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Abstract

We present a differential duopoly game with capacity accumulation, where
the closed-loop memoryless Nash equilibrium collapses into the open-loop
Nash equilibrium. Symmetric Bertrand and Cournot equilibria are obser-
vationally equivalent. This result encompasses the conclusions of the well
known model by Kreps and Scheinkman (1983) concerning the equivalence
between the Bertrand and Cournot settings in a static two-stage game. How-
ever, in the dynamic framework, the equilibrium outcome is different, when
one firm plays a la Bertrand and the other a la Cournot. This has relevant
bearings upon firms’ endogenous choice of the market variable, as well as
the social desirability of prices vs quantities. For some admissible parame-
ter ranges, the conflict between private and social incentives concerning the
choice between prices and quantities disappears.

Keywords: differential games, capacity accumulation, price setting, quan-
tity setting.

JEL Classification: C73, D43, D92, 1.13.



1 Introduction

We present a differential duopoly game with differentiated goods and capital
accumulation. In particular, we model the accumulation process through
reversible investment & la Nerlove-Arrow (1962), where capital (or capacity)
accumulation occurs through costly investment, as in Solow’s (1956) growth
model. We show that the open-loop Nash equilibrium coincides with the
closed-loop memoryless equilibrium, and hence it is strongly time consistent.
Differently from the existing models dealing with the choice of capacity in
static two-stage games (see, e.g., Beckman, 1967; Levitan and Shubik, 1972;
Kreps and Scheinkman, 1983; Osborne and Pitchik, 1986), capital is not a
control variable in the present setting, where each firm chooses its investment
efforts. Consequently, the capital (or capacity) of each firm is not directly
affected by the capital of opponents.

We prove that the equilibrium outcome of the Bertrand game coincides
with the Cournot equilibrium. This amounts to saying that the Nerlove-
Arrow-Solow differential game encompasses the results of the static analysis
carried out by Kreps and Scheinkman (1983) in the spirit of the original idea
dating back to Edgeworth (1897). This is technically due to the fact that
the Bertrand setting obtains through a linear symmetric transformation of
the Cournot setting. Therefore, the two models are isomorphic and produce
the same steady state equilibrium.

Then, we deal with the mixed case where one firm is a price setter while
the other is a quantity setter. In such a case, the transformation that must
be operated to obtain the asymmetric model from either the Bertrand or the
Cournot model is asymmetric. In particular, the asymmetry affects state
and co-state equations in such a way that the resulting game is substantially
different from the symmetric ones, and does not produce the same equilib-
rium (although also in this case, the open-loop equilibrium is strongly time
consistent).

Steady state equilibrium profits can be used to assess firms’ incentives
to adopt price or quantity as the relevant market variable, in the same vein
as in Singh and Vives (1984). This highlights that, in the dynamic setting,
quantity is no longer a (weakly) dominant strategy, as it is instead in the
static setting. Indeed, there emerges that there exists a parameter region
wherein the mixed price-quantity profile is an equilibrium one. Concerning
social incentives, the main result is that the level of social welfare in the
steady state associated with the asymmetric setting is larger than the steady



state social welfare of the symmetric settings where both firms are price
setters or both firms are quantity setters. The straightforward implication of
this analysis is that the conflict between private and social incentives towards
the adoption of prices or quantities may disappear in a dynamic model. This
result modifies the conclusions about the social desirability concerning price
or quantity setting, achieved by taking a static game perspective (see, e.g.,
Singh and Vives, 1984).

The remainder of the paper is structured as follows. Section 2 explains
why the differential game approach is particularly appropriate to deal with
the issue at hand, and briefly explains the basics of the different solution
concepts for differential games. Section 3 develops the model, examining in
turn (i) the features of demand and supply sides, (ii) the equilibrium under
Cournot competition, (iii) the equilibrium under Bertrand competition, (iv)
the equilibrium in the mixed setting. Section 4 compares the results for
firms under the different settings, and considers the game where firms can
choose whether to be price- or quantity-setters. Section 5 analyses social
welfare across the steady state allocations originated by the different market
competition regimes. Section 6 concludes.

2 The differential game approach

We believe that, in order to analyse the firms’ behaviour concerning the
accumulation of productive capacity, the differential game approach is par-
ticularly appropriate. Indeed, building capacity needs time; the depreciation
of capacity over time is an important factor; the time dimension is important
in planning the investment efforts towards capacity accumulation. Furhter-
more, strategic interaction among firms is an important issue both in the
market phase, and in the phase when capacity decisions are taken. Last but
not least, the differential game approach leads to results encompassing those
obtained by the more traditional approach based on static two-stage games.
More precisely, the differential game approach allows to understand under
which particular conditions, the results from static game can be interpreted
as the steady state solution of the differential game.! Specifically, in the
present paper we aim at checking whether the well-known result obtained by

IFor further motivation supporting the choice of the differential game approach, see
Dockner et al. (2000), chapter 9. This reference also provides a presentation of relevant
differential games with capital accumulation.



Kreps and Scheinkman (1983) about the equivalence between the Cournot
and the Bertrand setting in a two-stage static game, holds in a differential
game framework too.

The existing literature on differential games mainly focusses on two kinds
of strategies adopted by players: the open-loop and the closed-loop strate-
gies.? When players adopt the open-loop solution concept, they design the
time path concerning the control variable(s) at the initial time and then stick
to it forever. This means that the open-loop strategy is simply a time path
of actions, and time is the only determinant of the action to be done at any
instant. The relevant equilibrium concept is the open-loop Nash equilibrium,
which is only weakly time consistent and therefore, in general, it is not sub-
game perfect.> When players adopt the closed-loop strategy, they do not
precommit control variable(s) on any path, and their actions at any instant
may depend on the history of the game up to that instant, and, in particular,
on the values of the state variables. In this situation, the information set used
by players in setting their actions at any given time is often simplified to be
only the current value of the state variables at that time, along with the ini-
tial conditions. This specific situation is labelled as memoryless closed-loop
(Mehlmann, 1988). The relevant equilibrium concept, in this case, is the
closed-loop memoryless Nash equilibrium, which is strongly time consistent
(or subgame perfect).

The literature on differential games devotes a considerable amount of
attention to identifying classes of games where the closed-loop equilibria de-
generate into open-loop equilibria. The degeneration means that the Nash
equilibrium time paths of control variables coincide under the different strat-
egy concepts. Whenever an open-loop equilibrium is a degenerate closed-loop
equilibrium, then the former is also strongly time consistent (or subgame

2See Kamien and Schwartz (1981); Basar and Olsder (1982, 1995%); Mehlmann (1988);
Dockner et al. (2000). See also Cellini and Lambertini (2001), upon which the present
Section is largely based.

3 As to the definition of time consistency and subgame perfection, we rely - among many
different definitions available in the literature - on the definition provided by Dockner et
al. (2000, Section 4.3). We use “strong time consistency” as a synonomous of subgame
perfection.

4Different rules of closed-loop class do exist: e.g., the perfect-memory closed loop, where
the control variables depend on the complete history of the state variable(s); the feedback
rule, where only the current stock of states are considered, irrespective of initial conditions.
For oligopoly models where firms follow feedback rules, see Simaan and Takayama (1978),
Fershtman and Kamien (1987, 1990), Dockner and Haug (1990), inter alia.



perfect). Therefore, one can rely upon the open-loop equilibrium which, in
general, is much easier to derive than closed-loop.®

In what follows, we adopt the closed-loop memoryless solution concept,
and we show that it collapses into the open-loop solution, in the sense that the
Nash equilibrium time path of the variables under the two different concepts
coincide. This is due to two features of the game we are going to present: first,
the dynamic behaviour of any firm’s state variable (i.e., capacity) does not
depend on the rivals’ control and state variables, which makes the kinematic
equations concerning other firms redundant; second, for any firm, the first
order conditions taken w.r.t. the control variables are independent of the
rivals’ state variables, which entails that the cross effect from rivals’ states
to own controls (which characterises the closed-loop information structure)
disappears.

3 The model

3.1 The basic setup

The game is played over continuous time, ¢ € [0,00).° In any instant of
time, the market is served by two firms, 1 and 2, producing a differentiated
good. Let ¢;(t) define the quantity sold by firm ¢ = 1,2 at time ¢. The
marginal production cost is constant and equal to ¢ for all firms. For the
sake of simplicity, we pose ¢ = 0. As in Singh and Vives (1984), the demand
function for good 7 at time ¢ is:

pi(t) = A= qit) = Dg;(t) , (j # 1) (1)

where parameter D € [—1, 1] measures the degree of substitutability or com-
plementarity between goods. If D) = 1, they are perfect substitutes; if D =0
the goods are independent and each firm behaves as a monopolist; if D = —1,
products are perfect complements.

®Classes of games where this coincidence arises are illustrated in Clemhout and Wan
(1974); Reinganum (1982); Mehlmann and Willing (1983); Dockner et al.(1985); Fersht-
man (1987); Fershtman et al. (1992). For an overview, see also Mehlmann (1988), and
Dockner et al.(2000, ch. 7).

5The game can be reformulated in discrete time without significantly affecting its qual-
itative properties. For further details, see Basar and Olsder (1982, 19952).



In order to produce, firms must accumulate capacity or physical capital
k;(t) over time. As in Solow (1956) and Nerlove and Arrow (1962), the rele-
vant dynamic equation describing the accumulation of capacity (or physical
capital) is:”

Ok;(t

W ey om0 )

where [;(t) is the investment carried out by firm ¢ at time ¢, and ¢ > 0 is
the constant depreciation rate. Notice that the kinematic equation of player
1’s state variable is unaffected by the state and control variables of the rival.

That is, strategic interaction among firms takes place through instantaneous
profits only.®

The instantaneous cost of investment is C; [1; (£)] = b[I; (1), with b > 0.
We also assume that firms operate with a technology ¢;(t) = f(k;(t)). For the
sake of analytical tractability, we assume that f(k;(f)) = k;(¢). Therefore,
¢;(t) = k;(t). This equation may be interpreted by stating that each firm
uses 1ts whole capacity in order to produce output. This is quite obvious,
provided that the capacity accumulation is costly. As a consequence, the
demand function for variety 7 rewrites as:

pi(t) = A — ki (t) + DEy(t). (3)

Player 7’s objective is the maximisation of the present value of the profit
flows:

max / (., t)e Ptdt (4)
i Jo
subject to the dynamic constraint represented by the behaviour of the state
variables (2) for i = 1,2. Instantaneous profit is 7;(.,t) = pyg; — b[L; (1)]°.
The factor e ** discounts future gains, and the discount rate p is assumed to
be constant and common to both players. In order to solve his optimisation
problem, each player defines a strategy.

The control variable of firm 7 is the instantaneous investment /;(¢), while

k;(t) is obviously a state variable.

"For a dynamic Cournot game where capital accumulates a la Ramsey (i.e., current
unsold output becomes additional productive capacity), see Cellini and Lambertini (1998).

8We follow this route in order to keep our models in line with the original formulations of
dynamics (2). However, the analysis could be easily extended to account for the interaction
between state and control variables of all players in the state dynamics without significantly
changing our conclusions. A sufficient condition for all the ensuing results to continue to
hold is that the kinematic equations of state variables be additively separable in state and
control variables (see, e.g., Mehlmann, 1988, ch. 4).

5



3.2 Cournot competition

When firms write profits using the inverse demand functions (1), the closed-
loop formulation of the Hamiltonian of firm ¢ writes as follows:

Hi(t) = e " {[A~ki(t) = Di; ()] ki(t) = b[1 (1)) + (5)
(1) [Li(t) = 0ki ()] + Ay (4) [1;(1) — ok; ()]}
where Aj;(t) = p;(t)e”, and p,;(t) is the co-state variable associated to k;(t),

i,j =1,2. Moreover, let k;(0) = kyo define the initial condition for firm 7.
On the basis of (5), we can prove the following:

Proposition 1 Under the Solow-Nerlove-Arrow capital accumulation dynam-
ics, the open-loop Nash equilibrium is a degenerate closed-loop memoryless
equilibrium. Therefore, the open-loop equilibrium is subgame perfect.

Proof. Optimality conditions for firm ¢ = 1,2 require:

aH)

i(t)

N Hi(t)  OH.( )OLF(t)  ONu(t)

<”) ok(t) oLt ok() ot ' Aill) =

L 0N vl = A= 28i(t) — Diy(t) — (1) (6)
Hi(t)  OH() OL7 (1) oy (1)

(Z”) ( ) - OL:(t ( ) 8]€j<t) - ot - p)‘iJ'(t)

¢ )hm Nm(t) ki(t) = tlgglo pi(t) - ki(t) =0,

where (iv) are the transversality conditions.
The terms

OH,; (., t) 17 (1)
BORES (7)

through the feedback from states to controls, which is by definition absent
under the open-loop solution concept. I} () denotes the solution to the first
order condition of firm j w.r.t. her control variable. Whenever the expression
in (7) is zero, then the closed-loop memoryless equilibrium collapses into the
open-loop Nash equilibrium, in the sense that the time path of all relevant
variables under the two different solution rules coincide. This happens indeed



in the present case, because by (6.i) we have: 0If(t)/0k;(t) = 0 for i #
7 ,which means that the first order condition of a firm with respect to her
control variable does not contain the state variables pertaining to the other
different player. W

Notice also that condition (6.iii), which yields 9A;;(t)/0t, is redundant
in that A\;(¢) does not appear in the first order conditions (6.1) and (6.ii).
Therefore, we can simplify the problem, by setting A;;(t) = 0 for all £ € [0, 00)
and j # 7, and by setting \; = A; provided by only one co-state variable is
relevant for any player.

Accordingly, the Hamiltonian simplifies as follows:”

H(t) = e " {[A = ki(t) — Dk; ()] ks(t) — b [L; ()] + No(8) [1:(2) — 57@1@)]&;

Firm ¢’s first order condition and the adjoint equations are (the transver-
sality condition is omitted for brevity):

%Zig)) =0 = \(t) = 21,(1) 9)
—%Ziég _ —”afit) ~ () = (10)
oNi(t)

= (p+ o) N(t) — [A—2k;(t) — Dk;(t)]

Now we can explicitly look for steady state points. From the first order
condition w.r.t. I;(t), we obtain:

oli(t) — 1on( _ LO(p+6)  A=2k(t) — Dkt

il = 11
ot 26 Ot 2 2b (11)
Now, solving the system:
I(t) Ok (t) .
ot 0 ot 0,1 Y (12)

®The analysis of the open-loop equilibrium of a Solow-Cournot game with reversible
investment similar to the one investigated here can be found in Fershtman and Muller
(1984). For the feeback equilibrium, and its comparison with the open-loop equilibrium,
see Reymnolds (1987). See also Fudenberg and Tirole (1983).



we calculate the steady state levels of states and controls:

755 = 0A ;kss — ]_ = A . (13>
24+ D+2b(p+0)0 § 24D+2b(p+0)0

The pair {I°°, k*°} is a saddle point; the proof is straightforward, in that,
the determinant of the Jacobian matrix associated to the dynamic system
{0k;(t)/0t = 0,0I;(t) /Ot = 0} is negative, while its trace is positive.'’
Moreover, {rom (13) it can be shown that, in 6 =0 :
A

kSS: SS: 14
T TeED =

which coincides with the equilibrium output of the static game studied by
Singh and Vives (1984). In general, however:

Proposition 2 For all positive and admissible values of parameters {0, p},
steady state capacity and sales are lower than in the static Cournot game
with product differentiation.

Steady state profits are:

e AZ[1406(2p+9)]
O {2[14 b0 (p+06)] + DY

(15)

that, once again coincide with the Cournot-Nash equilibrium profits 7¢V =

A?/(2 + D)? attained in the static model when 6 = 0. In general, the effects
of parameters {9, p} on steady state profits are described by the following
partial derivatives:

om®  2A%[200% (3p+0) +20 (1 +bp?) — D (p+0)]

5 {21 +0b5 (p+0)] + D}® ’ (16)
or*  2A%b5 (2bép — D) a7)
Op  {2[14b0(p+0)]+DP’

This simple comparative static exercise suffices to prove the following:

Proposition 3 The steady state profits are non-monotone in both p and o.

10 Calculations are trivial and they are omitted for brevity.
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The above Proposition, in turn, implies that there exist parameter ranges
wherein the steady state profits 7% generated by the differential game are
larger than the static equilibrium profits 7&V:

7% — 7N o (24 D) [6 (D — 2) +2Dp| — 4b5 (p + 6)?, (18)

with the r.h.s. of (18) being equal to zero at:

—9p+£2(p+0) /T 15 (0 + 2
o Z2£2(0+0) V14000 +20) (19)
0+ 2p

The smaller root is negative, while the larger root is positive and smaller
than one for all

3(2p —9)
45 (6 + p)?
provided that p > ¢/2. This proves the following Corollary to Proposition 3:

(20)

Corollary 1 Suppose p > /2. If so, then 7% > 7Y for all

D e —2p4+2(p+8) /1 +b3 (5 +2p)
o0+ 2p

)

3.3 Bertrand competition

With price competition & la Bertrand, from (1) the demand function firm ¢
faces at time ¢ is

Gi(t) = A plt) | Dpi(t)
! 14D 1-D? 1-D?

(21)

where p;(t) and p;(t) are respectively the price set by firms ¢ and j, respec-
tively.

Under the capital accumulation rule (2), and using the assumption ¢;(t) =
k;(t), the closed-loop Hamiltonian of firm ¢ is:

Hilt) = @pt{ 1 fD - 1pi‘<%2 + f fﬂ'gl pi(t) =B [1 ()] +

) 10 -0 (5 - 20 + 22 ) | +

Aij(2) [ 1; (L) — 6 <1 fD B 1pi<22 + f)flglﬂ }

9

(22)




where Ai;(t) = p,;(t)e’, and p,;(t) is the co-state variable associated by firm
i to the state variable k;(1).

The equivalent of Proposition 1 is easy to prove. That is, first order
conditions on controls do not contain the state variables, and therefore the
open-loop equilibrium is subgame perfect. The details are omitted for brevity.

Accordingly, we proceed by solving the open-loop formulation of the
game, which obtains from (22) by setting A;;(f) = 0 and A\;(f) = (7).
The outcome is summarised by the following:

Proposition 4 The steady state of the Solow-Nerlove-Arrow game with Bertrand
competition is observationally equivalent to the steady state of the same game
with Cournot competition.

Proof. The first order condition on investment is:

yielding
a2 ot (25)

In the Bertrand setting, deriving the co-state equation is more involved that
in the Cournot setting. Since we are using direct demand functions, capacity
ki(t) is expressed as a function of the price vector {p;(t), p;(t)}. Therefore,

OH(t)  OH,(t) Ops(t) — OH,i(t) Op,(t)

here OH(t)  A(L— D) — 2p,(t) + Dp(t) + 5A(t)
8p1( ) N 1-— D2 ’
8Hz<t> _ D [pz<t) B 5)‘z<t>] . (27>
Ip;(t) 1— D2 ’
op:t) _ ;. 9pi(t) _
k(1) " Oky(t)

Partial derivatives Op;/0k; and Op;/0k; are calculated using the inverse de-
mand function (1). Using (27), the co-state equation writes as follows:

OH,(t) Opi(t) ~ OH,(t) Op;(t)]  ON(D)
L ap(t) Oki(t) T op; () Oki(t) | ot

— pi(t) (28)

10



from which we obtain

OM(t) _ A= D) —pi(t) (2= D?) + Dp;(t) + \i(t) (p+9) (1 — D?)

o T2 ‘
(29)
Then, plugging (24) and (29) into (25) and imposing the symmetry condition
YZi (1) = pi(t), we have:

OLi(t) _ A—pi(t) (24 D) + 2bLi(t) (p+0) (L + D)

ot 20 (1+ D) (30)
with O1,(1) () (24 D) — A
i\t) ss _ Pi + D) —
o VM S L A D) (31)
I7% can be substituted into (2), which simplifies as follows:
Oki(t) _pi(t) 2+ D)—A  6[A—pi(1)] (32)
ot 20(p+0)(1+ D) 1+D
with
Ok;(1) AL+ 206 (p+9)]

=0at p° = 33
ot P TSNt (ot o) + D (33)
Now, using (33), we can simplify the expression for the steady state levels of
investment and capacity:

JA I
I = kg = 4
P24 D+w(p+a)s T (34)

which coincide with (13). Also the equilibrium profits are obviously the same
as in the Cournot game investigated in section 3.1. W

The above result has the following intuitive explanation. The usual in-
terpretation of the difference between Cournot and Bertrand in static games
is that firms optimise w.r.t. either quantities or prices. However, in a differ-
ential game, using direct demand functions for the Bertrand case does not
modify the strategy space for control variables, which are investment efforts.
Given that accumulation efforts entail a positive cost, capacity has to be
fully used under equilibrium conditions. Therefore, in the present theoreti-
cal framework, firms are not choosing prices or quantities and consequently
the specific formulation of instantaneous profits is immaterial to the equilib-
rium emerging in steady state. Nevertheless, this conclusion was not obvious

11



at the outset, in that inverting demand functions involves a reformulation
of the dynamics of state variables as well as the co-state equations. The
observational equivalence between Bertrand and Cournot outcomes is due to
the following reasons: (1) the strategy space for control variables is the same
in the two cases; and (ii) the state and co-state equations of the Cournot
model transform into the corresponding state and co-state equations of the
Bertrand model through a symmetric affine transformation. This entails that
the dynamic equations of controls are also the same in the two settings.
Proposition 6 has a relevant corollary:

Corollary 2 In the Bertrand formulation of the Nerlove-Arrow-Solow game,
the steady state price is the same as in the Cournot formulation of the game.

That is, when capital (or capacity) accumulates according to (2), and the
whole capacity is used to produce output, the Bertrand paradox never arises.
This is easily shown by verifying that pi* in (33) is always strictly higher
than marginal cost ¢ for all admissible values of parameters. In particular, if
D =1, then

P = A3[1 + 206 (p + 9)] (35)
+ 206 (p + 9)

which becomes

A
== 36
p’L 3 ( >
when 6 = 0. That is, when products are perfect substitutes and capital

does not depreciate, the steady state price coincides with the well known
equilibrium price associated with the static version of Cournot duopoly.'!
The same obviously holds for capacity (and output), k5 = A/3.

This means that the Solow-Nerlove-Arrow model generalises the static
two-stage game a la Kreps and Scheinkman (1983), where firms first choose
capacities and then compete in prices. Indeed, the present model encom-
passes Kreps and Scheinkman’s, with no need of resorting to mixed strate-
gies, as it produces the Cournot equilibrium as the subgame perfect capacity-
constrained equilibrium of a differential game in prices and investments in
pure strategies.

Tt is worth noting that this holds for all admissible values of the discount rate p,
provided that D = 1 and 6 = 0. On the contrary, it is easily shown that the static Cournot
outcome does not hold in the limit cases where p = 0 or p — oo.

12



4 The mixed setting

Consider now the situation where firm 1 is a quantity setter while firm 2 is
a price setter. The relevant demand functions are respectively:

pi(t) = A(L = D) — ky(t) (1 — D*) + Dpa(t) ; (37)
ko(t) = A= Dky(t) — pa(t) - (38)
The state equations write as follows:
k(%) ’
o L (t) — 0k (1) ; (39)
W) (1)~ 614~ DRy (1) — )] (10)
The closed-loop Hamiltonians are:
Hi(t) = e {[A(l - D) — ky(t) (1 — D) + Dpo(t)] qu(t) — b [ (£)]° +
Aur(t) [I( ) — 57@1@)] + Aua(t) [1o(t) — 6 (A — Dk (t) — (t))](};m

Hy(t) = e P {[A— Dk(t) = po ()] pa(t) — b [ (1)) +
Aaa(t) [La(t) — 6 (A — Dby (t) — p2(t))] + Aaa(t) [11(2) — 57@1@)](]’ )
42
The equivalent of Proposition 1 can be shown to hold here as well.. The
details are omitted for the sake of brevity. Moreover, one can solve the open-
loop Hamiltonians setting (i) A;;(t) =0 for all ¢ € [0,00) and j # ¢; and (ii)
Aii(t) = A\i(t). The first order conditions on controls are:

OH;(t) B
O i(t) —2b1,(t) =0, (43)
entailing:
N (1) = 2bI,(t) ; OL{t) oM (44)

ot ot

As to the co-state equations, one has to proceed in the following way. While
the co-state equation of the quantity setter (firm 1) is standard:

OH(t)  OM(2)

_ N0 == pAL(t) = (45)
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N0
ot

the derivation of the co-state equation for the price setter (firm 2) is slightly
more involved, since in the demand function (38) capacity ky(t) has to be
expressed as a function of the vector {k(t), py(t)}. Therefore:

=(p+0)M(t) = [A(1 = D) —2(1 = D*) ky(t) + Dpy(t)] , (46)

OMy(t)  OHo(t) Opa(t)  OHa(t) Oy (1)

Oka(t)  Opa(l) Oko(t) Oy (l) Oksa(l) (47)
where
OHo(1)
i) =+ PR )
ak12<<75)) =D A1) = ()] 5 (48)
opa(t) . Ok(t) 0
Ok (1) D Oky(t)

Partial derivatives dpy(t)/0ky(t) and Ok (t)/0ky(t) are calculated using (38)
and (37), respectively; 0k;(t)/0ks(t) = 0 since (37) reveals that k;(f) does
not depend upon ky(t). Using (48), the co-state equation of firm 2 writes as
follows:

OH,(t) Opa(t) _ OXs(t)
- Opa(t) Oksy(t) O

0

— pAs(t) = (49)

Oy

ot

Now it is worth stressing that (46) and (50), the system of differential
equations {91;(t)/0t = 0} is asymmetric. Although the strategy space for

controls is by definition the same as in the symmetric games investigated
above, the dynamic behaviour of controls is now asymmetric across firms.

~

= (p+ ) Aa(t) + A — Dky(t) — 2pa(2) . (50)

Consequently, we cannot expect to observe symmetric investment and ca-
pacity levels in steady state. This suffices to prove that the mixed setting
cannot reproduce the Cournot outcome.

On the basis of (46), (50) and (44), we have:

and
8I§it> x 2b(p+0) Ir(t) + A — 2py(t) — Dky(t) . (52)
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Solving the system {91;(t)/0t = 0}, we obtain the following expression (the
indication of time is dropped henceforth):
s A(1=D)—2(1—D?*)ky+ Dpy
v 2b(p 4 0) ’
A — Dk, — 2p,
 W(p+o)

ss
157 =

(53)

that can be used to simplify the state equations (39-40). Then, the linear
system {9k;(t)/0t = 0} can be solved w.r.t. k; and ps :

kies _ A{2[1+36<p+5)] _D} (54>
AL+ b5 (p+ )2 — D2[3+ 206 (p + 6)]

w  A[L+265 (p+06)][266 (p+0) + (1— D) (2+ D)] -
P = T 3D 1 965 (p+ 0) {22+ b0 (p + 0)] — D2} (55)

which, in turn, imply that the price setter holds the following capacity in

steady state:

s ARW(p+0) +(1-D)(2+D)] (56)
AL+ b6 (p+0)]2 = D23+ 206 (p + 0)]

while firm 1’s equilibrium price is:

A{2[14+ b3 (p+8)] — D} [1+ 2066 (p + 6) — D
A1+ b (p+ 0P = D2[3 4205 (p+06)]

55
1

(57)

Equilibrium investments in steady state can be quickly written as [° =
0k7%. Tt can be easily checked that the above list of equilibrium magnitudes
is admissible (i.e., non-negative) for all admissible values of parameter D.
Again, one can easily verify that steady state points are stable in the saddle
sense.

In the absence of capital depreciation, i.e., when 0 = 0, steady state
capacities coincide with the equilibrium outputs of the static game (Singh

and Vives, 1984):

kss’ _A<2_D)]€ss’ _A<2_D_D2)
Llo=0 g _3p2 > "210=0 4 _3])2 ’

with k55 > k5% for all D € (0,1], and conversely for all D € [—1,0).

(58)
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Steady state profits are respectively:

po, = AL (p 0]~ DY L4032 +0) = D]
PS04 302 4 206 (p 4 6) [2(2+ 08 (p + 6)) — D2}
A2{2[1 405 (p+0)] = D (L+ D)}’ [L + 65 (2p 4 0)]
{4—-3D24200 (p+06)[2(24 03 (p+9)) — D2}

which of course coincide with the static Nash equilibrium profits at 6 =0 :

(60)

ey ’5:0 =

v A2(2-DY’(1-D? 7TN_A?(Q—D—D?)Q
i (4—3D2) B I Y57

(61)

5 Price or quantity?

Now we are in a position to examine the issue of choosing between price
and quantity. In the present framework, where firms do not optimise profits
w.r.t. market variables but only w.r.t. investment efforts, the choice between
price and quantity refers instead to alternative ways of specifying the state
variables as well as the state and co-state equations.

This issue can be investigated on the basis of Matrix 1, where the payoffs
are given by steady state profits. In particular, define as 7Y™ the steady
state equilibrium profits associated with either the Cournot or the Bertrand
game (sym therefore stands for symmetric); as 7 the profits of the quantity
setter and 7P the profits of the price setter in the asymmetric settings.

firm 2

P k
firm 1 p | 7v™; 7vm | gPk.
kp . k SYm . Sym

k| @, 7P T Y

kP

Matrix 1

oy _ A?[1+ 056 (2p +9)] (62)
{2[1+ 5 (p+0)] + D}’
A2 {2[1 4+ b5 (p+0)] — DY’ [1 4 b5 (2p + 6) — D?]
{4—-3D24205 (p+6)[2(24 3 (p+ ) — D2}
A2{2[1 465 (p+0)]— D (1 + D)} [1 45 (2p + 0)]
{4—-3D24 205 (p+6)[2(24 3 (p+0)) — D2}

kP

Pk
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The case where § = 0 (irrespective of whether p is nil or positive) can be
quickly dealt with, on the basis of the following inequalities:

TV s for all D € [~1,1] (63)
TV > 7 for all D € (0,1]
TV > 7P for all D € [—1,0)

For any given 0 > 0, a trivial case is that where p tends to infinity. If so,
all equilibrium profits tend to zero and the choice between k and p becomes
meaningless. If, on the contrary, p = 0, then for any admissible 6 € (0, 1],
the nature of the game and the resulting equilibria depend upon parameter
D, as it 1s quickly established by the following inequalities:

sym Wkp‘pzo — A?D! [4[7 (5 (1 + b52>> + DQ} . >0

[2(1+00%) + D) |4 (1+w?)” = D2 (34 20?)]

(64)

always, while

A (1406%) D% |8 (14 06%)" = D (6 + 4007 + D) |

] = 2
"~ [2(1+00%) + D] [4 (14 85%)" = D2 (34 206%) |
(65)
is negative for all D € (0,1], and conversely for all D € [—1,0).' On this
basis, we can write:

Remark 1 Consider the cases where either 6 = 0, or 6 € (0,1] and p = 0.
In both cases:

e In the range of substitutes, i.c., for all D € (0,1], there exists no
dominant strategy for either firm, and the (coordination) game has two
symmetric equilibria in pure strategies: {p,p} and {k,k}. Moreover,

12Note that 8 (1 + 06%)” — D2 (6 + 4b6% + D) =0 at

D? 44+ DV4+2D + D?
b= 162

with both roots being always negative in the admissible range of parameter D. Therefore,
sign {ka - Wsym|p:0} = sign{—D}.
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1t also produces a correlated equilibrium, and a mixed strateqy equilib-
rium where the probability of observing an asymmetric outcome {k,p}
18 strictly positive.

e In the range of complements, i.c., for all D € [—1,0), p is a strictly
dominant strategy for both firms. Therefore, {p,p} is the unique equi-
Librium in pure strategies.

Consider now the case where 0 and p take positive and finite values. By
resorting to numerical calculations, it can be verified that:

TV > 7P for all D € (0,1]
7™ < 7P for all D € [—1,0) (66)

Moreover:

TV < 7" for all D € (Dy, D) (67)

while the opposite holds for all D outside the interval [Dy, Dy|. The values
of Dy and Dy can be computed numerically for any admissible pair {0, p},
to ascertain that 1)y = —D,, with —1 < D; < 0 < Dy < 1. For instance,
set a =1,b =1, and § = 1/10; then, for p = 26 one obtains D; = —Dy ~
—0.6798, while for p = §/4 one obtains Dy = —Dy ~ —0.4136. Note that, as
p decreases, the interval [Dy, Dj] shrinks.

This discussion produces the following:

Remark 2 Given ¢ € (0,1] and p > 0, then:

e For all D € (Dy, 1], we observe a coordination game with two pure-
strategy symmetric equilibria, {k,k} and {p,p}. There also exist a cor-
related equilibrium and a mized strategy equilibrium.

e Forall D € (0,D,), k is a dominant strategy for both firms. Therefore,
{k,k} is the unique pure-strategqy equilibrium.

e Forall D € (D4,0), we observe a chicken game with two pure strategy
equilibria, {k,p} and {p,k}. There also exist a correlated equilibrium
and a mized strategy equilibrium.

e For all D € [—1,Ds], p is a dominant strategy for both firms. There-
fore, {p,p} is the unique pure-strategy equilibrium.
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In the next Section, we carry out the welfare analysis at the level of the
single market under consideration, and compare the social desirability of the
different settings with the choices of the firms.

6 Welfare analysis

Singh and Vives (1984) show that the market demand function (1), is con-
sistent with the behaviour of a representative consumer who maximises the
function S = U — (p1Q1 +p2q2) with U = [A(ql + QQ) - <Q12 + QQ2 +DQ1QQ)/2]
Intuitively, S is a measure for the net consumer surplus, while the quadratic
function U is the non-linear part of a quasi-linear utility function, where a
numeraire good enters linearly. This formulation of consumer preferences
makes the demand for goods ¢, g, inelastic to income, provided that the to-
tal income is larger than pyg; + page. Fxpression S is an obvious candidate
to measure the consumer welfare in the present partial analysis framework.
The instantaneous social welfare index, at the single market level, can be
consistently defined as SW = S+ m; 4+ my.We confine our attention to the
steady state allocations. Remembering that ¢; = k;, and I; = dk; in steady
state, social welfare in steady state can be written as follows:

SW = A(ky + ky) — (1 +2b6%) (k22 + k2/2) — Dk1ky /2 (68)

where k; has to be interptreted as the capacity of firm 7 in steady state.
Simple substitutions of expressions given by (13) or (34), (54), and (56) into
(68) allow to compare the welfare indexes across the steady states produced
by different types of market competition. We are particularly interested
in evaluating whether the welfare in steady state is larger in a symmetric
setting (i.e., when either both firms compete either & la Cournot or both
firms compete ¢ la Bertrand) or in the mixed setting, that is, in the case
where one firm behaves as a quantity-setter and the other behaves as a price-
setter.

It is worth remembering that, in the static game, Cournot (Bertrand)
competition is better for firms, if goods are substitutes (complements), while
Bertrand competition is the best setting for a social planner maximising the
social welfare, regardless of the nature the goods (substitutes or comple-
ments), as established by Singh and Vives (1984, p. 553). In the present
model, the symmetric settings are observationally equivalent, so that the so-
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cial desirability associated to these settings is exactly the same. Conversely,
the social welfare is different in the asymmetric framework.

We denote the social welfare in the steady state originated by the Nash
equilibrium under a symmetric setting as SW*™ and the social welfare in
the steady state originated by the Nash equilibrium under the asymmetric
setting as SW*. We are interested in comparing the levels of social welfare.
To this end, we evaluate the sign of DSW = SW%™ — SW*?_ Index DSW
clearly depends on 5 parameters: A,b, D, p,6. A complete analytical study of
function DSW seems to be out of reach, with the exception of some particular
cases. Specifically, when p = 0,1t is:

DSW|,_y= —2A’D*(D* —2D* = D 4+ 2)/[(D +2)(3D* —4)*]  (69)

which is clearly always negative, except for D = 0 and DD = £1, where
DSW = 0. This leads us to conclude that the setting providing the larger
social welfare in steady state is the mixed setting, where one firm plays a la
Cournot and the other one plays & la Bertrand. This conclusion holds when
goods are both substitutes and complements. When goods are independent,
firms behave as monopolists, and the choice concerning price or quantity is
pointless, so that the social welfare associated to the different settings is the
same. Formally, D = 0 always implies DSW = 0.

Taking into account the conclusions about the equilibrium choices of firms
between price and quantity, we can resume the different cases that can occur
at equilibrium:

Remark 3 The welfare assessment of steady stale equilibria can be sum-
marised as follows:

e If, alternatively, (a) 6 € (0,1], p > 0 and D € (Dy, 1], (b) either 6 =0
or p =0, and D € (0,1] : the (coordination) game has two symmetric
Nash equilibria in pure strategies: {p,p} and {k,k}; none of them is
efficient from the social welfare perspective. Newvertheless, the socially
efficient outcome {k,p} arises with a strictly positive probability, even
if it is not a pure-strateqy Nash equilibrium in the game where firms
choose between price and quantity setling.

e If, alternatively, (a) 6 € (0,1], p > 0, and D € [—=1,D,], (b) either
d=0o0rp=0, and D € [—1,0) : there exists one Nash equilibrium in
pure strategies, {p,p},which is socially inefficient.
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o If6€(0,1], p>0, and D € (0, Dy) : there exists one Nash equilibrium
in pure strategies,{k, k},which is socially inefficient.

e If 6 € (0,1, p > 0, and D € (D1,0) : the (chicken) game has two
Nash equilibria in pure strategies,{k,p} and {p, k} ;both equilibria are
efficient from the social standpoint. However, the probability of the
observing a socially inefficient outcome s strictly positive.

It is worth stressing, once again, that the welfare considerations refer
to the steady state allocations. As one can see, the possibilities are much
more articulated than in the static framework considered by Singh and Vives
(1984). In particular, it is no longer true that the Bertrand setting is the best
one from the social welfare point of view. Thus, we have to conclude that,
in this case, the static game representation may not be a good simplified
version (or reduced form) of a dynamic setting,

7 Conclusions

We have taken a differential game approach to study capacity accumulation
and market behaviour in a duopoly with differentiated goods. Following a
well established strand in the existing literature, the dynamic rule concerning
capacity accumulation has been designed in such a way that any firm’s state
variable (i.e., the capacity) does not depend directly on the rivals’ control and
state variables. This is part of the motivation for the fact that the closed-loop
memoryless Nash equilibria collapse into the open-loop Nash equilibria; as a
consequence, the former is - in the present model - strongly time consistent.

We have solved the differential game, taking into account different de-
scriptions of firms’ market behaviour. Cournot competition, where both
firms take quantity as the relevant market variable; Bertrand competition,
where both firms take price as the relevant market variable; and the mixed
setting, where one firm considers the quantity as the relevant market variable,
while the other firm considers the price as the relevant variable.

We have shown that the Cournot and the Bertrand settings produce the
same Nash equilibrium, as long as the strategy space for control variables is
the same in the two cases (specifically, the space of capacity accumulation
efforts), and the relevant market variable is immaterial to the optimal choice.
This result confirms the well-known findings of Kreps and Scheinkman (1983)
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in a static two-stage game framework. Conversely, in the asymmetric setting,
the Nash equilibrium produces a different outcome as compared to the sym-
metric settings.

Nash equilibrium solutions give rise to economically meaningful steady
state points. Such steady states are stable in the saddle sense. We have
carried out comparative evaluations across the steady state allocations as-
sociated with the different settings, and in particular we have examined the
profits of firms and the social welfare indexes in steady state. If we allow
firms to choose between price- and quantity-setting behaviour, the relevant
payoffs being represented by steady state profits, several equilibrium profiles
may emerge, depending on parameter configurations. The Nash equilibrium
can be socially efficient or not; the socially efficient situation may be a Nash
equilibrium or not; the socially efficient equilibrium may arise in association
with mixed-strategy equilibria. Thus, our conclusions are markedly different
from the very clear-cut results obtained in a static two-stage game frame-
work (see, e.g., Singh and Vives, 1984), where firms always prefer Cournot
(respectively, Bertrand) competition if they produce substitutes (resp., com-
plements), while Bertrand competition is always preferable to Cournot com-
petition in terms of social welfare. The substantial difference among the
conclusions deriving from the static and the dynamic game approaches in
this case, clearly shows that the static game is far from being a reduced-form
description of dynamic competition among firms.
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