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Abstract

Recent literature shows how the destabilising e¤ect of portfolio insur-
ance activity on the price of the underlying asset depends on the liquid-
ity of the asset market. We build a simple model where market timers
shift capital around asset markets in order to exploit gains from tem-
porary excess-volatility of asset prices. In this way, market timers in-
crease the liquidity of asset markets reducing the excess volatility, while
they increase the cross-market correlation, whereas long-ranged …nancial
contagion eventually occurs. We show how liquidity of asset markets,
cross-market correlation and excess volatility of asset prices depend on
structural parameters of asset markets.

Keywords: Correlated liquidity shocks, …nancial contagion, asset price
dynamics, endogenous liquidity
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1 Introduction
It has been pointed out in the recent literature that portfolio insurance activity
has a destabilising e¤ect on the price of the underlying if the market of the
underlying is only …nitely liquid1 . The extent of this destabilising e¤ect, which
is visible through an increased volatility of the asset price, depends on the
liquidity of the market. If the market is perfectly liquid, then the asset price
dynamics are independent from the portfolio insurance activity, which is the
standard assumption in the Black and Scholes world, while if the market is
only …nitely liquid, this is no longer true. It is so crucial to understand what
determines the liquidity of the asset market.

Following the ideas of Grossman (1988) we assume that the liquidity of the
single asset market depends partly on the willingness of liquidity providers to
furnish capital. Important liquidity providers are market timers. A deviation
of an asset price from its normal level leads to arbitrage possibilities for market
timers. Consider, for example, the case where the asset price is lower than its
normal level. In this case, market timers have an incentive to invest capital in
this asset market, furnishing liquidity. If we assume that market timers strate-
gies have to be self-…nancing, then they have to acquire liquidity, disinvesting
capital from other asset markets. As a consequence, the deviation of the asset
price from its fundamentals is reduced. Thus, market timers have a stabilising
e¤ect on the asset price but at the same time they create correlated liquidity
shocks and as a consequence other asset markets su¤er a deviation of prices
from their normal level.

The destabilising e¤ect of program traders on asset prices has received much
attention in the recent literature. In particular, the destabilising e¤ect of dy-
namic hedging strategies on the underlying asset has been studied, for example,
by Schönbucher and Wilmott (2000) and Frey and Stremme (1997). These au-
thors take liquidity as exogenous, and study the positive feedback e¤ects of
dynamic hedging strategies on the price of the underlying. The destabilising
e¤ect of program traders on other asset markets has been studied by Gennotte
and Leland (1990). The latter authors show how market crashes can emerge
through the action of program traders. Further, Kodres and Pritsker (2001)
and Pritsker (2000) rationalises, among others, …nancial contagion through cor-
related liquidity shocks. While we will focus in this paper on correlated liquidity
shocks, there exists many other models which identify di¤erent channels of …-
nancial contagion2 .

The aim of this paper is to study in a uni…ed way the relationship between
liquidity of asset markets and the correlation and excess volatility of asset prices.

Given that an asset market is only …nitely liquid, the destabilising e¤ect of
program traders in the case of either liquidity shocks or shocks to fundamentals
leads to an excess volatility of asset price. Thus, potential gains for market
timers arise. Notice that if the market is perfectly liquid, even if there are

1See for example Frey and Stremme (1997) and Schönbucher and Wilmott (2000).
2See for example Kyle and Xiong (2001), Kodres and Pritsker (2001), Laguno¤ and Schreft

(2001) and their references.
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program traders operating on markets, there will be no excess volatility and no
…nancial contagion due to correlated liquidity shocks can occur. Thus, we are
looking for an equilibrium where asset markets remain …nitely liquid.

We are going to assume that market timers face, in each period of time
participation costs. Thus, we will derive the number of market timers operating
in equilibrium in each asset market. In this way we will show how the liquidity
of asset markets is determined endogenously. In particular, we will show how
the liquidity of asset markets, and also the cross-market correlation and the
excess volatility of asset prices depend on structural parameters characterising
the single asset markets.

The remaining part of the paper is organised as follows. In Section 2 we
describe the structure of the model. In Section 3 we give a simple example
where closed form solutions for the cross-market correlation and excess volatility
of asset prices can be derived. In Section 4 we give some numerical results and
derive some implications of the model. Section 5 concludes.

2 The model

The model is a simple extension of Grossman (1988) in a multiple asset setting.
We are going to assume that there are i = 1; :::; n types of risky assets in
our economy and a riskless bound yielding zero net interest. Each asset is
characterised by fundamental values F i, and by an asset price Si, for each
i = 1; :::; n. We assume that all assets share the same stationary state dynamics
of fundamentals. We are going to assume that there are four types of traders
in the economy: business traders, program traders, market timers and market
makers.

Business traders face a standard portfolio selection problem. In order to
focus just on the e¤ects of liquidity shocks, we will assume that there are gi = g
of these traders in each market i, each investing just in one risky asset or in
the riskless bound. In this way we exclude the possibility of …nancial conta-
gion through cross-market portfolio rebalancing undertaken by these agents. In
each period of time, these agents receive a noisy signal of the realisation of the
fundamentals and consequently rebalance optimally their portfolio.

Program traders use dynamic hedging strategies. These latter are convex
functions of the price of the underlying, and require to sell the risky asset if its
price decreases, while they require to buy the asset if the price of the underlying
increases. Thus, these strategies have a destabilising e¤ect on the asset price.
We will assume that program traders observe the fundamentals of the risky asset,
and change demand according to the realisation of the fundamentals and the
current price of the asset. We are interested in the stationary state behaviour
of the economy. Assuming that there is a continuous in‡ux and out‡ux of
program traders from the markets, we will use a stationary state demand of
program traders3 . We will assume further that for each risky asset i there are
f i = f program traders in each asset market i.

3See for example Frey and Stremme (1997).
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There are m market timers in the economy, m to be determined endoge-
nously. Market timers invest and disinvest capital in order to exploit gains from
the temporary deviations of the asset prices from their fundamentals. We are go-
ing to assume that the strategies of the market timers have to be self-…nancing,
i.e. if they want to invest capital in a given asset market, then they have to
acquire liquidity through a disinvestment of capital in other asset markets. If a
market timer observes that the price of an asset is lower than its normal price,
then he will disinvest capital from other asset markets in order to acquire liq-
uidity and to be able to buy the former asset. Symmetrically, we assume that
if a market timer observes that the price of an asset is higher than its normal
price, then he will sell assets, and invest the acquired liquidity in other asset
markets.

We will assume that market makers furnish liquidity such that at the end
of each period of time, asset prices are equal to their normal counterpart, i.e.
fundamental values.

In each period of time t, the fundamentals of asset i are observed by market
timers @i

t, where
¯̄
@i

t

¯̄
= Ni

t > 1, and further, in order to keep the model analyt-
ically tractable, we assume that each market timer j observes the fundamentals
of only two risky assets. The whole economy can be thought of as a collection
of vertices representing the asset markets, while the local connections between
the asset markets represent the market timers. In this way asset markets are
locally correlated since they have common market timers. We are going to
neglect higher order correlations in the interaction between asset markets. In
particular, we are going to study the model neglecting higher order correlations
through N . In other words, we are going to solve the model, assuming that
on each asset market there are on average Ne

t > 1 market timers, where the
average has been taken over all asset markets. Further, we are going to neglect
higher order correlations in the interaction structure. In particular, we are going
to neglect cycles in the linkages between asset markets. We assume also that
market timers can invest and disinvest capital only once in each period of time.

The interaction structure we are going to consider has a tree structure,
where the root of the tree is given by the asset market whose fundamentals
changed, and the direction of the connections indicates the di¤usion of the liq-
uidity shocks. Thus, if an asset market i is hit by a liquidity shock, then the
shock can be propagated further on to other Ne

t asset markets, and so on (see
Figure 1). This latter structure can also be considered as a …rst order approxi-
mation to more complex structures.

We introduce in this structure a distance between asset markets, de…ned as
the number of common market timers, i.e. direct connections, needed to pass
from the asset market where the shock to the fundamentals occurred (root of
the tree) to another asset market which is directly or indirectly linked to this.
Starting from the asset market i whose fundamentals changed, we have that
the number of asset markets at distance u directly linked to the former are
given by Ne

t (Ne
t ¡ 1)u¡1. Given that there are n asset markets in the economy,

and Ne
t is the average number of market timers operating on each market, the
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i i

Figure 1: Interaction structure, LHS Ne
t = 3, RHS Ne

t = 2.

maximum distance U = max(u) is de…ned implicitly as n = Ne
t (Ne

t ¡ 1)U¡1.
We are interested in the case where n ! 1 while Ne

t remains …nite.
We collect market timers observing the same two assets in one single market

timer, and thus we assume that each market timer observes at least one di¤erent
asset.

Each time period ¢t consists of …ve sub-periods. In the …rst part, market
timers decide whether to operate or not, facing in the former case participation
costs ci per unit of time ¢t. In the second part an asset i 2 f1; :::; ng will be
chosen at random. Further, F i realises, where with probability pi

+ = p+ and
pi

¡ = p¡ the fundamentals of asset i increase and decrease, respectively. Thus,
all fundamentals but the one of asset i remain unchanged. In the third part busi-
ness traders receive a noisy signal of the realisation of the fundamentals while
each market timer observes the realisation of the fundamentals of the assets. In
the fourth part portfolio selection and rebalancing occurs. If the fundamentals
of asset i increased (decreased), then the price of the asset will increase (de-
crease), and in particular, through the additional positive (negative) demand
of program traders, it will we be larger (lower) than the normal level. Thus,
market timers make pro…ts by rebalancing their portfolio, i.e. selling (buying)
the asset where the shock to the fundamentals occurred and buying (selling)
assets in correlated asset markets. Each market timer will choose the capital
to disinvest or invest in other markets in order to exploit gains in market i. In
this way market timers transfer a liquidity shock to correlated asset markets.
These liquidity shocks lead to a deviation of the asset price from its fundamen-
tals in correlated asset markets, and as a consequence, to exploitable gains for
other market timers. In this way liquidity shocks can be propagated further on.
Equilibrium prices are set once all buy and sell orders are set. In the …fth part
market makers supply the liquidity such that asset prices return to their normal
level, i.e. given only by their fundamentals. See Figure 2.

We are …rst going to describe the cross-market correlation and the expected
deviation of the asset price within each small time period ¢t. After this, we
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t t + 1 t + 2

∆t ∆t∆t∆t ∆t ∆t ∆t ∆t ∆t

1. Market timers decide whether to participate or not, facing in
the former case participation costs ci per unit of time.

2. An asset i ∈ {1, ... ,n} will be chosen at random and its
fundamentals (Fi) change.

3. Market timers observe realisation of Fi while business traders
of market i receive a noisy signal about its realisation.

4. Portfolio selection and rebalancing occur in all asset markets.
Asset prices deviate from their normal level.

5. Market timers supply liquidity such that the asset prices return
to their normal level.

Figure 2: The timing of the game

will pass to continuous time taking the limit of ¢t ! 0 and characterise the
excess volatility of asset prices.

3 Market structure

Consider …rst the business traders. As pointed out in the previous Section, we
assume that each business trader invests his wealth either in a riskless bound
B, yielding zero net interest, or in one of the i = 1; :::; n risky assets. There are
g business traders investing in each asset i. Further, we assume that business
traders receive a noisy signal of the realisation of the fundamentals of the asset,
where the noise variable is normally distributed. Each of these traders faces the
following maximisation problem

maxE [U (Wt+¢t)]
s:t: Wt+¢t = B + xtS

i
t+¢t

Si
txt + B = Wt

where Si
t is the price of asset i at time t. Assuming that the utility function is

exponential and given that the signal about the realisation of the fundamentals

6



is normally distributed, we have that the demand of asset i for each business
trader is given by

Di
t

¡
Si

t

¢
=

E
¡
Si

t+¢t

¢ ¡ Si
t

a¾2
I

where ¾I is the volatility of the signal while a indicates the risk aversion. As-
suming that the supply of each asset i is equal to zero, the market clearing
condition implies that

®
¡
E

¡
Si

t+¢t

¢
¡ Si

t

¢
= 0

where ® = g
a¾2

I
. Notice that ® ! 1 as the number of business traders diverges

towards in…nity. In the long run we have that Si
t = E

¡
Si

t

¢
= Si¤

t = eF i
t , where

F i
t indicates the fundamentals of asset i and Si¤

t the normal price of the asset.
Thus, in the long run, the asset price follows its fundamentals.

We are going to study how the price of asset i changes if its fundamen-
tals change. Consider, for example, a decrease in the fundamentals, F i0

t+¢t =
F i

t ¡ ¢F .4 From the market clearing condition we have that the normal asset
price decreases E

¡
Si¤

t+¢t

¢
= Si¤

t+¢t = eF i
t ¡¢t < eF i

t = Si¤
t . Thus, if there are

no program traders, the equilibrium price Si
t switches immediately towards its

normal level.
Let us now introduce program traders. We assume that these agents buy

the asset if the price of the asset increases, while they sell the asset if the price
decreases. Assume, for simplicity, that the stationary state aggregate demand
of program traders is given by5

¢i (y) = f

8
<
:

¡b (y)2 if y < 0

b (y)2 if y > 0
0 if y = 0

In the absence of market timers, the market clearing condition for asset i
will be

®
¡
E

¡
Si

t+¢t

¢ ¡ Si
t

¢ ¡ ¯
³
Si

t ¡ eF i
t

´2

= 0 (1)

where ¯ = fb. Taking a second order approximation to (1) around ¢F = 0 we
have that the equilibrium price is

Si
t = eF i

t ¡¢F ¡ ¯

®

³
eF i

t ¡¢F ¢F
´2

< Si¤
t+¢t (2)

4We will assume that the size of the change in the fundamentals is the same for each asset,
i.e. ¢F i = ¢F , for each i = 1:::n.

5A more general demand function would be fDy + ¢i (y). In order to keep the model
analytically tractable, we assume that D ! 0. In this way we focus on cases where the
destabilising e¤ect of program traders is lowest.
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Thus, since Si
t < Si¤

t+¢t, there are arbitrage opportunities for market timers.
The size of the deviation of the asset price from its normal level depends on the
value of the parameter ¯

® . In particular, the larger is ® or the lower is ¯; the lower
will be the deviation of the asset price from its fundamentals. In particular, if
the number of business traders diverges towards in…nity, i.e. ® ! 1, then the
deviation of the asset price from its fundamentals will be negligible. In other
words, if ® ! 1, then the excess demand (or supply) will be eliminated by the
business traders.

Now we are going to introduce in this framework market timers j 2 @i

observing the fundamentals of asset i. These latter have to determine how
much capital to withdraw from other asset markets in order to acquire the
liquidity necessary to buy assets i. Let us de…ne total demand of market timers
observing fundamentals of asset i as Qi

t =
P

j2@i
t
qj
t , where qj

t is the demand of
market timer j. Taking for the moment being Qi

t as given, the market clearing
condition becomes

®
¡
E

¡
Si

t+¢t

¢ ¡ Si
t

¢ ¡ ¯
³
Si

t ¡ eF i
t

´2

+ Qi
t = 0

Also in this case we take a second order approximation of the equilibrium price
around ¢F = 0, and the asset price Si

t becomes6

Si
t = eF i

t ¡¢F +
1

®
Qi

t ¡ ¯

®

³
eF i

t ¡¢F ¢F
´2

(3)

3.1 Liquidity shocks

Asset markets k 2 @i
t receive a liquidity shock of size ljt , to be determined

further on. This liquidity shock leads to a deviation of the asset price Sk
t from

its normal level. Thus, potential gains for market timers arise.
The market clearing condition for asset market k is

®
¡
E

¡
Sk

t

¢ ¡ Sk
t

¢ ¡ ¯
³
Sk

t ¡ eFk
t

´2

¡ ljt = 0 (4)

Taking Taylor expansion up to the second order of (4) and taking into account
that the liquidity shock is of order (¢F )2, and that higher order terms are
negligible, we obtain an equilibrium price of

Sk
t = eF k

t ¡ 1

®
ljt

A negative liquidity shock decreases the asset price and leads to a deviation
of the price from its normal level. The size of this deviation depends on the
number of program traders and on the degree of risk aversion. A decrease in ®,
ceteris paribus, increases the deviation of the asset price from its normal level.

6As we will see next Qi is of order (¢F )2 and so higher order terms of Qi can be neglected.
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Market timers operating in this market will withdraw capital from neigh-
bouring asset markets v 2 @k

t . Thus, taking into account the demand of market
timers, the market clearing condition will be

®
¡
E

¡
Sk

t

¢ ¡ Sk
t

¢ ¡ ¯
³
Sk

t ¡ eFk
t

´2

¡ ljt + Qk
t = 0

and the corresponding equilibrium asset price is given by

Sk
t = eF k

t +
1

®

³
Qk

t ¡ ljt

´

Demand of market timers operating on asset market k will lead to other liquidity
shocks, leading to a further propagation of these latter. See Figure 3.

3.2 Optimal strategies for market timers

In characterising the solution of the problem of the market timers and their
e¤ect on asset prices, we will make use of the following de…nitions:

De…nition 1 qu
t indicates the optimal quantity of capital invested in the

asset market we are considering, given that a negative or positive shock to the
fundamentals occurred in an asset market which is at distance u from the one
we are considering.

De…nition 2 We de…ne ¢Su
F;t = St ¡ E (St+¢t) the deviation of the asset

price from its fundamentals, given that a shock to the fundamentals occurred to
an asset market which is at distance u from the one we are considering.

Consider …rst asset market i, where a negative shock to the fundamentals
occurred. Market timers operating on this market have to determine the amount
of capital to disinvest from a neighbouring asset market k, taking into account
the gain they make in asset market i (since they buy the asset at a price lower
than the normal one) and the loss they make in asset market k (since they sell
the asset at a price lower than the normal one). This maximisation problem
is subject to the constraint that the portfolio rebalancing strategy has to be
self-…nancing, i.e. the capital invested in the former market has to be acquired
from the latter asset market. The problem can be stated as follows

maxqi

n
qi

£
E

¡
Si

t+¢t

¢
¡ Si

t

¤
¡ li

³
eF k

t ¡ Sk
t

´o

s:t: qiSi
t = liSk

t

(5)

where Si
t and Sk

t are equilibrium prices where all buy and sell-orders have been
made. Using the …rst order condition of problem (5) we obtain the following
demand of asset i

q0
t =

1

d0
t

µ
¯

¡
S¤i

t ¢F
¢2

+ (Ne
t ¡ 1)

Si
t

Sk
t

q1
t

¶
(6)
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Asset market i

Asset market v1

Asset market k2

Asset market v2

Market timer withdraws
capital from asset market
k1 and invests the liquidity
in market i.

Market timer withdraws
capital from asset market
v1 and invests the liquidity
in market k1.

Market timer withdraws
capital from asset market
v2 and invests the liquidity
in market k2.

Market timer withdraws
capital from asset market
k2 and invests the liquidity
in market i.

Asset market k1

Liquidity shocks

Liquidity shocks

F F Ft t
i

t
i

+ = −∆ ∆

( )S E St
i

t t
i< +∆

( )S E St
k

t t
k2 2< +∆

( )S E St
v

t t
v1 1< +∆ ( )S E St

v
t t
v2 2< +∆

Liquidity shocks

( )S E St
k

t t
k1 1< +∆

Figure 3: Correlated liquidity shocks and excess deviation of asset prices, Ne =
2.
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where d0
t = 1 + 2

³
Si

t

Sk
t

´2

+ Ne
t and q1

t indicates the demand of market timers

operating on asset market k 2 @i
t.

Now consider the problem of a representative market timer operating on
asset market k and r. The problem can be stated as follows:

maxqk

n
qk

³
eFk

t ¡ Sk
t

´
¡ lk

¡
eFr

t ¡ Sr
t

¢o

s:t: qkSk
t = lkSr

t

(7)

From the …rst order condition of problem (7) we obtain the following

q1
t =

1

d
00
t

µ
Si

t

Sk
t

q0
t + (Ne

t ¡ 1)
Sk

t

Sr
t

q2
t

¶
(8)

where d00
t = 2

³
Sk

t

Sr
t

´2

+ Ne
t and q2

t indicates the demand of market timers oper-

ating on asset market r 2 @k
t :

We will make the following assumption about the distribution of the relative
asset prices:

Assumption 1 There exists the following moments of the distribution of

relative prices "i;j
t = Si

t

Sj
t

: E
³
"i;j

t

´
= ¹";t; E

µ³
"i;j

t

´2
¶

= s";t; E

µ³
"i;j
t

´3
¶

=

!";t; E

µ³
"i;j
t

´4
¶

= º";t:

In Section 3.4 we will explicitly calculate the moments of the distribution of
relative prices.

The problem of the market timers has to be solved recursively. We can
state the following proposition which characterises the average behaviour of the
equilibrium.

Proposition 1 The average behaviour of the equilibrium is characterised as
follows

qu
t =

1

1 + ¸t

£
1 + dt

¡
¹";t ¡ 1

¢¤ (¸t)
u+1 ¯

¡
S¤i

t+¢t¢F
¢2

¢S0
F;t =

Ã
¸t

1 + ¸t

£
1 + dt

¡
¹";t ¡ 1

¢¤Ne
t ¡ 1

!
¯

®

¡
S¤i

t+¢t¢F
¢2

¢Su
F;t =

(Ne
t ¡ 1)¸t ¡ ¹";t

1 + ¸t

£
1 + dt

¡
¹";t ¡ 1

¢¤ (¸t)
u ¯

®

¡
S¤i

t+¢t¢F
¢2

for each u > 0, where ¸t =
dt¡dt

r
1¡4

Ne
t ¡1

d2
t

2(Ne
t ¡1) and dt = 2s";t+Ne

t

¹";t
.
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Proof. It is easy to see that all the problems for the markets but the …rst
one are characterised by the general average solution

qu
t =

1

dt

¡
qu¡1
t + (Ne

t ¡ 1) qu+1
t

¢
(9)

where dt = 2s";t+Ne
t

¹";t
: (9) is a second order di¤erence equation. The solution to

(9) is given by qu
t = (¸t)

u, where

¸t;(1;2) =
dt § dt

q
1 ¡ 4Ne

t ¡1

d2
t

2 (Ne
t ¡ 1)

(10)

The general solution to (9) will be

qu
t = Ct;1 (¸t;1)

u + Ct;2 (¸t;2)
u (11)

where Ct;1 and Ct;2 are constants. (11) has to be true for all u >> 0. We can
observe that ¸t;1 > 1, and in particular, as long as Ct;1 > 0, (Ne

t ¡ 1) q1 > q0

for Ne
t su¢ciently large, which is not an admissable solution. Thus, we obtain a

meaningful solution only if Ct;1 = 0. From this we obtain that qu+1
t = ¸tqu

t , for
each u > 0, where ¸t;2 = ¸t: Further, inserting this solution into (6) we obtain
the initial condition that

q0
t =

¸t

1 + ¸t

£
1 + dt

¡
¹";t ¡ 1

¢¤¯
¡
S¤i

t+¢t¢F
¢2

which concludes the proof.

It is easy to verify that the following results hold:

Lemma 1 For Ne
t > 1

1. 0 < ¸t <
¹";t

1+2s";t
;

¹";t

1+2s";t
< ¸tNe

t < ¹";t and 0 < ¸t (Ne
t ¡ 1) < ¹";t:

2. lim
Ne

t !1
¸t = 0 and, for Ne

t ¡1

d2
t

su¢ciently small, @
@Ne

t
¸t < 0:

3. lim
Ne

t !1
¸tN

e
t = lim

Ne
t !1

¸t (Ne
t ¡ 1) = ¹";t and, for Ne

t ¡1

d2
t

su¢ciently small,

@
@Ne

t
¸tN

e
t > 0:

Proof. The limits can be calculated straightforwardly. In order to proof
that ¸t is a decreasing, while ¸tN

e
t is an increasing function of Ne

t , respectively,

we take a …rst order approximation to
q

1 ¡ 4Ne
t ¡1

d2
t

, for Ne
t ¡1

d2
t

! 0. Thus,

¸t ¼ 1
dt

=
¹";t

Ne
t +2s";t

, and it is easy to see that @
@Ne

t
¸t < 0, while @

@Ne
t
¸tN

e
t > 0.
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From Proposition 1 and Lemma 1 we observe that as the number of market
timers working on each market diverges towards in…nity, the quantity of capital
invested by each market timer and also the deviation of asset prices from their
fundamentals converge towards zero, i.e. qu

t !
Ne

t !1
0 and ¢Su

F;t !
Ne

t !1
0, for

each u ¸ 0. Thus, the more are the market timers operating on each asset mar-
ket, the more liquid are the asset markets and the lower is the excess deviation
of the asset prices from their fundamentals.

3.3 Cross-market correlation

We are interested in the cross-market correlation, which can be de…ned as fol-
lows.

De…nition 3 The cross-market correlation at distance u ¸ 1, is de…ned as
¡t (u) = ¢SF;t(u)

¢SF;t(0)
, where

¢SF;t (u) =
Ne

t (Ne
t ¡1)u¡1P
j=1

¢Su
F;t for each u > 0

¢SF;t (0) = ¢S0
F;t for u = 0

¢SF;t (u) indicates the sum of the deviations of the asset prices from their
fundamentals which are at distance u from the market where the shock to the
fundamentals occurred. ¡t (u) 2 [0; 1) measures the total average susceptibil-
ity of asset prices at distance u from the asset market where the shock to the
fundamentals occurred. If lim

u!1
¡t (u) ! 0, then the total average susceptibility

becomes vanishing small as u diverges towards in…nity, while if lim
u!1

¡t (u) ! 1
then the total average susceptibility diverges towards in…nity as u diverges to-
wards in…nity. Thus, in the former limit we have that the cross-market correla-
tion is vanishing small, while in the latter case we observe long-ranged …nancial
contagion.

Proposition 2 The cross-market correlation at distance u is given by

¡t (u) t Cte
¡zt(N

e
t )u

where zt (Ne
t ) = 1 ¡ ¸t (Ne

t ¡ 1) and Ct =
(Ne

t ¡1)¸t¡¹";t

(Ne
t ¡1)¸t¡¸tdt(¹";t¡1)¡1

¸tN
e
t .

Proof. Using de…nition 3.3 we have that

¢SF;t (u) = ¸tN
e
t [¸t (Ne

t ¡ 1)]u¡1 (Ne
t ¡ 1)¸t ¡ ¹";t

1 + ¸t

£
1 + dt

¡
¹";t ¡ 1

¢¤ ¯

®

¡
S¤i

t+¢t¢F
¢2

(12)
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(12) can be rewritten as follows

¢SF;t (u) t ¸tN
e
t e¡ztu

(Ne
t ¡ 1) ¸t ¡ ¹";t

1 + ¸t

£
1 + dt

¡
¹";t ¡ 1

¢¤ ¯

®

¡
S¤i

t+¢t¢F
¢2

(13)

where zt = 1 ¡ ¸t (Ne
t ¡ 1).

Lemma 2

1. lim
Ne

t !1
zt (Ne

t ) = 1¡¹";t and, for Ne
t ¡1
d2

t
su¢ciently small, @

@Ne
t
zt (Ne

t ) < 0.

2. lim
Ne

t !1
Ct = ¹";t

¹2
";t¡1¡2s";t

¹";t¡1¡2s";t
and, for Ne

t ¡1
d2

t
su¢ciently small, @

@Ne
t
Ct > 0 :

Proof. The limits can be calculated straightforwardly. @
@Ne

t
zt (Ne

t ) < 0

follows from Lemma 1. In order to proof that @
@Ne

t
Ct > 0 we take a …rst order

approximation to
q

1 ¡ 4
Ne

t ¡1

d2
t

, for Ne
t ¡1

d2
t

! 0 and consequently it is easy to see

that @
@Ne

t
Ct = @

@Ne
t
¸tNe

t > 0.

For ¹";t = 1, we have that zt (Ne
t ) > 0 and as a consequence the cross-market

correlation decreases in an exponential way with the distance u. From Lemma 2
we observe that for Ne

t ! 1; Ct ! 1, while zt (Ne
t ) ! 0. Thus, the lower is Ne

t ,
the faster the cross-market correlation decreases down to zero as u increases,
while as Ne

t increases, the cross-market correlation increases.
For ¹";t > 1, we have that there exists an ¹Nt

¡
¹";t; s";t

¢
such that zt

¡
¹Nt

¢
= 0

and where zt (Ne
t ) > 0, for each Ne

t < ¹Nt and zt (Ne
t ) < 0, for each Ne

t > ¹Nt.
In Figure 3 we give examples of the function zt.

We can treat the two cases in a uni…ed way, if we de…ne ¹Nt

¡
¹";t; s";t

¢
= 1,

for each ¹";t 6 1. The following Proposition characterises the behaviour of the
cross-market correlation.

Proposition 3 a) If Ne
t < ¹Nt

¡
¹";t; s";t

¢
, then the cross-market correlation

decreases exponentially with the distance u at a rate zt (Ne
t ). Further, this rate

is decreasing in Ne
t , and bounded from below by 0. b) If Ne

t > ¹Nt

¡
¹";t; s";t

¢
,

then the cross-market correlation increases exponentially with the distance u at
a rate ¡zt (Ne

t ) > 0. Further, this rate is increasing in Ne
t and upper bounded

by ¹";t ¡ 1. c) If Ne
t = ¹Nt

¡
¹";t; s";t

¢
, then the cross-market correlation remains

non-negligible and further it is independent from the distance u.

Proof. The proposition is a direct consequence of Lemma 3 and Proposition
2.

Part b) of Proposition 3 becomes relevant if ¹";t > 1, for some t > t0. In
this case, if Ne

t is su¢ciently large, a single, small shock to the fundamentals

14
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Figure 4: z as a function of Ne; ¹";t = e¾2
F t; s";t = e4¾2

F t and ¾F = 0:2; Solidline:
t = 0; dashed line: t = 2; dots: t = 4.

of an asset can lead to a long ranged …nancial contagion. The intuition for this
result is the following. Consider the case where ¹";t > 1. The larger is ¹";t, the
larger is the quantity of capital which has to be withdrawn from neighbouring
(correlated) asset markets in order to exploit the gains from the temporary
deviations of asset prices. Consequently, this leads to a larger deviation of the
asset price from its normal level in these correlated asset markets, i.e. to a
stronger propagation mechanism.

3.4 Asset price dynamics

In the previous Section we concentrated on the relationship between the average
number of market timers operating on the asset markets (Ne

t ) and the cross-
market correlation between asset prices. In this Section we will see how Ne

t

a¤ects the liquidity of asset markets and consequently the excess volatility of
asset prices.

The expected deviation of asset price i from its normal level and the second
moment of this deviation are given by

E
¡
¢Si

F;t

¢
= (~p¡ + ~p+)

1X

u=0

E
³
g¢S

i

F;t (u)
´

E
³¡

¢Si
F;t

¢2
´

= (~p¡ + ~p+)
1X

u=0

E

µ³
g¢S

i

F;t (u)
´2

¶

where

1P
u=0

E
³
g¢S

i

F;t (u)
´

= ¡¯
®

¡
S¤i

t+¢t¢F
¢2

½µ
1 ¡ ¸tNe

t

1+¸t[1+dt(¹";t¡1)]

¶
+

s";t
¹";t¡(Ne

t ¡1)¸t

1+¸t[1+dt(¹";t¡1)]
¸tNe

t

h
1 + ¸t (Ne

t ¡ 1) + ::: + (¸t)
U¡1 (Ne

t ¡ 1)U¡1
i¾

(14)
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1P
u=0

E

µ³
g¢S

i

F;t (u)
´2

¶
=

h
¯
®

¡
S¤i

t+¢t¢F
¢2

i2
(µ

1 ¡ ¸tNe
t

1+¸t[1+dt(¹";t¡1)]

¶2

+

º";t

µ
¹";t¡(Ne

t ¡1)¸t

1+¸t[1+dt(¹";t¡1)]
¸t

¶2

Ne
t

h
1 + (¸t)

2 (Ne
t ¡ 1) + ::: + (¸t)

2(U¡1) (Ne
t ¡ 1)U¡1

i

(15)

The excess volatility of the asset price is de…ned as ¾SF , where ¾2
SF

= E
³¡

¢Si
F;t

¢2
´
¡

¡
E

¡
¢Si

F;t

¢¢2
.

We can now describe the dynamics of the deviation of the asset price from
its fundamentals. Given that an asset market has been chosen, with probability
p and 1 ¡ p its fundamentals increase and decrease, respectively. Further we
assume that each asset market is chosen with probability 1

n2 . Thus, we assume
that in each period of time, with probability 1

n one asset market, chosen at
random, will be hit by a shock (either negative or positive) to its fundamentals,
while with probability 1 ¡ 1

n no asset market will be hit by a shock to the
fundamentals. In other words, we have that ~p+ + ~p¡ = 1

n2 . In this way we
introduce implicitly a time scale of order dt = 1

n2 .

Proposition 4 For a time scale dt = 1
n2 , the di¤usion process describing the

dynamics of the fundamentals F i and of the asset price Si will be, respectively

dF i
t = ¹dt + ¾F dwi

t (16)

dSi
t = Si

t

µ
¹ +

1

2
¾2

F

¶
dt + ¾F Si

tdwi
t (17)

where dwi
t is a Wiener process, i.i.d. across i = 1; :::; n; ¹ and ¾F are the drift

and the volatility of the fundamentals of the asset. The excess volatility of the
asset price will be

¾S;t =
¯

®
¾2

F

¡
Si

t

¢2
#t (18)

where #2
t =

½
1 ¡ ¸tN

e
t

1+¸t[1+dt(¹";t¡1)]

¾2

+º";t

½
¹";t¡(Ne

t ¡1)¸t

1+¸t[1+dt(¹";t¡1)]

¾2
(¸t)

2Ne
t

1¡(¸t)
2(Ne

t ¡1)
:

Proof. See Appendix.

Lemma 3 lim
Ne

t !1
#2

t = 0. Further, for Ne
t ¡1

d2
t

su¢ciently small, there exists a

~Nt (s";t; º";t) such that for each Ne
t > ~Nt (s";t; º";t), #2

t is a decreasing function
of Ne

t .
Proof. For small values of Ne

t ¡1
d2

t
we have that ¸t ¼ 1

dt
=

¹";t

Ne
t +2s";t

. Thus,

we have that #2
t = #2

1;t#
2
2;t where

#2
1;t =

µ
1 ¡ ¸tN

e
t

¹";t + ¸t

¶2
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#2
2;t = 1 + º";t

(¸t)
2 Ne

t

1 ¡ (¸t)
2 (Ne

t ¡ 1)

Taking the …rst derivative of #2
t with respect to Ne

t we obtain @
@Ne

t
#2

t =
@#2

1;t

@Ne
t

#2
2;t+

@#2
2;t

@Ne
t

#2
1;t, where

@

@Ne
t

#2
1;t = ¡

µ
1 ¡ ¸tNe

t

¹";t + ¸t

¶ @¸tN
e
t

@Ne
t

¡
¹";t + ¸t

¢
¡ ¸tNe

t
@¸t

@Ne
t¡

¹";t + ¸t

¢2 < 0 (19)

@

@Ne
t

#2
2;t = º";t¹

2
";t

(Ne
t + 2s";t) (2s";t ¡ Ne

t ) + ¹2
";th

(Ne
t + 2s";t)

2 ¡ ¹2
";t (Ne

t ¡ 1)
i2 (20)

It is easy to see that (19) is negative, while (20) has an ambiguous sign. For Ne
t

su¢ciently large, the sign of (20) is unambiguously negative.

From Proposition 4 and Lemma 3 we have that, given that Ne
t is su¢ciently

large, an increase in Ne
t increases the liquidity of the asset markets, reducing the

excess volatility of the asset price. On the other side, an increase in ¯
®
, increases

the excess volatility of the asset price. In Section 4 we will see how ¯
®

a¤ects
the excess volatility in a indirect (liquidity) and a direct way, respectively.

Next we state a result about the moments of the distribution of relative asset
prices.

Lemma 4 The moments of the distribution of relative asset prices "i;j
t = Si

t

Sj
t

are given as follows: E
³
"i;j

t

´
= ¹";0e

¾2
F t; E

µ³
"i;j
t

´2
¶

= s";0e4¾2
F t; E

µ³
"i;j
t

´3
¶

=

!";0e9¾2
F t; E

µ³
"i;j
t

´4
¶

= º";0e16¾2
F t:

Proof. Integrating (17) we obtain the following Si
t = Si

0e
¹t+¾F wi

t¡¾2
F

t
2 .

Since the fundamentals of all assets share the same drift and volatility we have
that the relative asset price is given by "i;j

t = "i;j
0 e¾F (wi

t¡wj
t ), where the moments

are calculated straightforwardly.

From Lemma 4 we observe that the …rst four moments of the distribution of
relative asset prices are exponentially increasing in time. We will see in Section
4 the importance of this result for the cross-market correlation and the excess
volatility of asset prices.

In the next Section we will calculate the average number of market timers
operating on each asset market.
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3.5 Number of market timers

We have still to calculate the average number of market timers operating on
each asset market. We have seen in the previous Section that the number of
market timers in‡uences the liquidity of the single asset markets and also the
cross-market correlation of asset prices.

The problem of the market timers is to decide, in each period of time,
whether to participate or not. We assume that in each period of time, market
timers face participation costs per unit of time, i.e. c

¡
Si

t

¢
dt. Potential market

timers calculate the expected gain from participating, knowing the stochastic
process of the fundamentals of the assets F , and decide to participate if the
expected gains from participating are at least as large as the costs.

The expected gains from operating on a generic asset market i are

E
¡
¦i

t

¡
mi; Ne

t

¢¢
= ¼i;0

t +
X

j2@i
t

¼j;1
t +

X

j2@i
t

X

k2f@j
t¡jg

¼k;1
t + :::

Using the assumption that ¢F
n

= ¾F

p
dt and setting the time scale dt = 1

n2 we
can state the following Proposition.

De…nition 4 The number of market timers operating on each market, in
each period of time, is given by the solution of the following problem

N i
t (Ne

t ) = arg min
mi

©
E

£
¦i

t

¡
mi;Ne

t

¢¤
> c

¡
Si

t

¢ª

Ne
t =

1

n

nX

i=1

Ni
t (Ne

t )

where

E
¡
¦i

t

¡
N i

t ; N
e
t

¢¢
= ¯2

®

¡
¾2

F

¢2 ¡
Si

t

¢4
½

¸t
1¡¸t[N

e
t ¡1+s";t¡dt(¹"¡1)]+(¸t)

2(Ne
t ¡1)¹";t

f1+[1+dt(¹";t¡1)+N i
t¡Ne

t ]¸tg2 +

+

µ
¸t

1+¸t[1+dt(¹";t¡1)]

¶2

¸t
¹";t¡¸t(N

e
t ¡1+s";t)+(¸t)

2(Ne
t ¡1)¹";tµ

1+
Ni

t¡Ne
t

¹";t
¸t

¶2 º";t
Ni

1¡(¸t)
2(Ne

t ¡1)

9
=
;

(21)

For the following we take a …rst order approximation to the equilibrium
de…ned in De…nition 4. In Proposition 5 we state the condition characterising
the average number of market timers operating on each asset market and further
we state su¢cient conditions for a solution of the same.

Proposition 5 Consider an economy with n assets, where n ! 1 and where
one asset price has been normalised to one. a) The condition characterising the
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…rst order approximation to the average number of market timers operating in
equilibrium is the following

E (¦t (Ne
t )) = E

¡
c
¡
Si

t

¢¢
(22)

where

E (¦t (Ne
t )) = ¸t

f1+[1+dt(¹";t¡1)]¸tg2 º";t
¯2

®

¡
¾2

F

¢2 £
©
1 ¡ ¸t [Ne

t ¡ 1 + s";t ¡ dt (¹" ¡ 1)] + ¸2
t (Ne

t ¡ 1)¹";t+

+
£
¹";t ¡ ¸t (Ne

t ¡ 1 + s";t) + ¸2
t (Ne

t ¡ 1)¹";t

¤
º";t

¸2
tNe

t

1¡¸2
t (Ne

t ¡1)

o (23)

b) A su¢cient condition for the solution of (22) is that

E
¡
c
¡
Si

t

¢¢
6 ¯2

®

¡
¾2

F

¢2 º";t

4 (1 + s";t)

Ã
1 +

º";t¹2
";t

(1 + 2s";t)
2

!

Proof. Consider …rst part a) of the Proposition. For each asset market i
we have that

E
¡
¦i

t

¡
N i

t ; N
e
t

¢¢
> c

¡
Si

t

¢
(24)

where N i
t is a solution of the problem stated in De…nition 4. Now multiply

both sides of (24) by
©
1 +

£
1 + dt

¡
¹";t ¡ 1

¢
+ N i

t ¡ Ne
t

¤
¸t

ª2
³
1 + N i

t¡Ne
t

¹";t
¸t

´2

and sum all inequalities over i and divide both sides by n. Taking the limit
where n ! 1 and further, taking a …rst order approximation where Ni

t ! Ne
t

and neglecting higher order correlations between Si
t and Ni

t we obtain (22),
Consider now part b) of the Proposition. Since the support for Ne

t is bounded
from below by 1, while it is unbounded from above, we can take the limit

lim
Ne

t !1
E (¦t (Ne

t )) = 0

lim
Ne

t !1
E (¦t (Ne

t )) =
¯2

®

¡
¾2

F

¢2 º";t

4 (1 + s";t)

Ã
1 +

º";t¹
2
";t

(1 + 2s";t)
2

!
> 0

Since E (¦t (Ne
t )) is a continuous function, at least one solution to (22) exists.

In the following Lemma we characterise further the properties of the equi-
librium (22).

Lemma 5 lim
Ne

t !1
E (¦t (Ne

t )) = 0. Further, for Ne
t ¡1

d2
t

su¢ciently small,

there exists a N̂t

¡
¹";t; s";t; º";t

¢
such that for each Ne

t > N̂t

¡
¹";t; s";t; º";t

¢
,

E (¦t (Ne
t )) is a decreasing function of Ne

t .
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Proof. The limit can be calculated straightforwardly. For Ne
t ¡1

d2
t

su¢ciently
small,

E (¦t (Ne
t )) = º";t

¯2

®

¡
¾2

F

¢2
¦1;t (Ne

t )¦2;t (Ne
t )¦3;t (Ne

t )

where

¦1;t (Ne
t ) =

¸t¡
¹";t + ¸t

¢2

¦2;t (Ne
t ) =

¡
¹";t ¡ ¸t (Ne

t ¡ 1 + s";t) + ¸2
t (Ne

t ¡ 1)¹";t

¢

¦3;t (Ne
t ) = 1 + º";t

(¸t)
2 Ne

t

1 ¡ (¸t)
2 (Ne

t ¡ 1)

where

@

@Ne
t

¦1;t (Ne
t ) =

@¸t

@Ne
t

¹";t ¡ ¸t¡
¹";t + ¸t

¢3 < 0

@

@Ne
t

¦2;t (Ne
t ) = ¡¹";t

(1 + s";t)
¡
1 ¡ 2¹";t

¢
+ ¹2

";tN
e
t

(Ne
t + 2s";t)

2

@

@Ne
t

¦3;t (Ne
t ) = º";t¹

2
";t

(Ne
t + 2s";t) (2s";t ¡ Ne

t ) + ¹2
";th

(Ne
t + 2s";t)

2 ¡ ¹2
";t (Ne

t ¡ 1)
i2

Notice that @
@Ne

t
¦1;t (Ne

t ) is unambiguously negative, while @
@Ne

t
¦2;t (Ne

t ) and
@

@Ne
t
¦3;t (Ne

t ) are negative only if Ne
t is su¢ciently large.

4 Discussion and Simulation results

In this Section we put together the results seen in the previous Sections. In
particular, we are interested in how cross-market correlation and volatility of
asset prices change as structural parameters, such as ®, ¯ and c change.

We can summarise the previous results as follows: the larger is Ne a) the
larger is the cross-market correlation (Lemma 2 and Proposition 3) and b) the
lower is the excess volatility of asset prices. Thus, market timers have a stabilis-
ing e¤ect on asset prices, i.e. they increase the liquidity of asset markets, while
they increase the cross-market correlation. From Proposition 5 and Lemma 5
we observe also that the larger are the participation costs for market timers,
the lower will be Ne. Consequently, the larger are the participation costs for
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market timers, the larger will be the excess volatility but the lower will be the
cross-market correlation.

From Proposition 5 and Lemma 5 we observe that the larger is ¯2

® the larger

are the number of market timers. Thus, the larger is ¯2

® the larger is Ne and as
a consequence the larger is the cross-market correlation. On the other side, ¯
(®) has an ambiguous e¤ect on the excess volatility. In particular, a direct and
an indirect e¤ect can be distinguished: an increase (decrease) in ¯ (®) increases
directly the excess volatility (direct e¤ect), while it decreases indirectly the
excess volatility through an increase in Ne (liquidity e¤ect).

We provide a numerical solution for the model. We normalise one asset price
to one. The average excess volatility (18) is given by

¾S;t = VtS
2
t

where Vt = ¾2
F

¯
®
#t and the average expected pro…ts for each market timer are

given by E (¦t (Ne
t )) (23).

In order to simplify the analysis, we assume that at time 0 all asset prices
are the same, i.e. ¹";0 = s";0 = !";0 = º";0 = 1. We made simulations using
¾F = 0:2. In the Figures 4-15 we provide some simulation results. Notice that
in the case where c = 0:001 and c = 0:002 the participation costs are a constant
fraction of the reference asset price, while in the case where c = 0:001S2 and
c = 0:002S2 the participation costs are related to the volatility of the relative
asset prices.

From Lemma 4 we know that the moments of the distribution of relative
asset prices are increasing in time. From the Figures below we observe that this
leads to an increase in the expected gain of market timers and thus more and
more market timers enter the market as time goes on. Consequently, the excess
volatility of asset prices decreases while the cross-market correlation increases.
Further, we observe the stabilising function of business traders - destabilising
function of program traders. In particular, the more are the business traders (i.e.
the larger is ®), the lower is the excess volatility of asset prices and the lower
is the cross-market correlation. On the other side, the more are the program
traders (i.e. the larger is ¯), the larger is the excess volatility and the larger
is the cross-market correlation. Thus, regarding the excess volatility, the direct
e¤ect dominates the indirect (liquidity e¤ect).

From the Figures below we observe that long- ranged …nancial contagion is
possible. This latter e¤ect is due to the continuous increase in ¹";t: as this latter
variable increases, a larger quantity of capital has on average to be withdrawn
from correlated asset markets in order to exploit the gains and thus, the prop-
agation mechanism is becoming stronger. While the cross-market correlation
does not directly depend on ®, ¯ and c, it depends indirectly on these variables
through Ne

t . In particular, we observe from these Figures that the cross-market
correlation can be reduced if either ® or c are increased, or ¯ is decreased. In
this way, long ranged …nancial contagion can be avoided.
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® = 200 (polygon) and ® = 400 (triangle); LHS: Ne as a function of t;

Center: Vt as a function of t; RHS: z as a function of t:
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Figure 5: c = 0:002; ¯ = 50, ® = 50 (blackboxes), ® = 100 (stars),
® = 200 (polygon) and ® = 400 (triangle); LHS: Ne as a function of t;

Center: Vt as a function of t; RHS: z as a function of t:
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Figure 6: c = 0:001S2; ¯ = 50, ® = 50 (blackboxes), ® = 100 (stars),
® = 200 (polygon) and ® = 400 (triangle); LHS: Ne as a function of t;

Center: Vt as a function of t; RHS: z as a function of t
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Figure 7: c = 0:002S2; ¯ = 50, ® = 50 (blackboxes), ® = 100 (stars),
® = 200 (polygon) and ® = 400 (triangle); LHS: Ne as a function of t;

Center: Vt as a function of t; RHS: z as a function of t:
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Figure 8: c = 0:001; ¯ = 75, ® = 50 (blackboxes), ® = 100 (stars),
® = 200 (polygon) and ® = 400 (triangle); LHS: Ne as a function of t;

Center: Vt as a function of t; RHS: z as a function of t:
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Figure 9: c = 0:002; ¯ = 75, ® = 50 (blackboxes), ® = 100 (stars),
® = 200 (polygon) and ® = 400 (triangle); LHS: Ne as a function of t;

Center: Vt as a function of t; RHS: z as a function of t:
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Figure 10: c = 0:001S2; ¯ = 75, ® = 50 (blackboxes), ® = 100 (stars),
® = 200 (polygon) and ® = 400 (triangle); LHS: Ne as a function of t;

Center: Vt as a function of t; RHS: z as a function of t:
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Figure 11: c = 0:002S2; ¯ = 75, ® = 50 (blackboxes), ® = 100 (stars),
® = 200 (polygon) and ® = 400 (triangle); LHS: Ne as a function of t;

Center: Vt as a function of t; RHS: z as a function of t:
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Figure 12: c = 0:001; ¯ = 100, ® = 50 (blackboxes), ® = 100 (stars),
® = 200 (polygon) and ® = 400 (triangle); LHS: Ne as a function of t;

Center: Vt as a function of t; RHS: z as a function of t
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Figure 13: c = 0:002; ¯ = 100, ® = 50 (blackboxes), ® = 100 (stars),
® = 200 (polygon) and ® = 400 (triangle); LHS: Ne as a function of t;

Center: Vt as a function of t; RHS: z as a function of t:
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Figure 14: c = 0:001S2; ¯ = 100, ® = 50 (blackboxes), ® = 100 (stars),
® = 200 (polygon) and ® = 400 (triangle); LHS: Ne as a function of t;

Center: Vt as a function of t; RHS: z as a function of t
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Figure 15: c = 0:002S2; ¯ = 100, ® = 50 (blackboxes), ® = 100 (stars),
® = 200 (polygon) and ® = 400 (triangle); LHS: Ne as a function of t;

Center: Vt as a function of t; RHS: z as a function of t:
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5 Conclusion
In this paper we tried to address the relationships between liquidity of asset
markets and the cross-market correlation and excess volatility of asset prices.
We proposed a simple model where market timers shift capital around asset
markets in order to exploit temporary deviations of asset prices from their fun-
damental values. The number of market timer operating on each asset market
in‡uences the liquidity of the asset market, and consequently the excess volatil-
ity of asset prices as well as the cross-market correlation between asset markets.
We derived an equilibrium for the number of market timers operating on each
market in each period of time. In this way, liquidity of each asset market is
determined endogenously, and depends on structural parameters characterising
the asset markets.

Appendix
Proof of Proposition 4. Let us …rst derive the discrete dynamics, and

after this pass to continuous time dynamics.
(14) and (15) simplify to the following
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where U = max (u), which is de…ned implicitly as n = Ne
t (Ne

t ¡ 1)U¡1. For
Ne

t << n, we have that U is large and so (¸t)
U is negligible small.

Using the assumptions about the timing stated above, we obtain the fol-
lowing moments for the change of the deviation of the asset price from its
fundamentals
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where ½¤
t 2 f½t; ~½t (U)g : Further, the mean and variance of the change in the

fundamentals of a single asset are given by

E
¡
¢F i

¢
=

2p ¡ 1

n

¢F

n
(28)

V ar
¡
¢F i

¢
=

µ
¢F

n

¶2
"
1 ¡

µ
2p ¡ 1

n

¶2
#

(29)

In order to pass from discrete to continuous time, we will make the assumptions
that the size of the change in the fundamentals is ¢F

n
= ¾F

p
dt and that the

probability of receiving a positive shock p is given by p = 1
2

³
1 + n ¹

¾F

p
dt

´
.

Inserting these expressions in (26), (27), (28) and (29) we obtain the following
results

E
¡
¢F i

¢
= ¹dt (30)

V ar
¡
¢F i

¢
= ¾2

F dt

"
1 ¡

µ
¹

¾F

¶2

dt

#
!

dt!0
¾2

F dt (31)

E
¡
¢Si

F;t

¢
=

¯

®

¡
S¤i

t

¢2
¹¾F dtn

p
dt

V ar
¡
¢Si

F;t

¢
=

"
#2

t ¡
µ

¹

¾F
½¤

t

¶2

dt

#µ
¯

®

¶2 ¡
S¤i

t

¢4
¾2

F dt¾2
F n2dt

From (30) and (31) we obtain (16) stated in Proposition 4. Now, setting a time
scale of dt = 1

n2 we obtain
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where this latter limit holds since (¸t)
2U becomes vanishing small as dt ! 0

while Ne
t remains …nite.
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