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Abstract

I propose a dynamic duopoly model where firms enter simultaneously but
compete hierarchically a la Stackelberg at each instant over time. They
accumulate capacity through costly investment, as in Solow’s (1956) growth
model. The main findings are the following. The leader invests more than
the follower; as a result, in steady state the leader’s capacity and profits are
larger than the follower’s. Therefore, the present analysis does not confim
Gibrat’s Law, since the individual growth rate is determined by the timing
of moves.

JEL Classification: C61, C73, D43, D92, 1.13

Keywords: differential games, investment, optimal control methods,
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1 Introduction

For several decades, the established wisdom has maintained that expected
firm growth rates are independent of firm size, a property known as Gibrat’s
Law (Gibrat, 1931).! However, recent empirical work has found a negative
relation between firm growth and firm size, which can be explained on the
basis of sunk costs (Cabral, 1995).? Likewise, on the theoretical side, the ex-
isting contributions provide heterogeneous answers to the question: how shall
we expect market dynamics to unravel over time, if some initial asymmetry
among firms is assumed?

Lucas and Prescott (1971) and Lucas (1978) investigate entry and exit
decisions in a long-run competitive equilibrium in models where stochastic
processes drive prices, outputs and investments. Jovanovic (1982), proposes
a theory of noisy selection where firms enter over time and learn about their
productive efficiency as they operate in the market. Those who are relatively
more efficient grow and survive, while those who relatively less efficient de-
cline and ultimately exit the industry. Hopenhayn (1992) analyses instead
the case of individual productivity shocks and their effects on entry, exit and
market dynamics in the long-run. He finds that the steady state equilibrium
implies a size distribution of firms by age cohorts, and proves that the size
distribution is stochastically increasing in the age of cohorts. Jovanovic’s
model is extended by Pakes and Ericson (1998) who consider two models of
firm behavior, allowing for heterogeneity among firms, idiosyncratic (or firm-
specific) sources of uncertainty, and discrete outcomes (exit and/or entry).

The overall appraisal of this literature leads one to think that ‘older firms
are bigger than younger firms’.?> A related question is the following: is early
entry a prerequisite (i.e., a necessary condition) for a firm to become larger
than rivals, or is it only a sufficient condition?

In this paper, I propose a dynamic duopoly model where firms enter si-
multaneously but compete hierarchically a la Stackelberg at each instant over
time, under perfect certainty. They accumulate capacity through costly in-

' For early empirical studies confirming Gibrat’s law, see Hart and Prais (1956), Simon
and Bonini (1958) and Hymer and Pashigian (1962).

2For an exhaustive overview of empirical findings, see Audretsch, Santarelli and Vi-
varelli (1999). For a comprehensive view of the links between theory and empirics, see
Sutton (1991, 1997, 1998).

3Moreover, both size and age appear to be positively correlated with firm survival
(Geroski, 1995, p.434). To this regard, see also Agarwal and Audretsch (2001).



vestment, as in Solow’s (1956) growth model. Due to the formal properties of
the model, the Stackelberg game is shown to produce a unique and time con-
sistent open-loop Stackelberg equilibrium (see Xie, 1997). The main {indings
are the following:

e The leader invests more than the follower along the equilibrium path.
As a result, in steady state the leader’s capacity and profits are larger
than the follower’s.

e In comparison to the features of the Nash equilibrium path, the present
analysis shows that the leader (resp., follower) (i) invests more (less)
than in the Nash equilibrium; (ii) acquires a higher (lower) steady state
capacity than in the Nash equilibrium; and (iii) obtains higher (lower)
profits than in the Nash equilibrium. Hence, the duopoly model with
capital accumulation & la Solow has a definite Cournot flavour.

e The above considerations holds independently of initial conditions,
which can well be assumed to be symmetric across firms. Accordingly,
in general, the present analysis does not confim Gibrat’s Law, since
the leader’s strategic advantage entails a higher growth rate than that
performed by the follower.

e Moreover, the Stackelberg model described in this paper shows that an
industry equilibrium that is characterised by an uneven size distribution
of firms may not necessarily be the outcome of the entry process, but
rather the consequence of a strategic advantage of some firms over the
others.

The remainder of the paper is structured as follows. Section two presents
the general features of open-loop Stackelberg differential games. The specific
duopoly model is then introduced in section 3. The open-loop Stackelberg
equilibrium is derived in section 4. A comparative assessment between open-
loop Stackelberg and Nash equilibria is carried out in section 5. Concluding
remarks are in section 6.



2 Preliminaries: open-loop Stackelberg games

The game is played over continuous time, ¢ € [0,00).* Define the set of
players as P = {1,2}. Moreover, let z;(¢) and w;(t) define, respectively, the
state variable and the control variable pertaining to player i. For simplicity,
we consider the case where only one state and one control are associate to
every single player. The dynamics of player i’s state variable is described by
the following:

dt

= 1;(t) = f; ({:1:1(75)}12:1 ; {“%@)}3:1) (1)

where {z,()}7_, is the vector of state variables at time ¢, and {u;(t)}>_, is
the vector of players’ actions at the same date, i.e., it is the vector of the
values of control variables at time {. That is, in the most general case, the
dynamics of the state variable associated to player ¢ depends on all state and
control variables associated to all players involved in the game. The value of
the state variables at ¢ = 0 is assumed to be known: {z;(0)}>_, = {:1:0,1}12:1 :

Each player has an objective function, defined as the discounted value of
the flow of payoffs over time. The instantaneous payoff depends upon the

choices made by player ¢ as well as its rivals, that is:

7Ti<t> =T ({xz@)}?:l ) {u% <t>}z‘2:1> . (2>

Player i’s objective is then

max J; E/ (., t)e Phdt (3)

subject to the dynamic constraint represented by the behaviour of the state
variables (1) for ¢ = 1,...N. The factor e ** discounts future gains, and the
discount rate p is assumed to be constant and common to all players. In
order to solve his optimisation problem, each player defines a strategy u; (%)
at each ¢, for any admissible u;(). If, in choosing u,(t), player i also takes
into account the stock of state variables {x;(t)}>_, (or their evolution up to
time ¢), the game is solved in closed-loop strategies. Otherwise, it is solved
by open-loop strategies.

4The game can be reformulated in discrete time without significantly affecting its qual-
itative properties. For further details, see Bagsar and Olsder (1982, 19952).



Now consider the Stackelberg differential game, and assume player i is
the follower. Under the open-loop solution concept, the Hamiltonian of firm
1 writes as follows:

Hi = e [Wi ()} A} ) + Xalt) - f ({xi(t)}?; ; {Ui(t)}?;) +
() fi (T3 (@) | (4)

where \j;(t) = p;;(t)e” is the costate variable (evaluated at time ¢) associated
with the state variable ;. If the evolution of the state variable x;(¢) depends
only upon {z;(t),u;(t)}, e, it is independent of u;(t) and z;(¢) and (1)
simplifies as #;(¢) = f; (z;(t),u;(t)), then one can set A\;; () = 0 for all j # 4,
which entails that the Hamiltonian of player ¢ can be written by taking into
account the dynamics of 7’s state variable only.

The first order condition on the control variable wu;(t) is:

OH; (., 1)

Oy () - ®)

and the adjoint equations concerning the dynamics of state and costate vari-
ables are as follows:
_OH; (,t) 9N (D)

= —pA; Vi =1,2.
8xj<t) 8t p 17 j 3 (6>

They have to be considered along with the initial conditions {z;(0)}Y, =
{xio}ﬁ\iland the transversality conditions, which set the final value (at £ = o0)
of the state and/or co-state variables. In problems defined over an infinite
time horizon, one sets:
lim Aij(0) - z;(t) =0, j=1,2. (7)
IFrom (5) one obtains the instantaneous best reply of player i, which
can be differentiated with respect to time to yield the kinematic equation
of the control variable u;(t). Moreover, given (1), the first order condition
(5) will contain the co-state variable A;(t) associated with the kinematic
equation of the state variable z;(t). Therefore, (5) can be solved w.r.t. Ay;(?)
so as to yield the optimal value of the co-state variable of the follower. If
such expression contains the leader’s control variable u;(t), the open-loop
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Stackelberg strategies are bound to be time inconsistent, in that the leader
can control the follower’s state dynamics by manoeuvring u;(¢).” If, instead,
Aii(t) does not depend upon u;(t), then the game is uncontrollable by the
leader, and the resulting open-loop Stackelberg equilibrium strategies are
time consistent (Xie, 1997).°

The remainder of the analysis illustrates a hierarchical capital accumula-
tion model where this property holds, and uses such a setting to investigate
the features of the dynamic performance of firms over time.

3 The setup

Two firms, labelled as 1 and 2, operate over ¢ € [0,00) in a market for a
homogeneous good, whose demand function at any £ is:

p(t) =a—qit) — g(t) . (8)

In order to supply the final good, firms must build up capacity (i.e., physical
capital) k;(t) through intetemporal investment:

Ok, (1)
ot

where 6 € [0,1] is the depreciation rate, constant and equal across firms.
The model where has been investigated extensively in the previous literature
(Spence, 1979; Fudenberg and Tirole, 1983; Fershtman and Muller, 1984;
Reynolds, 1987; Cellini and Lambertini, 2001; Calzolari and Lambertini,
2002) and can be ultimately traced back to Solow (1956).

For the sake of simplicity, in the remainder I assume that ¢;(t) = k;(¢), i.e.,
both firms operate at full capacity at any instant, a la Kreps and Scheinkman
(1983). At any ¢, firm ¢ bears the following total costs:

L))
-

°In such a case, the game is controllable by the leader, who cannot resist the temptation
to renege any initial plans later on during the game. This is precisely what happens in
models dealing with the time inconsistency of the optimal economic (monetary or fiscal)
policy in macroeconomic settings (see Kydland and Prescott, 1977; Calvo, 1978, Turnovsky
and Brock, 1980; Lucas and Stokey, 1983; Persson, Persson and Svensson, 1987).

5For a detailed discussion of the issue of time consistency and subgame perfection in
differential games, see Basar and Olsder (1982, 19952), Mehlmann (1988), Dockner et al.
(2000) and Cellini and Lambertini (2001).

=k, = I,(t) — 6ki(t), 9)

Ci(t) = cqi(t) + (10)




The instantaneous profit of firm ¢ is:

wi(0) = plt) — el au(t) — L (1)

For each firm i, the instantancous investment effort I;(f) is the control
variable, while capacity k;(t) is the state variable. The value of the state
variables at ¢ = 0 is k;(0) = kjp. The solution concept is the open-loop
Stackelberg equilibrium. The aim of firm 7 consists in:

Li(t)

max J; E/ mi(t)e Pdt (12)
0

subject to the relevant dynamic constraint(s). The factor e ?* discounts
future gains, and the discount rate p > 0 is assumed to be constant and
common to all players.

4 Equilibrium analysis

The Stackelberg game is assumed to be solved by firms in open-loop strate-
gies. Consider fist the optimum problem for the follower, firm 2. Her Hamil-
tonian function is:

Halt) = {[a — (1) = halt) = () — 2

+A21(8) [[1(t) — 0k1 ()]} (13)

+ Aga(t) [£12(t) — Ska(2)]

where Ag;(t) = po;(t)e”" is the costate variable (evaluated at time ) as-
sociated with state variable k;(t), j = 1,2. The first order conditions are
(exponential discounting is omitted for brevity):

OHa(t) Q-
on R0 Y
G = T i = =
3)\;(75) = Ao (1) (p+8) — a+ ¢+ ki (1) + 2ks(1) ; (16)



IH,(1) _ OXa1 (1)

- Ok (1) a pAai(t) = (17)
P nt) (o4 0) 4 holt). (1)

together with the initial conditions k;(0) = k;o and the transversality condi-
tion:

t—o00

From (14), one obtains:

Aaa(t) = Io(t) ; 8);1@) — 8]82t<t) ‘

Since the follower’s co-state variable is independent of the leader’s control
path, (20) proves the following result (see Xie, 1997):

(20)

Lemma 1 The follower’s investment effort I,(t) is non-controllable by the
leader. Therefore, the open-loop Stackelberg equilibrium is time consistent.

Before approaching the leader’s problem, it is worth observing, again from
(20), that the evolution of firm 2’s investment does not depend on Mg (%)
either. This redundancy of the dynamics of the leader’s state variable as to
the follower’s decisions is going to become even clearer in the remainder.

Now I can characterise the leader’s problem. Firm 1’s Hamiltonian func-
tion is:

(L))
2

+ A (8) [11(t) — 0k (8)] +

O (t OAao(t
FAat) D) = ata(0)] +00) | 220 out | 22O g
where 0;(t) is the additional co-state variable attached by the leader to the

follower’s co-state equations, and the expressions JAy;(t)/0t are given by
(16-18). The first order conditions are:

T = =10+ 2l =0 (22)
Gt =2+ (23)

7



I (%)

S =) (p+0) —at et 2k (6) + ko) — 0(8); (24)
Pull) a0 (p+ ) + ks (1) — 01(0) — 20500 (26)

The above conditions are accompanied by the initial conditions k;(0) = ko
as well as the transversality condition:

lim Ay (¢) - k() =0. (29)

t—o00

From (22) one immediately gets:

Ai(t) = Li(t) ; 8]81t<t) — 8)‘51t<t) N

(30)

o1, (1)
ot

= A1(t) (p490) —a+c+ 2k (1) + ko (t) — 02(2) . (31)

%Zt) = 0 iff 6,(¢) = 0. Proceeding

Moreover, from (27), we observe that

likewise, note that from (28), we have:

862(t> )\12<t)
and, from (26):
OAip(t) _ _ 0k1 (?)
B =06 ull) = 5 (33)

Plugging these expressions into (31), one obtains the following dynamic equa-
tion for the leader’s investment (henceforth, I omit the indication of time for
the sake of brevity):

ol

Eoc(p—|—5)[2+5(p+5)][1—k1—(a—c—2k1—k2)[2+5(p+5)] (34)

8



which i1s nil at

2 (a - C) - 3]61 - 2]62 5]61

1
I} == — 35
12 p+6 2+6(p+9) (35)
The follower’s optimal investment is:
—c—ky — 2k
Iy =N = (36)

p+0

Finally, from the kinematic equations of state variables (9), one can compute
the steady state capacity levels of both firms:

L la=ol+d(p+d)]
Vo240 (p+o)[d+(p+ )]’ (37)
p__ (a=o)[1+5(p+0) (3+3(p+0))] (38)

P2 a(p o240 (p+0)(4+0(p+0))]
Expressions (37-38) can be used to write the equilibrium expressions for
{If, ¥} 7
Now assess the difference between steady state capital endowments:

L—/CF: a—cC

and

L __gF _ (a—c)o
B=b = G p ozt ar o soparertoy] W

= 0 (k" —k5%) > 0forall 6 € (0,1] .

Moreover, 7 — 72 > 0.2 Hence:
» Tq 2

Proposition 2 Along the optimal Stackelberg open-loop path:
(i) for all 6 € (0,1], the leader invests more than the follower. As a result,
the leader’s steady state capacity and profits are larger than the follower’s.
(i1) if 6 = 0, leader and follower produce the same investment effort.
However, the leader’s capacity and profits are larger than the follower’s.

"It can also be easily shown that the equilibrium is stable, in that the pairs {IIL, Ig}
and {k:f,k:g } identify a saddle point. The stability analysis is omitted for the sake of
brevity. For the detailos concerning the stability of the open-loop Nash equilibrium, see
Cellini and Lambertini (2001).

8The detailed expression of profits are omitted for brevity.

9



5 A comparison with the Nash solution

Now briefly consider the performance of the two firms when they play simul-
taneously. As shown by Cellini and Lambertini (2001)
game the open-loop Nash equilibrium path coincides with the closed-loop
one, and therefore the former is strongly time consistent and qualifies as a
subgame perfect equilibrium.

The symmetric steady state capacity and investment levels associated

, in the simultaneous

with the Nash equilibrium are (for the computational details, see Cellini and

Lambertini, 2001):

— —c)o
]{N:L. N:(a—c)zgkN 41
34+d0(p+0)’ 3+0(p+9) (41)
while the Nash equilibrium profits are:
2[34+0(p+9)]
Using (37-38) and (41), one obtains:
Rl — N = — >0 (43
! B+(p+0)][2+06” (4+6%) +6p (440 (20 + p))] (>
L _ LN
T S Sl AR (44)
24+6(p+0)

which also entails I} > IV > [ for all § € [0,1]. Finally, 7f > 7 > 7"
with 27N > 7l 4+ 7l
The above discussion can be summarised as follows:

Proposition 3 In comparison to the features of the Nash equilibrium path,
in the Stackelberg equilibrium the leader (resp., follower) (i) invests more
(less) than in the Nash equilibrium; (ii) acquires a higher (lower) steady
state capacity than in the Nash equilibrium; and (iii) obtains higher (lower)
profits than in the Nash equilibrium.

The foregoing discussion shows that the capital accumulation game a la
Solow has some typical properties of a Cournot game with substitute goods
(see Dowrick, 1986, inter alia). In particular, the Stackelberg leader (follower)

10



is better off (worse off) than in the Nash equilibrium. Moreover, as in any
static Cournot game with substitutes, it can be easily shown that social
welfare is higher in the Stackelberg equilibrium than in the Nash equilibrium.
This fact has some relevant consequences as to the evaluation of the growth
process experienced by firms from a social (or policy) standpoint. Is it really
relevant whether firms’ growth rates coincide with each other, and eventually
lead to a convergence of equilibrium sizes? That is, is the set of questions
usually associated with Gibrat’s law appropriate? If we assess the conclusions
drawn from the model presented above, the answer is definitely negative,
because an uneven distribution of growth rates generated by sequential play,
and the associated uneven size distribution of firms in steady state, imply
a higher social welfare than the one generated by simultaneous play. It is
true that the follower is damaged and the Stackelberg equilibrium industry
profits are lower as compared to the Nash equilibrium, yet a planner should
evaluate the market mechanism and the capital accumulation process with a
view to social welfare rather than the performance of firms only.

6 Concluding remarks

The open-loop Stackelberg differential game analysed in this paper predicts
that earlier movers will perform better in the steady state equilibrium than
later movers, although all firms enter the market at the same time. On the
one hand, if we take the first mover advantage as a substitute for an earlier
entry, this implies that the present model does not confirm Gibrat’s law.
On the other hand, from a welfare standpoint, the above analysis suggests
that there may not be any scope for a policy in support of smaller firms,’ as
the steady state of the Stackelberg game has the same qualitative properties
of a static game in output levels, where sequential play produces a higher

equilibrium welfare than simultaneous play.

9To this regard, see Lotti, Santarelli and Vivarelli (2001).
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