s max-
imum principle, by which the first order conditions (FOCs) on the control
variables ui(·) read as follows:

∂Hi(x
∗, u∗)

∂ui
= 0, i = 1, . . . , n, (3.1)

whereas the adjoint equations concerning the costate dynamics are:

−∂Hi(x
∗, u∗)

∂xs
=

∂λis(t)

∂t
− ρiλis(t), i = 1, . . . , n, s = 1, . . . ,m. (3.2)

Definition 3.2. If along the optimal trajectories of a differential n-player
game with Hamiltonians Hi no costate variable depends on any state variable
and the following relation holds for every i = 1, . . . , n, s = 1, . . . ,m:

∂2Hi(·)
∂ui∂xs

= 0, (3.3)

the game is called state-redundant.

State redundancy occurs when, after solving (3.2) and substituting the
found costate variables in (3.1), the resulting expression depends neither on
the states nor on their initial values. From Definition 3.2 we deduce that
when at least one of the two conditions for state redundancy does not hold,
equation (2.4) should be solved, for the open-loop Nash equilibrium is weakly,
but not strongly time-consistent. Next proposition (e.g. Cellini et al., 2005)
connects state redundancy with time consistency:

Proposition 3.2. If a differential game is state-redundant, then its open-
loop Nash equilibrium is strongly time-consistent.

Example 3.1. Consider the following linear state optimal control problem:

max
u∈U

Ji ≡
Z ∞

t0

e−ρit[Ai(u(t)) +Bi(x(t))]dt (3.4)
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s.t. (
ẋs(t) = Cs(u(t)) +Ds(x(t))

xs(t0) = xs0
, (3.5)

where

Bi(x) =
mX
s=1

βisxs, Ds(x) =
mX
v=1

δsvxv

are linear in all state variables, i.e. Bi and Ds are respectively the i-th and
the s-th rows of the matrices (βis) ∈ Mn,m(R), (δsv) ∈ Mm,m(R) and Ai(·)
and Cs(·) are C2 functions in u.
The separability of payoffs and dynamics implies the separability of the

Hamiltonians Hi(·), hence (3.1) and (3.2) respectively become:

∂Ai(·)
∂ui

+
mX
s=1

λis(t)
∂Cs(·)
∂ui

= 0; (3.6)

λ̇is(t)− ρiλis(t) +
mX

w=1

δwsλiw(t) + βis = 0; (3.7)

none of them depends on any state variable, so (3.5) and (3.7) are decoupled:
the game is state-redundant.

The topic of state redundancy was widely discussed by Mehlmann ( 1988,
Ch. 4), which also pointed out subgame perfectness of open-loop equilibria
in the particular case of trilinear games.

Now consider the case of a two-player Stackelberg game. Although the
structure of such a game is hierarchical, all the previously provided definitions
keep the same. We know from Simaan and Cruz (1973a,b) that generally
open-loop Stackelberg games yield time-inconsistent equilibria. However,
also in this case, by combining solutions of (3.1) and (3.2), one obtains
the instantaneous value of the follower’s costate variables λ∗ii(t) and λ∗is(t)
associated with (2.2).

Definition 3.3. If λ∗ii(t) and λ∗is(t) do not depend on the leader’s control
uL(t), then the game is uncontrollable by the leader.

Otherwise, if these expressions contain the leader’s control, open-loop
Stackelberg strategies are not time-consistent, since the leader controls the
follower’s costates by manoeuvring the strategy uL(t) (cfr. Xie, 1997; Dock-
ner et al., 2000).
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Proposition 3.3. If a differential game is uncontrollable by all of its players,
then all of its open-loop Stackelberg equilibria are time-consistent.

Consequently, uncontrollability is a necessary condition to obtain sub-
game perfect open-loop Stackelberg equilibria, but it is not sufficient, since
the occurrence of feedbacks may prevent such a game from generating strongly
time-consistent equilibria in open-loop. It follows from Propositions 3.2 and
3.3 (see Cellini et al., 2005) that:

Proposition 3.4. If a differential game is:

• both uncontrollable by all of its players and state-redundant, then all of
its open-loop Stackelberg equilibria are time-consistent;

• state-redundant but controllable by at least one of the players, then
the open-loop Stackelberg equilibrium with that leading player cannot
be time-consistent.

If the game is controllable by the leader, one should calculate the Stackel-
berg feedback equilibrium, but the necessary instruments are missing. Dock-
ner et al. (2000, chapter 5) propose a possible approach involving a state-
contingent stationary solution in the unique state variable case, i.e. a linear
control of the form uL(x) = a+ bx for the leader and the related maximiza-
tion with respect to a and b. Consequently the follower’s reaction strategy
uF (·) has to depend on the real parameters a and b as well. The result-
ing Stackelberg equilibrium time consistency is a consequence of the leader’s
choice of the two numbers. We revisit two oligopoly models (see Cellini and
Lambertini, 2002, for the former and Dockner et al., 2000, for the latter)
from the viewpoint of state redundancy.

Example 3.2. Consider a model where n oligopolists produce differentiated
commodities and externalities operate through demand functions. The setup
of this game involves each firm’s maximization of the discounted value of its
profit flow:

max Πi ≡
Z ∞

0

e−ρit[πi(D(t), q1(t), . . . , qn(t), k1(t), . . . , kn(t))]dt (3.8)

s.t. ⎧⎨⎩Ḋ(t) = −K(t)D(t)
1 +K(t)

D(0) = B
, (3.9)
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where the state variable D(t) ∈ [0, B] represents the symmetric degree of
substitutability between any pair of products or the extent of product differen-
tiation, the control variables are q1(t), . . . , qn(t), k1(t), . . . , kn(t), and K(t) =Pn

j=1 kj(t) is the industry’s overall R&D expenditure. Instantaneous profits
are given by

πi(t) =

"
A−Bqi(t)−D(t)

X
j 6=i

qj(t)− c

#
qi(t)− ki(t),

where c ∈ (0, A), and the output level qi(t) is produced at constant returns
to scale. The uniqueness of the state variable remarkably simplifies the ex-
pression of the Hamiltonian function and when symmetry among players is
assumed, FOCs of the problem yield the following formula for each costate
variable λi(t):

λi(t) = −
[1 + nk(t)]2

D(t)
. (3.10)

In (3.10) k(t) is the investment in product differentiation by one firm at a
symmetric equilibrium. Since λi(t) depends on D(t), this game is not state-
redundant. Moreover, it is easy to see that

∂2πi(t)

∂qi∂qj
= −D(t) 6= 0,∀i, j = 1, . . . , n; i 6= j, (3.11)

which implies that the game is not even additively separable, according to the
definition that will be provided in Section 4. The ultimate consequences of
these observations are two. First, the open-loop Nash equilibrium does not
coincide with the closed-loop one, so a subgame perfect equilibrium has to be
sought via the Hamilton-Jacobi-Bellman equation approach. Second, if such
an approach yielded an explicit solution for the simultaneous-move game, the
properties of that solution would not extend to the sequential-move game.

Example 3.3. Dynamic models of resource extraction (for an exhaustive
overview including a rich bibliography2, see Dockner et al., ch. 12) usually
involve an equation of motion with linear-state dynamics and an objective
functional not depending on the state variables, so that the game may turn

2In particular, for fishery games that may share the same basic structure with the
present example, see Chiarella et al. (1984), Dockner and Sorger (1996) and Sorger (1998).
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out to be state-redundant. Consider the following problem:

max

Z ∞

0

e−ρit[πi(x(t), q1(t), . . . , qn(t), t)]dt (3.12)

s.t. (
ẋ(t) = δx(t)−

Pn
j=1 qj(t)

x(0) = x0
, (3.13)

where qi(t) ≥ 0 is the i-th firm’s strategy, whereas x(t) represents the resource
stock’s dynamics and δ > 0 is the regeneration rate. If the utility function is
πi(·) = P (q1 + q2 + . . . + qn)qi, where P (·) is the inverse demand function,
for instance P (Q) = Q−1/ξ, where ξ > 0 is the constant elasticity of demand,
the i-th player’s Hamiltonian reads as follows:

Hi(·) = e−ρit

"
qi(t)

(
Pn

k=1 qk(t))
1/ξ
+ λi(t)

Ã
δx(t)−

nX
j=1

qj(t)

!#
.

The adjoint equations involving multipliers are:
·
λi(t)− (ρi − δ)λi(t) = 0, (3.14)

so no dependence occurs between optimal state and costate variables; (3.3)
holds too, therefore the game is state-redundant.
Suppose that n = 2 and that this game is played sequentially: if we calleqj(t) the leader’s open-loop strategy, the follower’s response eq−j(·) necessarily

depends on eqj(t), because of the linearity in the dynamics and the presence
of both controls in both FOCs. Since the leader controls the game, time
consistency cannot hold for the open-loop Stackelberg equilibrium.

The previous two examples highlight the fact that some specific hypothe-
ses on the form of the differential game under examination is necessary to
entail time consistency of equilibria. In the remainder, we intend to deter-
mine a suitable hierarchical game structure whose properties be such that
open-loop Nash and Stackelberg equilibria can turn out to be time-consistent.

4 Additive separability of games and time

consistency

In this Section, we aim at exploiting the properties connected to the additive
separability of the Hamiltonians to further characterise the issue of time
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consistency of equilibria for a specific class of differential games.
Consider a Stackelberg game where a population of n players is divided

in two groups, respectively formed by l and n− l agents. Call:

• uL = (u1L, . . . , ulL) the control variable vector of the first group of
players (the leaders);

• uF = (u1F , . . . , u(n−l)F ) the control variable vector of the second group
of players (the followers);

• x(t) = (x1(t), . . . , xm(t)) the usual state variable vector,

all of them belonging to suitable compact control and state sets. The capital
letters L and F have been chosen for a descriptive reason: if the game is
played hierarchically, the first l agents can be thought of as the leaders’
group, whereas the remaining n− l players represent the followers’ group.
The timing of moves we are envisaging is the following: the leaders incor-

porate the followers’ FOCs into their optimum problems before picking their
own optimal controls; inside each of the two groups moves are simultaneous.

Definition 4.1. We call an additively separable game a differential game
such that:

1. the i-th player is endowed with a payoff πi(·) which is additively sepa-
rable in controls, i.e.:

πi(x(t), uL(t), uF (t), t) = αi(x(t), uL(t), t) + βi(x(t), uF (t), t),

for all i = 1, . . . , n, where αi(·) and βi(·) are C2 functions with respect
to all variables;

2. the i-th player is supposed to maximize the objective function:

Ji ≡
Z ∞

t0

e−ρitπi(x(t), uL(t), uF (t), t)dt (4.1)

s.t. (
ẋs(t) = Ls(x(t), uL(t), t) + Fs(x(t), uF (t), t)

xs(t0) = xs0
, (4.2)

s = 1, . . . ,m, where Ls(·) and Fs(·) are C2 functions with respect to all
variables.
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In an additively separable differential game both dynamics and payoffs
are additively separable with respect to both group’s controls,3 so that the
i-th player’s Hamiltonian can be expressed as follows:

Hi(·) = e−ρit [αi(x, uL, t) + βi(x, uF , t) + λii(t)(Li(x, uL, t) + Fi(x, uF , t))+

+
X
s 6=i

λis(t)(Ls(x, uL, t) + Fs(x, uF , t))

#
.

Proposition 4.1. Along every optimal trajectory of an additively separable
game with Hamiltonians Hi(·), we have:

∂2Hi(·)
∂ujL∂ukF

= 0, i = 1, . . . , n, j = 1, . . . , l, k = 1, . . . , n− l.

Proof: It follows trivially from Definition 4.1:

∂2αi(·)
∂ujL∂ukF

= 0,
∂2βi(·)

∂ujL∂ukF
= 0,

∂2Ls(·)
∂ujL∂ukF

= 0,
∂2(Fs(·))
∂ujL∂ukF

= 0,

for all i = 1, . . . , n, , s = 1, . . . ,m, j = 1, . . . , l, k = 1, . . . , n − l, so the
mixed second partial derivatives of all Hamiltonians vanish when they are
calculated with respect to any two control variables belonging to different
groups.
Now we proceed to compare both open-loop and feedback Nash as well

as Stackelberg equilibria of such a game.
The open-loop Stackelberg equilibrium can be found by considering the

FOCs for the leaders and separately the ones for the followers of such a game:

∂Hj(·)
∂ujL

= 0 ⇐⇒ ∂αj(·)
∂ujL

+
mX
s=1

λjs(t)
∂Lj(·)
∂usL

= 0, j = 1, . . . , l. (4.3)

∂Hk(·)
∂ukF

= 0 ⇐⇒ ∂βk(·)
∂ukF

+
mX
s=1

λks(t)
∂Fk(·)
∂usF

= 0, k = 1, . . . , n− l. (4.4)

3Dockner et al. (1985, p. 188) define a class of differential games which are state-
control separated w.r.t. state dynamics and objectives, so that ∂2Hi(·)/∂ui∂xk = 0 for
all i, k. This clearly differs from our separability requirement w.r.t. controls only.
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On the other hand, the feedback Stackelberg equilibrium should be deter-
mined by solving the Hamilton-Jacobi-Bellman equation for every follower:

−∂V
k(x, t)

∂t
+ ρkV

k(x, t) = max
uF

{αk(x(t), uL(t), t) + βk(x(t), uF (t), t)+

+
mX
s=1

∂V k(x, t)

∂xs
[Ls(x(t), uL(t), t) + Fs(x(t), uF (t), t)]

)
, k = 1, . . . , n− l.

(4.5)
and subsequently by substituting the optimal control thus found in the same
expression for the leader. The property of additive separability allows us to
formulate what follows:

Proposition 4.2. If u∗ = (u∗L, u
∗
F ) is an optimal control vector for the

Hamilton-Jacobi-Bellman equations of an additively separable game played
hierarchically, then it is an optimal control vector for the same equations of
the game played simultaneously as well.

Proof: Suppose that u∗F (·) is an optimal control vector for (4.5). The
necessary conditions for maximization are given by:

∂

µ
βk(x(t), uF (t), t) +

Pm
s=1

∂V k(x, t)

∂xs
[Fs(x(t), uF (t), t)]

¶
∂ukF

= 0, (4.6)

Since
∂u∗kF
∂ujL

= 0, j = 1, . . . , l, k = 1, . . . , n− l, (4.7)

the substitution of u∗F (·) in the Hamilton-Jacobi-Bellman equations for the
leader does not affect the conditions for maximization, which become:

∂

µ
αj(x(t), uL(t), t) +

Pm
s=1

∂V j(x, t)

∂xs
[Ls(x(t), uL(t), t)]

¶
∂ujL

= 0, (4.8)

and which are exactly the same appearing in the feedback Nash case. There-
fore, no change occurs either in (4.6) or in (4.8) when the game is played
simultaneously, so the resulting optimal controls remain the same.
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Note that the assumption of additive separability of instantaneous payoff
functions and state equations w.r.t. controls entails that

∂u∗z
∂uw

=
∂u∗w
∂uz

= 0

irrespective of whether firm z and firm w act as a leader or a follower or
play simultaneously. This means that any firm’s instantaneous best reply
function is flat w.r.t. the rivals’ controls at any time t. Put it in other terms,
u∗z (uw) is a constant w.r.t. uw, i.e., u

∗
z and u∗w are orthogonal. Hence, the

optimal control of any firm at each generic point in time during this game is
dictated by a dominant strategy, on which basis we can state:

Remark 4.1. Additive separability w.r.t. controls yields a feedback solution
in dominant strategies which is unaffected by the order of moves.

The implication is that Nash and Stackelberg feedback solutions are ob-
servationally equivalent and therefore, ex post, one could not tell whether
the vector of optimal controls is the outcome of sequential rather than simul-
taneous play.
Basically, in an additively separable game, optimal controls uL come from

(4.3), whereas (4.4) yield uF , and no dependence occurs amongst the two
groups of controls, i.e.:

∂u∗jL
∂ukF

= 0,
∂u∗kF
∂ujL

= 0, j = 1, . . . , l, k = 1, . . . , n− l.

Moreover, when such a game is a Stackelberg one, then it turns out to be
uncontrollable by all players. We can link these considerations to the issue
of time consistency by proving:

Proposition 4.3. If an additively separable game is state-redundant, then
its open-loop Nash and feedback Stackelberg equilibria coincide and they are
all subgame perfect.

Proof: Proposition 4.2 implies that feedback Nash and feedback Stack-
elberg equilibria coincide. Proposition 3.3 ensures time-consistency for an
uncontrollable hierarchical game. Finally, Proposition 3.2 ensures subgame
perfection for open-loop Nash equilibria.

In the next examples, we shall briefly discuss the state-redundancy and
additive separability properties of two models of differential oligopolistic com-
petition.
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5 Comparison among equilibria in two addi-

tively separable games

Here we provide two examples of additively separable differential games based
upon two well known oligopoly models. The first example refers to a dynamic
Cournot game with sticky prices (Simaan and Takayama, 1978; Fershtman
and Kamien, 1987), which is additively separable but not state redundant,4

while the second example refers to an R&D race (Reinganum, 1982) which
is both additively separable and state redundant.

Example 5.1. Fershtman and Kamien (1987) analyze a model of simulta-
neous duopolistic competition with an homogeneous good and price stickiness,
i.e., a property for which the price does not adjust instantaneously to the level
given by the demand function for a given output level.
Call u1(t) and u2(t) the output levels of the two firms and p(t) the price,

whose evolution is subject to the Cauchy problem:(
ṗ(t) = s[a− (u1(t) + u2(t))− p(t)]

p(0) = p0
, (5.1)

where s is the speed of convergence to its level on the demand function and
a is a positive constant. Both firms aim to maximize:

JFK
i ≡

Z ∞

0

e−ρt
∙
p(t)ui(t)− cui(t)−

1

2
u2i (t)

¸
dt, (5.2)

where c > 0 is the marginal cost and ρ is the interest rate, common to both
firms.
They show that, as the speed of price adjustment increases, the price at

the open-loop Nash equilibrium approaches the static Cournot price, whereas
the one at the closed-loop equilibrium approaches a price lower than that.
This game is additively separable, since the Hamiltonians are both separable
in the players’ controls, but it is not state-redundant, as we can deduce from
the FOCs and the adjoint equations:

p(t)− ui(t)− c− λi(t)s = 0, (5.3)

4For the comparative analysis of open-loop, closed-loop memoryless and feedback solu-
tions of the Cournot oligopoly with sticky prices and n firms, see Cellini and Lambertini
(2004).
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λ̇i(t)− (ρ+ s)λi(t) + ui(t) = 0, (5.4)

together with the transversality conditions:

lim
t→+∞

e−ρtλi(t) = 0, i = 1, 2. (5.5)

Solving (5.3) and (5.4) yields the optimal value of the costate variables:

λi(t) =

Z ∞

t

e−(2s+ρ)(τ−t)[p(τ)− c]dτ (5.6)

Hence, it is clear from (5.3) and (5.6) that the optimal quantity of firm i
and its shadow price depend on the state p(t) and consequently state redun-
dancy does not hold. In the game analyzed by Fershtman and Kamien (1987)
the open-loop Nash equilibrium and the closed-loop one do not coincide, and
hence the former is not strongly time consistent. Fershtman and Kamien
proved that the open-loop Nash equilibrium does not coincide with the closed-
loop equilibrium, which is subgame perfect, differently from the former one.
The open-loop equilibrium cannot be strongly time-consistent, but for Propo-
sition 4.2 simultaneous-move feedback equilibrium strategies coincide with the
sequential-move feedback equilibrium strategies.

Example 5.2. Reinganum (1982) investigates the subgame perfect Nash
equilibrium of an exponential game of R&D with n firms describing the race
for an innovation consisting either in a new product or a new technology.
Such a model is presented and widely discussed by Mehlmann (1988, ch. 5)
and Dockner et al. (2000, p. 277). We restrict the analysis to the case
n = 2.
This game is stochastic since the flow of innovation investments by the

two firms ends up when one of them reaches complete innovation at a random
date τ i ∈ [0, T ]. The probability distribution of the random variable τ i is given
by:

Fi(t) = Pr{τ i ≤ t},
which is related to the R&D investment of the i-th firm by the dynamics:(

Ḟi(t) = νui(t)[1− Fi(t)]

Fi(0) = 0
, (5.7)

where ν > 0 and ui(t) ≥ 0 is the control variable representing R&D effort. If
we call VW the prize awarded to the winning player and VL the one awarded
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to the loser, ui and Fi the control and state for the i-th firm and u−i and F−i
for the other one, the i-th expected profit flow to be maximized is:Z T

0

½
VW Ḟi(t)[1− F−i(t)] + VL

·
F i(t)[1− Fi(t)]−

Π2k=1(1− Fk(t))

2eρt
u2i (t)

¾
dt =

=

Z T

0

[1− F1(t)][1− F2(t)]

∙
νVWui(t) + νVLu−i(t)−

u2i (t)

2eρt

¸
dt.

By posing y(t) ≡ [1−F1(t)][1−F2(t)], we can obtain a single state kinematics
which is common to both firms:

ẏ(t) = −νy(t)(u1(t) + u2(t)), (5.8)

yielding the i-th firm’s Hamiltonian as follows:

Hi(y(t), u1(t), u2(t) = y(t)

"
νVWui(t) + νVLu−i(t)−

u2i (t)

2eρt
− νλi(t)

2X
k=1

uk(t)

#
,

(5.9)
where y(t) represents the aggregate stock of knowledge in the industry. It
can be immediately checked that the game is additively separable. It is state
redundant too, as we can deduce from the form of its adjoint equations:

λ̇i(t)−ρλi(t) = −
"
νVWui(t) + νVLu−i(t)−

u2i (t)

2eρt
− νλi(t)

2X
k=1

uk(t)

#
(5.10)

and from the fact that after solving (5.10) and plugging λi(t) into the FOC
associated to the i-th firm:

∂Hi(·)
∂ui

= y(t)

∙
νVW −

ui(t)

eρt
− νλi(t)

¸
= 0, (5.11)

we obtain an expression not depending on the state variable y(t), which can-
not identically vanish since the initial condition of (5.8) is y(0) = 1 because
of the performed substitution.
Proposition 4.3 can therefore be applied to this model, consequently its

open-loop Nash equilibrium collapse on its feedback Stackelberg equilibrium
and they are both subgame perfect.
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6 Concluding remarks

We have revisited the issue of time (in)consistency of differential games,
showing that additive separability w.r.t. controls, in combination with state-
redundancy, implies that the feedback Stackelberg equilibrium and the open-
loop Nash equilibrium coincide. This is due to the fact that additive sepa-
rability entails the coincidence between feedback Stackelberg and Nash equi-
libria, the latter collapsing onto the open-loop Nash solution due to state
redundancy. This offers, at least in the class of games we have identified, a
way out of two well known problems: (i) the time inconsistency issue that
usually obtains in open-loop Stackelberg games; and (ii) the lack of mathe-
matical tools for the analytical solution of feedback Stackelberg games.
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