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It is widely recognised that technology spill-overs play a primary role in
the dynamics of innovations. Rosenberg (1976) highlights their importance in
the process of industrialisation. In particular, he emphasises the importance of
the technological convergence which emerged in the process of industrialisation.
Using Rosenberg’s words: ”... (the) industrialisation was characterized by the
introduction of a relatively small number of broadly similar productive processes
to a large number of industries (p. 15)”. According to the author, its was this
latter event that lead to the possibility of large spill-over effects. Each single
firm tried to solve idiosyncratic problems, i.e. specific to her production. Once
she succeeded in solving the problem, the innovation introduced was likely to
be introduced also in other sectors due to the technological convergence which
characterised different sectors. This latter phenomenon lead possibly to large
innovation waves. Fai and Von Tunzelmann (2001) show that there exists also
today this kind of technological convergence which characterised the process of
industrialisation.
In order to study the dynamic effects of innovation waves, the idea of general

purpose technologies (GPT) has been introduced1. GPT are major innovations
such as steam engine, electric dynamo, laser or computer. The introduction
of new innovations is costly since it requires a restructuring of the production
process (David, 1990). Thus, Helpman and Trajtenberg (1994) argue that re-
sources, such as labor for example, are withdrawn from the production process,
and devoted to the R&D sector, and this latter generates a slowdown of ag-
gregate production. Once the innovation has been successfully adopted by the
firms, aggregate production increases. In this way there exists a positive rela-
tionship between long run growth and short run fluctuations. This framework
has been enlarged by Aghion and Howitt (1998) p. 253 in order to study the
diffusion of the adoption of GPT. The authors propose a simple model of so-
cial learning in order to capture the stylised fact that there exists an ”...uneven
transition path for aggregate output, ... where prolonged periods of relative
stagnation are followed by an acceleration in the pace of technology diffusion”
(Aghion and Howitt, 1998). The diffusion of the GPT occurs through the ob-
servation of other firms.
Assuming GPT implies superimposing exogenous technology paradigms. In

this paper we are interested in how technology paradigms and innovation waves
emerge endogenously from the interaction of single sectors. We consider innova-
tions to be idiosyncratic, but through localised interaction of firms, the informa-
tional content of the innovation can be diffused. Aghion and Howitt state this
problem in the following way: ”... new technologies do not get implemented in-
stantaneously throughout the economy. Instead, they diffuse gradually, through
a process in which one sector gets ideas from the research and experience of oth-
ers.” (Aghion and Howitt, 1998 , p. 85). Our aim is to build a simple model
where highly volatile large innovation waves emerge from localised spill-overs of
information, leading to a large technological correlation, like the one Rosenberg
(1976) highlighted as a crucial element for the process of industrialisation, and

1See for example David (1990) and Helpman (1994).
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recently evidenced as a stylised fact today by Fai and Von Tunzelmann (2001).
The adoption of a new innovation usually requires, at least partially, an in-

ternal reorganisation (David, 1990). Thus, innovating firms face sunk costs of
reorganisation, and the adoption of innovations is optimal only if the gain from
the adoption is larger than its cost. This latter implies that innovations devel-
oped by R&D firms must reach a certain degree of perfection such that the gains
from their introduction are at least as big as the sunk costs of reorganisation.
This latter phenomenon has been highlighted also by Arrow (1974, p. 41) who
pointed out that the problem of information channels resembles the problem of
inventories under uncertainty. We are going to propose a multi-industry model,
each industry possessing the Aghion and Howitt (1992) structure, where the
single R&D firm of each industry has to complete an informational process, i.e.
accumulate sufficient information, such that the adoption of the innovation by
the final good firms of the same industry becomes fruitful. In this process of
collection of information the single representative R&D firm invests in internal
research, as well as in the observation of technologically related industries, i.e.
industries facing similar technological problems. This constraint to the diffusion
of information results in the clustering of all R&D sectors into neighbourhoods.
Contrary to current economic literature, we are not going to model the localised
informational spill-overs as a free lunch for each R&D sector. We are going to
assume that specialised workers have to be allocated to the localised information
search process, and that these latter can experience a reduced productivity in
finding new information. In other words, we assume that once a technologically
related industry introduces a new innovation, this latter has to be studied by
specialised worker such that the informational content of this innovation can
be extracted and eventually used for an innovation in this other industry. We
assume that for some R&D sectors this activity is costly in the sense that it
reduces the productivity of these workers in creating new information. This
reduced productivity arises, for example, because of difficulties in communica-
tion between R&D sectors belonging to different, even though technologically
correlated, industries, since different R&D sectors followed different directions
of research. We will see how this influences the choice between investing in
localised search for information or not.
In this paper we build an endogenous growth model, where growth is driven

by industry specific innovations, i.e. born in a given industry, and endogenous
technology spill-overs between industries. We are going to characterise an econ-
omy whose aggregate production fluctuates due to the endogenous stochastic
innovation waves. Further, we will see that the larger are the innovation waves,
the larger will be the short run fluctuations of aggregate production, and the
larger will be the long run growth rate of the economy. The empirical literature
on the relationship between fluctuations and long run economic growth gives no
clear answer, mainly because of a missing theoretical framework2. We are going
to test the theoretical relationship which results from the theoretical model and

2See for example Ramey and Ramey (1995), Kormendi and Meguire(1985) and Elmer and
Pedersen (1998).
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find that we cannot reject the results of our model. Further, the results seem
to be robust with respect to the specification of the model.
The model we are going to develope is consistent with the scale effects re-

cently highlighted in the literature on endogenous growth. Akin to the paper by
Peretto and Smulders (2002), our model captures the empirical evidence pro-
duced by Backus, et.al. (1992) that GDP growth is not related to the scale
of the whole economy, while it is positively related to the scale of the single
industry. Like Peretto and Smulders (2002), we obtain that the aggregate scale
effect, which in our case is only positive, vanishes asymptotically as the num-
ber of industries increases, while the scale effect within the single industry is
non-vanishing.
The remaining part of the paper is organised as follows. In Section 1 we

solve the problem of allocating the specialised workforce between the internal
and external search process. Further, we characterise the optimal informational
content of innovations. In Section 2 we derive the aggregate innovation dynamics
and the long and short run dynamics of aggregate production of the economy.
In Section 3 we propose an empirical test for the model. Section 4 concludes.

1 The microfoundations
We assume that there are n industries in the economy, n very large, each com-
posed of a final good sector, an intermediate good sector and an R&D sector.
The intermediate good and the R&D sector are both specific to the final good
produced in the same industry. The R&D sector discovers new ideas and inno-
vations, which are used in the intermediate good sector of the same industry.
Finally, the intermediate good which incorporates the technology is used by the
final good sector in order to produce the output.
We assume that the final good sector is perfectly competitive, and that the

intermediate good sector is made of a single monopolistic firm. Further, we
assume that the R&D sector of each industry is composed of two firms, a leader
and a follower. These two firms alternate in producing the innovation. Once
a firm succeeds in introducing a new innovation, she has no incentive to invest
further in a new innovation since the gain of a further innovation would be
lower than its cost (Arrow’s replacement effect). Thus, once a new innovation
has been introduced this latter firm stops investing in R&D, while the follower
starts investing in R&D and to search for the information necessary for the
introduction of a new innovation.
We assume that firms producing the final good have to pay sunk costs of

reorganisation if they want to introduce a new technology, and further, outsider
firms have to pay sunk costs if they want to enter the market. If these sunk costs
of reorganisation are sufficiently large, then it is no longer optimal to introduce
an innovation if a small, idiosyncratic bit of information arrives at the R&D
sector of the same industry, since the gains from the introduction this innovation
would be lower than the costs of reorganisation. As a consequence, the R&D
firm of industry i has to accumulate a sufficient number of informational bits
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such that the introduction of the new innovation at the final good sector level
of industry i becomes profitable. As long as the accumulation of information
continues, this latter remains tacit, and only once the new innovation has been
introduced, other R&D sectors, i.e. R&D sectors belonging to technologically
correlated industries, can infer its informational content, and can get in this
way new information and ideas for their own.
The representative R&D firm faces the problem of allocating specialised

workers to internal R&D and to localised search for information. These lat-
ter workers observe continuously a limited number of technologically related
industries, i.e. industries facing similar technological problems, and contempo-
raneously they try to create new information for their own. We assume that
one specialised worker observes at most one R&D sector belonging to another
industry. The number of workers allocated to the localised search for infor-
mation together with the technological correlation between industries defines
the neighbourhood structure along which informational spill-overs occur. The
constraints to the diffusion of information translates into a constraint on the
productivity of workers allocated to the localised search; an upper bound on
the number of these workers is the natural consequence of this formalisation.
Once a new innovation has been introduced in a particular industry, the

information incorporated in this innovation can be observed and used by R&D
firms of technologically correlated industries. We will assume that for some R&D
sectors the spill-over effects come in as a free lunch, while for other R&D sectors
we will assume that it is not. We will show that, under certain conditions, these
latter will not engage in localised search since the marginal productivity of the
workers allocated to the local search for information is lower than the marginal
productivity of the workers allocated to the internal search for information. In
this way, the spill-over dynamics and as a consequence the aggregate innovation
waves will be reduced.

1.1 The representative final good sector

Consider a generic industry i. The final good i is produced using intermediate
good i only. Neglecting for the moment being the problem of sunk costs, the
problem of the representative firm is given by

max {pτyτ − P (xτ )xτ − C}
s.t. yτ = A (τ)x

1−α
τ

(1)

where C are fixed costs of production, τ indicates the number of innovations
introduced, A (τ) = [1 + γ (s)]

τ , γ (s) is the increment in productivity and s ∈ ℵ
indicates the informational content of the innovations. We assume that γ0 (s) >
0 and γ00 (s) ≤ 0. From the first order condition of problem (1) we obtain the
demand function of the intermediate good:

P (xτ ) = pτA (τ) (1− α)x−ατ (2)

and the profit function

πy,τ = pτA (τ)αx
1−α
τ − C
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We are going to assume that there are entry costs for outsider firms and
sunk costs of reorganisation for insiders if they want to upgrade the technology,
each given by k.We assume that if firms introduce a new technology in τ , prices
remain fixed at the previous level for a small time period3 ∆t, while after this
prices decrease to the level pτ =

p0
A(τ) , where p0 =

C
αx1−α . Within this small

time period firms makes profits in order to recover the sunk costs they face in
the adoption of a new technology. After this, prices decrease because of the
competition among final good producers.
In the stationary state where xτ+1 = xτ = x, once an innovation has been

introduced, firms make profits equal to γ (s) pτA (τ)αx
1−α
τ ∆t. The condition

such that introduction of the innovation is optimal, i.e. the profits from the
introduction are larger than the costs of introduction, and the no entry condition
require that

γ (s∗) =
k

∆tC
(3)

where s∗ indicates the optimal number of bits of information the representative
R&D firm has to accumulate such that the introduction of the innovation by
the final good sector becomes optimal. The optimal informational content of
innovations will be s∗ = Γ

¡
k
∆tC

¢
. We are going to assume that the R&D

firms accumulate discrete units of informational bits, while s∗ will be in general
a real number. Thus, we will define probabilities p and 1 − p such that s∗ =
sp+s (1− p), where s = integer [s∗] and s = integer [s∗]+1. We will assume that
the representative firm R&D firm with probability p accumulates s informational
bits, while with probability 1− p she accumulates s informational bits.

1.2 The representative intermediate good sector

Each industry i is endowed with Hi = H specialised workers, where i = 1, ..., n.
Within each industry, the specialised workers have to be allocated between the
intermediate good sector (Hx) and the R&D sector (HA), where H = HA+Hx.
Given the demand function (2), we can now turn to the problem of the

intermediate good producer. This latter produces the intermediate good using
specialised workers Hx. Its problem can be stated as follows

max {P (xτ )xτ − wx,τHx,τ}
s.t. xτ =

1
ηHx,τ

Assuming that the intermediate good firm has a monopoly power and that there
3The small time period ∆t and s∗ are not perfect substitutes. To see this, consider the

case where s∗ is small, i.e. for example s∗ = 1. In this case, if the sunk costs k are sufficiently
large and γ0 (s) is sufficiently low, ∆t has to be very large such that the final good producers
are able to recover the sunk costs of reorganisation. But the lower is s∗, the earlier a new
innovation arrives (see Section 1.3.3). Thus, it can happen that the final good producers are
not able to recover fully the sunk costs of reorganisation before a new innovation arrives, and
as a consequence these latter firms make a loss. In order to avoid this problem, we assume that
∆t is exogenously determined, and arbitrarily small, while s∗ is endogenously determined.

5



are labour turnover costs4 , we have that the wage wx,τ and profits are given by

wx,τ = p0 (1− α)
2 1
η1−αH

−α
x,τ

πx,τ = p0α (1− α) 1
η1−αH

1−α
x,τ

(4)

1.3 The representative R&D sector

Innovations are produced using specialised workers HA. The single representa-
tive R&D sector faces the problem of allocating optimally HA between internal
HI and external HE research (local search for information) activity.
If a firm succeeds in introducing a new innovation, then she fixes the price for

this innovation equal to the profits of the intermediate good sector. Thus, the
representative R&D firm has to determine optimally HA in order to maximise
the expected present value of profits.
Let us first calculate the innovation rate, and after this we will determine

the optimal HA.

1.3.1 The innovation rates

The representative R&D firm has to collect sufficient information such that the
new innovation can be fruitfully adopted by the final good sector. The R&D
firm can either be at the beginning, at the end, or in an intermediate phase of
this information collection process.
We will make the following assumptions about the information collection

activity. If a firm has no new information, then it is quite easy for this firm to get
or create new information. On the other side, she is just at the beginning of the
information collection process, and as a consequence the expected present value
of investment in R&D is low. The more information a firm has already collected,
the harder it is for this firm to get new information since the new information
has to be compatible with the information already collected, i.e. the lower are
the degrees of freedom. On the other side, the more information the firm has
already accumulated, the sooner the new innovation can be introduced and, as
a consequence, the larger will be the expected present value of investment in
R&D. These postulates can be summarised in the following assumption:

Assumption 1. The marginal incentive to invest in innovation is indepen-
dent of the number of informational bits accumulated.

We are now going to specify the production functions of information.
Nearest neighbouring R&D sectors are observed continuously. In particular,

we will assume that the firms observe as many neighbouring firms as there are
workers allocated to this activity. Since the number of observable R&D sectors
is constrained by the technological heterogeneity, we assume that at most there

4Given that there are sufficiently large labour turnover costs, the intermediate good sectors
will maintain the employment level constant during the time interval ∆t where the price of
the final good sector changes.
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can be s∗ workers allocated to this activity, where s∗ indicates the number of
bits of information which have to be accumulated. Further, we assume that the
mean number of informational bits created by R&D firm i in a time unit is given
by
¡
ϑiHI + ϑ0iHE

¢
µ
n , where ϑ

i is the productivity of the specialised workers
allocated to internal research, ϑ0i is the productivity of the specialised workers
allocated to external research, µ is the aggregate stochastic arrival rate, n is
the number of industries, whereas µ

n is the idiosyncratic stochastic arrival rate
of each sector. Further, we assume that ϑi ≥ ϑ0i indicating that the marginal
productivity of workers allocated to the localised research is not larger than
the marginal productivity of workers engaged in internal research. If ϑi = ϑ0i,
then we have that information spill-overs are free lunch, since the marginal
productivity of those workers employed in localised search is the same as the
marginal productivity of those workers employed in internal research. On the
other side, if ϑi > ϑ0i, then the spill-overs are costly in the sense that the
marginal productivity of those workers engaged in localised search is reduced.
For example, ϑ0i → 0 implies that extrapolating the informational content of
innovations introduced by neighbouring R&D sectors is so difficult, i.e. time
consuming, such that the workers engaged in this activity are not able to create
new information for their own. We will assume that there are m R&D sectors,
where 1 ≤ m ≤ n, which have ϑi > ϑ0i, while the other n−m R&D sectors are
characterised by ϑi = ϑ0i.
We are going to call ρc the stationary average density of R&D firms being

in the state where they need just one more bit of information such that the
introduction of the new innovation becomes optimal. Thus, we can write the
average probability of innovating for a representative R&D firm i engaged and
non engaged in localised search for information, δiL and δiNL respectively, as
follows5

δiL = max
Hi
I ,H

i
E

ρc
£¡
ϑiHi

I + ϑ0iHi
E

¢
µ
n + δHi

E

¤
s.t. Hi

E ≤ s∗
Hi
I +H

i
E = H

L.i
A

(5)

δiNL = ρcϑ
iHNL,i

A

µ

n
(6)

where s∗ is the optimal informational content of innovations and δ is the average
aggregate innovation rate, which is given by

δ =
1

n

X
i∈XL

δiL +
1

n

X
i∈XNL

δiNL (7)

From (5) we observe that, given that the R&D firm i decides to engage in
localised search for information, if the marginal productivity of Hi

E is at least as
large as the marginal productivity of Hi

I then the representative R&D sector has
the incentive to allocate as much as possible specialised workers to the localised
search.

5We use a mean-field in modelling the dynamic interaction among agents. See Section 3.1
for details.
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Let us state the following result:

Proposition 1 If ϑi − ϑ0i is sufficiently large, then those R&D firms where
ϑi = ϑ0i will engage in local search for information, while those where ϑi > ϑ0i

will not engage in local search for information.

Proof. Note that R&D firms i where ϑi = ϑ0i find it always optimal to
engage in local search for information since this latter activity is not costly.
Let us assume that R&D firms where ϑi > ϑ0i do not engage in local search
for information, and decide individually whether to engage in local search for
information or not, taking δ as given. As long as

δ <
¡
ϑi − ϑ0i

¢ µ
n

these latter firms will not engage in local search for information since the mar-
ginal productivity of HE is lower than the marginal productivity of HI . δ will
be calculated explicitly in Section 1.3.3.
We will see in Section 2.1 that the stationary state density of firms being in

state c is given by ρc =
1
s∗ . Substituting (5) and (6) in (7) we have that if the

firm engages in localised search, i.e. si = s∗i, then its innovation rate will be
given by

δiL =
ϑiHL,i

A

s∗
µ
n +

1
ε
1
n

P
j∈XL

ϑjHL,j
A

s∗
µ
n+

+1
ε
1
n

P
j∈XNL

ϑj
HNL,j
A

s∗
µ
n

(8)

where ε = m
n and XL and XNL are the R&D firms (sectors) engaged and

non engaged in local search for information, respectively. On the other side, the
firm decides to not engage in local search for information, i.e. si = 0, then the
innovation rate will be

δiNL = ϑi
HNL,i
A

s∗
µ

n
(9)

1.3.2 Optimal innovation rates for firms engaged and non engaged
in local search for information

For the following we are going to assume that all R&D firms are symmetric, i.e.
ϑi = ϑ and ϑ0i = ϑ0. Given the innovation rate, the representative R&D firm
maximises expected present value of profits. Consider first the problem of the
R&D sectors investing in localised search for information. In this latter case,
the problem can be stated as follows

max
Hi
A,τ

©
E
£
V iτ+1

¤− wLA,τHi
A,τ

ª
s.t. E

£
V iτ+1

¤
=

µ
ϑHL,i

A,τ

s∗ + δ

¶
µ
n

1
r+δiL,τ+1

πx,τ+1
(10)

where r is the nominal interest rate and πx,τ+1 is given by (4).
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From the first order conditions of the problem we have that

wLA,τ =
1

r + δL,τ+1

µ
1 +

1

εn

¶
ϑ

s∗
µ

n
α (1− α) p0

1

η1−α
¡
HL
x,τ+1

¢1−α
(11)

R&D sectors where ϑ0 < ϑ will solve the following problem

max
HA,τ

{E [Vτ+1]− wA,τHA,τ}
s.t. E [Vτ+1] = ϑHA

s∗
µ
n

1
r+δNL,τ+1

πx,τ+1

where πx,τ+1 is given by (4). From the first order condition of this problem we
have that

wNLA,τ =
1

r + δNL,τ+1

ϑ

s∗
µ

n
α (1− α) p0

1

η1−α
¡
HNL
x,τ+1

¢1−α
1.3.3 Allocation of specialised workforce

From the no-arbitrage condition we have that the wages paid in the represen-
tative intermediate good firm and in the representative R&D firm within in
each industry have to be the same. Thus, using (8), (9), (4) and (11) and the
stationary state condition that Hx,τ = Hx,τ+1 = Hx we obtain the following
allocation of specialised workforce

ϑ
HL
A

s∗
µ

n

1

ε
= αϑ

H

s∗
µ

n

1 + αm

m (1− α)
ν − ανr (12)

ϑ
HNL
A

s∗
µ

n
= αϑ

H

s∗
µ

n
− r (1− α) (13)

where ν =
³
1 + α

1+α
m+1
n

´−1
. Note that ν →

ε→0
1. The innovation rate of R&D

firms engaged and non-engaged in localised search and the average innovation
rate are, respectively

δL = ϑ
HL
A

s∗
µ

m
+ ϑ

HNL
A

s∗
µ

n
= αϑ

H

s∗
µ

n

·
1 + αm

(1− α)m
ν + 1

¸
− (αν + 1− α) r (14)

δNL = αϑ
H

s∗
µ

n
− r (1− α) (15)

δ = αϑ
H

s∗
µ

n

·
1 + αm

(1− α)m
ν (1− ε) + 1

¸
− r [αν (1− ε) + 1− α]

It is easy to see that the innovation rate of those R&D sectors engaged in
localised search for information (14) is larger than the innovation rate of those
R&D sectors not engaged in local search (15). Further, we can see that the
innovation rate (14) is larger, the lower is the number of R&D firms not engaged
in localised search (m) and/or the lower is the optimal informational content of
innovations (s∗).
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2 Aggregate innovation dynamics and economic
growth

In this Section we focus on the aggregate innovation and growth dynamics of
this economy. Given the spill-over dynamics outlined in the previous Sections,
we obtain cross-sectional innovation dynamics due to the stochastic endogenous
propagation of information once an innovation has been introduced. We will see
in Section 2.1 how highly volatile endogenous innovation waves emerge, and in
Section 2.2 how these latter lead to aggregate growth and aggregate fluctuations.

2.1 Cross-sectional innovation dynamics

We are going to study the cross-sectional spill-over dynamics of information.
We cluster the R&D firms belonging to the different industries according to the
number of bits of information accumulated.
We label the possible states as follows: Ω = {0, 1, 2, ..., c, a}, where the

cardinality of the state space Ω is s + 1. Thus, zi ∈ Ω, for each i = 1, ..., n,
where zi indicates the state which characterises R&D firm of industry i. 0
indicates that the R&D firm has just arrived to industry i, and so she has no
new accumulated information; 1 indicates that the R&D firm has accumulated
one bit of information, ..., c indicate the state where the R&D firm need just one
more bit of information such that the introduction of the innovation becomes
optimal, respectively; a indicates the active state where the R&D firm introduces
the new innovation.
As shown in the previous Section, with frequency ϑHL

A
µ
n and ϑH

NL
A

µ
n a single

R&D sector engaged and non-engaged in localised search succeeds in creating a

new information, while µ̃ = εϑHNL
A µ+(1− ε)ϑHL

Aµ = αϑHs∗
µ
n

h
1+αm
(1−α)mν (1− ε) + 1

i
−

r [αν (1− ε) + 1− α] is the aggregate frequency with which new information is
created.
The dynamics of R&D firm i engaged in local search are as follows: given

that she is in a state zi = k, if she receives a bit of information (either exogenous
or an endogenous one), she switches to state zi = k + 1. If state zi = k + 1 < a
nothing happens until the next bit of information arrives. On the other side,
if zi = k + 1 = a, then she introduces the new innovation, and transfers in
this way a bit of information with probability (1− ε) to s∗ neighbouring firms.
In other words, (1− ε) s∗ is the average number of R&D firms belonging to
technologically correlated industries and observing the innovation introduced
by R&D sector i. Once an R&D firm is in state a she exits the market, and
the follower starts the information collection process, i.e. zi = 0. Notice further
that since the firms observe always the same neighbouring industries, nothing
happens until a new innovation will be introduced in one of these industries
or a new informational bit is created directely by the same industry. Thus,
only once a new technology has been introduced, the information accumulated
by the innovating firms will be freed. Thus, as long as the accumulation of
information continues, this information will be tacit, and can not help other
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firms to introduce new innovations. On the other side, R&D firms not engaged
in local search for information change state just if they succeed in creating a
new information.
We take a mean-field approximation to the interaction between the single

firms6. Thus, we cluster the firms according to their state. We call ρk the
average density of firms being in state k = 0, 1, ..., c, a.
The state space dynamics are given by the following master equations,

ρ̇a = −ρa + [µ̃+ s∗ (1− ε) ρa] ρc

ρ̇c = − [µ̃− s∗ (1− ε) ρa] ρc + [µ̃+ s
∗ (1− ε) ρa] ρc−1+

+p [µ̃+ s∗ (1− ε) ρa] ρc−2

ρ̇c−1 = − [µ̃− s∗ (1− ε) ρa] ρc−1 + (1− p) [µ̃+ s∗ (1− ε) ρa] ρc−2

ρ̇c−2 = − [µ̃− s∗ (1− ε) ρa] ρc−2 + [µ̃+ s
∗ (1− ε) ρa] ρc−3

...

ρ̇1 = − [µ̃− s∗ (1− ε) ρa] ρ1 + [µ̃+ s
∗ (1− ε) ρa] ρ0

ρ̇0 = − [µ̃− s∗ (1− ε) ρa] ρ0 + ρa

The average densities ρk, for k = 0, 1, ..., c, a, have to satisfy also the nor-
malisation condition:

ρa + ρc + ...ρ1 + ρ0 = 1 (16)

It can be shown that the stationary state is asymptotically stable7. Thus, we
concentrate our analysis on the stationary state dynamics. In particular, we
are interested in the average number of R&D sectors innovating, given that new
information has been discovered by a single R&D sector, and how this average
number changes over time. We call z the number of R&D sectors introducing
a new innovation, given that a single informational bit has been created by a
single R&D sector. We are able to state the following proposition:

Proposition 2 The average number of R&D sectors innovating in the limit of
vanishing exogenous driving force µ is given by

lim
µ→0

∂

∂µ̃
ρa = E (z) =

1

εs∗
(17)

while the second moment of the number of R&D sectors innovating is given by

lim
µ→0

∂2

∂µ̃2
ρa = E

¡
z2
¢
= 2

µ
1

εs∗

¶2
(18)

6Vespignani and Zapperi [18] show through numerical simulations that the stationary state
properties of the mean-field approximation are the same as the one of the deterministic inter-
action model.

7 See Vespignani and Zapperi (1998).
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Proof. First we have to calculate the stationary average density of R&D
sectors being in the active innovating state. Solving the model for the stationary
state we obtain the following distribution of average densities:

ρ0 = ρ1 = ... = ρc−2 = ρc =
ρa

(1+λ)ηµ+s∗(1−ε)ρa , while ρc−1 = (1− p) ρc
Using the normalisation condition of average densities (16) we obtain the fol-
lowing.

s∗L
ρa

µ̃+ s∗ (1− ε) ρa
+ ρa = 1

For a vanishing probability, i.e. µ → 0 we obtain that the distribution of the
average density of firms being in each state is the following

ρa =
µ̃

εs∗

ρ0 = ρ1 = ... = ρc−1 = ρc =
1

s∗

After this we can use the results stated in Vespignani and Zapperi [18] and
Andergassen [3].
A vanishing probability of exogenous information corresponds to a slow

driving 8. In other words, we are looking for a situation where the system
evolves through endogenous forces such as the endogenous propagation of infor-
mation. In this latter case technological paradigms are emergent features.
Using the fact that ε = m

n and Proposition 2 we see that 1
nE (z) =

1
ms∗ .

Thus, if m ∝ n, and where n → ∞ we see that the average fraction of sectors
innovating is vanishing small. In this latter case the spill-over dynamics are too
small, and thus the propagation of information will come to a stop soon because
of the dissipation of information due to firms not investing in local search for
information. In particular, a law of large numbers applies and the fluctuations
average out in the process of aggregation. On the other side, if m << n, such
that if n→∞, m remains finite, we will have that the average fraction of sectors
innovating will remain non-negligible. In this latter case the propagation will
be strong enough and further the probability of observing an innovation wave
which is of the same size of the system is no longer equal to zero. Further, the
system is driven by large endogenous fluctuations, which do not cancel out in
the process of aggregation.
(17) indicates the average number of innovations introduced in the economy,

given that a single bit of information has been created by a single R&D sector.
In the same way, the second moment of the average number of sectors introduc-
ing innovations is given by (18). Thus, the variance of the number of sectors
introducing an innovation is given by V ar (z) =

¡
1
s∗ε

¢2
and the volatility of the

growth rate will be Sd (z) = 1
s∗ε =

n
ms∗ = E (z), where Sd(z) is the standard

deviation of z. Thus the larger are the fluctuations in the introduction of in-
novations, the larger will be the long run growth rate of these latter. Growth
occurs through large fluctuations.

8For a similar assumption see Aghion and Howitt (1998), p. 253.
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For the following we are going to assume that n is very large, whilem remains
small compared to n, i.e. n→∞ and ε = m

n → 0.

2.2 Long and short run dynamics of economic growth

We are going to assume that the representative consumer maximises the follow-
ing utility function

U
¡
c1, ..., cn

¢
=

∞Z
0

e−ρt
nX
i=1

¡
ci
¢1−σ − 1
1− σ

dt

From the first order conditions we obtain that

1

ci
d

dt
ci =

r − ρ

σ
− 1

σ

ṗi

pi

Since the innovation growth rate of those industries, whose R&D firms are
engaged in localised search for information is larger than the one of those in-
dustries, whose R&D firms are not engaged in localised search, the relative
weight of the production of the former industries will be increasing while the
relative weight of the latter will be decreasing. In the asymptotically limit we
will have that the relative weight of these latter industries will be vanishing and
the real GDP growth rate will be only given by the average growth rate of those
industries whose R&D sector is engaged in localised search for information.
From this latter reasoning we have that the long run growth rate of aggregate

consumption is given by

γC =
r − ρ+ γδL

σ

Given the assumptions about the production of final goods, we have that the
growth rate of aggregate output is the same as the aggregate technology growth
rate.
The technology growth rate is given by the average number of industries

succeeding in introducing a new innovation, times the frequency with which
idiosyncratic information is born in those sectors engaged in localised search
and times the increment in productivity. Formally, we have that

E (γY ) = Sd (γY ) = γδL (19)

where this latter property follows straightforwardly from the properties of the
innovation avalanche dynamics. Thus, the larger are the short run fluctuations,
the larger will be also the long run growth rate. In Section 3 we are going to
test this latter relationship.
Since we are interested in stationary balanced growth paths where E [γY ] =

E [γC ] = g
e, we have that

r = ρ+ (1− σ) γδL
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In order to simplify the exposition, we are going to assume that σ → 1. From
this latter expression we obtain that r = ρ. Thus, using (19), (17), (18), and
(14) we have that the long run growth rate of aggregate output and its short
run fluctuations are given by

E (γY ) = Sd (γY ) = γ̄
³
k̃
´
αϑH

µ

n

1 +m

(1− α)m
− γ̃

³
k̃
´
ρ (20)

where k̃ = k
∆tC , γ̃

³
k̃
´
= γ

³
Γ
³
k̃
´´
, γ̄
³
k̃
´
=

γ(Γ(k̃))
Γ(k̃)

, and γ̃0 (·) > 0, while

γ̄0 (·) ≤ 0. Thus, the lower is the number of R&D sectors not engaged (m) in
localised search for information, the higher is the long run growth rate and its
short run fluctuations. Note also that for each m < n the growth rate (20) is
always larger than the one we observe in the case where no firm engages in local
search for information.
The growth path of the economy (20) depends on structural parameters

characterising the economy. For example, the larger are the sunk costs of reor-
ganisation, the lower will be the long run growth rate and its short run fluctu-
ations.
We can also make some few considerations about the scale effects. H in (20)

is the number of specialised workers of each single industry. We observe a scale
effect within each industry, like the one highlighted by recent empirical studies
(see Backus et al., 1992). On the other side, defining HT the total amount of
specialised worker in the economy, and given the assumption of symmetry used
in the paper, we have that H = 1

nHT . Thus, there will be positive aggregate
scale effects, but these latter are asymptotically vanishing as n, the number of
industries, diverges towards infinity.

3 Testing the model
In this Section we are going to test the prediction of the theoretical model that
the long run growth rate of the economy is equal to the size of its short run
fluctuations. We are going to test this relationship using data on growth rates
of the real GDP per capita of 21 OECD countries9 , over the time period 1960
- 1990 (see Figure 1). The countries are Canada, Usa, Japan, Austria, Bel-
gium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Netherlands,
Norway, Portugal, Spain, Sweden, Switzerland, Turkey, UK and Australia.
We calculate the average growth rate for each country over the time period

and its standard deviation. After this, we run the regression

E
£
γiY
¤
= β0 + β1Sd

£
γiY
¤
+ ²i (21)

where εi indicates the error term of the regression, i.e. the random deviation
from the relationship, where we assume that ²i is i.i.d. normally distributed
across the countries. We are going to estimate parameters β0 and β1 using

9Data are taken from the Penn World Tables.
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Figure 1: Long run growth rate vs. short run fluctuations for 21 Oecd countries

OLS, and after this we are going to test the hypothesis that β1 = 1 and β0 = 0,
which are the theoretical predictions of our model. Our estimates are (standard
deviation in parenthesis)

β0 = 0.8072508
(0.7121929)

and
β1 = 0.832128
(0.2478091)

Thus, we find that we cannot reject the hypothesis that β1 is different from zero,
and further we cannot reject the hypothesis that β1 is equal to one. Further,
we find that β0 is not statistically different from zero. We performed also a
Ramsey-type test of omitted variables and a heteroschedasticity test, and we
reject both hypotheses of omitted variables and of heteroschedasticity. The R2

of the regression is equal to 0.3724.
We performed also some specification tests. In particular, following the idea

of Levine and Renelt (1992) we introduce additional explanatory variables. We
introduce so the average population growth rate, the initial human capital level
and the average investment fraction of real GDP

E
£
γiY
¤
= β0 + β1Sd

£
γiY
¤
+ β2h60

i + β3n
i + β4I

i + ²i (22)

where h60i indicates the average years of schooling for individuals taken from
the total population over age 25 years in the year 196010 for country i, ni

indicates the average population growth rate over the time period for country i
and Ii is the average investment fraction of real GDP for country i. We obtain
the following estimates

β0 = 0.308047
(0.9972457)

β1 = 0.7514994
(0.1956116)

β2 = −0.0001547
(0.0000601)

10Data are taken from Barro and Lee (1993).
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β3 = −0.7328333
(0.2375725)

β4 = 0.0855499
(0.0297373)

Notice first that all the estimates but the constant β0 are significantly differ-
ent from zero. Further, the signs of the estimated values are consistent with
theoretical predictions. The results confirm our previous analysis: β0 is not
significantly different from zero, while we cannot reject the hypothesis β1 = 1.
As a consequence, our previous estimates are robust against the introduction of
additional explanatory variables. The adjusted R2 of the regression is 0.6970.
If we introduce the initial real GDP per capita in regression (22) we observe

that the estimates of β1 become somehow worse. While the estimated value
β1 = 0.3970314 (0.1786774) is still significantly different from zero, it is also
significantly different from 1. This latter effect is mainly due to the large neg-
ative correlation between the long run growth rate and the initial level of real
GDP per capita. This latter leads us to the conclusion that the exogenous ar-
rival rate of information depends negatively on the technology level. This latter
could be, for example due to international technology spill-overs and imitation.
Thus, countries which have a lower technology will benefit from countries with
a higher level through imitation. In this way, the arrival rate in countries with
lower technology will have a larger innovation rate due to international infor-
mational spill-overs. The aspect of international technology spill-overs has not
been addressed in this paper and will be object of future research.

4 Conclusions
We proposed a simple model where large, highly volatile, aggregate innovation
waves emerge endogenously from the propagation of information around the sin-
gle industries. The single R&D sector face the problem of engaging in localised
search for information or not. Those R&D sectors, for whom the spill-over ef-
fects are not completely free lunch face the problem of a reduced productivity in
the of local search for information. We show that under certain conditions, these
latter will not invest in local search for information. The more are those firms
not engaging in localised search, the less will be the endogenous propagation of
information, and so the less will be the aggregate innovation rate. Growth in
our model occurs through large highly volatile innovation waves: the larger are
these waves, the higher will be the long run growth rate of the economy. Thus,
growth occurs in the model through large short run fluctuations.
We showed how the aggregate GDP growth path depends on structural pa-

rameters, such as, for example, the sunk costs the final good sectors face in
introducing new innovations. We showed that the larger are these costs, the
lower will be the aggregate growth rate.
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