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Abstract

I characterise the dynamics of capacity accumulation and investment in ad-

vertising in a spatial monopoly model, contrasting the socially optimal be-

haviour of a benevolent planner against the behaviour of a pro…t-maximising

monopolist. I show that, in steady state, the monopolist always distorts both

kinds of investment as compared to the social optimum, except in a situation

where the Ramsey equilibrium prevails under both regimes.
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1 Introduction

The analysis of dynamic monopoly dates back to Evans (1924) and Tintner

(1937), who analysed the pricing behaviour of a …rm subject to a U-shaped

variable cost curve.1 The analysis of intertemporal capital accumulation

appeared later on (see Eisner and Strotz, 1963, inter alia).
The existing literature investigates several features of monopoly markets,

in particular several forms of discrimination, either through (intertemporal)

pricing (see Stokey, 1981; Bulow, 1982; Gul, Sonnenschein and Wilson, 1986)

or through product proliferation (see Mussa and Rosen, 1978; Maskin and

Riley, 1984; Gabszewicz, Shaked, Sutton and Thisse, 1986; Bonanno, 1987).

Another dynamic tool which has received a considerable amount of at-

tention is advertising, ever since Vidale and Wolfe (1957) and Nerlove and

Arrow (1962).2 A taxonomy introduced by Sethi (1977) distinguishes be-

tween advertising capital models and sales-advertising response models. The

…rst category considers advertising as an investment in a stock of goodwill,

à la Nerlove-Arrow. The second category gathers models where there exists

a direct relationship between the rate of change in sales and advertising, à la
Vidale-Wolfe.

In this paper, I propose a monopoly model where the …rm locates the

product in a spatial market representing the space of consumer preferences,

as in Hotelling (1929). The volume of sales at any point in time depends

upon consumers’ reservation price (or, equivalently, willingness to pay for

the product), and the …rm may invest in an advertising campaign in order to

increase consumers’ reservation price, in the Nerlove-Arrow vein. Moreover,

supplying the market involves building up productive capacity, and this may

1See Chiang (1992) for a recent exposition of the original model by Evans, as well as
later developments.

2For exhaustive surveys, see Sethi (1977); Jørgensen (1982); Feichtinger and Jørgensen
(1983); Erickson (1991); Feichtinger, Hartl and Sethi (1994). For duopoly models with
dynamic pricing and advertising, see in particular Leitmann and Schmitendorf (1978), and
Feichtinger (1983). For more recent developments, see the Proceedings of IX ISDG (2000).
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interact with the advertising e¤ort.

I characterise the dynamics of capacity accumulation and investment in

advertising …rst in isolation and then jointly, contrasting the socially opti-

mal behaviour of a benevolent planner against the behaviour of a pro…t-

maximising monopolist. I show that, in steady state, the monopolist always

distorts both kinds of investment as compared to the social optimum, except

in a situation where a Ramsey-like equilibrium prevails under both regimes.

That is:

² There exists a long run equilibrium where the …rm operates with a

productive capacity which is only driven by demand conditions. In this

situation, the pro…t-seeking monopolist invests too little resources in

both advertising and production, as compared to a benevolent planner.

² There exists a long run equilibrium where the …rm operates with a

productive capacity which is only driven by considerations concerning

time discounting and depreciation. In this situation, the behaviour of

the …rm in steady state is the same irrespective of the regime being

considered. Accordingly, monopoly distortions disappear.

The remainder of the paper is structured as follows. The setup is laid

out in section 2. The capital accumulation problem is investigated in section

3. Advertising is described in section 4. The interaction between capacity

accumulation and advertising is analysed in section 5.

2 The model

The setup shares its basic features with d’Aspremont, Gabszewicz and Thisse

(1979). I consider a market for horizontally di¤erentiated products where

consumers are uniformly distributed with unit density along the unit interval

[0; 1]. Let the market exist over t 2 [0;1): The market is served by a single

2



…rm selling a single good located at `(t) 2 [0; 1]: Product location is costless.3

The generic consumer located at a(t) 2 [0; 1] buys one unit of the good, if

net surplus from purchase is non-negative:

U(t) = s(t)¡ p(t)¡ [`(t)¡ a(t)]2 ¸ 0; i = 1; 2; (1)

where p(t) is the …rm’s mill price, and s(t) is gross consumer surplus, that is,

the reservation price that a generic consumer is willing to pay for the good.

Therefore, s(t) can be considered as a preference parameter which, together

with the disutility of transportation, yields a measure of consumers’ taste

for the good. The mill price is such that marginal consumers at distance

j`(t)¡ a(t)j from the store enjoy zero surplus, that is,

p(t) = s(t)¡ [`(t)¡ a(t)]2 : (2)

Observe that, in line of principle, it could be possible to have q(t) = a(t)

(if a(t) > `(t)) or q(t) = 1 ¡ a(t) (if a(t) < `(t)). However, this situation

would be clearly suboptimal for the monopolist, in that he could gain by

relocating the product costlessly until demand becomes symmetric around

`(t). Therefore, the choice of location can be solved once and for all at t = 0

by setting `(t) = 1=2:The same location is also optimal for a benevolent social

planner aiming at the maximisation of total surplus.4 The demand q(t) is

then easily de…ned as the interval [1¡ a(t) ; a(t)] ; i.e., q(t) = 2a(t) ¡ 1 2
[0 ; 1]; provided that

a(t) 2 (`(t) ; 1] and 1¡ a(t) 2 [0 ; `(t)) if a(t) 2 (`(t) ; 1] : (3)

I assume that the …rm operates at constant marginal production cost, and,

for the sake of simplicity, I normalise it to zero. Accordingly, instantaneous

3The monopolist’s R&D investment for product innovation is investigated in a com-
panion paper (Lambertini, 2000). R&D for product innovation in duopoly is analysed by
Harter (1993).

4For the sake of brevity, the proof of these claims is omitted, as it is well known from
the existing literature (see Bonanno, 1987; and Lambertini, 1995, inter alia).
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revenues are:

R(t) = p(t)q(t) =

"
s(t)¡

µ
1

2
¡ a(t)

¶2#
[2a(t)¡ 1] (4)

Instantaneous consumer surplus is:

CS(t) =
Z a

1¡a

"
s¡ p(t)¡

µ
1

2
¡m

¶2#
dm =

(2a¡ 1)3
6

(5)

Therefore, instantaneous social welfare amounts to

SW (t) = R(t) + CS(t) =
(2a(t)¡ 1) [12s¡ 1 + 4a(t) (1¡ a(t))]

12
(6)

In the remainder, I will consider, …rst in isolation and then jointly, the

following scenarios:

[1] Production requires physical capital k, accumulating over time to cre-

ate capacity. At any t; the output level is y(t) = f (k(t)); with f 0 ´
@f (k(t))=@k(t) > 0 and f 00 ´ @2f(k(t))=@k(t)2 < 0:

A reasonable assumption is that q(t) · y(t); that is, the level of sales is

at most equal to the quantity produced. Excess output is reintroduced

into the production process yielding accumulation of capacity according

to the following process:

@k(t)

@t
= f (k(t))¡ q(t)¡ ±k(t) ; (7)

where ± denotes the rate of depreciation of capital. The cost of capi-

tal is represented by the opportunity cost of intertemporal relocation

of unsold output.5 Let the initial state be k(0) = 0: When capacity

accumulation is used in isolation, the willingness to pay s(t) remains

constant over t at s0 :

5The adoption of technology (7) in the economic literature dates back to Ramsey (1928).
For an application to a dynamic oligopoly model with either price or quantity competition,
see Cellini and Lambertini (1998).
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[2] The monopolist may invest in an advertising campaign over time, aimed

at increasing consumers’ tastes, i.e., the willingness to pay s(t); accord-

ing to the following dynamics:

@s(t)

@t
= b

q
x(t)¡ ±s(t) ; b > 0 ; (8)

where x(t) is the instantaneous investment in advertising, and ± is the

constant depreciation rate a¤ecting consumers’ willingness to pay.6 Let

the initial state be s(0) = s0 : When the advertising technology is used

in isolation, production is assumed to be completely costless.

Scenarios [1] and [2] give rise to three cases, namely, (i) capital accu-

mulation for production, given the reservation price s0 ; (ii) investment in

advertising, with production being carried out at no cost; (iii) capital ac-

cumulation for production plus investment in advertising. In all the three

cases under consideration, I will …rst investigate the behaviour of a social

planner running the …rm so as to maximise net discounted welfare, and then

contrast the behaviour of a pro…t-seeking monopolist against the social plan-

ning benchmark.

3 Capital accumulation for production

3.1 Capital accumulation under social planning

In scenario 1, the objective of a benevolent social planner is

max
a(t)

Z 1

0
e¡½tSW (t)dt = (9)

=
Z 1

0
e¡½t

(2a(t)¡ 1) [12s0 ¡ 1 + 4a(t) (1¡ a(t))]
12

dt

s:t:
@k(t)

@t
= f(k(t))¡ q(t)¡ ±k(t) (10)

6The choice of (8) is justi…ed by several studies showing the existence of decreasing
returns to scale in advertising activities (see Chintagunta and Vilcassim, 1992; Erickson,
1992; see also Feichtinger, Hartl and Sethi, 1994).
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where ½ denotes time discounting. In choosing the optimal location of the

marginal consumer(s) at any t; the planner indeed maximises discounted

social welfare w.r.t. output (or, alternatively, price). The corresponding

Hamiltonian function is:

H(t) = e¡½t ¢
(
(2a(t)¡ 1) [12s0 ¡ 1 + 4a(t) (1¡ a(t))]

12
+ (11)

¸(t) [f (k(t))¡ 2a(t) + 1¡ ±k(t)]g ;

where ¸(t) = ¯(t)e½t; and ¯(t) is the co-state variable associated to k(t): The

…rst order conditions7 for a path to be optimal are:

@H(t)
@a(t)

= ¡2 [a(t)]2 + 2a(t) + 2s0 ¡ 1

2
¡ 2¸(t) = 0 ; (12)

¡@H(t)
@k(t)

=
@¯(t)

@t
) @¸(t)

@t
= [½+ ± ¡ f 0(k(t))]¸(t) ; (13)

lim
t!1

¯(t) ¢ k(t) = 0 : (14)

From (12), I obtain8

a(t) =
1

2
+

q
s0 ¡ ¸(t) : (15)

In combination with (2) and `(t) = 1=2; (15) establishes the following result:

Lemma 1 Under social planning, the market price of the …nal good and the
shadow price of capital coincide, i.e., p(t) = ¸(t):

Expression (15) can be di¤erentiated w.r.t. time to get

da(t)

dt
=

¡d¸(t)=dt
2
q
s0 ¡ ¸(t)

: (16)

7Second order conditions are met throughout the paper. They are omitted for the sake
of brevity.

8Recall that I consider that case where a(t) 2 (1=2; 1] ; so that the other solution to
(12) can be excluded.
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Using (13), the expression in (16) can be rewritten as follows:

da(t)

dt
= ¡ [½ + ± ¡ f 0(k(t))]¸(t)

2
q
s0 ¡ ¸(t)

: (17)

Moreover, using ¸(t) = a(t) [1¡ a(t)] + s0 ¡ 1=4; (17) simpli…es as:

da(t)

dt
= ¡

h
a(t)¡ (a(t))2 + s0 ¡ 1=4

i
[½+ ± ¡ f 0(k(t))]

2 [a(t)¡ 1] : (18)

Therefore,

sign

(
da(t)

dt

)
= sign

nh
a(t)¡ (a(t))2 + s0 ¡ 1=4

i
[f 0(k(t))¡ ½¡ ±]

o
:

(19)

The r.h.s. expression in (19) is zero at

f 0(k(t)) = ½+ ± ; (20)

a(t) =
1

2
§ p

s0 : (21)

The critical point (20) denotes the situation where the marginal product of

capital is just su¢cient to cover discounting and depreciation. The smaller

solution in (21) can be disregarded on the basis of the assumption that a(t) 2
(1=2 ; 1] : Therefore, the long run equilibrium output is either qsp(t) = 2

p
s0 ,

where superscript sp stands for social planning, or the quantity corresponding

to a capacity f 0¡1 (½+ ±) : It is also worth noting that, in correspondence of

a(t) = 1=2 +
p
s0; we have (i) qsp(t) · 1 for all s0 · 1=4, and (ii) psp(t) = 0;

i.e., the planner sells the product at marginal cost.

I am now able to draw a phase diagram in the space fk; qg ; in order

to characterise the steady state equilibrium (to ease the exposition, the in-

dication of time is dropped in the remainder of the discussion). The locus
¢
q´ dq=dt = 0 is given by qsp = 2

p
s0 and f 0(k) = ½+± in …gure 1. It is easily

shown that the horizontal locus qsp = 2
p
s0 denotes the usual equilibrium

solution we are well accustomed with from the static model. The two loci

partition the space fk; qg into four regions, where the dynamics of q is de-

termined by (18) with a = (q + 1)=2, as summarised by the vertical arrows.

7



The locus
¢
k´ dk=dt = 0 as well as the dynamics of k; depicted by horizon-

tal arrows, derive from (10). Steady states, denoted by A and C along the

horizontal arm, and B along the vertical one, are identi…ed by intersections

between loci.

Figure 1: Capital accumulation for production under social planning

6

-
-6

¾6

¾

?

-
?

-
6

-

?

¾

?

¾
6

2
p
s0

A C

B

q

kspB ´ f 0¡1(½+ ±)

k
f 0¡1(±)

It is worth noting that the situation illustrated in …gure 1 is only one out

of …ve possible con…gurations, due to the fact that the position of the vertical

line f 0(k) = ½+ ± is independent of demand parameters, while the horizontal

locus qsp = 2
p
s0 shifts upwards (downwards) as bs increases. Therefore, we

obtain one out of …ve possible regimes:

[1]. There exist three steady state points, with kspA < k
sp
B < k

sp
C , (this is the

situation depicted in …gure 1).

[2]. There exist two steady state points, with kspA = k
sp
B < k

sp
C :

[3]. There exist three steady state points, with kspB < k
sp
A < k

sp
C :
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[4]. There exist two steady state points, with kspB < k
sp
A = k

sp
C :

[5]. There exists a unique steady state point, corresponding to B:

An intuitive explanation for the above taxonomy can be provided in the

following terms. The vertical locus f 0(k) = ½ + ± identi…es a constraint on

optimal capital embodying the monopolist’s intertemporal preferences. Ac-

cordingly, the maximum steady state output would be that corresponding to

(i) ½ = 0; and (ii) a capacity such that f 0(k) = ±: Yet, a positive discounting

(that is, impatience) induces the planner to install a smaller steady state

capacity, much the same as it happens in the well known Ramsey model

(Ramsey, 1928).9 On these grounds, de…ne this level of k as the optimal

capital constraint, and label it as bk. When the reservation price bs is very

large, points A and C either do not exist (regime [5]) or fall to the right of B

(regimes [2], [3], and [4]). Under these circumstances, the capital constraint

is operative and the planner chooses the capital accumulation correspond-

ing to B. As we will see below, this is fully consistent with the dynamic

properties of the steady state points.

Notice that, since both steady state points located along the horizon-

tal locus entail the same levels of sales. As a consequence, point C is

surely ine¢cient in that it requires a higher amount of capital. In point

A, dSW (t)=dqi(t) = 0; that is, the marginal instantaneous social welfare is

nil.10

Now we come to the stability analysis of the above system. The joint

dynamics of a (or q) and k; can be described by linearising (18) and (10)

around (ksp; asp); to get what follows:
2
6664

¢
k

¢
a

3
7775 = ¥

2
664

(k ¡ ksp)

(a¡ asp)

3
775 (22)

9For a detailed exposition of the Ramsey model, I refer the reader to Blanchard and
Fischer (1989, ch. 2).

10Point A corresponds to the optimal quantity emerging from the static version of the
model (see Bonanno, 1987; Lambertini, 1995).
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where

¥ =

2
66664

f 0(k)¡ ± ¡2

(s0 ¡ 1=4 + a(1¡ a))
2a¡ 1 f 00(k)

(4a(1¡ a)¡ 4s0 ¡ 1)
2(2a¡ 1)2 (f 0(k)¡ ½¡ ±)

3
77775

The stability properties of the system in the neighbourhood of the steady

state depend upon the trace and determinant of the 2 £ 2 matrix ¥. In

studying the system, we con…ne to steady state points. The trace of ¥ is

tr(¥) = f 0(k)¡ ± + (4a(1¡ a)¡ 4s0 ¡ 1)
2(2a¡ 1)2 (f 0(k)¡ ½¡ ±) (23)

yielding tr(¥) = ½ > 0 in correspondence of both a = 1=2+
p
s0 and f 0(k) =

½+ ±: Joint with the evaluation of the determinant ¢(¥) at the same points,

the following taxonomy obtains.

Regime [1]. In A, ¢(¥) < 0; hence this is a saddle point. In B; ¢(¥) > 0;

so that B is an unstable focus. In C, ¢(¥) < 0; and this is again a

saddle point, with the horizontal line as the stable arm.

Regime [2]. In this regime, A coincides with B; so that we have only two

steady states which are both are saddle points. In A = B, the saddle

path approaches the saddle point from the left only, while in C the

stable arm is again the horizontal line.

Regime [3]. Here, B is a saddle; A is an unstable focus; C is a saddle point,

as in regimes [1] and [2].

Regime [4]. Here, points A and C coincide. B remains a saddle, while

A = C is a saddle whose converging arm proceeds from the right along

the horizontal line.
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Regime [5]. Here, there exists a unique steady state point, B; which is also

a saddle point.

We can sum up the above discussion as follows. The unique e¢cient

and non-unstable steady state point is B if kspB ´ bk < kA; while it is A if

the opposite inequality holds. Such a point is always a saddle. Individual

equilibrium output is qsp = 2
p
s0 if the equilibrium is identi…ed by pointA; or

the level corresponding to the optimal capital constraint bk if the equilibrium

is identi…ed by point B: The reason is that, if the capacity at which marginal

instantaneous pro…t is nil is larger than the optimal capital constraint, the

latter becomes binding. Otherwise, the capital constraint is irrelevant, and

the planner’s decisions in each period are solely driven by the unconstrained

maximisation of instantaneous social welfare.

The above discussion can be summarised as follows:

Proposition 1 If kspB ´ bk > kA ; the steady state output level is

² qsp = 2ps0 i¤ s0 2
·
0;
1

4

¶
; and partial market coverage obtains;

² qsp = 1 i¤ s0 ¸ 1

4
; and full market coverage obtains.

If kspB ´ bk < kA ; the steady state output is qsp = f
³bk

´
, and

² partial market coverage obtains (i) for all s0 2
·
0;
1

4

¶
; or (ii) for all

s0 ¸ 1

4
; i¤ f

³bk
´
< 1 :

² full market coverage obtains i¤ s0 ¸ 1

4
and f

³bk
´

¸ 1 :

3.2 Capital accumulation in a pro…t-seeking monopoly

The objective of the monopolist is

max
a(t)

Z 1

0
e¡½tR(t)dt =

Z 1

0
e¡½t

"
s0 ¡

µ
1

2
¡ a(t)

¶2#
[2a(t)¡ 1]dt(24)

s:t:
@k(t)

@t
= f (k(t))¡ q(t)¡ ±k(t) (25)

11



where ½ denotes the same time discounting as for the planner. The corre-

sponding Hamiltonian function is:

H(t) = e¡½t¢
("
s0 ¡

µ
1

2
¡ a(t)

¶2#
[2a(t)¡ 1] + ¸(t) [f (k(t))¡ 2a(t) + 1¡ ±k(t)]

)
;

(26)

where, again, ¸(t) = ¯(t)e½t; and ¯(t) is the co-state variable associated to

k(t):

The solution to the monopolist’s problem is largely analogous to that of

the planner as illustrated in section 3.1. Therefore, detailed calculations are

in Appendix 1. However, one speci…c result is worth stating here:

Lemma 2 Under monopoly, the shadow price of capital is

¸(t) = 3a(t) [1¡ a(t)] + s0 ¡ 3=4

which is lower than the market price p(t) = s(t)¡ [`(t)¡ a(t)]2 evaluated at

`(t); for all admissible a(t) 6= 1=2: At a(t) = 1=2; we have ¸(t) = p(t):

According to Lemma 2, the value attached by the monopolist to a current

unit of sales is larger than the shadow value characterising a further unit of

capital which would increase productive capacity in the future. Since any

increase in productive capacity requires some unsold output, Lemma 2 says

that we should expect to observe cases where the monopolist undersupplies

the market in steady state, as compared to the planner.

The steady state output is either qm(t) = 2
q
s0=3, where superscript

m stands for monopoly, or the quantity corresponding to a capacity bk =
f 0¡1 (½+ ±) (i.e., the Ramsey equilibrium is obviously the same as under

social planning).

The main results can be stated as follows:

Proposition 2 If bk > kmA ; the steady state output level is

² qm = 2
q
s0=3 i¤ s0 2

·
0;
3

4

¶
; and partial market coverage obtains;

12



² qm = 1 i¤ bs ¸ 3

4
; and full market coverage obtains.

If bk < kmA ; the steady state output is qm = f
³bk

´
, where bk is the capital

level at which f 0 (k) = ½+ ±; and

² partial market coverage obtains (i) for all s0 2
·
0;
3

4

¶
; or (ii) for all

s0 ¸ 3

4
; i¤ f

³bk
´
< 1 :

² full market coverage obtains i¤ s0 ¸ 3

4
and f

³bk
´

¸ 1 :

Propositions 1 and 2 produce the following:

Corollary 1 Suppose bk > kA under both regimes. If so, then qm < qsp = 1

for all s0 2
·
1

4
;
3

4

¶
; i.e., the planner covers the whole market while the

monopolist does not.

Corollary 2 Suppose bk < kA under both regimes. If so, then equilibrium
output is qm = qsp = f

³bk
´
.

The intuition behind the output distortion characterising monopoly and

highlighted in Corollary 1 is provided by Lemmata 1-2, which stress the

di¤erence between the unit prices of output and capital in the two regimes.

In the situation considered in Corollary 2, social welfare is the same under

the two regimes, except that the distribution of total surplus is di¤erent due

to the di¤erent pricing policies adopted, i.e., monopoly pricing vs marginal

cost pricing.

4 Advertising

Here, I abstract from the problem of capital accumulation for production

and focus upon the investment in advertising aimed at increasing consumers’

reservation price s; according to the dynamic equation (8). For the problem

to be economically meaningful, I assume that the initial state is s(0) = s0;

with s0 2
·
0;
1

4

¶
under planning and s0 2

·
0;
3

4

¶
under monopoly.

13



4.1 Advertising under social planning

In scenario 2, the planner’s problem consists in

max
a(t);x(t)

Z 1

0
e¡½t fSW (t)¡ ½x(t)g dt = (27)

=

1Z

0

e¡½t
(
(2a(t)¡ 1) [12s(t)¡ 1 + 4a(t) (1¡ a(t))]

12
¡ ½x(t)

)
dt

s:t:
@s(t)

@t
= b

q
x(t)¡ ±s(t) (28)

The relevant Hamiltonian is

H(t) = e¡½t ¢
(
(2a(t)¡ 1) [12s(t)¡ 1 + 4a(t) (1¡ a(t))]

12
¡ ½x(t)+ (29)

+¹(t)
·
b
q
x(t)¡ ±s(t)

¸¾

where (i) I assume that the unit rental price of the capital to be invested

in the advertising coincides with the discount rate; (ii) ± is the constant

depreciation and ¹(t) = $(t)e½t; and $(t) is the co-state variable associated

to s(t). The …rst order conditions are:

@H(t)
@a(t)

= ¡2 [a(t)]2 + 2a(t) + 2s(t)¡ 1

2
= 0 ; (30)

@H(t)
@x(t)

= ¡½+ ¹(t)b

2
q
x(t)

= 0 ; (31)

¡@H(t)
@s(t)

=
@$(t)

@t
) @¹(t)

@t
= 1¡ 2a(t) + ¹(t) (½ + ±) ; (32)

The transversality condition is:

lim
t!1

$(t) ¢ x(t) = 0 : (33)

From (30) I obtain:

a(t) =
1

2
+

q
s(t) (34)
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while from 30) I obtain:

¹(t) =
2½

q
x(t)

b
(35)

and

x(t) =

"
¹(t)b

2½

#2
; (36)

which can be di¤erentiated w.r.t. time to get

dx(t)

dt
=
b2

2½2
¹(t)

d¹(t)

dt
: (37)

Therefore,

sign

(
dx(t)

dt

)
= sign

(
¹(t)

d¹(t)

dt

)
: (38)

Using (32), (34) and (35), (37) rewrites as:

dx(t)

dt
=
2
q
x(t)

h
½ (½+ ±)

q
x(t)¡ bps

i

½
; (39)

which, together with (28), fully describes the dynamic properties of the

model. Solving (39) w.r.t. x(t) yields the optimal investment in advertising

as a function of s(t) :

x1(t) = 0 ; x2(t) =
b2s(t)

½2 (½ + ±)2
(40)

while the locus
@s(t)

@t
= 0 is given by s(t) =

b

±

q
x(t) : Therefore, long-run

equilibrium points are:

fssp1 = 0 ; xsp1 = 0g ;

8
><
>:
ssp2 =

b4

[±½ (½ + ±)]2
; xsp2 =

b6
h
±½2 (½ + ±)2

i2

9
>=
>;
: (41)

The phase diagram is illustrated in …gure 2.
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Figure 2 : Advertising under social planning
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As to the stability analysis of the system, the description of the joint

dynamics of s and x obtains by linearising (28) and (39) around (ssp1 ; x
sp
1 )

and (ssp2 ; x
sp
2 ); to get: 2

664

¢
s

¢
x

3
775 = ª

2
664

(s¡ ssp)

(x¡ xsp)

3
775 (42)

with

² tr (ª) = 2½+ ± > 0 and ¢(ª) = ¡2± (½+ ±) < 0 in (ssp1 ; x
sp
1 ) :

11

² tr (ª) = ½ > 0 and ¢(ª) = ¡± (½+ ±)
2

< 0 in (ssp2 ; x
sp
2 ) :

In (ssp1 ; x
sp
1 ) the discounted payo¤ is obviously nil, and second order con-

11The trace and determinant of ª in (ssp
1 ; xsp

1 ) have been calculated using de l’Hôpital’s
rule (see Appendix 2).
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ditions reveal that it is a minimum point. In (ssp2 ; x
sp
2 ); we have

a(ssp2 ) < 1 for all b <

s
±½ (½+ ±)

2
: (43)

The equilibrium price is zero. The above results can be summarised as fol-

lows:

Proposition 3 For all b <

s
±½ (½+ ±)

2
; partial market coverage obtains at

the steady state equilibrium where ssp =
b4

[±½ (½+ ±)]2
and xsp =

b6
h
±½2 (½+ ±)2

i2 :

For all b ¸
s
±½ (½ + ±)

2
; full market coverage obtains at the steady state

equilibrium where ssp =
1

4
and xsp =

b2

4½2 (½ + ±)2
:

4.2 Advertising under monopoly

The problem of optimal intertemporal investment in advertising under monopoly

can be quickly dealt with, as it is largely analogous to the planner’s problem,

except that the monopolist maximises the net discounted pro…t ‡ow:

max
a(t);x(t)

Z 1

0
e¡½t fR(t)¡ ½x(t)g dt = (44)

=
Z 1

0
e¡½t

n
(2a(t)¡ 1)

h
s(t)¡ (a(t)¡ 1=2)2

i
¡ ½x(t)

o
dt

s:t:
@s(t)

@t
= b

q
x(t)¡ ±s(t) (45)

The relevant Hamiltonian is

H(t) = e¡½t ¢
n
(2a(t)¡ 1)

h
s(t)¡ (a(t)¡ 1=2)2

i
¡ ½x(t)+ (46)

+¹(t)
·
b
q
x(t)¡ ±s(t)

¸¾
:

The …rst order conditions are:

@H(t)
@a(t)

= ¡6 [a(t)]2 + 6a(t) + 2s(t)¡ 3

2
= 0 ) a(t) =

1

2
+

s
s(t)

3
; (47)
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@H(t)
@x(t)

= ¡½+ ¹(t)b

2
q
x(t)

= 0 ; (48)

¡@H(t)
@s(t)

=
@$(t)

@t
) @¹(t)

@t
= 1¡ 2a(t) + ¹(t) (½ + ±) ; (49)

The transversality condition is:

lim
t!1

$(t) ¢ x(t) = 0 : (50)

The dynamic behaviour of advertising is described by:

dx(t)

dt
=
2
q
x(t)

h
3½ (½+ ±)

q
x(t)¡ b

p
3s

i

3½
(51)

yielding

xm =
b2s

3½2 (½ + ±)2
: (52)

This allows me to formulate

Lemma 3 Given s < 3=4; the monopolist’s advertising e¤ort is one third of

the socially optimal investment.

The system fds=dt = 0 ; dx=dt = 0g has the following critical points:

sm1 = 0 ; xm1 = 0 (53)

sm2 =
b4

3 [±½ (½ + ±)]2
; xm1 =

b6
h
3±½2 (½+ ±)2

i2

Therefore, I can state

Proposition 4 For all b <

s
3±½ (½+ ±)

2
; partial market coverage obtains at

the steady state equilibrium where sm =
b4

3 [±½ (½+ ±)]2
and xm =

b6
h
3±½2 (½ + ±)2

i2 :

For all b ¸
s
3±½ (½+ ±)

2
; full market coverage obtains at the steady state

equilibrium where sm =
3

4
and xm =

b2

4½2 (½+ ±)2
:

18



The underinvestment characterising the monopoly optimum becomes ev-

ident when full market coverage is reached at sm = 3=4. In that situation,

the steady state advertising e¤ort equals the investment carried out by the

monopolist to obtain the same coverage at ssp = 1=4. Propositions 3 and 4

entail the following Corollary:

Corollary 3 For all b <

s
3±½ (½+ ±)

2
; the monopolist distorts both output

and advertising as compared to the social optimum.

5 Capital accumulation and advertising

The foregoing sections evaluated optimal production and advertising deci-

sions separately, to build up a benchmark for a more realistic setting where

they are allowed to interact with each other. I am now in a position to

illustrate the joint dynamics of capacity accumulation and advertising in-

vestment.

5.1 Capital accumulation and advertising under social
planning

Now the planner’s problem consists in

max
a(t);s(t)

Z 1

0
e¡½t fSW (t)¡ ½x(t)g dt = (54)

=
Z 1

0
e¡½t

(
(2a(t)¡ 1) [12s(t)¡ 1 + 4a(t) (1¡ a(t))]

12
¡ ½x(t)

)
dt

s:t:
@k(t)

@t
= f (k(t))¡ q(t)¡ ±k(t) (55)

@s(t)

@t
= b

q
x(t)¡ ±s(t) (56)
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where q(t) = 2a(t)¡ 1: The Hamiltonian is

H(t) = e¡½t ¢
(
(2a(t)¡ 1) [12s(t)¡ 1 + 4a(t) (1¡ a(t))]

12
¡ ½x(t)+ (57)

+¸(t) [f (k(t))¡ 2a(t) + 1¡ ±k(t)] + ¹(t)
·
b
q
x(t)¡ ±s(t)

¸¾

where ¸(t) = ¯(t)e½t and ¹(t) = $(t)e½t; ¯(t) and $(t) being the co-state

variables associated to k(t) and x(t); respectively. The following …rst order

and transversality conditions must hold:

@H(t)
@a(t)

= ¡2
n
[a(t)]2 ¡ a(t)¡ s(t) + ¸(t)

o
¡ 1

2
= 0 ; (58)

@H(t)
@x(t)

= ¡½+ ¹(t)b

2
q
x(t)

= 0 ; (59)

¡@H(t)
@k(t)

=
@¯(t)

@t
) @¸(t)

@t
= [½+ ± ¡ f 0(k(t))]¸(t) ; (60)

¡@H(t)
@s(t)

=
@$(t)

@t
) @¹(t)

@t
= 1¡ 2a(t) + ¹(t) (½ + ±) ; (61)

lim
t!1

¯(t) ¢ k(t) = 0 ; (62)

lim
t!1

$(t) ¢ x(t) = 0 : (63)

From (58), I obtain a(t) = 1=2 +
q
s(t)¡ ¸(t) and ¸(t) = a(t) [1¡ a(t)] +

s(t) ¡ 1=4: Then, from (59), ¹(t) = 2½
q
x(t)=b and x(t) = [b¹(t)= (2½)]2 ;

which implies

sign

(
dx(t)

dt

)
= sign

(
¹(t)

d¹(t)

dt

)
; (64)

where, from (59-61), I can plug the expression for ¹(t) and d¹(t)=dt: More-

over,

sign

(
da(t)

dt

)
= sign

(
ds(t)

dt
¡ d¸(t)

dt

)
: (65)

Substituting and simplifying, I obtain:

sign

(
dx(t)

dt

)
= sign

8
><
>:

2½
q
x(t)

h
2½ (½ + ±)

q
x(t)¡ b (2a(t)¡ 1)

i

b2

9
>=
>;

(66)
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sign

(
da(t)

dt

)
= (67)

= sign
½
b
q
x(t)¡ ±s(t)¡ [½+ ± ¡ f 0(k(t))]

·
s(t)¡ 1

4
+ a(t)¡ (a(t))2

¸¾
:

Together with (55) and (56), conditions (66-67) describes the dynamic fea-

tures of the model. Although the system cannot be given a graphical illus-

tration,12 the steady state equilibria can be characterised analytically. First,

I obtain the equilibrium expressions for x and s as a function of a :

xsp =

"
b (2a¡ 1)
2½ (½+ ±)

#2
=

"
bq

2½ (½+ ±)

#2
; ssp =

b2 (2a¡ 1)
2±½ (½+ ±)

=
b2q

2±½ (½+ ±)
:

(68)

Now, we have that

sign

(
da

dt

)
= sign

n
(1¡ 2a)

h
2b2 + ±½ (½+ ±) (1¡ 2a)

i
[½+ ± ¡ f 0(k)]

o

(69)

yielding

asp1 =
1

2
; asp2 =

2b2 + ±½ (½ + ±)

2±½ (½+ ±)
; f 0(k) = ½+ ± : (70)

In asp1 ; we have a minimum point where x and s are both nil. In f 0(k) =

½+ ±; we are in the Ramsey equilibrium dictated by intertemporal capacity

accumulation alone, with q = f
³bk

´
. In asp2 ; we have a saddle point where

xsp =
b6

h
±½2 (½ + ±)2

i2 ; s
sp =

b4

[±½ (½+ ±)]2
; (71)

which coincide with the equilibrium values derived in section 4.1.

The above discussion leads to

Proposition 5 If f
³bk

´
> 2asp ¡ 1 and b <

s
±½ (½+ ±)

2
; the steady state

equilibrium under social planning is a saddle point with partial market cov-
erage.

12However, given a pair (s; x) ; the dynamic properties of production are described by
the analogous to …gure 1. Likewise, given (a; k) ; the dynamic properties of advertising are
as in …gure 2.

21



If f
³bk

´
> 2asp ¡ 1 and b ¸

s
±½ (½+ ±)

2
; the steady state equilibrium

under social planning is a saddle point with full market coverage.

5.2 Capital accumulation and advertising in a pro…t-
seeking monopoly

Since the monopoly problem is largely analogous to the planner’s, except

for the instantaneous (gross) payo¤, here I con…ne to the exposition of the

maximum problem without giving the proof of the results. The monopolist’s

problem is de…ned as follow:

max
a(t);s(t)

Z 1

0
e¡½t fR(t)¡ ½x(t)g dt = (72)

=
Z 1

0
e¡½t

n
(2a(t)¡ 1)

h
s(t)¡ (a(t)¡ 1=2)2

i
¡ ½x(t)

o
dt

s:t:
@k(t)

@t
= f (k(t))¡ q(t)¡ ±k(t) (73)

@s(t)

@t
= b

q
x(t)¡ ±s(t) (74)

where q(t) = 2a(t)¡ 1: The corresponding Hamiltonian is

H(t) = e¡½t ¢
n
(2a(t)¡ 1)

h
s(t)¡ (a(t)¡ 1=2)2

i
¡ ½x(t)+ (75)

+¸(t) [f (k(t))¡ 2a(t) + 1¡ ±k(t)] + ¹(t)
·
b
q
x(t) ¡ ±s(t)

¸¾
:

As in the case of social planning, the equilibrium expressions for x and s as

a function of a are:

xm =

"
b (2a¡ 1)
2½ (½+ ±)

#2
=

"
bq

2½ (½+ ±)

#2
; sm =

b2 (2a¡ 1)
2±½ (½+ ±)

=
b2q

2±½ (½ + ±)
:

(76)

In steady state, we have

am =
2b2 + 3±½ (½+ ±)

6±½ (½+ ±)
; f 0(k) = ½+ ± (77)
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and, at a = am :

xm =
b6

h
3±½2 (½+ ±)2

i2 ; s
m =

b4

3 [±½ (½ + ±)]2
: (78)

In summary,

Proposition 6 If f
³bk

´
> 2am ¡ 1 and b <

s
3±½ (½ + ±)

2
; the steady state

equilibrium under social planning is a saddle point with partial market cov-
erage.

If f
³bk

´
> 2am ¡ 1 and b ¸

s
3±½ (½+ ±)

2
; the steady state equilibrium

under social planning is a saddle point with full market coverage.

Finally, Propositions 5 and 6 produce the following:

Corollary 4 Suppose f
³bk

´
> 2asp ¡ 1. Then, for all

b 2
2
4

s
±½ (½ + ±)

2
;

s
3±½ (½+ ±)

2

1
A ;

full market coverage obtains under social planning while partial market cov-
erage obtains under monopoly, with the monopolists investing less than the
planner in both capacity and advertising.

That is, as from Propositions 1 and 2, the well known output distortion

associated to monopoly pricing translates into a lower steady state capacity

as compared to the social optimum. Moreover, from Propositions 3 and 4,

we know that under partial market coverage the monopolist underinvests in

advertising. Therefore, when the …rm invests to accumulate capacity and

increase consumers’ reservation price, the pro…t-seeking monopoly is a¤ected

by distortions along both dimensions of the investment portfolio.

Of course there are many other possible con…gurations, one of which is

of some interest. When f
³bk

´
· 2am ¡ 1, then the …rm produces q¤ =
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min
n
f

³bk
´
; 1

o
under both regimes, and

x =

2
4
bmin

n
f

³bk
´
; 1

o

2½ (½ + ±)

3
5
2

; s =
b2min

n
f

³bk
´
; 1

o

2±½ (½+ ±)
: (79)

Accordingly, we have our the …nal result:

Proposition 7 If f
³bk

´
· 2am ¡ 1, then the Ramsey equilibrium obtains

irrespective of the …rm’s objective, and no distortion a¤ects the pro…t-seeking
monopoly as compared to social planning.

Obviously, the above claim abstracts from any considerations concerning

the distribution of surplus, which is a¤ected by the di¤erent pricing policy

adopted by the …rm in the two regimes. However, it highlights a property

that was necessarily disregarded by the static analysis of the same model

(Bonanno, 1987; and Lambertini, 1995), and suggests interesting implications

for industrial policy.

Consider the situation where f
³bk

´
2 (2am ¡ 1 ; 2asp ¡ 1) : In this case,

the monopoly steady state is driven by demand conditions, while the plan-

ner’s steady state is the Ramsey equilibrium. A policy maker could design

an incentive, such as a subsidy to production (i.e., a subsidy to capacity ac-

cumulation) that might induce the pro…t-seeking monopolist to expand sales

so as to reduce, if not eliminate at all, the output distortion. This would also

exert bene…cial e¤ects on the monopolist’s steady state advertising e¤ort.

6 Concluding remarks

I have investigated the optimal capacity accumulation and advertising invest-

ment of a single-product …rm operating in a spatial market with a uniform

consumer distribution, comparing the steady state behaviour of a pro…t-

seeking monopolist versus that of a benevolent social planner.

There emerges that the monopolist distorts both capital accumulation

(and sales) and advertising, whenever partial market coverage obtains at
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equilibrium. This distortions disappear when the steady state equilibrium

is dictated only by the conditions driving intertemporal capital accumula-

tion. Therefore, a subsidy could be introduced, so as to drive the monopolist

towards the Ramsey equilibrium.
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Appendices

Appendix 1. Capital accumulation under monopoly

The monopolist’s problem outlined in section 3.2 is solved as follows.

From (26), the necessary and su¢cient conditions for a path to be optimal

are:
@H(t)
@a(t)

= ¡6 [a(t)]2 + 6a(t) + 2s0 ¡ 3

2
¡ 2¸(t) = 0 ; (a1)

¡@H(t)
@k(t)

=
@¯(t)

@t
) @¸(t)

@t
= [½+ ± ¡ f 0(k(t))]¸(t) ; (a2)

lim
t!1

¯(t) ¢ k(t) = 0 : (a3)

From (a1), I obtain

a(t) =
1

2
+

s
s0 ¡ ¸(t)

3
(a4)

which yields ¸(t) = 3a(t) [1¡ a(t)] + s0 ¡ 3=4: This, in combination with (2)

and `(t) = 1=2; proves Lemma 2. Moreover, (a4) can be di¤erentiated w.r.t.

time to get
da(t)

dt
=

¡d¸(t)=dt
2
q
3 [bs¡ ¸(t)]

: (a5)

Thanks to (a2), the expression in (a5) simpli…es as follows:

da(t)

dt
= ¡ [½ + ± ¡ f 0(k(t))]¸(t)

2
q
3 [s0 ¡ ¸(t)]

: (a6)

Again from (a1), ¸(t) = 3a(t) [1¡ a(t)] + s0 ¡ 3=4; and (a6) rewrites as

follows:

da(t)

dt
= ¡

h
3a(t)¡ 3 (a(t))2 + s0 ¡ 3=4

i
[½+ ± ¡ f 0(k(t))]

2
r
3

h
3=4¡ 3a(t)¡ 3 (a(t))2

i : (a7)

Hence, we have that

sign

(
da(t)

dt

)
= sign

nh
3a(t) ¡ 3 (a(t))2 + s0 ¡ 3=4

i
[f 0(k(t))¡ ½ ¡ ±]

o
:

(a8)
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The expression on the r.h.s. of (a8) is zero when

f 0(k(t)) = ½+ ± ; (a9)

a(t) =
1

2
§

r
s0
3
: (a10)

The critical point (a9) denotes the situation where the marginal product of

capital is just su¢cient to cover discounting and depreciation. The smaller

solution in (a10) can be disregarded on the basis of the assumption that

a(t) 2 (1=2 ; 1] : Therefore, the long run equilibrium output is either qm(t) =

2
q
s0=3, where superscript m stands for monopoly, or the quantity corre-

sponding to a capacity f 0¡1 (½ + ±) : Observe that the Ramsey equilibrium is

the same as under social planning. It is also worth noting that qm(t) · 1 for

all s0 · 3=4: At qm(t) = 2
q
s0=3 , the optimal price is pm(t) = 2s0=3:

The discussion and the graphical illustration of steady states are omitted

in that they are analogous to those proposed above for the case of social plan-

ning, except that the demand-driven long run equilibrium at qm(t) = 2
q
s0=3

obviously involves a smaller quantity (and a higher price) than observed at

the corresponding equilibrium under planning.

Appendix 2. Advertising under social planning: stabil-
ity analysis

The dynamic properties of the planner’s problem described in section 4.1

are summarised by the following matrix:

ª =

2
6666664

¡± b

2
p
x

¡ b
½

r
x

s

2½
p
x (½ + ±)¡ bps
½
p
x

3
7777775

with

tr (ª) =
½
p
x (2½+ ±)¡ bps

½
p
x

(a11)

¢(ª) =

p
x [b2 ¡ 4½± (½+ ±)ps] + 2b±s

2½
p
sx

(a12)
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Consider …rst the point (ssp1 = 0; xsp1 = 0); and examine the trace. When

s = 0; we have tr (ª) = 2½+ ±; independently of x:

Now consider the determinant. In (0; 0); ¢(ª) is indeterminate. Hence,

I apply de l’Hôpital’s rule by calculating the limits of the numerator and

denominator of ¢(ª) as s tends to zero. This yields:

e¢(ª) =
2± [b

p
s¡ ½ (½ + ±)px]
½
p
x

(a13)

which, again, is indeterminate. Therefore, I apply once again de l’Hôpital’s

rule by calculating the limits of the numerator and denominator of ¢(ª) as

x tends to zero, obtaining:

¢(ª) = ¡2± (½+ ±) : (a14)

Finally, calculating tr (ª) and¢(ª) in (ssp2 ; x
sp
2 ) is a matter of simple algebra.
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