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Abstract

This paper analyses the time consistency of open-loop equilibria, in the cases

of Nash and Stackelberg behaviour. We define a class of games where the

strong time-consistency of the open-loop Nash equilibrium associates with

the time consistency of the open-loop Stackelberg equilibrium. We label

these games as ‘perfect uncontrollable’ and provide two examples based on

(i) a model where firms invest so as to increase consumers’ reservation prices,

based upon Cellini and Lambertini (CEJOR, 2003); and (ii) a model where

firms compete to increase their respective market shares, based upon Leit-

mann and Schmitendorf (IEEE Transactions on Automatic Control, 1978).

JEL classification: C72, C73

Keywords: differential games, open-loop equilibria, time consistency,

subgame perfection



1 Introduction

The existing literature on simultaneous-move differential games devotes a

considerable amount of attention to identifying classes of games where ei-

ther the feedback or the closed-loop equilibria degenerate into open-loop

equilibria. The degeneration means that the Nash-equilibrium time paths

of the control variables coincide under the different solution concepts, that

is, the optimal paths of control variables depend only on time (and not on

states) also under the closed-loop or feedback solution concepts. The in-

terest in the coincidence between the equilibrium path under the different

solution concepts is motivated by the following reason. Whenever an open-

loop equilibrium is a degenerate closed-loop equilibrium, then the former is

also strongly time consistent (or Markovian, or subgame perfect). Therefore,

one can rely upon the open-loop equilibrium which, in general, is much eas-

ier to derive than closed-loop or feedback ones. Classes of games where this

coincidence arises are illustrated in Clemhout and Wan (1974); Reinganum

(1982); Mehlmann and Willing (1983); Dockner et al. (1985); Fershtman

(1987); Fershtman, Kamien and Muller (1992).1

Unlike open-loop Nash games, which always generate time consistent (al-

though only weakly) equilibria, Stackelberg open-loop games usually gener-

ate time inconsistent equilibria. This has been known ever since Simaan and

Cruz (1973a,b).2 By this, it is meant that, at any time during the game,

the leader finds it optimal to modify the plan chosen at the outset. This has

yielded a large body of literature with economic applications, in particular

those concerned with the time inconsistency of optimal monetary or fiscal

policy.3 In a recent contribution, Xie (1997) singled out a property ensur-

ing the time consistency of open-loop Stackelberg equilibria, labelling such

1For an overview, see Mehlmann (1988) and Dockner et al. (2000, ch. 7).
2See Başar and Olsder (1982, 19952, ch. 7) and Dockner et al. (2000, ch. 5) for

exhaustive overviews.
3This literature is too wide to be duly accounted for here. See Persson and Tabellini

(2000) for an account.

1



games as uncontrollable, as the leader cannot manipulate the equilibrium at

will through his/her control variable.

A striking feature of these two lines of research - the time consistency of

open-loop Nash equilibria and the time consistency of open-loop Stackelberg

equilibria - is that, so far, they haven’t overlapped at all. That is, researchers

have looked either for those classes of games yielding strongly time consistent

open-loop solutions, or for those yielding time consistent Stackelberg open-

loop solutions, but not for both at the same time. This may depend upon

the fact that the two solutions are conceptually different. Nevertheless, both

for technical reasons and for possible applications, it would be desirable to

identify games enjoying both properties at the same time.

This is the aim of the present paper. In section 2, we set out with a gen-

eral illustration of the problem at stake. We label as perfect uncontrollable

game the game producing (i) strongly time consistent open-loop Nash equi-

libria and (ii) time consistent open-loop Stackelberg equilibria. In section 3

we illustrate a duopoly game with advertising based upon Cellini and Lam-

bertini (2003) to provide one such example. This game is state linear and

the Hamiltonian of each player is additively separable in state and control

variables. These two properties suffice to make it a perfect uncontrollable

game. Then, in section 4 we proceed to investigate the features of an alter-

native advertising game (based on Leitmann and Schmitendorf, 1978; and

Feichtinger, 1983) where such additive separability does not hold. Still, we

prove that all of its open-loop equilibria are indeed degerate feedback ones.

Possible extensions and concluding comments are outlined in section 5.

2 Setup

Consider a generic differential game, played over continuous time, with t ∈
[0,∞).4 The set of players is P ≡ {1, 2}. Moreover, let xi(t) and ui(t) define

4One could also consider a finite terminal time T. The specific choice of the horizon is
immaterial to the ensuing analysis, if terminal conditions are appropriately defined.
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the state variable and the control variable pertaining to player i, while µij (t)

is the co-state variable attached by player i to state variable xj(t), i, j =

1, 2. Assume there exists a prescribed set Ui such that any admissible action

ui(t) ∈ Ui. The dynamics of player i’s state variable is:

dxi(t)

dt
≡ .

xi(t) = fi (x(t),u(t)) (1)

where x(t) = (x1 (t) , x2 (t)) is the vector of state variables at time t, and

u(t) = (u1 (t) , u2 (t)) is the vector of players’ actions at the same date, i.e., it

is the vector of control variables at time t. That is, in the most general case,

the dynamics of player i’s state variable depends on all states and controls

associated with all players involved in the game. The value of the state

variables at t = 0 is known: x(0) = (x1 (0) , x2 (0)) .

Each player has an objective function, defined as the discounted value of

the flow of payoffs over time. The instantaneous payoff depends upon the

choices made by player i as well as its rivals, that is:

πi ≡ πi (x(t),u(t)) . (2)

Given uj (t) , j 6= i and the discount rate ρ, player i’s objective is:

max
ui(·)

Ji ≡
∫ ∞

0

πi(x(t),u(t))e−ρtdt (3)

subject to (1), ui(t) ∈ Ui and initial conditions x(0) = (x1 (0) , x2 (0)) .

In the literature on differential games, one usually refers to the concepts

of weak and strong time consistency. The difference between these two prop-

erties can be outlined as follows:

Definition 1: weak time consistency Consider a game played over t =

[0,∞) and examine the trajectories of the state variables, denoted by

x(t). The equilibrium is weakly time consistent if its truncated part in

the time interval t = [T,∞), with T ∈ (0,∞), represents an equilibrium

also for any subgame starting from t = T, and from the vector of initial

conditions xT = x(T ).
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Definition 2: strong time consistency Consider a game played over t =

[0,∞). The equilibrium is strongly time consistent, if its truncated

part is an equilibrium for the subgame, independently of the conditions

regarding state variables at time T, x (T ).

Strong time consistency requires the ability on the part of each player to

account for the rival’s behaviour at any point in time, i.e., it is, in general,

an attribute of closed-loop equilibria, and corresponds to subgame perfect-

ness. Weak time consistency is a milder requirement and does not ensure, in

general, that the resulting Nash equilibrium be subgame perfect.5

Now consider the Stackelberg differential game, and assume player i is

the follower. The Hamiltonian of player i is:

Hi (x(t),u(t)) ≡ e−ρt [πi (x(t),u(t)) + λii(t) · fi (x(t),u(t)) +

+λij(t) · fj (x(t),u(t))] , (4)

where λij(t) = µij(t)e
ρt is the co-state variable (evaluated at time t) that

firm i associates with the state variable xj (t) .

In the remainder of the paper, we shall focus on first order conditions

alone, under the assumption that sufficiency conditions are met. This will be

apparent in the examples illustrated in the next sections. Moreover, we shall

adopt the following conventional notation: steady state values of controls and

states are identified by superscript s; optimal controls or states satisfying the

necessary conditions are starred.

The first order condition (FOC) on the control variable ui(t) is:6

∂Hi (x
∗(t),u∗(t))
∂ui

= 0, i, j = 1, 2; (5)

⇔ ∂πi (x
∗(t),u∗(t))
∂ui

+ λii(t)
∂fi (x

∗(t),u∗(t))
∂ui

+ λij(t)
∂fj (x∗(t),u∗(t))

∂ui

= 0

5For a more detailed analysis of these issues, see Dockner et al. (2000, Section 4.3, pp.
98-107); see also Başar and Olsder (1982, 19952, ch. 6).

6The indication of exponential discounting is omitted for brevity.
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and the adjoint equations concerning the dynamics of state and co-state

variables are as follows:

−∂Hi (x
∗(t),u∗(t))
∂xj

=
∂λij(t)

∂t
− ρλij (t) , i, j = 1, 2; (6)

⇔ ∂λij(t)

∂t
= ρλij (t)− ∂πi (x

∗(t),u∗(t))
∂xj

+

−λii(t)
∂fi (x

∗(t),u∗(t))
∂xj

− λij(t)
∂fj (x∗(t),u∗(t))

∂xj

They have to be considered alongside with initial conditions x(0) = (x1 (0) , x2 (0))

and transversality conditions, which set the final value (at t = ∞) of the state

and/or co-state variables. In problems defined over an infinite time horizon,

one sets limt→∞ e−ρtλij(t)xj(t) = 0, i, j = 1, 2.7

For simplicity, we consider the case where only one state and one control

are associated with every single player.

Before proceeding further, it is worth clarifying that there exist two possi-

ble approaches to the description of strategic interaction between players in a

Stackelberg game. The first consists in asking the leader (player j) to choose

a proper reaction function u∗j (u∗i (t)) specifying the leader’s best reply to the

follower’s behaviour at any t during the game. Alternatively, following Dock-

ner et al. (2000, chapter 5.3), one may suppose that the leader can announce

to the follower the policy uL
i (x(t)) that she (the leader) will use throughout

the game, defined in terms of the states only. The follower, taking uL
i (x(t))

as given, determines the reaction function uF
i

(
uL

i (x(t))
)

to maximise his

payoff. The problem of the leader is then to choose, among all the admissi-

ble rules ui (x(t)) , that particular uL
i (x(t)) that maximises her payoff, given

the follower’s best reply and all the additional constraints. Dockner et al.

(2000, chapter 5.3) provide the solution to this problem by confining their

attention to games where only one state variable appears and therefore one

7Otherwise, if t ∈ [0, T ] , a different transversality condition applies. For instance, if
the value of xj (T ) differs from zero, then one may set λij (T ) = 0. See section 3.
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can write uL
i = w + zx, where w, z ∈ R. The leader’s optimization problem

amounts to choosing w and z once and for all. A major objection to this

approach is that, indeed, this is not a game where both players have Marko-

vian state information. Moreover, the fact that the leader chooses w and z

at the outset and keeps them constant throughout the game is responsible

for the time consistency characterising the resulting Stackelberg equilibrium

(for a more extensive discussion, see Dockner et al., 2000, p. 135).

In the present paper, we take the first route. From Simaan and Cruz

(1973a,b), we know that, in general, open-loop Stackelberg games yield time

inconsistent equilibria. However, if the game structure satisfies some specific

requirements, the Stackelberg open-loop equilibrium is indeed time consistent

(and possibly even strongly so). To illustrate such requirements, one has

to proceed as follows. From (5) one obtains the instantaneous best reply

of player i, which can be differentiated with respect to time to yield the

dynamics of ui(t). Moreover, given (1), the first order condition (5) will

contain the co-state variable λii(t) associated with the kinematic equation of

the state xi(t). Therefore, (5) can be solved w.r.t. λii(t) so as to yield:

λii(t) = −
[
∂πi (x

∗(t),u∗(t))
∂ui

+ λij(t)
∂fj (x∗(t),u∗(t))

∂ui

]
/
∂fi (x

∗(t),u∗(t))
∂ui

(7)

If the r.h.s. in (7) contains the leader’s control uj(t), then the open-loop

Stackelberg strategies are time inconsistent, in that the leader controls the

follower’s state dynamics by manoeuvring uj(t). In such a case, the game

is controllable by the leader, who reneges initial plans at any later instant

in order to profitably re-optimise. If, instead, λii(t) does not depend on

uj(t), the game is uncontrollable by the leader, and the resulting open-loop

Stackelberg equilibrium strategies are time consistent (this definition dates

back to Xie, 1997; it is also used by Dockner et al., 2000, ch. 5). I.e.,

uncontrollability relies on the following property:

∂λii(t)

∂uj(t)
= 0, i, j = 1, 2; j 6= i (8)
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which must hold for (7); likewise, it must be ∂λij(t)/∂uj(t) = 0. This

amounts to saying that λii(t) does not depend on uj(t), i.e., the leader can-

not affect the co-state variable of the follower, and the resulting Stackelberg

solution is time consistent. Since λii(t) in (7) comes from the solution of (5),

we can say that (8) is equivalent to:

∂2Hi (x
∗(t),u∗(t))

∂ui∂uj

= 0, i, j = 1, 2; j 6= i. (9)

For completeness, we may briefly summarise the issue of strong time consis-

tency of open-loop Nash equilibria. If

∂2Hi (x
∗(t),u∗(t))

∂ui∂xj

= 0, i, j = 1, 2; j 6= i (10)

either immediately from the Hamiltonian function, or by substitutions from

the co-state equations into first order conditions, then the optimal controls

are independent of states and the open-loop equilibrium is subgame perfect

since it is strongly time consistent. The property whereby FOCs on controls

are independent of states and initial conditions after replacing the optimal

values of the co-state variables is known as state-redundancy, and the game

itself as state-redundant or perfect (Fershtman, 1987; Mehlmann, 1988, ch.

4). Of course condition (9) in general does not coincide with (10). Whenever

(9) and (10) are simultaneously met within the same game, then the game

itself is a perfect uncontrollable game. Accordingly, we may formulate:

Proposition 1 (State-Redundancy) If a differential game is perfect, then

its open-loop Nash equilibrium is strongly time consistent (or subgame per-

fect).

Proposition 2 (Uncontrollability) If a differential game is uncontrollable

by all of the players involved, then all of its open-loop Stackelberg equilibria

are time consistent.

Proposition 1 says that state-redundancy is necessary and sufficient to

generate Markov-perfect open-loop Nash equilibria. However, note that the

7



uncontrollability is necessary but not sufficient to generate Markov perfect

equilibria in the open-loop Stackelberg game. The reason is that uncontrol-

lability is unrelated to feedback effects, i.e., the presence of feedback effects

throughout the game may prevent an uncontrollable game to yield strongly

time consistent Stackelberg equilibria under the open-loop information struc-

ture. Together, Propositions 1-2 imply the following Corollary:

Corollary 3 Consider an open-loop Stackelberg game. If it is both uncon-

trollable and perfect, then its Stackelberg equilibria are strongly time consis-

tent (or subgame perfect). Otherwise, if it is perfect but controllable by at

least one of the players, then the open-loop Stackelberg equilibrium with that

player leading is bound to be time inconsistent.

The above Corollary says that uncontrollability and state-redundancy

must hold together in order for the open-loop Stackelberg behaviour to gener-

ate Markov-perfect solutions. More explicitly, in the Stackelberg case, state-

redundancy is necessary but not sufficient to yield Markov-perfectness.

Observing (9) and (10), a further Remark emerges:

Remark 4 The additive separability of each player’s Hamiltonian function

w.r.t. state and control variables is sufficient to ensure that the game is per-

fect and uncontrollable and all of its open-loop Nash and Stackelberg equilibria

are strongly time consistent (or subgame perfect).

The proof is trivial, in that additive separability implies that the first

order condition of each player is independent of both the rival’s control and

state variables. However, it is worth stressing that additive separability is

sufficient but by no means necessary to make the game perfect and uncontrol-

lable, as it will become clear by examining the advertising game illustrated

in the next section.8

8The analysis of dynamic oligopoly interaction has generated a relatively wide literature
that cannot be exhaustively accounted for here. To the best of our knowledge, the earliest
differential duopoly game can be found in Clemhout et al. (1971).
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3 The CL advertising game

In this section, we explore a differential game of advertising where two firms,

1 and 2, invest in order to increase consumers’ reservation prices for differ-

entiated products, as in Cellini and Lambertini (2003; CL henceforth). Let

pi denote the price of good i, and qi the quantity of good i. Firm i faces the

following demand function, borrowed from Spence (1976) and also employed

by Singh and Vives (1984) and Cellini and Lambertini (1998, 2002, 2004),

inter alia:

pi(t) = Ai(t)−Bqi(t)−Dqj(t) (11)

Variable Ai (t) describes the market size or the reservation price for good i.

B and D are constant parameters, with 0 ≤ D ≤ B. Notice that parameter

D captures the degree of substitutability between any pair of different goods.

In the limit case D = 0, goods are independent and each firm becomes a mo-

nopolist. In the opposite limit case D = B, the goods produced by different

firms are perfect substitutes and the model collapses into the homogeneous

oligopoly model.9

We assume that the market size may be increased by firms, through

advertising activities. More precisely, we assume that the efforts made by

any firm affects its own market size, as well as the market size of the rivals.

In particular, the dynamics of the market size of firm i is described by the

following equation:

dAi(t)

dt
≡

·
Ai(t) = ki(t) + γkj(t)− δAi(t) (12)

where kh is the effort in advertising made by firm h, 0 ≤ γ ≤ 1 is a parameter

capturing the external effect of the advertising of a firm on the market size

of different firms, δ ≥ 0 is a constant depreciation parameter revealing that

market size shrinks as time goes by.

9For a model where D is treated as a state variable and firms may invest so as to
decrease product substitutability over time, see Cellini and Lambertini (2002, 2004).
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Advertising activities are assumed to have decreasing marginal productiv-

ity, i.e., they entail a quadratic cost Γi(ki(t)) =
α

2
(ki(t))

2 with α > 0. More-

over, production entails a constant marginal production costs: c(qi(t)) =

cqi(t) with c > 0.

Quantities q (t) and advertising efforts k (t) are the control variables,

while market sizes A (t) are the state variables. Each player chooses the

path of her control variables over time, in order to maximize the present

value of her profit flow, subject to the motion laws (12) of states, and initial

conditions A (0) > c, which are assumed to be known. Instantaneous profits

are:

πi(t) =

(
Ai(t)−Bqi(t)−D

∑

j 6=i

qj(t)− c

)
qi(t)− α

2
(ki(t))

2 (13)

so that player i’s objective function is:

max
qi(t),ki(t)

Ji ≡
∫ ∞

0

πi(t)e
−ρtdt (14)

where the factor e−ρt discounts future gains, and the discount rate ρ is as-

sumed to be constant and common to all players.

To begin with, consider briefly the Nash game (for additional details, see

CL, 2003, pp. 412-14). The Hamiltonian of firm i is:

Hi(q (t) ,k (t) ,A (t)) ≡ e−ρt
[
(Ai(t)−Bqi(t)−Dqj(t)− c) qi(t)− α

2
(ki(t))

2+

λii(t) · (ki(t) + γkj(t)− δAi(t)) + λij(t) · (kj(t) + γki(t)− δAj(t))] (15)

The above function is linear in the state variables A (t), so that the present

game qualifies as a state linear one. As a consequence, its open-loop Nash

equilibrium is strongly time consistent, and the game itself is perfect. Also

note that the Hamiltonian function is additively separable in states and con-

trols, a feature that, as anticipated in section 2, plays an obvious role in

terms of the uncontrollability of the open-loop Stackelberg equilibrium.
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3.1 The Stackelberg solution of the CL game

We stipulate that firm 1 is the leader and firm 2 is the follower. The follower’s

open-loop FOCs are:

∂H2(q (t) ,k (t) ,A (t))

∂q2(t)
= A2(t)− c− 2Bq2(t)−Dq1(t) = 0 ; (16)

∂H2(q (t) ,k (t) ,A (t))

∂k2(t)
= −αk2(t) + λ22(t) + γλ21(t) = 0 ; (17)

−∂H2 (q (t) ,k (t) ,A (t))

∂A2(t)
=

∂λ22(t)

∂t
− ρλ22 ⇔ (18)

∂λ22(t)

∂t
= −q2(t) + λ22(t) (δ + ρ)

−∂H2 (q (t) ,k (t) ,A (t))

∂A1(t)
=

∂λ21(t)

∂t
− ρλ21 ⇔ (19)

∂λ21(t)

∂t
= λ21(t) (δ + ρ)

These conditions have to be considered together with the initial conditions

A(0) = A0 and the transversality conditions:

lim
t→∞

e−ρt · λij(t) · Aj(t) = 0, i, j = 1, 2; j 6= i. (20)

Now, note that (19) is a separable differential equation admitting the solution

λ21(t) = 0 at all t. Using this result, (17) becomes:

∂H2(q (t) ,k (t) ,A (t))

∂k2(t)
= −αk2(t) + λ22(t) = 0, (21)

so that λ22(t) = αk2(t), which is independent of the leader’s controls. More-

over, from (18) we have that the dynamics of λ22(t) is also independent of

the leader’s controls. Therefore, we may state the following:

Proposition 5 The CL advertising game is uncontrollable by the leader.

Since the game is also perfect, than all of its open-loop equilibria are strongly

time consistent irrespective of the timing of moves.

In the next section, we explore an alternative advertising game where the

mark-up is exogenously given and advertising is aimed at increasing market

shares arther than consumers’ reservation prices.
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4 The LS advertising game

As in Leitmann and Schmitendorf (1978; LS henceforth) and Feichtinger

(1983), we have a non cooperative differential game over t ∈ [0, T ] between

two firms, 1 and 2, choosing their respective advertising efforts ui (t) to max-

imise their individual discounted payoff:

Ji =

∫ T

0

[pixi (t)− ui (t)] e
−ρtdt, i = 1, 2 (22)

where xi (t) , firm i’s market share, is a state variable evolving according to:

·
xi = −βixi (t) + ui (t)− 1

2
ciu

2
i (t)− kixi (t) uj (t) , i, j = 1, 2; j 6= i. (23)

pi, βi, ci and ki are positive parameters. In particular, βi ∈ [0, 1] is the

decay rate of firm i’s market share,10 while ki measures the spillover from

the rival’s investment uj (t) in proportion to firm i’s current demand xi (t) .

The factor e−ρt discounts future gains, and the discount rate ρ is assumed to

be constant and common to all players.11 In addition to (23), we also adopt

the further constraint whereby ui (t) ∈ [0, 1/ci] , which amounts to saying

that there is an upper bound to the advertising investment of firm i, i = 1, 2.

This restriction remains to be checked ex post, once we are in a position to

determine the features of the steady state equilibrium.

The Hamiltonian of firm i is:

Hi (x(t),u(t)) = e−ρt
{

[pixi (t)− ui (t)] + λii (t)
·
xi (t) + λij (t)

·
xj (t)

}
(24)

with i, j = 1, 2; j 6= i, where the scrap value at the terminal date T is set

equal to zero for the sake of simplicity, and without further loss of gener-

ality. We know from LS that the Nash open-loop solution is a degenerate

10To ensure that xi (t) + xj (t) ≤ 1, one has to impose βi ≥ 1/ (2ci) + 1/ (2cj) (Lemma
1 in LS, p. 646).

11In the original version of the LS model, the discount rate is nil. As we show in the
remainder, introducing positive discounting does not modify significantly the conclusions.
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closed-loop one, i.e., there exists a state-independent feedback control for

each player. Using

·
λij (t) = λij (t)

[
kju

∗
i (t) + βj + kjx

∗
j (t)

∂u∗i (t)

∂xj

+ ρ

]
+

−λii (t) [1− ciu
∗
i (t)]

∂u∗i (t)

∂xj

= 0
(25)

∂u∗i (t)

∂xj (t)
= −λij (t) kj

λii (t) ci

, i, j = 1, 2; j 6= i (26)

one finds that (25) is a separable differential equation which admits the

solution λij (t) = 0 for j 6= i, at all t. This, in turn, entails that the first

order condition:12

∂Hi (x
∗(t),u∗(t))
∂ui

= 0 ⇔ u∗i (t) =
λii (t)− 1− λijkjx

∗
j (t)

ciλii (t)
(27)

can be rewritten as follows:

u∗i (t) =
λii (t)− 1

ciλii (t)
≥ 0 iff λii (t) ≥ 1;

u∗i (t) = 0 otherwise; i = 1, 2 (28)

At this point, from (28) there emerges the property ∂u∗i (t) /∂xj (t) = 0, so

that the open-loop solution is a degenerate closed-loop one, and yields a

Markov equilibrium. The aforementioned property is equivalent to (10). We

can summarise the above discussion in the following:

Lemma 6 (Leitmann and Schmitendorf, 1978) The open-loop Nash so-

lution of the LS game is strongly time consistent. Therefore, the LS game is

perfect.

It is worth stressing that the above method is that employed by Mehlmann

(1988) in revisiting the LS model. The alternative method adopted by Leit-

mann and Schmitendorf consists in showing that the open-loop controls de-

pend only upon time but not states and initial conditions. In both cases,

12Global sufficiency conditions, which are omitted for brevity, can be shown to hold
(Stalford and Leitmann, 1973).
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one ascertains that the feedback effects at any instant t during the game

are endogenously nil, and therefore the open-loop Nash equilibrium is indeed

Markovian, i.e., it is the collapse of a closed-loop equilibrium.

To complete the characterisation of the open-loop Markovian equilibrium,

from (28) we obtain:13

·
u
∗
i =

·
λii

ciλ2
ii

(29)

provided λii ≥ 1. The dynamics of λii is given by the following co-state

equation, derived under the open-loop information structure:

−∂Hi (x
∗,u∗)

∂xi

=
·
λii − ρλii ⇔

·
λii = λii

(
ρ + βi + kiu

∗
j

)− pi . (30)

The transversality condition is λij (T ) = 0, i, j = 1, 2.

Expression (28) can be rearranged to obtain λii = 1/ (1− ciu
∗
i ) which,

together with (30) can be substituted into (29) to obtain:

·
u
∗
i =

(1− ciu
∗
i ) [ρ + βi − pi (1− ciu

∗
i ) + kju

∗
i ]

ci

, i, j = 1, 2; j 6= i. (31)

The steady state values of optimal controls and states can be found by

solving the system
( ·
xi = 0;

·
u
∗
i = 0

)
w.r.t. x and u. To simplify the exposi-

tion and focus the attention on the fundamental properties of our analysis, at

this point we may introduce some symmetry conditions, whereby ci = cj = c,

ki = kj = k, pi = pj = p, βi = βj = β, ui = uj = u and xi = xj = x. In

this way, we confine to symmetric steady state equilibria.14 The stationarity

condition
·
x = 0 yields xs = u∗ (2− cu∗) / [2 (β + ku∗)] which can be plugged

into (31) so that
·
u
∗

= 0 in ua ≡ 1/c; ub ≡ (p− β − ρ) / (cp + k) . Note that

ub < ua always, and ub > 0 iff p > β + ρ. The latter condition means that,

in order for the steady state advertising effort to be positive, the marginal

13The indication of time and discounting is omitted henceforth, whenever inessential.
14It can also be shown that indeed a unique steady state equilibrium exists, and it is

symmetric, even without imposing the above symmetry conditions.
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value that the firm attaches to any additional customer (p) must be higher

than the sum of depreciation and discount rates.15

We may summarise the foregoing analysis in:

Proposition 7 The open-loop Nash game yields a unique saddle point equi-

librium where the symmetric steady state values of the Markovian controls

are us = (p− β − ρ) / (cp + k) . The corresponding steady state level of the

state variable is:

xs =
(p− β − ρ) [2k + c (p + β + ρ)]

2 (cβ + k) [cpβ + k (p− ρ)]
.

Now we move on to the Stackelberg open-loop solution of the same game,

which can be shown to be subgame (Markov) perfect as well.

4.1 The Stackelberg solution of the LS game

To simplify exposition, as in the CL game we stipulate that firm 1 is the

leader and firm 2 is the follower. The follower maximizes

H2 (x(t),u(t)) = e−ρt
{

[p2x2 (t)− u2 (t)] + λ22 (t)
·
x2 (t) + λ21 (t)

·
x1 (t)

}

(32)

where

·
x1 (t) = −β1x1 (t) + u1 (t)− 1

2
c1u

2
1 (t)− k1x1 (t) u2 (t) ;

·
x2 (t) = −β2x2 (t) + u2 (t)− 1

2
c2u

2
2 (t)− k2x2 (t) u1 (t) .

(33)

The FOCs for the open-loop solution are:

∂H2 (x∗,u∗)
∂u2

= λ22 [1− c2u
∗
2]− 1− λ21k1x

∗
1 = 0 ⇔ (34)

u∗2 =
λ22 − 1− λ21k1x

∗
1

c2λ22

(35)

15The stability analysis is omitted for brevity. However, it can be shown that the
positivity of the advertising investment is sufficient to ensure that (xs, ub) is a saddle
point. For further details on this aspect, see Cellini et al. (2004).
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∂H2 (x∗,u∗)
∂x2

=
·
λ22 − ρλ22 ⇔

·
λ22 = λ22 (k2u

∗
1 + β2 + ρ)− p2 (36)

∂H2 (x∗,u∗)
∂x1

=
·
λ21 − ρλ21 ⇔

·
λ21 = λ21 (k1u

∗
2 + β1 + ρ) (37)

From (34), observe that ∂λ22/∂u1 = ∂2H2 (x∗,u∗) /∂u2∂u1 = 0 which entails

the following result:

Lemma 8 The Stackelberg LS game is uncontrollable by the leader. There-

fore, the open-loop Stackelberg solution is time consistent.

Lemmas 5 and 8 imply:

Proposition 9 The LS model is a perfect uncontrollable game. Therefore,

all of its Nash and Stackelberg open-loop equilibria are subgame perfect.

The explicit characterisation of the open-loop Stackelberg equilibrium can

be found in Cellini et al. (2004).

5 Extensions and concluding remarks

We have analysed the time consistency property of open-loop equilibria, in

the case of Nash and Stackelberg behaviour. We have noted that classes

of games exist, in which the strong time-consistency of the open-loop Nash

equilibrium associates with the time consistency of the open-loop Stackelberg

equilibrium. We have labelled these setups as perfect uncontrollable games.

We have also provided two examples based on different models of oligopolis-

tic competition with advertising efforts analysed by Cellini and Lambertini

(2003) and Leitmann and Schmitendorf (1978), respectively.

We have confined our attention to two-player games, and the generalisa-

tion to the case of N players is desirable. In addition to that, investigating

whether the class of linear state games enjoys the property of being always

perfect and uncontrollable is also an interesting task. These extensions are

left for future research.
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