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Abstract

We investigate dynamic R&D for process innovation in an oligopoly where

firms invest in cost-reducing activities. We focus on the relationship between

R&D intensity and market structure, proving that the industry R&D invest-

ment monotonically increases in the number of firms. This result contradicts

the established wisdom acquired from static games on the same topic. We

also prove that, if competition is sufficiently tough, any increase in product

substitutability reduces R&D efforts.

J.E.L. Classification: C73, D43, D92, L13, O31

Keywords: differential games, price competition, process innovation,
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1 Introduction

We propose a dynamic analysis of the relationship between market power

and R&D efforts, in order to reassess a well-known issue in the theory of in-

dustrial organization, that can be traced back to the debate between Schum-

peter (1942) and Arrow (1962), about the bearings of the intensity of market

competition on the pace of technical progress. The so-called Schumpeterian

hypothesis maintains that there exists an inverse relationship between the

intensity of competition and the pace of technical progress. That is, ac-

cording to Schumpeter, monopoly is the market structure that should ensure

the fastest and largest technical progress. This relies upon the idea that

monopoly ensures the highest profit level and therefore the larger internal

sources for funding R&D activities. Exactly the opposite view is expressed

by Arrow, since he focuses upon the replacement effect, according to which a

monopolist should be induced to rest on his laurels, while a firm operating in

a competitive environment should strive for new technologies or new prod-

ucts, in order to throw her rivals out of business.While the Arrowian position

measures the intensity of market competition in terms of market structure

(i.e., the number of firms), the interpretation of the Schumpeterian hypoth-

esis is a bit looser, and several versions have been alternatively investigated

in the literature.1

In order to assess this issue, we consider an oligopoly where n firms sell a

homogeneous product and compete in prices. Moreover, they also invest at

each point in time in R&D for process innovation, i.e., reducing the marginal

production cost of the good. R&D activity is characterized by positive ex-

ternalities, i.e., each firm receives a positive spillover from the investments

carried out by all other firms in the industry.

The game is state-redundant or perfect, so that the open-loop solution

is a Markovian equilibrium. We proceed in two steps. First, we charac-

1Influential studies of the relationship between market structure and innovation are
those of Flaherty (1980) and Spence (1984). For an exhaustive overview of the related
literature, see Reinganum (1989) and Martin (2001).
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terize the individually optimal path of R&D investment for a given level of

marginal production cost. Second, we obtain the steady state levels of in-

vestment and marginal cost. With respect to both the optimal path and the

steady-state level of R&D investment, the following conclusions hold. The

individual effort is always decreasing in the number of firms while the oppo-

site holds for the aggregate R&D investments. This result has an Arrowian

flavour, since as the degree of competition becomes tougher, the aggregate

investment becomes larger. This is in sharp contrast with the conclusions

drawn from the static version of the same model (Hinloopen, 2000) where

a non-monotone relationship exists between aggregate R&D investment and

market structure. Under this perspective, our model highlights the value

added of a properly dynamic analysis over the static approach based upon a

multistage game. Then, we also evaluate the effect of product differentiation

on R&D efforts. We find that (i) along the equilibrium path, the individ-

ual as well as the industry incentive to invest is increasing in the degree of

product differentiation (provided that the number of firms is large enough),

while (ii) the steady state R&D efforts are completely unaffected by prod-

uct differentiation. Result (i) is clearly Schumpeterian in spirit, since any

increase in product differentiation translates into a milder price competition

on the market; hence, in such a case we may put forward a Schumpeterian

argument according to which softening competition by reducing the degree

of product substitutability ultimately induces firms to increase their R&D

investments. This of course enhances technical progress.

The remainder of the paper is structured as follows. Section 2 illustrates

the basic setup. The solution of the open-loop game is investigated in section

3, while section 4 contains comparative statics. Concluding remarks are in

section 5.
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2 The setup

We consider an oligopoly with n single-product firms selling differentiated

goods over continuous time, t ∈ [0,∞) . At every t, firm i’s inverse demand

function is pi (t) = A− qi (t)− s
∑

j 6=i qj(t), so that the direct demand writes

as follows (Spence, 1976):

qi(t) =
A

1 + s (n− 1)
− (1 + s (n− 2)) qi(t)

(1− s) [1 + s (n− 1)]
+

+
s

(1− s) [1 + s (n− 1)]

∑

j 6=i

pj(t) (1)

where A is market size and s ∈ [0, 1) measures the degree of substitutability

between any two varieties: the higher is s, the lower is differentiation.2 pi(t) is

the market price chosen by firm i. Each firm produces at a constant marginal

cost, ci. Accordingly, her instantaneous cost function for the production of

the final good is Ci (ci, qi, t) = ci(t)qi(t). The marginal cost of firm i evolves

over time according to the following equation:

dci(t)

dt
≡ ·

ci = ci (t) [−ki(t)− βK−i(t) + δ] (2)

where ki(t) is the R&D effort exerted by firm i at time t, while K−i(t) is the

aggregate R&D effort of all other firms and parameter β ∈ [0, 1] measures

the positive technological spillover that firm i receives from the R&D activity

of the rivals.3 Parameter δ ∈ [0, 1] is a constant depreciation rate measur-

ing the instantaneous decrease in productive efficiency due to the ageing of

technology. The instantaneous R&D cost is:

Γ(ki, t) = b [ki(t)]
2 , (3)

where b is a positive parameter. Throughout the game, firms discount future

profits a the common and constant discount rate ρ > 0.

2For a model where s is a state variable changing because of R&D for product innova-
tion, see Cellini and Lambertini (2002, 2004).

3As in d’Aspremont and Jacquemin (1988).
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Firms adopt a strictly noncooperative behaviour in choosing both the out-

put levels and the R&D efforts, each firm operating her own R&D division.4

The objective of firm i consists in maximizing discounted profits:

Πi =

∫ ∞

0

{
[pi(t)− ci (t)]

[
A

1 + s (n− 1)
+ (4)

− (1 + s (n− 2)) qi(t)

(1− s) [1 + s (n− 1)]
+

s
∑

j 6=i pj(t)

(1− s) [1 + s (n− 1)]

]
− b [ki(t)]

2

}
e−ρtdt

subject to the set of dynamic constraints (2). The corresponding Hamiltonian

function is:

Hi(p,k, c) = e−ρt {[pi(t)− ci (t)] qi (t) + (5)

−b [ki(t)]
2 − λii(t)ci(t) [ki(t) + βK−i(t)− δ] +

−
∑

j 6=i

λij(t)cj(t)[kj(t) + β(ki(t) +
∑

l 6=i,j

kl(t))− δ]}

where λij(t) = µij(t)e
ρt is the co-state variable (evaluated at time t) associ-

ated with the state variable cj(t), qi (t) is defined as in (1) and p,k, c are the

vectors of control and state variables.

3 The open-loop solution

Here we characterize the Nash equilibrium under the open-loop information

structure. As a first step, we prove the following result:

Lemma 1. The open-loop Nash equilibrium of the game is subgame (or

Markov) perfect.

Proof. We are going to show that the present setup is a perfect game in

the sense of Leitmann and Schmitendorf (1978) and Feichtinger (1983). In

summary, a differential game is perfect whenever the closed-loop equilibrium

4For a discussion of R&D cooperation in the same model, see Cellini and Lambertini
(2003).
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collapses into the open-loop one, the latter being thus strongly time consis-

tent, i.e., subgame perfect.5 Consider the closed-loop information structure.

The relevant first order conditions (FOCs) are:6

∂Hi

∂pi

=
1

(1− s) Υ
{[ci − 2pi] [1 + s (n− 2)] +

+A (1− s) + s
∑

j 6=i

pj} = 0 (6)

where:

Υ ≡ 1 + s (n− 1) ; (7)

∂Hi

∂ki

= −2bki − λiici − β
∑

j 6=i

λijcj = 0. (8)

As a first step, observe that (6) only contains firm i’s state variable, so that in

choosing the optimal output at any time during the game firm i may disregard

the current efficiency of the rival. That is, there is no feedback effect in the

output choice. Conversely, at first sight there seem to be a feedback between

the R&D decisions, as (8) indeed contains all state variables, at least for any

positive spillover effect.7 The core of the proof consists in showing that no

feedback effect are actually present, even for positive spillover levels.

Taking the above considerations into account, the adjoint or co-state

equations are:

−∂Hi

∂ci

−
∑

j 6=i

∂Hi

∂kj

∂k∗j
∂ci

=
∂λii

∂t
− ρλii (9)

yielding:
∂λii

∂t
= qi (t) + λii(t) [ki(t) + βK−i(t)+

5The label ‘perfect game’ is due to Fershtman (1987), where one can find a general tech-
nique to identify any such games. Another class of games where open-loop equilibria are
subgame perfect is investigated by Reinganum (1982). For further details, see Mehlmann
(1988, ch. 4) and Dockner et al. (2000, ch. 7).

6Henceforth, the indication of time and exponential discountig is omitted for brevity.
7Intuitively, if β = 0, then the investment plans are completely independent and there-

fore it is apparent that no feedback effect operates.
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+ρ− δ]− β

2b

∑

j 6=i

λji(t) [βλii(t)ci(t)+

+λij(t)cj(t) + β
∑

l 6=i,j

λil(t)cl(t)] (10)

and:

−∂Hi

∂cj

− ∂Hi

∂ki

∂k∗i
∂cj

+

−
∑

l 6=i,j

∂Hi

∂kl

∂k∗l
∂cj

=
∂λij

∂t
− ρλij (11)

where each term
∂Hi

∂kj

∂k∗j
∂ci

(12)

captures the feedback effect from j to i, and partial derivatives ∂k∗j /∂ci are

calculated using the optimal values of investments as from FOC (8), k∗j =

− (λjjcj + βλjici) / (2b) . Now note that ∂Hi/∂ki = 0 by virtue of (8). Hence,

(11) yields:

∂λij

∂t
= λij

(
kj + βki + β

∑

l 6=i,j

kl + ρ− δ

)
+

− β

2b

∑

l 6=i,j

λlj

(
βλiici + λilcl + β

∑

j 6=i,l

λijcj

)
(13)

These conditions must be evaluated along with the initial conditions

{ci(0)} = {c0,i} and the transversality conditions

lim
t→∞

e−ρtλijcj = 0 , i, j = 1, 2. (14)

Note that, on the basis of ex ante symmetry across firms, λlj = λij for

all l. Accordingly, from (13), we have that ∂λij/∂t = 0 admits λij = 0 as a

solution. Then, using this piece of information, we may rewrite the expression

for the optimal investment of firm i as follows:

k∗i = −λiici

2b
, (15)
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which entails that ∂k∗i /∂cj = 0 for all j 6= i, i.e., feedback (cross-)effects

are nil along the equilibrium path. Accordingly, the open-loop equilibrium

is a degenerate closed-loop one, and it is strongly time consistent, or equiva-

lently, subgame perfect. It is also worth observing that this procedure shows

that FOCs are indeed unaffected by initial conditions as well. The property

whereby the FOCs on controls are independent of states and initial condi-

tions after replacing the optimal values of the co-state variables is known as

state-redundancy, and the game itself as state-redundant or perfect.¥
On the basis of Lemma 1, we can proceed with the characterization of

the open-loop solution. The FOCs on controls as well as the transversality

conditions are the same as above, while the co-state equations simplify as

follows:

−∂Hi

∂ci

=
∂λii

∂t
− ρλii ⇔ (16)

∂λii

∂t
= λii [ki + βK−i + ρ− δ] +

+
A (1− s)− pi [1 + s (n− 2)] + s

∑
j 6=i pj

(1− s) [1 + s (n− 1)]

−∂Hi

∂cj

=
∂λij

∂t
− ρλij ⇔ (17)

∂λij

∂t
= λij [kj + βK−j + ρ− δ] (18)

From FOCs (6-8) we have, respectively:

p∗i =
A (1− s) + ci [1 + s (n− 2)] + s

∑
j 6=i pj

2 [1 + s (n− 2)]
, (19)

ki = −λiici

2b
, (20)

since λij = 0 for all j 6= i, at any t ∈ [0,∞) . While (19) has the usual

appearance of a standard Bertrand best reply function, the optimal R&D

effort in (20) depends upon i’s co-state variable. Such expression can be

differentiated w.r.t. time to get the dynamic equation of ki(t) :

dki

dt
≡

·
ki = − 1

2b

[
ci

·
λii + λii

·
ci

]
(21)

7



with
·
λii obtaining from (18). Then, (21) can be further simplified by using

λii = −2bki/ci which obtains from (8), and the Bertrand-Nash equilibrium

price which obtains from (19) after imposing the obvious symmetry condition

cj(t) = ci(t), kj(t) = ki(t) and pj(t) = pi(t) for all j:8

pN =
A (1− s) + c [1 + s (n− 2)]

2 + s (n− 3)
. (22)

Using we may simplify the dynamics of the R&D effort of any single firm as

follows: ·
k = −c (A− c) [1 + s (n− 2)]− 2bρkΥΞ

2bΥΞ
(23)

where Υ is defined as in (7) and Ξ ≡ 2+ s (n− 3) . Imposing the stationarity

condition
·
k = 0, we obtain the Nash equilibrium investment, given c:

kN =
c (A− c) [1 + s (n− 2)]

2bρ [1 + s (n− 1)] [2 + s (n− 3)]
, (24)

with kN ≥ 0 ∀ c ∈ (0, A) . The steady state level of marginal cost c can be

found by solving:

·
c = −c

[
kN (1 + β (n− 1))− δc

]
= 0 (25)

which yields c = 0 and

c =
AΩ±

√
Ω (A2Ω− ΦΥΞ)

2Ω
(26)

where Ω ≡ [1 + β (n− 1)] [1 + s (n− 2)] and Φ ≡ 8bδρ. All solutions in (26)

are real if and only if A2 ≥ ΦΥΞ/Ω. If so, they also satisfy the requirement

c ∈ [0, A] . By checking the stability conditions, we may prove the following:

Proposition 2. Provided that A2 ≥ ΦΥΞ/Ω, the steady state point

css =
AΩ−

√
Ω (A2Ω− ΦΥΞ)

2Ω

kss =
δ

1 + β (n− 1)

8Note that pN = c if s = 1.
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is the unique saddle point equilibrium.

Proof. Under symmetry, the dynamics of control and state variables are

written as in (23) and (25). Accordingly, the relevant Jacobian matrix is:

J =




∂
·
c

∂c

∂
·
c

∂k

∂
·
k

∂c

∂
·
k

∂k


 (27)

whose trace and determinant are:

T (J) = δ + ρ− k [1 + β (n− 1)] (28)

∆ (J) = ρ [δ − k (1 + β (n− 1))]− c (A− 2c) Ω

2bΥΞ
. (29)

Then, it can be easily checked that the pair (css, kss) is the only solution

yielding ∆ (J) < 0 always, while the other two steady state points are both

unstable.¥

4 Comparative statics

Now we focus on the interplay between market structure (measured by the

number of firms), product substitutability (measured by parameter s) and

the incentive to invest in process R&D. To this aim, we examine effect of a

change in n and s on individual and aggregate R&D efforts, both along the

equilibrium path (expression (24)) and in steady state.

This discussion revisits the debate between Schumpeter (1942) and Arrow

(1962). Their respective views can be summarized as follows. According to

the Schumpeterian hypothesis, R&D investments and technical progress are

positively related to the flow of profits and therefore we should expect to

observe higher R&D efforts and a faster innovation process under monopoly

than any other market form. Conversely, Arrow claims that the incentive

to generate technical progress is negatively affected by market power, being

then maximized under perfect competition. The Arrowian position relies

9



upon the idea that innovation is more attractive for a competitive firm than

for a monopolist who, by definition, can not improve his market power.

In order to assess this issue in the present model, we proceed as follows.

The aggregate R&D investments along the equilibrium path and in steady

state are, respectively:

KN =
c (A− c) [1 + s (n− 2)] n

2bρ [1 + s (n− 1)] [2 + s (n− 3)]
; (30)

Kss =
δn

1 + β (n− 1)
. (31)

It is immediate to verify that, taking into account the integer constraint on

n:
∂KN

∂n
≥ 0;

∂Kss

∂n
≥ 0 (32)

in the admissible range of parameters. The above properties prove the fol-

lowing result:

Proposition 3. The optimal R&D investment of the whole industry is

non-decreasing in the number of firms. This holds both along the equilibrium

path and in steady state.

That is, the industry behaviour is clearly Arrowian. If we examine the

individual investment, we obtain ∂kN/∂n, ∂kss/∂n < 0 everywhere. This

entails that any increase in the number of firms brings about a decrease in

individual R&D effort. The driving force is twofold: (i) tougher market com-

petition reduces profits and therefore the funds available for financing R&D

activity; (ii) a larger population of firms means a larger positive spillover

that any firm receives from rivals. Overall, a scale effect prevails, so that the

overall expenditure of the industry is monotonically increasing in n.

Hinloopen (2000) has solved the static Bertrand equilibrium with n firms,

finding that both aggregate and individual R&D efforts are non-monotone

w.r.t. n. Under this respect, the static approach proves to fall short of

appropriately accounting for the inherently dynamic nature of R&D which

is not captured by multistage game modelling.

10



Now examine the effect of s on optimal investments. First, note that

steady state levels are independent of the degree of product substitutability.9

Second, considering optimal R&D efforts along the equilibrium path, we have:

∂kN

∂s
∝ − [

s2 (n− 2) (s− 3) + 2s (n− 3) + 1
]

(33)

and obviously ∂KN/∂s = n∂kN/∂s. Derivative (33) is always negative, ex-

cept at n = 2, where ∂kN/∂s ∝ 2s − 1 > 0 for all s ∈ (1/2, 1] . Hence, we

may state:

Proposition 4. For all n ≥ 3, the incentive to invest in R&D on the

equilibrium path is decreasing in product substitutability. At n = 2, R&D

efforts are decreasing in s for s ∈ (0, 1/2) , and conversely for s ∈ (1/2, 1] .

Any increase in substitutability, or decrease in differentiation, damages

operative profits. Hence, the net effect on kN and KN is the balance of two

opposite tendencies: (i) the decrease in operative profits lowers the funds for

R&D activity; (ii) any increase in R&D for process innovation may allow

firms to recover on the cost side what is being lost on the differentiation side.

Proposition 4 says that, if n is sufficiently large, the first effect dominates

the second because competition is too tough and the price is not worth the

effort, while the opposite holds for n = 2. Contrary to Proposition 3, the

flavour of Proposition 4 is Schumpeterian, at least for n ≥ 3: any increase in

product differentiation amounts to a decrease in the intensity of competition,

and brings about an increase in R&D efforts.

5 Conclusions

We have analyzed dynamic R&D investments for cost-reducing innovation in

a Bertrand oligopoly in order to evaluate the influence of market structure

and product differentiation on R&D incentives.

9This is in sharp contrast with the static models on the same topic (see Delbono and
Denicolò, 1990; Bester and Petrakis, 1993; Qiu, 1997; Hinloopen, 2000; and Lambertini
and Mantovani, 2001).

11



Three features of our analysis are worth stressing. First, the game is

perfect, or state-redundant, so that the open-loop solution is Markovian, or

subgame perfect. Second, if we look at the effects of market structure on

innovation, an Arrowian conclusion obtains, since aggregate R&D effort is

increasing in the number of firms, both along the equilibrium path and in

steady state, for any degeree of product differentiation. This sharply dif-

fers from the ambiguous conclusions reached by the static models, where the

smoothing of investment efforts over a long time horizon is ruled out by def-

inition. Third, we have shown that the interplay between R&D incentives

and product differentiation is ambiguous if n = 2, while individual and in-

dustry investments are monotonically decreasing in product substitutability

if n ≥ 3. This, in turn, is a Schumpeterian result. Therefore, as a final re-

mark, we may say that, if the intensity of market competition is measured by

market structure, all else equal, then the answer of the model is Arrowian;

if instead the intensity of competition is measured by product substitutabil-

ity for a given market structure, then the model points to a Schumpeterian

conclusion.

12
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[8] Delbono, F. and V. Denicolò (1990). R&D investment in a symmetric

and homogeneous oligopoly: Bertrand vs Cournot. International Journal

of Industrial Organization, 8, 297-313.

13



[9] Dockner, E.J, S. Jørgensen, N. Van Long and G. Sorger (2000). Dif-

ferential Games in Economics and Management Science. Cambridge,

Cambridge University Press.

[10] Feichtinger, G. (1983). The Nash solution of an advertising differential

game: generalization of a model by Leitmann and Schmitendorf. IEEE

Transactions on Automatic Control, 28, 1044-1048.

[11] Fershtman, C. (1987). Identification of classes of differential games for

which the open-loop is a degenerate feedback Nash equilibrium. Journal

of Optimization Theory and Applications, 55, 217-231.

[12] Flaherty, M.T. (1980). Industry structure and cost-reducing investment.

Econometrica, 48, 1187-1209.

[13] Hinloopen, J. (2000). Strategic R&D co-operat- ives. Research in Eco-

nomics, 54, 153-185.

[14] Lambertini, L. and A. Mantovani (2001). Price vs quantity in a duopoly

with technological spillovers: a welfare re-appraisal. Keio Economic

Studies, 38, 41-52.

[15] Leitmann, G. and W.E. Schmitendorf (1978). Profit maximization

through advertising: a nonzero sum differential game approach. IEEE

Transactions on Automatic Control, 23, 646-650.

[16] Martin, S. (2001). Advanced Industrial Economics, Second Edition. Ox-

ford, Blackwell.

[17] Mehlmann, A. (1988). Applied Differential Games. New York, Plenum

Press.

[18] Reinganum, J. (1982). A class of differential games for which the closed

loop and open loop Nash equilibria coincide. Journal of Optimization

Theory and Applications, 36, 253-262.

14



[19] Reinganum, J. (1989). The timing of innovation: research, development

and diffusion. In Handbook of Industrial Organization (R. Schmalensee

and R. Willig, Eds.). Vol. 1. North-Holland, Amsterdam.

[20] Schumpeter, J.A. (1942). Capitalism, Socialism and Democracy. New

York, Harper.

[21] Spence, A.M. (1976). Product differentiation and welfare. American Eco-

nomic Review, 66, 407-414.

[22] Spence, A.M. (1984). Cost reduction, competition and industry perfor-

mance. Econometrica, 52, 101-121.

15


