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Abstract

We present a differential duopoly game with capacity accumulation, where
firms control investment efforts and sales, which can be at most equal to the
respective installed capacities at any point in time. We use, alternatively,
inverse and direct demand functions with product differentiation, recalling
Cournot and Bertrand competition. We show that, at the subgame perfect
steady state equilibria, Cournot and Bertrand profits do not coincide, unless
the game is quasi-static, which happens if capacity does not depreciate over
time.
Keywords: differential games, capacity accumulation, price setting, quan-

tity setting.

JEL Classification: C73, D43, D92, 1.13.



1 Introduction

We present a differential duopoly game with differentiated goods and capital
accumulation. In particular, we model the accumulation process through
reversible investment & la Nerlove-Arrow (1962), where capital (or capacity)
accumulation occurs through costly investment, as in Solow’s (1956) growth
model. Firms control investment efforts and sales, which can be at most equal
to the respective installed capacities at any point in time. We investigate
the game using, alternatively, inverse and direct demand functions. These
two settings recall the Cournot and Bertrand models, although being not
equivalent, strictly speaking, to either the first or the second. However, to
case the exposition, we shall refer to ‘Cournot competition’ (respectively,
‘Bertrand competition’) when using inverse (resp., direct) demand functions.

The interest of this approach lies in the fact that it allows to construct a
dynamic perspective where one can analyse the interaction between capacity
and the market performance of firms, an issue that has received a considerable
amout of attention in the IO literature. The main result obtained by this
stream of contributions is that Bertrand competition replicates the Cournot
equilibrium outcome under endogenously determined capacity constraints
(Kreps and Scheinkman, 1983).

Differently from the existing models dealing with the choice of capacity in
static two-stage games (see, e.g., Beckman, 1967; Levitan and Shubik, 1972;
Kreps and Scheinkman, 1983; Osborne and Pitchik, 1986)," capital is not a
control variable in the present setting, where each firm chooses its investment
efforts. Consequently, the capital (or capacity) of each firm is not directly
affected by the capital of opponents.

Our main results are the following. We prove that the open-loop equi-
librium outcome of the Bertrand game coincides with the Cournot equi-
librium. This amounts to saying that the Nerlove- Arrow-Solow differential
game encompasses the results of the static analysis carried out by Kreps and
Scheinkman (1983) in the spirit of the original idea dating back to Edge-
worth (1897). This is technically due to the fact that the Bertrand setting
obtains through a linear symmetric transformation of the Cournot setting.
Therefore, the two models are isomorphic and produce the same steady state
equilibrium. This, however, holds only under the open-loop solution, which

LAs is well known, the first analysis of capacity-constrained price competition is in
Edgeworth (1897).



is strongly time consistent (or subgame perfect) only if firms use inverse
demand functions (i.e., in the Bertrand game). In the Cournot game, the
open-loop equilibrium is not subgame perfect, and this prompts for the adop-
tion of the closed-loop solution concept. Comparing the Cournot closed-loop
equilibrium profits against the Bertrand profits (or the Cournot open-loop
profits), we find that (i) they do not coincide, and (ii) there exists an ad-
missible range of parameters (with firms selling substitute goods) where the
first are smaller than the second. A situation where equilibrium profits are
the same irrespective of the formulation of market demand and the choice
of the solution concept is that where capacity does not depreciate at all
over time. However, this case is inherently quasi-static. Therefore, we can
conclude that, in a dynamic game, the coincidence between Bertrand and
Cournot outcomes cannot arise in general. Moreover, the established result
that Cournot behaviour is more (less) profitable than Bertrand behaviour
when goods are substitutes (complements), dating back to Singh and Vives
(1984), inter alia, is also contradicted. These results essentially depend on
the fact that, at the Bertrand sunbgame perfect equilibrium firms operate
at full capacity, while they keep some idle capacity at the subgame perfect
Cournot equilibrium.

The remainder of the paper is structured as follows. Section 2 motivates
the dynamic approach. The basic setup is laid out in section 3. The Cournot
and Bertrand settings are investigated in sections 4 and 5, respectively. Then,
the comparative assessment of equilibrium profits is carried out in section 6.
Concluding remarks are in section 7.

2 The differential game approach

We believe that, in order to analyse the firms’ behaviour concerning the
accumulation of productive capacity, the differential game approach is par-
ticularly appropriate. Indeed, building capacity needs time; the depreciation
of capacity over time is an important factor; the time dimension is important
in planning the investment efforts towards capacity accumulation. Furhter-
more, strategic interaction among firms is an important issue both in the
market phase, and in the phase when capacity decisions are taken. Last but
not least, the differential game approach leads to results encompassing those
obtained by the more traditional approach based on static two-stage games.
More precisely, the differential game approach allows to understand under



which particular conditions, the results from static game can be interpreted
as the steady state solution of the differential game.? Specifically, in the
present paper we aim at checking whether the well-known result obtained by
Kreps and Scheinkman (1983) about the equivalence between the Cournot
and the Bertrand setting in a two-stage static game, holds in a differential
game framework too.

The existing literature on differential games mainly focusses on two kinds
of strategies adopted by players: the open-loop and the closed-loop strate-
gies.* When players adopt the open-loop solution concept, they design the
time path concerning the control variable(s) at the initial time and then stick
to it forever. This means that the open-loop strategy is simply a time path
of actions, and time is the only determinant of the action to be done at any
instant. The relevant equilibrium concept is the open-loop Nash equilibrium,
which is only weakly time consistent and therefore, in general, it is not sub-
game perfect.* When players adopt the closed-loop strategy, they do not
precommit control variable(s) on any path, and their actions at any instant
may depend on the history of the game up to that instant, and, in particular,
on the values of the state variables. In this situation, the information set used
by players in setting their actions at any given time is often simplified to be
only the current value of the state variables at that time, along with the ini-
tial conditions. This specific situation is labelled as memoryless closed-loop
(Mehlmann, 1988). The relevant equilibrium concept, in this case, is the
closed-loop memoryless Nash equilibrium, which is strongly time consistent
(or subgame perfect).®

The literature on differential games devotes a considerable amount of

2For additional motivation supporting the choice of the differential game approach, see
Dockner et al. (2000), chapter 9. This reference also provides a presentation of relevant
differential games with capital accumulation.

3See Kamien and Schwartz (1981); Basar and Olsder (1982, 1995%); Mehlmann (1988);
Dockner et al. (2000). See also Cellini and Lambertini (2001).

4 As to the definition of time consistency and subgame perfection, we rely - among many
different definitions available in the literature - on the definition provided by Dockner et
al. (2000, Section 4.3). We use “strong time consistency” as a synonomous of subgame
perfection.

®Different rules of closed-loop class do exist: e.g., the perfect-memory closed loop, where
the control variables depend on the complete history of the state variable(s); the feedback
rule, where only the current stock of states are considered, irrespective of initial conditions.
For oligopoly models where firms follow feedback rules, see Simaan and Takayama (1978),
Fershtman and Kamien (1987, 1990), Dockner and Haug (1990), inter alia.



attention to identifying classes of games where the closed-loop equilibria de-
generate into open-loop equilibria. The degeneration means that the Nash
equilibrium time paths of control variables coincide under the different strat-
egy concepts. Whenever an open-loop equilibrium is a degenerate closed-loop
equilibrium, then the former is also strongly time consistent (or subgame
perfect). Therefore, one can rely upon the open-loop equilibrium which, in
general, is much easier to derive than closed-loop.°

3 The model

The game is played over continuous time, ¢ € [0,00).” In any instant of
time, the market is served by two firms, 1 and 2, producing a differentiated
good. Let ¢;(t) define the quantity sold by firm ¢ = 1,2 at time ¢. The
marginal production cost is constant and equal to ¢ for all firms. For the
sake of simplicity, we pose ¢ = 0. As in Singh and Vives (1984), the demand
function for good 7 at time ¢ is:

pi(t) = A —q;(t) = Dg;(1) , (5 # 7) (1)

where parameter D € [—1, 1] measures the degree of substitutability or com-
plementarity between goods. If D) = 1, they are perfect substitutes; if D =0
the goods are independent and each firm behaves as a monopolist; if D = —1,
products are perfect complements.

In order to produce, firms must accumulate capacity or physical capital
k;(t) over time. As in Solow (1956) and Nerlove and Arrow (1962), the rele-
vant dynamic equation describing the accumulation of capacity (or physical
capital) is:®

0
ot

= I,(t) — 6k;(t) | (2)

(Classes of games where this coincidence arises are illustrated in Clemhout and Wan
(1974); Reinganum (1982); Mehlmann and Willing (1983); Dockner et al. (1985); Fersht-
man (1987); Fershtman et al. (1992). For an overview, see also Mehlmann (1988), and
Dockner et al. (2000, ch. 7).

"The game can be reformulated in discrete time without significantly affecting its qual-
itative properties. For further details, see Basar and Olsder (1982, 19952).

8 A similar setting is used in Fudenberg and Tirole (1983), Fershtman and Muller (1984)
and Reynolds (1987). For a dynamic oligopoly game where capital accumulates a la
Ramsey (i.e., current unsold output becomes additional productive capacity), see Cellini
and Lambertini (1998).



where I;(t) is the investment carried out by firm i at time ¢, and § > 0
is the constant depreciation rate. The instantaneous cost of investment is
Ci[I; ()] = b[I; (1)]?, with b > 0.

We also assume that firms bear instantaneous production costs C; (t) =
cq; (t) and, for the sake of simplicity, we set ¢ = 0 without further loss of
generality. At any time ¢, firm ¢ produces and sells an output ¢;(t) < k;(t),
so that we can write ¢;(f) = «; (¢) k;(t), with «; (£) € (0, 1]. As a consequence,
the demand function for variety i rewrites as:

pi(t) = A —a; (1) ki(t) + Day () kj(t) - (3)

Player 7’s objective is the maximisation of the present value of the profit
flows:

max / (., t)e Ptdt (4)
L Jo

subject to the dynamic constraint represented by the behaviour of the state
variables (2) for ¢ = 1,2. Instantaneous profit is m;(.,%) = p;g; — b[I; (t)]2.
The factor e ** discounts future gains, and the discount rate p is assumed to
be constant and common to both players. In order to solve his optimisation
problem, each player defines a strategy.

The control variables of firm ¢ are the instantancous investment 7;() and

the capacity utilization level o (t), while k;(t) is obviously a state variable.

4 Cournot competition

When firms write profits using the inverse demand functions (3), the Hamil-
tonian function of firm ¢ writes as follows:

Hi(t) = e {[A—a; (1) ki(t) — Doy (t) ks (t)] o () ki(t) — b [L; (1)) +
Nii (8) [1i(8) — 0k (0)] + Nig (8) [1;(2) — 0k;(0)]} (5)

where \j;(t) = p;;(t)e”", and p;(t) is the co-state variable associated to k; (%),
i,j =1,2. Moreover, let k;(0) = kyo define the initial condition for firm .

4.1 The open-loop Nash equilibrium

Examine the open-loop simultaneous solution. The first order conditions
(FOCs) are (we omit exponential discounting for brevity):
OH,; (1)

=k; (1) [A — 20y (¢) ki () — Doy () k;(t)] = 0 (6)



IH, (%)

8[1‘(75) = _2b]i<t> + )\m‘(t) =0 (7>
OH;(t)  INu(t)
TR M=
ONii(t)
ot = (P +0) Ay (75) -y (75) [A — 20 (t) ]fz(t) — Day (t) k; (t)] (8>

together with initial conditions k; (0) > 0 and transversality conditions:

tlim W () - ki(t) =0 tlim pi(t) - k;(t) = 0. 9)
From (7) we obtain:
Aii (1) = 201(2) ; = ——"

ilf) i(0); ot 2b Ot

Then, using the symmetry conditions o; (t) = «; (t) = a(t) and k; (1) =
k;(t) = k(t) and A\;(t) = \j;(t) = 20I(t), we can write (the indication of
time is omitted for brevity):

oI  2b(p+0)] —a[A—a(2+ D)K]

(10)

- 11
ot 2b (11)
which can be further simplified using k* = 1/0 from 0k/0t =0 :
ol [2b6(p+6)+a*(2+ D) I—adA
— = (12)
ot 2b
The above differential equation is equal to zero at:
0A
I c (13)

T2 (p+0)+a’(2+ D)

This, together with k* = [*/d, can be plugged into (6), that rewrites as
follows:

OH 2A%a0b (p + 9)

— = >0 al . 14

do 206 (pL0) +aZ (24 D)~ e (14)
Therefore, a* = 1, with the superscript ss standing for steady state. The

corresponding optimal steady state levels of investment and capacity are:

0A 1% A
1% = P kY = — = . (15)
24+ D+2b(p+0)0 § 24D+2b(p+0)0
The pair {I°° k**} is a saddle point; the proof is straightforward, in that,
the determinant of the Jacobian matrix associated to the dynamic system

{0k,(t)/0t = 0,0I,;(t) /0t = 0} is negative, while its trace is positive.”

®Calculations are trivial and they are omitted for brevity.

6



Moreover, from (15) it can be shown that, in § =0 :

ss __ 88 __ A

which coincides with the equilibrium output of the static game studied by

Singh and Vives (1984). In general, however:

Proposition 1 For all positive and admissible values of parameters {0, p} ,
steady state (open-loop Nash equilibrium) capacity and sales are lower than
in the static Cournot game with product differentiation.

Steady state profits are:

o AZ[LHD5(2p+6)]
T {2[1 4066 (p+0)] + DY

(17)

where the subscript ol stands for open-loop. Profits 7] coincide with the
Cournot-Nash equilibrium profits 7Y = A%/(2 + D)? attained in the static
model when § = 0. In general, the effects of parameters {0, p} on steady state
profits are described by the following partial derivatives:

ors  2A°[200° (3p+0) +20 (L +bp*) = D(p+9)]

a5 {2[1+ 05 (p+0)] + D}® ’ (18)
omy  2A4%0 (2bp — D) (19)
Op  {2[1+b5(p+6)]+ D}

This simple comparative static exercise suffices to prove the following:

Proposition 2 The steady state (open-loop Nash equilibrium) profits are
non-monotone in both p and 9.

The above Proposition, in turn, implies that there exist parameter ranges
wherein the steady state profits 7% generated by the differential game are
larger than the static equilibrium profits 7V :

75 — 7N o (24 D) [6 (D — 2) +2Dp| — 4b5 (p + 6)?, (20)

ol

with the r.h.s. of (20) being equal to zero at:

Do —2p£2(p+0)+/1+bd(0+2p)

. 21
0+ 2p (21)

7



The smaller root is negative, while the larger root is positive and smaller
than one for all

3(2p —9)
< 2
46 (0 + p)
provided that p > / 2. This proves the following Corollary to Proposition 2:

(22)

Corollary 3 Suppose p > /2. If so, then w55 > wN for all

D e —2p4+2(p+8) /1 +b3 (5 +2p)
d+2p ’

4.2 The closed-loop Nash equilibrium

FExamine the closed-loop simultancous solution. FOCs (6-7), initial condi-
tions and transversality conditions are the same as above, while the costate
equations now write as follows:

COH(t)  OM(t) 9a5(t)  OHi(t) 917 (1) _ OAi(t)

Ok,(t) — Doy(t)  Ok(t)  OL(t) k(1) ot —pAi(t)  (23)

where the terms

o) 0e3() o) ()
describe the feedback effects from the rival’s control variables, and starred

variables are defined as the solutions to the respective FOCs. First of all,
note that the feedback from the rival’s investment is nil, since:

(24)

JHON
TOR (25)

as it can be immediately ascertained from (7). Second, from (6) we obtain:

CA=Do; (ki (t)  9a5(t) Doy (t)

SO=—m TR 0 (26)
while o (1
8a;(<t)) — — Doy (£) k; (8) k; (2) . (27)



We may rewrite the costate equation (23) accordingly:

ONii(t) _ 2(p+0) Ni(t) — i (1) [24 — 0; () ki(t) (4 — D?) — 2Day; (t) k(1))

ot 2

(28)
Then, using
OI,(t 1 OAu(t

and imposing the same symmetry cionditions as above, we obtain the differ-
ential equation of firm ¢’s investments:
oI _4b(p+0o)l —a2A-—a(d+D((2- D))k
ot 4b '

Solving the system
OH ol ok
{a—@—O,E—O,E—O} (31)

we characterise the steady state equilibrium of the closed-loop Cournot-Nash
game:

(29)

(30)

24/b0 ) ADo
Oéss — (p_l_ ) : ]ss — ; (32>
D 2(24 D) /b (p+9)
1% AD
B o= L= (33)
Y 2(24 D) +/bo (p+9)
as long as
N D2
FlLl=2b0<b=———. 4
TR Y (34
The corresponding equilibrium profits are:
A?[4 6) — 6 D? )
VRN ul Giik) R BT Py [y (35)
4(p+9)(2+ D) Y

where subscript ¢l stands for closed-loop. This condition is always met, since

5
2 %>1 (36)

for all p and . Moreover, notice that

A2
lim 7% = (lsim = — =g (37)

p—o0 0o (2+ D)? B



while, in general, 7% < 79V for all finite values of p and all § € (0,1]. If
6 =0, then 75 = 7.

Now examine the stability properties of the dynamic system (2-30), on
the basis of the associate Jacobian matrix:

-0 1
J=1| a4+ D(2- D) (38)
o
I T
The trace and determinant of matrix J are T (J) = p > 0 and:
24+D2-D
A() = —b(pt o)~ BT DEZD) (39)

4b

which is always negative. Therefore, the closed-loop equilibrium is a saddle
point in the whole parameter range. The foregoing analysis can be sum-
marised by:

Proposition 4 The closed-loop Cournot game yields a unique subgame per-
fect equilibrium, which is always a saddle point. Steady state profits m*° are
lower than the static Cournot-Nash profits 7N except when, in the limit, ei-
ther ¢ tends to zero or p tends to infinity (or both). In such cases, 785 = 7N,
If the cost of investment is low enough, firms hold excess capacity in equilib-

LU,

The last part of the Proposition deserves a comment. The presence of idle
capacity at the subgame perfect equilibrium is a direct consequence of the
fact that, in the closed-loop game, each firm explicitly takes into account the
rival’s reaction. In closed-loop oligopoly games, it is commonly observed that
firms sell more than in open-loop games, all else equal (see, e.g., Fershtman
and Kamien, 1987). This is due to the fact that each firm tries to anticipate
the rival’s behaviour and, in so doing, to acquire a larger market share.
Here, the decisions on capacity and sales are separated, and the attempt at
outselling one’s rival translates into the holding of some idle capacity, as long
as this is sufficiently inexpensive.

The above Proposition has an interesting Corollary:

Corollary 5 At the closed-loop equilibrium, firms’ sales are equal to the
static Cournot-Nash output. Hence, the steady state price at the closed-loop
equilibrium corresponds to the static Cournot-Nash price.

10



Proof. To prove this result, it suffices to observe from (32) that the product
of a* and k** corresponds to a®k* = A/(2+4+ D) = ¢qV. Accordingly,
p=A/2+D)=p"". =

Consequently, the result 7% < 7V is entirely determined by the presence
of the instantaneous investment costs involved by capacity accumulation.

5 Bertrand competition

Now examine price competition. Inverting the demand system (3), we obtain:

Al —=D)—p;(t)+ Dp; (1)

O = G- )
yielding the following Hamiltonian function of firm i :

() lw) (AL =D)—pi(t)+ Dp; (t))] N

a; (t) (1 — D?)

§(A(1 = D) —p; (t) + Dp; (1))
+Ai5(1) l[j@) - a; (t) (1 — D2) ] }

where \j;(t) = p;(t)e”, and p,;(t) is the co-state variable associated to k;(t),
7,7 = 1,2. However, in the present setting, the state equations are defined
in terms of prices rather than capacities, with prices being auxiliary state
variables. Therefore, let p;(0) = p;o define the initial condition for firm i.

Observe the FOCs on the control variables (again, the indication of time
is omitted henceforth):

OH; 0N [A(1—D)—p;+ Dp;] Nk

Doy a? (1 —D?) a; 0 (42)
M _ —2bI, 4+ Ny = 0= \; = 2bI; (43)
a1,

oL, 1 o\
L= 44
ot 26 ot (44)

11



As long as ¢, o; and k; are positive, condition (42) can be satisfied only in
Ai; = 0, which in turn cannot be the case in general, unless I; = 0, as it can
be immediately ascertained from (43). Therefore, in general:

OH,;
>0 45
o (45)
and it follows that o; = a; = 1 at any ¢{. This also entails an additional

relevant implication, i.e., we cannot obtain a best reply function describing
af from (42), let alone the feedback effect daf/dp;. This, in combination
with (43), ultimately entails:

Proposition 6 In the Bertrand setting, firms always operate at full capacity,
and the open-loop Nash equilibrium is a degenerate closed-loop equilibrium.
Therefore, the open-loop solution is strongly time consistent (or subgame per-

fect).

The above Proposition establishes that the present game is a ‘linear state
game’, producing Markov perfect open-loop Nash equilibria.!” The Nash
equilibrium time path of the variables coincides under opne-loop and closed-
loop decision rules. This is due to two features of the game: first, the dynamic
behaviour of any firm’s state variable (i.e., capacity) does not depend on the
rivals’ control and state variables, which makes the kinematic equations con-
cerning other firms redundant; second, for any firm, the first order conditions
taken w.r.t. the control variables are independent of the rivals’ state vari-
ables, which entails that the cross effect from rivals’ states to own controls
(which characterises the closed-loop information structure) disappears.

Notice also that, on the basis of the above considerations, the costate
variable JA;; is redundant in that it does not appear in the first order con-
ditions (42) and (43).!' Therefore, we can simplify the problem, by setting
a; = «a; = 1. Moreover, A\;; = 0 and A\; = A;, as only one co-state vari-
able is relevant for any player. Accordingly, we can derive the open-loop
costate equation. Since we are using direct demand functions, capacity k; is
expressed as a function of the price vector {p;, p;}. Therefore,

O _ OHi Opi | OHi Op;

(46)

L9A fixed price version of the game is in Leitmann and Schmitendorf (1978) and Fe-
ichtinger (1983). In their contributions, the setup is interpreted as a game of advertising.
For a thorough exposition of linear state games, see Dockner et al. (2000, chapter 7).

'This is specifically due to the fact that the state equations are separated.

12



where

8]71 1— D2 ’
8]?] N 1— D2 7
Ip Ip;
=-1;Li__p,
ok; " Ok;

Partial derivatives dp;/0k; and Jp;/0k; are calculated using the inverse de-
mand function (1). Using (47), the costate equation writes as follows:

S R Tl o N R S 4

from which we obtain

0N  A(1-=D)—pi(2—D*)+Dpj+ X\ (p+9) (1 - D?
ot 1—D? '

Then, plugging (43) and (49) into (44) and imposing the symmetry condition

p;j = p;, We have:

(49)

50
ot 20(1+ D) (50)
with ol 2+ D)— A
i pi(2+ D) —
=0at [” = : ol
ot " T % (o) (1L+ D) (51)
I#% can be substituted into (2), which simplifies as follows:
ot 2b(p+9)(1+ D) 1+ D
wth Ol A[L + 265 (p + 6)]
i + p+
— =0at pi* = 53
ot P T ot (pto)+ D (53)

Now, using (53), we can simplify the expression for the steady state levels of
investment and capacity:

JA I
I = kP = 4
P24 D+w(pt+a)e (54

which coincide with (15). Also the equilibrium profits are obviously the same
as in the Cournot game investigated in section 4.1 (see expression (17)).
This discussion leads to the following:

13



Proposition 7 The steady state of the open-loop Bertrand game is observa-
tionally equivalent from that of the open-loop Cournot game.

Note, however, that the open-loop Nash equilibrium of the Cournot game
is not subgame perfect. Therefore:

Corollary 8 At the subgame perfect equilibria, the Bertrand outcome does
not coincide with the Cournot outcome, with the same capacity accumulation
dynamics being used in both settings.

6 Closed-loop vs open-loop equilibria

In the previous section, we have established that, irrespective of whether
one uses direct or inverse demand functions, the open-loop equilibrium looks
exactly the same. However, from sections 4.1 and 4.2 we know that (i) the
open-loop equilibrium of the Cournot model is not subgame perfect, and (ii)
at the closed-loop Cournot equilibrium, in general, firms will not operate at
full capacity. This prompts for a comparative assessment of the performance
of firms under the two alternative solution concepts.

We confine our attention to the case where the closed-loop Cournot game
yields an interion solution w.r.t. a® ie., b <b= D?/[40 (p+ 9)]. Evaluat-
ing (17) against (35), we simultaneously compare

e the Bertrand profits versus the Cournot profits, at the subgame perfect
equilibria of the respective games;

e the open-loop Cournot profits versus the closed-loop Cournot profits.

In games where the size of the firm coincides with its sales, the answer
would be straightforward, since the closed-loop solution usually entails larger
sales and lower profits as compared to the open-loop solution (see, e.g., Fer-
shtman and Kamien, 1987). Here, however, firm size (as measured by its
installed capacity in steady state) may differ {rom its sales. Accordingly, this
assessment must be explicitly carried out on the basis of:

sign {73 — 75} = sign {—4625 (p+9) [4 (p+9)— 5D2} + (55)

4b(p+6)(2+ D) [2pD — 3 (1 — D) (2+ D)] + D* (2 + D)*}.

14



The r.h.s. of (55) may take either sign depending upon the size and sign of
the four parameters {b, D,p,6}. Taking the roots of 75 — 73 = 0 w.r.t. b,
we obtain:

(2+ D) [2pD —6(1— D) (2+ D)] +VQ

25 (p+0)[4(p+0) — 6D?] (56)
2+ D) 20D~ 6 (1~ D) (2+D)] - VO

20 (p+06)[4(p+0)— D7

blz

by =

where:
Q=4pD [pD +6 (D> +2D = 2)] +6*(2+ D) (2D*-3D +2).  (57)
Hence, two cases may arise:

e () <0. If so, the equation 7% — 7%’ = 0 has no real roots, entailing that

75 — 1% < 0 always, since the coeflicient of b? is always negative.

e 0 >0.1If so, by,by € R, with by < 0 < b < by in the whole admissible
range of parameters, and 737 — 7% > 0 for all b < b.

Instead of spanning the whole parameter range, consider the following
example. Suppose b = b/2. In such a case,

mo =7l o D* {4pD (84 3D) + 6 (2+ D) [D*(6+ D) +8(2+3D)]} (58)

ol

S8 55 =
and 757 > 72 iff

B > max

/ {_(2+D) [D2(6+D)+8(2+3D)]’0} (59)

1D (8 +3D)
with (24 D)[D?(6+ D) +8(2+3D)
4D (8 + 3D)

Therefore, over the whole substitutability range, 737 > 7% for all admissible
values of p and 6. If instead D € [—1,0), then 75 > 7% 1ff

p 2+ D)[D2(6+D)+8(2+3D)
5T 1D (8 + 3D)

2 0forall D<0.

(60)
and conversely. If D = 0, obviously 7%/ = 7%/,

With reference to the literature comparlng the relative profitability of
Bertrand and Cournot markets, the above argument proves our final result:
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Proposition 9 If goods are substitutes, there are admissible parameter con-
stellations wherein the Bertrand game is more profitable than the Cournot
game. Conversely, if goods are complements, there are admissible parameter
constellations wherein the opposite holds.

This is in sharp contrast with the acquired wisdom pertaining to static
games, establishing that Cournot is more (less) profitable than Bertrand
when firms sell substitute (complement) goods. The source of this result
lies in the fact that, in the present differential game, capacity accumulation
entails an instantaneous adjustment cost which is, by definition, absent in the
corresponding static game where capacity is set up from scratch. Moreover,

steady state sales differ across equilibria. In particular, provided that o) <

1:
2Ab6 (p +0)

24+ D)[D+2(14+b5(p+0))]

which means that, at the closed-loop equilibrium, firms sell more than at the
open-loop equilibrium, although leaving some capacity idle. Accordingly, the

¢ — k% = > 0 always, (61)

Cournot equilibrium price is lower than the Bertrand equilibrium price.

Finally, there remains to be stressed that, in the (rather unrealistic) case
where 0 = 0, the three equilibria investigated above are observationally equiv-
alent in terms of profits, for all values of D and p (the latter parameter being
irrelevant in such a case):

Proposition 10 If the depreciation rate of installed capacity is nil, then
steady state equilibrium profits always coincide with the static Cournot-Nash
profits, irrespective of whether goods are substitutes, compements, or inde-
pendent.

This Proposition emphasises that the correspondence between Cournot
and Bertrand outcome when competition is essentially static obtains as a
special case of a dynamic model where the profit performance of firms, in
general, will substantially differ across different settings.

7 Concluding remarks

We have investigated the influence of costly capacity accumulation on equi-
librium profits in a differential game where firms optimally choose their re-
spective investment efforts as well as the degree of capacity utilization. This
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has allowed us to investigate two alternative settings mimicking Cournot
and Bertrand behaviour, to show that, in general, the equivalence between
Bertrand and Cournot outcomes under capacity constraints, holding true in
static games (Kreps and Scheinkman, 1983), does not carry over to dynamic
games. Moreover, we have also shown that Bertrand may be more profitable
than Cournot, even when firms supply substitute goods. These results are
driven by the drastically different attitude of firms towards capacity accumu-
lation and utilization in the two settings. While they operate at full capacity
at the Bertrand equilibrium, they keep some excess capacity at the Cournot
equilibrium. Moreover, in the latter the installed capacity and the associated
sales are larger than in the former, and the Cournot firm bears larger costs
and earns lower revenues than a Bertrand firm.

17



References

[1]

2]

Basar, T., and Olsder, G.J. (1982, 1995%), Dynamic Noncooperative
Game Theory, San Diego, Academic Press.

Beckman, M. (1967), “Edgeworth-Bertrand Duopoly Revisited”, in
Henn, R. (ed.), Operations Research-Verfahren, III, Meisenhein, Ver-
lag Anton Hein.

Cellini, R. and L. Lambertini (1998), “A Dynamic Model of Differenti-
ated Oligopoly with Capital Accumulation”, Journal of Economic The-
ory, 83, 145-55.

Cellini, R. and L. Lambertini (2001), “Differential oligopoly Games
where the Closed-TLoop Memoryless and Open-Loop Equilibria Coin-
cide”, working paper, Department of Economics University of Bologna,

n. 402.

Clemhout, S. and H.Y. Wan, Jr. (1974), “A Class of Trilinear Differential
Games”, Journal of Optimization Theory and Applications, 14, 419-24.

Dockner, E.J., G. Feichtinger and S. Jgrgensen (1985), “Tractable
Classes of Nonzero-Sum Open-Loop Nash Differential Games: Theory

and Examples”, Journal of Optimization Theory and Applications, 45,
179-97.

Dockner, E.J. and A.A. Haug (1990), “Tariffs and Quotas under Dy-
namic Duopolistic Competition”, Journal of International Economics,

29, 147-59.
Dockner, E.J; S. Jorgensen, N. Van Long and G. Sorger (2000), Dif-

ferential Games in Fconomics and Management Science, Cambridge,
Cambridge University Press.

Edgeworth, F. (1897), “La Teoria Pura del Monopolio”, Giornale degli
Economisti, 40, 13-31. Reprinted in English as “The Pure Theory of
Monopoly”, in Edgeworth, F. (1925), Papers Relating to Political Econ-
omy, Vol. 1, London, Macmillan & Co., Ltd., 111-42.

Feichtinger, G. (1983), “The Nash Solution of an Advertising Differen-
tial Game: Generalization of a Model by Leitmann and Schmitendorf”,
IFEEE Transactions on Automatic Control, 28, 1044-48.

18



[11]

[20]

[21]

Fershtman, C. (1987), “Identification of Classes of Differential Games for
Which the Open-Loop is a Degenerated Feedback Nash Equilibrium”,
Journal of Optimization Theory and Applications, 55, 217-31.

Fershtman, C. and M.I. Kamien (1987), “Dynamic Duopolistic Compe-
tition with Sticky Prices”, Econometrica, 55, 1151-64.

Fershtman, C. and M.I. Kamien (1990), “Turnpike Properties in
a Finite-Horizon Differential Game: Dynamic Duopoly with Sticky
Prices”, International FEconomic Review, 31, 49-60.

Fershtman, C. and E. Muller (1984), “Capital Accumulation Games of
Infinite Duration”, Journal of Economic Theory, 33, 322-39.

Fershtman, C., M. Kamien and E. Muller (1992), “Integral Games: The-
ory and Applications”, in Feichtinger, G. (ed.), Dynamic Economic Mod-
els and Optimal Control, Amsterdam, North-Holland, 297-311.

Fudenberg, D. and J. Tirole (1983), “Capital as a Commitment: Strate-
gic Investment to Deter Mobility”, Journal of Economic Theory, 31,
227-50.

Kamien, M.I. and N.L. Schwartz (1981), Dynamic optimization: The
Calculus of Variations and Optimal Control in Economics and Manage-
ment, Amsterdam, North-Holland.

Kreps, D. and J. Scheinkman (1983), “Quantity Precommitment and
Bertrand Competition Yield Cournot Outcomes”, Bell Journal of Eco-
nomics, 14, 326-37.

Leitmann, G. and W.E. Schmitendorf (1978), “Profit Maximization
through Advertising: A Nonzero Sum Differential Game Approach”,
IEEE Transactions on Automatic Control, 23, 646-50.

Levitan, R. and M. Shubik (1972), “Price Duopoly and Capacity Con-

straints”, International Economic Review, 13, 111-23.

Mehlmann, A. (1988), Applied Differential Games, New York, Plenum

Press.

19



[22]

[23]

[24]

Mehlmann, A. and R. Willing (1983), “On Nonunique Closed-Loop Nash
Equilibria for a Class of Differential Games with a Unique and Degen-
erate Feedback Solution”, Journal of Optimization Theory and Appli-
cations, 41, 463-72.

Nerlove, M. and K.J. Arrow (1962), “Optimal Advertising Policy under
Dynamic Conditions”, Economica, 29, 129-42.

Osborne, M. and C. Pitchik (1986), “Price Competition in a Capacity-
Constrained Duopoly”, Journal of Economic Theory, 38, 238-60.

Reinganum, J. (1982), “A Class of Differential Games for Which the
Closed Loop and Open Loop Nash Equilibria Coincide”, Journal of Op-
timization Theory and Applications, 36, 253-62.

Reynolds, S.S. (1987), “Capacity Investment, Preemption and Commit-
ment in an Infinite Horizon Model”, International Fconomic Review,

28, 69-88.

Simaan, M. and T. Takayama (1978), “Game Theory Applied to Dy-
namic Duopoly Problems with Production Constraints”, Automatica,

14, 161-66.

Singh, N. and X. Vives (1984), “Price and Quantity Competition in a
Differentiated Duopoly”, Rand Journal of Economics, 15, 546-54.

Solow, R. (1956),“A Contribution to the Theory of Fconomic Growth”,
Quarterly Journal of Economics, 70, 65-94.

20



