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Abstract

We illustrate two differential oligopoly games using, respectively,
the capital accumulation dynamics à la Solow-Nerlove-Arrow, and the
capital accumulation dynamics à la Ramsey. In both settings, we eval-
uate the effects of (gross) profit taxation, proving that there exist tax
rates yielding the same steady state social welfare as under social plan-
ning. Contrary to the static approach, our dynamic analysis shows
that, in general, profit taxation affects firms’ decisions concerning
capital accumulation and sales. In particular, it has pro-competitive
effects provided that the extent of delegation is large enough.
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1 Introduction

There exists a relatively large literature on profit taxation in static models of
imperfect competition (Levin, 1985; Besley, 1989; Delipalla and Keen, 1992;
Dung, 1993; Ushio, 2000). A well established result of this literature is that
the taxation of operative profits (defined as the profits gross of fixed costs) is
neutral, in that it does not affect first order conditions on market variables.

The dynamic interaction between capital accumulation and taxation has
been analysed by Hall and Jorgenson (1967).1 However, their analysis, as
well as the debate stemming from what is now conventionally labelled as
Jorgenson’s model, is carried out focussing upon monopoly.

In the light of the above mentioned streams of literature, one would like to
characterise the influence of taxation on the behaviour of firms in a dynamic
setting where strategic interaction is duly accounted for. To this aim, we pro-
pose a dynamic capital accumulation game in a Cournot oligopoly, where we
consider both the model of reversible investment à la Solow-Nerlove-Arrow
(1956, 1962), i.e., capital accumulation through costly investment, and the
model à la Ramsey (1928), i.e., a “corn-corn” growth model, where accu-
mulation is based upon unsold output and coincides with consumption post-
ponement. In both settings, our aim consists in characterising the effects
of profit taxation on the steady state behaviour of firms and the associated
performance of profits and social welfare. In order to account for the (more
realistic) possibility for firms not to be strict profit-seeking agents, we as-
sume, throughout our analysis, that firms may delegate control over their
strategic decisions to managers who are interested in expanding output à la
Vickers (1985; see also Fershtman and Judd, 1987).

Our main results are as follows. First, as shown in Cellini and Lamber-
tini (2001), under both the Solow-Nerlove-Arrow and the Ramsey capital
accumulation dynamics, the open-loop Nash equilibrium coincides with the
closed-loop memoryless equilibrium, and therefore the former is subgame per-
fect. This depends upon two features which are common to both settings:
(a) the dynamic behaviour of any firm’s state variable does not depend on
the rivals’ control and state variables, which makes the kinematic equations
concerning other firms redundant; and (b) for any firm, the first order con-
ditions taken w.r.t. the control variables are independent of the rivals’ state

1For an exhaustive overview on the effects of uncertainty on investment decisions, with
and without taxation, see Dixit and Pindyck (1994).
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variables, which entails that the cross effect from rivals’ states to own controls
(which characterises the closed-loop information structure) disappears.

Second, profit taxation distorts capital accumulation and the associated
market performance of firms, in both models, as long as firms are manage-
rial. The distortion disappears in the Ramsey model if firms are strictly
entrepreneurial units, i.e., pure profit-seekers. In the Solow-Nerlove-Arrow
setting, taxation is always distortionary, independently of the internal or-
ganization of firms. This sharply contrasts with the conventional wisdom
generated by the static approach to taxation in oligopoly. This difference
comes from the fact that, if one takes the more realistic view that capac-
ity accumulation is a dynamic process, then one can verify that indeed the
presence of a tax rate on profits enters firms’ optimality conditions in a non-
neutral way, contrary to what happens in a static model where taxation has
only a scale effect on profits.

We also characterise the optimal taxation in both models, from the stand-
point of a policy maker aiming at the maximization of social welfare in steady
state. In the Solow-Nerlove-Arrow setting, investment in additional capac-
ity involves an instantaneous cost for each firm, and therefore the socially
optimal tax rate falls short of the level which would drive the market to
the competitive outcome, as this would involve negative steady state prof-
its which, in turn, would lead firms to quit the market. Conversely, in the
Ramsey model, investment involves only the intertemporal cost associated
with the relocation of unsold output. Accordingly, it is optimal for the policy
maker to adopt the tax rate that drives the equilibrium to marginal cost.

The remainder of the paper is structured as follows. The model is laid
out in section 2. Section 3 examines the effects of taxation in the Solow-
Nerlove-Arrow model, while section 4 carries out the analogous task for the
Ramsey model. Section 5 contains concluding remarks.

2 The basic setup

The existing literature on differential games applied to firms’ behaviour
mainly concentrates on two kinds of solution concepts:2 the-open loop and
the closed-loop equilibria. In the former case, firms precommit their decisions

2See Kamien and Schwartz (1981); Başar and Olsder (1982); Mehlmann (1988); Dock-
ner, Jørgensen, Van Long and Sorger (2000).
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on the control variables to a path over time and the relevant equilibrium con-
cept is the open-loop Nash equilibrium. In the latter, firms do not precommit
on any path and their strategies at any instant may depend on all the pre-
ceding history. In this situation, the information set used by firms in setting
their strategies at any given time is often simplified to be only the current
value of the capital stocks at that time. The relevant equilibrium concept,
in this (sub-)case, is the closed-loop memoryless Nash equilibrium, which
is strongly time consistent and therefore subgame perfect. When players
(firms) adopt the open-loop solution concept, they design the optimal plan
at the initial time and then stick to it forever. The resulting open-loop Nash
equilibrium is only weakly time consistent and therefore, in general, it is not
subgame perfect. A refinement of the closed-loop Nash equilibrium, which is
known as the feedback Nash equilibrium, can also be adopted as the solution
concept. While in the closed-loop memoryless case the initial and current
levels of all state variables are taken into account, in the feedback case only
the current stocks of states are considered.3

Current research on differential games devotes a considerable amount of
attention to identifying classes of games where either the feedback or the
closed-loop equilibria degenerate into open-loop equilibria. This interest is
motivated by the following reason. Whenever an open-loop equilibrium is a
degenerate closed-loop or feedback equilibrium, then the former is also sub-
game perfect; therefore one can rely on the open-loop equilibrium which,
in general, is much easier to derive than feedback and closed-loop ones.
Classes of games where this coincidence arises are illustrated in Clemhout and
Wan (1974); Reinganum (1982); Mehlmann and Willing (1983); Dockner,
Feichtinger and Jørgensen (1985); Fershtman (1987); Fershtman, Kamien
and Muller (1992). For an overview, see Mehlmann (1988) and Fershtman,
Kamien and Muller (1992).

Here, we consider two well known capital accumulation rules. In both
models, the market exists over t ∈ [0 , ∞) , and is served by N firms produc-
ing a homogeneous good. Let qi(t) define the quantity sold by firm i at time
t. The marginal production cost is constant and equal to c for both firms.
Firms compete à la Cournot, the demand function at time t being:

p(t) = A−BQ(t) , Q(t) ≡
N∑

i=1

qi(t) . (1)

3For a clear exposition of the difference among these equilibrium solutions see Başar
and Olsder (1982, pp. 318-327, and chapter 6, in particular Proposition 6.1).
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In order to produce, firms must accumulate capacity or physical capital ki(t)
over time. The two models we consider in the present paper are characterised
by two different kinematic equations for capital accumulation.

A ] The Solow (1956) or Nerlove-Arrow (1962) setting, with the relevant
dynamic equation being:

∂ki(t)

∂t
= Ii(t)− δki(t) , (2)

where Ii(t) is the investment carried out by firm i at time t, and δ
is the constant depreciation rate. The instantaneous cost of invest-
ment is Ci [Ii (t)] = b [Ii (t)]

2 /2, with b > 0. We also assume that firms
operate with a decreasing returns technology qi(t) = f(ki(t)), with
f ′ ≡ ∂f(ki(t))/∂ki(t) > 0 and f ′′ ≡ ∂2f(ki(t))/∂ki(t)

2 < 0. The de-
mand function rewrites as:4

p(t) = A−B
N∑

i=1

f(ki(t)) . (3)

Here, the control variable is the instantaneous investment Ii(t), while
the state variable is obviously ki(t).

B ] The Ramsey (1928) setting, whit the following dynamic equation:

∂ki(t)

∂t
= f(ki(t))− qi(t)− δki(t) , (4)

where f(ki(t)) = yi(t) denotes the output produced by firm i at time
t. As in setting [A], we assume f ′ ≡ ∂f(ki(t))/∂ki(t) > 0 and f ′′ ≡
∂2f(ki(t))/∂ki(t)

2 < 0. In this case, capital accumulates as a result of
intertemporal relocation of unsold output yi(t) − qi(t).

5 This can be
interpreted in two ways. The first consists in viewing this setup as a

4Notice that the assumption qi(t) = f(ki(t)) entails that firms always operate at full ca-
pacity. This, in turn, amounts to saying that this model encompasses the case of Bertrand
behaviour under capacity constraints, as in Kreps and Scheinkman (1983), inter alia. The
open-loop solution of the Nerlove-Arrow differential game in a duopoly model is in Fersht-
man and Muller (1984) and Reynolds (1987). The latter author also derives the feedback
solution through Bellman’s value function approach.

5In the Ramsey model, firms operate at full capacity in steady state, where any invest-
ment is just meant to make up for depreciation.
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corn-corn model, where unsold output is reintroduced in the produc-
tion process. The second consists in thinking of a two-sector economy
where there exists an industry producing the capital input which can
be traded against the final good at a price equal to one (for further
discussion, see Cellini and Lambertini, 2000).

In this model, the control variable is qi(t), while the state variable
remains ki(t). The demand function is (1).

In the remainder of the paper, we will consider an oligopoly where the
control of firms’ behaviour is delegated to managers. As in Fershtman (1985),
Vickers (1985), Fershtman and Judd (1987) and many others, we assume that
delegation contracts are observable and establish that the manager of firm
i maximises a combination of profits and output, so that his instantaneous
objective function is:

Mi(t) = πi(t) + θiqi(t) (5)

where parameter θi measures the extent of delegation. If θi = 0, the firm
is entrepreneurial, i.e., it is run by stockholders so as to strictly maximise
profits. Moreover, we assume that firms’ profits (gross of investment costs)
are taxed at rate τ.

3 The Solow-Nerlove-Arrow model

When capital accumulates according to equation (2), the relevant Hamilto-
nian for firm i is:

Hi(t) = e−ρt


A−Bf(ki(t))−B

∑
i6=j

f(kj(t))− c

 f(ki(t)) (1− τ)− b

2
[Ii (t)]

2

+θif(ki(t)) + λii(t) [Ii(t)− δki(t)] +
∑
i6=j

λij(t) [Ij(t)− δkj(t)]

 , (6)

with initial conditions ki (0) = ki0 , i = 1, 2, 3, ...N. Necessary conditions for
the closed-loop memoryless equilibrium are:
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(i) ∂Hi(t)∂Ii(t) = 0 ⇒ −bIi(t) + λii(t) = 0 ⇒ λii(t) = bIi(t)
(ii) − ∂Hi(t)∂ki(t)−

∑
j 6=i ∂Hi(t)∂Ij(t)∂I∗

j (t)∂ki(t) = ∂λii(t)∂t− ρλii(t) ⇒
⇒ ∂λii(t)∂t = (ρ + δ) λii(t)− f ′(ki(t)) [θi − (1− τ) Ω]
whereΩ ≡ 2Bf(ki(t)) + B

∑
j 6=i f(kj(t))− (A− c)

(iii) − ∂Hi(t)∂kj(t)−
∑

j 6=i ∂Hi(t)∂Ij(t)∂I∗
j (t)∂kj(t) = ∂λij(t)∂t− ρλij(t) ,

(7)
with the transversality conditions:

t →∞lim µij(t) · ki(t) = 0 foralli, j . (8)

Now observe that, on the basis of (7-i), we have:

∂I∗
j (t)∂ki(t) = 0foralli, j . (9)

Moreover, condition (7-iii), which yields ∂λij(t)/∂t, is redundant in that
λij(t) does not appear in the first order conditions (7-i) and (7-ii). This result
can be characterised in the following alternative but completely equivalent
way, by observing that

∂I∗
j (t)∂ki(t) =

∂2Hj(t)

∂Ij(t)∂ki(t)
(10)

where
∂2Hj(t)

∂Ij(t)∂ki(t)
= 0foralli, j , (11)

since the Hamiltonian of firm i is additively separable in control and state
variables. Therefore, the open-loop solution is indeed a degenerate closed-
loop solution.6

The discussion carried out so far establishes:
Under the Solow-Nerlove-Arrow capital accumulation dynamics, the closed-

loop memoryless equilibrium coincides with the open-loop equilibrium, which
therefore is subgame perfect.

Differentiating (7.i) w.r.t. time we obtain:

∂Ii(t)

∂t
=

1

b
· ∂λii(t)∂t . (12)

6Note that, however, the open-loop solution does not coincide with the feedback so-
lution, where each firm holds a larger capacity and sells more than in the open-loop
equilibrium (see Reynolds, 1987).
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Then, replace (7-i) into (7-ii), to get the following expression for the
dynamics of the costate variable λii(t):

∂λii(t)∂t = b (ρ + δ) Ii(t)− f ′(ki(t)) [θi − (1− τ) Ω] , (13)

which can be plugged into (12), that rewrites as:

∂Ii(t)

∂t
= (ρ + δ) Ii(t)+ (14)

−f ′(ki(t))

b

θi − (1− τ)

2Bf(ki(t)) + B
∑
j 6=i

f(kj(t))− (A− c)

 ,

Invoking symmetry across firms and simplifying, we can rewrite (14):

∂I(t)

∂t
=

1

b
{b (ρ + δ) I(t)− f ′(k(t)) [θ − (1− τ) (B(N + 1)f(k(t))− (A− c))]} ,

(15)
with the r.h.s. being zero at:

I(t) =
f ′(k(t))

b (ρ + δ)
{θ + (1− τ) [(A− c)−B(N + 1)f(k(t))]} . (16)

Expressions (14-16) prove the following result:
In the Solow-Nerlove-Arrow model, any profit tax rate τ > 0 distorts

firms’ investments and therefore capital accumulation, independently of whether
firms are managerial or entrepreneurial.

Even when all firms are strictly profit-seeking agents (that is, θi = 0 for
all i), the presence of profit taxation is distortionary. The fact that taxation
distorts the investment path involves of course that the steady state capacity
will also be distorted.

In order to solve the model explicitly, we now examine the case where
f(k(t)) = k(t).7 Under the assumption of a technology characterised by con-
stant returns to scale, expression (16) rewrites as:

I(t) =
(1− τ) [(A− c)−B(N + 1)k(t)] + θ

b (ρ + δ)
. (17)

7This setting is also investigated in Fershtman and Muller (1984) and Calzolari and
Lambertini (2001), inter alia.
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By substituting (17) into (2) and imposing ∂k(t)/∂t = 0, we obtain the
steady state capacity:

k∗ =
(1− τ) (A− c) + θ

B(N + 1) (1− τ) + b (ρ + δ) δ
(18)

with I∗ = δk∗. By checking the stability condition, one can easily verify that
the pair {I∗ , k∗} identifies a saddle point for all τ ∈ [0 , 1] .

As one would expect from the outset, k∗ is everywhere increasing in θ.
This obviously entails that, as we know from Vickers (1985), Fershtman
(1985) et alii, the market becomes more competitive as the extent of del-
egation increases. Moreover, k∗ is everywhere increasing in the number of
firms.

This formulation allows us to evaluate the effect on steady state capacity
of a change in the tax rate. From (18), we have that

∂k∗

∂τ
=

B(N + 1)θ − b (A− c) (ρ + δ) δ

[B(N + 1) (1− τ) + b (ρ + δ) δ]2
> 0

forallθ > θ ≡ b (A− c) (ρ + δ) δ

B(N + 1)
> 0 . (19)

This proves the following Corollary to Proposition 2:
If firms are strictly profit-seeking units, or the extent of delegation is

small enough, profit taxation reduces the steady state capacity. Otherwise,
if the extent of delegation is larger than a critical threshold, taxing profits
leads to an increase in the long run capacity of firms.

This result can be interpreted in the following terms. If firms are strictly
entrepreneurial, i.e., θ = 0 for all of them, taxation reduces the steady state
capacity in that capital accumulation is costly. As soon as firms delegate
control to managers interested in output expansion, a countervailing effect
is operating. However, for this to overcome the negative effect exerted by
taxation, the extent of delegation must be large enough.

We are now in a position to address the issue of choosing the optimal tax
rate, from the standpoint of a policy maker aiming at the maximisation of
social welfare. To this purpose, we first characterise the behaviour of a social
planner operating N firms (without taxation).

Instantaneous consumer surplus is:

CS(t) = [A− p(t)]

∑N
i=1 ki(t)

2
=

B

2

[
N∑

i=1

ki(t)

]2

. (20)
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This must be added to instantaneous industry profits Π(t) =
∑N

i=1 πi(t) to
obtain the relevant expression for instantaneous social welfare, SW (t) =
CS(t) + Π(t). Hence, the Hamiltonian of the social planner is:

HSP (t) = e−ρt


A−Bki(t)−B

∑
i6=j

kj(t)− c + θi

 ki(t)−
b

2
[Ii (t)]

2 +

(21)∑
j 6=i

A−Bkj(t)−B
∑
m6=j

km(t)− c + θj

 kj(t)−
b

2
[Ij (t)]2

 +

B

2

[
N∑

i=1

ki (t)

]2

+ λi(t) [Ii(t)− δki(t)] +
∑
j 6=i

λj(t) [Ij(t)− δkj(t)]


The first order conditions are:8

∂HSP (t)∂Ii(t) = −bIi(t) + λi(t) = 0 ⇒ λi(t) = bIi(t)and
∂Ii(t)

∂t
∝ ∂λi(t)

∂t
;

(22)

∂HSP (t)∂ki(t) =
∂λi(t)

∂t
− ρλi(t) . (23)

The latter, after imposing the symmetry condition across firms, yields:

∂λ(t)

∂t
= bI(t) (ρ + δ)− (A− c + θ) + BNk(t) (24)

which allows us to write:

∂Ii(t)

∂t
∝ bI(t) (ρ + δ)− (A− c + θ) + BNk(t) = 0 (25)

in

I(t) =
(A− c + θ)−BNk(t)

b (ρ + δ)
. (26)

This expression can be plugged into ∂k(t)/∂t to check immediately that the
steady state level of capacity at the social optimum is:

kSP =
A− c + θ

BN + bδ (ρ + δ)
. (27)

8We omit initial conditions and transversality conditions for the sake of brevity.
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The corresponding socially optimal investment in steady state is ISP = δkSP .
At the socially optimal equilibrium, the individual firm’s profits are:

πSP =
bδ (δ + 2ρ) (A− c + θ)2

2 [BN + bδ (ρ + δ)]2
> 0 , (28)

while social welfare is:

SWSP =
N [BN + bδ (δ + 2ρ)] (A− c + θ)2

2 [BN + bδ (ρ + δ)]2
. (29)

Now, if we compare {ISP , kSP} with {I∗ , k∗} , we can easily find that
I∗ = ISP and k∗ = kSP at

τSP =
B (A− c + θ)

(A− c) [B − bδ (ρ + δ)] + Bθ (N + 1)
. (30)

A sufficient condition for τSP > 0 is that intertemporal parameters δ and ρ
be small enough. Moreover, it must be that τSP ≤ 1, which requires:

θ ≥ θ̂ ≡ b (A− c) (ρ + δ) δ

BN
> θ . (31)

This proves the following:
If the policy maker adopts the tax rate τSP , the steady state oligopoly

equilibrium yields the same level of social welfare attainable under social
planning. In correspondence of τSP , firms’ equilibrium profits are positive.

Depending upon the level of θ, the sign of ∂k∗/∂t and ∂I∗/∂t can be either
negative or positive if evaluated at τSP . It is just the case of observing the
obvious feature that the presence of an investment cost prevents the planner
as well as the policy maker to reach the perfectly competitive equilibrium
with marginal cost pricing.

4 The Ramsey model

Under the dynamic constraint (4), the Hamiltonian of firm i is:

Hi(t) =
{
e−ρt [A−Bqi(t)−BQ−i(t)− c] (1− τ) qi(t) + θiqi(t)+ (32)

+λii(t) [f(ki(t))− qi(t)− δki(t)] +
∑
j 6=i

λij(t) [f(kj(t))− qj(t)− δkj(t)]

 ,

where Q−i(t) =
∑

j 6=i qj(t).
9

9Initial conditions and transversality conditions are omitted for the sake of brevity.
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The first order condition concerning the control variable is:

∂Hi(t)

∂qi(t)
= [A− 2Bqi(t)−BQ−i(t)− c] (1− τ) + θi − λii(t) = 0 . (33)

Now examine at the co-state equation of firm i calculated for the state vari-
able of firm i herself, for the closed-loop solution of the game:

−∂Hi(t)

∂ki(t)
−

∑
j 6=i

∂Hi(t)

∂qj(t)

∂q∗j (t)

∂ki(t)
=

∂λii(t)

∂t
− ρλii(t) ⇒ (34)

∂λii(t)

∂t
= λii(t) [ρ + δ − f(ki(t))]

with
∂q∗j (t)

∂ki(t)
= 0 (35)

as it emerges from the best reply function obtained from the analogous to
(33):

q∗j (t) =
[A−BQ−j(t)− c] (1− τ) + θi − λjj(t)

2B (1− τ)
; (36)

Moreover, (36) also suffices to establish that the co-state equation:

−∂Hi(t)

∂kj(t)
−

∑
j 6=i

∂Hi(t)

∂qj(t)

∂q∗j (t)

∂kj(t)
=

∂λij(t)

∂t
− ρλij(t) (37)

pertaining to the state variable of the generic rival j is indeed redundant since
µij(t) = λij(t)e

−ρt does not appear in firm i’s first order condition (33) on
the control variable. This amounts to saying that, in the Ramsey game, the
open-loop solution is a degenerate closed-loop solution because the best reply
function of firm i does not contain the state variable pertaining to the same
firm or any of her rivals. Therefore, we have proved the following analogous
to Proposition 1:

Under the Ramsey capital accumulation dynamics, the closed-loop mem-
oryless equilibrium coincides with the open-loop equilibrium, which therefore
is subgame perfect.

Accordingly, we set λii(t) = λi(t), and λij(t) = 0 for all j 6= i. Then, using
(36), we can write:

dq∗i (t)

dt
=

1

2B(1− τ)

−(1− τ)B
∑
j 6=i

∂qj(t)

∂t
− ∂λi(t)

∂t

 (38)
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and
λi(t) = (1− τ) [A− 2Bqi(t)−BQ−j(t)− c] + θi . (39)

Now we can impose the symmetry condition qi(t) = q(t) and θi = θ for all i,
and using (34) and (39) we can rewrite (38) as follows:

dq∗(t)

dt
∝ [(1− τ) (A− c− q(t)(N + 1)B) + θ] [f ′(k)− ρ− δ] (40)

which is equal to zero in correspondence of the following steady state solu-
tions:

qSS =
(A− c) (1− τ) + θ

B (N + 1) (1− τ)
; f ′(k) = ρ + δ . (41)

To ease the exposition, define:

k̂ ≡
{
k : f ′

(
k̂
)

= ρ + δ
}

. (42)

That is, k̂ is the level of capacity associated with the Ramsey steady state
equilibrium where the marginal productivity of capital is equal to the sum
of depreciation and discount rates.

The phase diagram of the present model can be drawn in the space {k, q}.
The locus

·
q≡ dq/dt = 0 is given by the solutions in (41). The two loci parti-

tion the space {k, q} into four regions, where the dynamics of q is summarised

by the vertical arrows. The locus
·
k≡ dk/dt = 0 as well as the dynamics of

k, depicted by horizontal arrows, derive from (4). Steady state equilibria,
denoted by E1, E2 along the horizontal arm, and E3 along the vertical one,
are identified by the intersections between loci.
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Figure 1: The Ramsey model
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Figure 1 describes only one out of five possible configurations, due to the
fact that the position of the vertical line f ′(k) = ρ + δ is independent of de-
mand parameters, while the locus q = [(A− c) (1− τ) + θ] / [B (N + 1) (1− τ)]
shifts upwards (downwards) as A− c and/or θ (B and N) increases. There-
fore, we obtain one out of five possible regimes:

1. There exist three steady state points, with kE1 < kE2 < kE3 (figure 1).

2. There exist two steady state points, with kE1 = kE2 < kE3.

3. There exist three steady state points, with kE2 < kE1 < kE3.

4. There exist two steady state points, with kE2 < kE1 = kE3.

5. There exists a unique steady state equilibrium point, corresponding to
E2.

The vertical locus f ′(k) = ρ + δ is a constraint on optimal capital, deter-
mined by firms’ intertemporal preferences, i.e., their common discount rate,
and depreciation. Accordingly, maximum output level in steady state would
be that corresponding to (i) ρ = 0, and (ii) a capacity such that f ′(k) = δ.
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Yet, a positive discounting (i.e., impatience) leads firms to install a smaller
capacity at the long-run equilibrium. This is the optimal capital constraint
k̂. When the market size A− c and the extent of delegation θ are very large
(or B and N are low), points E1 and E3 either do not exist (regime 5) or fall
to the right of E2 (regimes 2, 3 and 4). In such a case, the capital constraint
is operative and firms choose the capital accumulation corresponding to E2.

Notice that, as E1 and E3 entail the same levels of sales, point E3 is surely
inefficient in that it requires a higher amount of capital. E1 corresponds
to the optimal quantity emerging from the static version of the game. It is
hardly the case of emphasising that this solution encompasses both monopoly
and perfect competition (as, in the limit, N →∞).

The stability analysis of the above system reveals that:10

Regime 1. E1 is a saddle point, while E2 is an unstable focus. E3 is again
a saddle point, with the horizontal line as the stable arm.

Regime 2. E1 coincides with E2, so that we have only two steady states
which are both are saddle points. In E1 = E2, the saddle path ap-
proaches the saddle point from the left only, while in E3 the stable arm
is again the horizontal line.

Regime 3. E2 is a saddle, E1 is an unstable focus. E3 is a saddle point, as
in regimes 1 and 2.

Regime 4. Here, E1 and E3 coincide. E3 remains a saddle, while E1 = E3
is a saddle whose converging arm proceeds from the right along the
horizontal line.

Regime 5. Here, there exists a unique steady state point, E2, which is a
saddle point.

We can sum up the above discussion as follows. The unique efficient and
non-unstable steady state point is E2 if kE2 < kE1, while it is E1 if the
opposite inequality holds. Such a point is always a saddle. Individual equi-
librium output is qSS if the equilibrium is in E1, or the level corresponding
to the optimal capital constraint k̂ if the equilibrium is point E2. The reason
is that, if the capacity at which marginal instantaneous profit is nil is larger

10See Cellini and Lambertini (1998, 2002) for details concerning the Jacobian matrix of
the dynamic system.
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than the optimal capital constraint, the latter becomes binding. Otherwise,
the capital constraint is irrelevant, and firms’ decisions in each period are
driven by the unconstrained maximisation of single-period profits only.

Now, examining the steady state solutions in (41) allows us to state,
without further proof, the following result:

In the market-driven steady state, any profit tax rate τ > 0 distorts
qSS and kE1 if firms are managerial, i.e., iff θ > 0. If instead firms are
strictly entrepreneurial, i.e., θ = 0, profit taxation is neutral. In the Ramsey
equilibrium where f ′(k) = ρ + δ, profit taxation is always neutral.

Consider the market-driven solution. The effects of profit taxation on the
equilibrium output level are summarised by:

∂qSS

∂τ
=

θ

B (N + 1) (1− τ)2 > 0 ∀ θ > 0 . (43)

Since output is proportional to capacity, ∂kE1/∂τ ∝ ∂qSS/∂τ. This proves a
relevant Corollary to Proposition 4:

If firms are managerial, the optimal levels of output and capacity are
monotonically increasing in τ.

In this model, capacity accumulation involves the intertemporal reloca-
tion of production only. Therefore, being absent any instantaneous costs, the
introduction of a profit tax rate has an expansionary effect on capital accu-
mulation whenever firms are managerial, the reason being that firms expand
sales so as to try to recover through larger market shares some of the profits
extracted by the policy maker. Since this incentive exists for all firms, the
effect of taxation is definitely pro-competitive in that it translates into an
overall expansion of the industry output and a reduction in the price level.

Given the Ramsey accumulation mechanism, by which the unsold output
increases capacity, firms do not bear any fixed cost and the social optimum
involves firms producing an aggregate output that must be sufficiently large
to drive the market price to marginal cost, with zero profits. This can be
obtained by setting:

τ = 1− Nθ

A− c
. (44)

Clearly, τ is decreasing in the extent of delegation θ.
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5 Conclusions

We have investigated two dynamic oligopoly games in order to characterise
the effects of gross profit taxation on the performance of firms in steady
state. In particular, we have established that, if capacity accumulation is
modelled as a dynamic investment process, then taxation exerts distortionary
effects on the amount of capital and the output level at equilibrium. In the
Solow-Nerlove-Arrow approach, the steady state capacity and sales are non-
monotone in the size of the tax rate. On the contrary, taxation leads to a
decrease in optimal capacity and sales in the Ramsey approach, provided
that firms are managerial. If instead firms are under the direct control of
stockholders, then taxation is neutral in the Ramsey model.

Finally, we have also investigated the welfare-maximising tax rates in both
cases, finding that the Ramsey accumulation rule allows for a perfectly com-
petitive outcome, while the presence of instantaneous costs of investments
forces the Solow-Nerlove-Arrow model to fall short of such objective.
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