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Abstract

We analyse optimal penal codes in both Bertrand and Cournot supergames with
product di®erentiation. We prove that the relationship between optimal pun-
ishments and the security level (individually rational discounted pro¯t stream)
depends critically on the degree of supermodularity in the stage game, using
a linear duopoly supergame with product di®erentiation. The security level in
the punishment phase is reached only under extreme supermodularity, i.e., when
products are perfect substitutes and ¯rms are price setters. Finally, we show
that Abreu's rule cannot be implemented under Cournot behaviour and strong
demand complementarity between products.
Keywords: penal codes, security level, product di®erentiation, positivity

constraints
JEL classi¯cation: C72, D43, L13



1 Introduction

Optimal punishment, originated by Abreu (1986 ; 1988), has collected broad at-
tention, yet generated surprisingly scanty applications in the industrial organisa-
tion literature despite the large number of contributions in the theory of collusion.
One of the few attempts in this direction is Lambson (1987), investigating the
relationship between the optimal penal codes and the \security level", i.e. the
discounted °ow of pro¯ts at which the participation constraint just binds. Using
a Bertrand supergame with homogeneous products, Lambson ¯nds that the opti-
mal punishment drives ¯rms indi®erent between continuing and discontinuing the
supergame. In more recent contributions (Lambson, 1994 ; 1995) it is shown that,
if ¯rms' a priori symmetry is waived, optimal punishments may no longer hit the
security level. Speci¯cally, if ¯rms di®er in size, the security level punishment is
operative for the large ¯rms but not for the smaller ones.
On the other hand, there exists a wide literature concerning the e®ects of

the amount of product di®erentiation, on the stability of implicit collusion either
in output levels or in prices (Deneckere, 1983 ; Chang, 1991, 1992 ; Rothschild,
1992 ; Ross, 1992 ; Friedman and Thisse, 1993 ; HÄackner, 1994, 1995, 1996 ; Lam-
bertini, 1997, inter alia). All this literature, apart from HÄackner (1996), uses the
traditional Friedman (1971) formulation of folk theorem.
Our e®ort in this paper is to investigate the bearings of product di®erentiation

on optimal punishments, both in quantity- and price-setting supergames. The
optimal punishment, as well as the associated critical threshold in the discount
factor, depends on the slope of the ¯rms' best reply functions in the stage game.
In particular, we discover that Lambson's ¯nding is sensitive to the degree of
substitutability between ¯rms' products. The security level, i.e. the discounted
participation constraint, binds exclusively when products are perfect substitutes
under price competition. The intuition behind this result is that extreme super-
modularity forces ¯rms to accept their lowest individually rational payo® inde-
pendently of the duration of the game. A one-shot-game analogue of this result
is the well known Bertrand-Nash equilibrium with perfect substitute products
where ¯rms would obtain zero pro¯ts, thereby as far as their participation to the
game is concerned, they would be kept at the indi®erence condition. Moreover,
we ¯nd that, if products are fairly close complements in demand, collusion can be
sustained by optimal punishments only under price behaviour. Under Cournot
behaviour, the output expansion required to in°ict the punishment produces the
e®ect of increasing the incentive to deviate from the penal code to such an extent
that the punishment itself is not implementable.
The paper is organised as follows. The basic model is laid out in section

2. Then, Bertrand and Cournot supergames are analysed in sections 3 and 4,
respectively, as they lead to qualitatively distinct results. Section 5 provides
a brief discussion on game-theoretic similarities and di®erences between price
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competition and quantity competition. Finally, section 6 concludes the paper.

2 The setup

Two ¯rms operate on the market, selling possibly di®erentiated products. Each
¯rm faces the following inverse demand function:

pi = 1¡ qi ¡ °qj fi; jg = f1; 2g; q1 ¸ 0; q2 ¸ 0 (1)

in which ° 2 (¡1; 1] measures the degree of di®erentiation (see Dixit, 1979 ; Singh
and Vives, 1984).
The marginal production cost is constant and thus normalised to zero. Or,

more precisely, what we refer to as the \price" in this paper is in fact the price
minus the marginal production cost. We allow the possibility that this \price"
may fall below zero, similarly to Lambson (1987).1 On the other hand, production
quantities should stay non-negative for obvious technological constraints.
We consider either a Bertrand supergame or a Cournot supergame, where this

demand structure appears unchanged in every stage game. The discount factor
± 2 [0; 1) is common to both ¯rms. In a Cournot supergame, each ¯rm chooses
a positive quantity qi ¸ 0 at the beginning of every stage, and then the market
prices realise according to (1).
In a Bertrand supergame, at the beginning of every stage game, the two

¯rms simultaneously set their prices p1 , p2 . By inverting (1), the direct demand
function obtains :

qi =
1

1 + °
¡ 1

1¡ °2 pi +
°

1¡ °2pj (2)

as long as ° < 1 . If these prices result in positive quantities bq1 ¸ 0 , bq2 ¸ 0 accord-
ing to (2), then these quantities realise unmodi¯ed. Otherwise, if bqi =minfbq1 ; bq2g <
0 , the non-negative quantity constraint forces the actual quantity realisation to
be qi = 0 and then qj is determined by (1) setting qi = 0 , or, if this qj is also
negative, then realised quantities are q1 = q2 = 0 .
Note that, as ° " 1 , the demand function (2) approaches the undi®erenti-

ated Bertrand demand function. Hereby without infringing the continuity of the
model, we can assume that when ° = 1 and pi · pj the whole demand would be
taken by ¯rm i whilst ¯rm j sells nil, and that when ° = 1 and pi = pj the two
¯rms share the demand evenly.
Throughout this paper, our main focus is to inspect Abreu's (1986 ; 1988)

optimal punishment rule. Firms initially follow a prescribed collusive path, until
any deviation is detected. We assume that ¯rms agree to collude at the Pareto

1If the marginal production cost is relatively low, and if we stipulate that consumer prices
be nonnegative, then such a nonnegativity constraint may still remain relevant to our analysis.
In this paper we treat the \price" (in excess of the marginal production cost) to be e®ectively
unbounded, much in the same vein as Lambson (1987).
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frontier of joint pro¯t maximisation, and to split the pro¯ts symmetrically. There-
fore, the collusive price is the monopoly price pM , and each ¯rm's collusive pro¯t
¼M and quantity qM are half the monopoly pro¯t and quantity, respectively :

pM =
1

2
; qM =

1

2(1 + °)
; ¼M =

1

4(1 + °)
: (3)

Abreu (1986) proves that, if there exist an action aP (either price pP or quantity
qP ) and a discount factor ±¤K(°) satisfying the following system of equations,
then there exists no punishment rule which can sustain collusion at (3) when
± < ±¤K(°) :

¼DK(a
M)¡ ¼M = ±¤K(°)(¼M ¡ ¼K(aP )) (4)

¼DK(a
P )¡ ¼K(aP )= ±¤K(°)(¼M ¡ ¼K(aP )) (5)

where ¼K(a
P ) denotes each ¯rm's stage pro¯t when both ¯rms play aP , whilst

¼DK(a
M ) is the pro¯t from a one-shot best deviation from the collusive path, and

¯nally ¼DK(a
P ) is the pro¯t from a one-shot best response against aP . We use

capitalised subscripts to indicate the form of market competition : K = B for
price competition (Bertrand) or K = C for quantity competition (Cournot).
Whenever ± ¸ ±¤K(°) , collusion at (3) is sustainable through the following

penal code. If a deviation is detected in period t , then in the next period t+ 1 ,
¯rms switch to a punishment phase where both ¯rms adopt the punishment
action aP irrespective of which ¯rm is punishing the other. If both ¯rms follow
the prescribed penal code at t+ 1 , then they revert to the initial collusive path
from t+ 2 onwards. Otherwise, the punishment phase continues until the penal
code is adopted by both ¯rms at the same time. Abreu (1986) discovers that this
symmetric penal code, when aP satis¯es the system of equations (4-5), is optimal
in that it requires a lower discount factor to sustain the collusion than any other
punishment rule. Following Abreu (1986) and HÄackner (1996), throughout this
paper we concentrate on this symmetric punishment in that both ¯rms take the
same action in the penal period.
Observe that the incentives not to deviate (i) from the collusive path initially

agreed upon, and (ii) from the optimal symmetric penal code, are described by :

¼DK(a
M )¡ ¼M · ±(¼M ¡ ¼K(aP )) ; (6)

¼DK(a
P )¡ ¼K(aP )· ±(¼M ¡ ¼K(aP )) : (7)

The aforementioned one-shot punishment rule satis¯es both of these conditions
with strict equalities.
Although the system (4-5) consists of two equations with two unknowns, the

solution
n
aP ; ±¤K(°)

o
may not always exist since quantities should always be non-

negative. Namely,
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² Either in a Cournot supergame when the non-negativity of quantities is
unbinding, or in a Bertrand supergame, the solution always exists. Hence,
Abreu's rule is operative.

² In a Cournot supergame, once the non-negativity of quantities binds, then
the system (4-5) has no positive-quantity solution, which renders Abreu's
rule technologically unimplementable. Therefore in order to sustain col-
lusion under this circumstance, either multi-period penal code or partial
collusion (in the sense that ¯rms collude on a pro¯le less pro¯table than
the monopoly level) ought to be sought.

On the other hand, the penal code aP is allowed to be severe enough to drive
prices and therefore pro¯ts below zero in the punishment phase. However, the
individual participation constraint

¼K(a
P ) +

1X

¿=1

[±¤K(°)]
¿ ¼M ¸ 0 (8)

must be satis¯ed for all admissible values of °, for ¯rms to be willing to con-
tinue the supergame after any deviation from the initial collusive path. For, if
constraint (8) were violated, ¯rms would ¯nd it preferable to abandon produc-
tion permanently, because the intensity of the punishment would overbalance
the discounted value of collusive pro¯ts. In particular, in a Bertrand supergame
with ° = 1 , Lambson (1987) shows that the optimal punishment drives each
¯rm down to the \security level". Namely, each ¯rm's discounted pro¯t stream
commencing in a punishment period (the left-hand side of inequality 8) equals
zero, which is indeed each ¯rm's individually rational pro¯t at which the ¯rm is
just indi®erent between obeying the prescribed penal code and shutting down its
production activity forever. We shall discover in the following two sections that
this observation is extremely fragile in other kinds of supergames.
For future reference, it is useful to investigate the degree of strategic com-

plementairty/substitutability characterising the constituent stage games in the
two alternative settings. Obviously, strategic complementarity/substitutability
is strictly related to supermodularity, i.e., the second derivative of payo® func-
tions (see Bulow, Geanakoplos and Klemperer, 1985; and, for a wide overview on
supermodular games, chapter 12 in Fudenberg and Tirole, 1991). Namely, the
slope of ¯rm i's reaction function is @2¼K=@ai@aj ; unless positivity constraints
bind. It is easily veri¯ed that

@2¼C
@qi@qj

= ¡° ; (9)

i.e., the second cross derivative of a one-shot Cournot pro¯t function is a nega-
tively 45±-sloped line. In the case of Bertrand behaviour, we have

@2¼B
@pi@pj

=
°

1¡ °2 ; (10)
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which is, on the contrary, an increasing function of °. It is then promptly ver-
i¯ed that the maximum degree of supermodularity (which we label `perfect' or
`complete' supermodularity in the remainder of the paper) is reached either at
° = ¡1 under Cournot behaviour, or at ° = 1 under Bertrand behaviour.

3 Di®erentiated Bertrand Supergame

The Bertrand supergame with optimal penal codes can be characterised as fol-
lows.

Proposition I :

² Optimal symmetric punishment leads to the security level payo® if and
only if ° = 1 . Otherwise, if ° 2 (¡1; 1) , the discounted pro¯ts from the
punishment period onwards is strictly above the security level.

² The non-negativity constraint on the quantity being supplied by the cheated
¯rm during the deviation period binds for ° 2

hp
3¡ 1 ; 1

i
.

² The optimal deviation in the punishment phase implies a zero pro¯t for
° 2

"
3
p
5¡ 5
2

; 1

#
.

Proof : Under Bertrand competition, Abreu's rule becomes :

¼DB (p
M)¡ ¼M = ±¤B(°)(¼M ¡ ¼B(pP )) ; (11)

¼DB (p
P )¡ ¼B(pP )= ±¤B(°)(¼M ¡ ¼B(pP )) : (12)

The optimal punishment price pP as well as the critical discount factor ±¤B(°) for
collusive sustainability are determined as follows. See Appendix A.1 for compu-
tational details.

² Over the range ° 2 (¡1;
p
3¡ 1) , the system (11-12) is solved by :

pP =
2¡ 3°
2(2¡ °) ; ±¤B =

(2¡ °)2
16(1¡ °) : (13)

² In the regime ° 2
"p
3¡ 1 ; 3

p
5¡ 5
2

!
, the system (11-12) yields :

pP =
(1¡ °)° ¡ p¡1 + 2° ¡ °3

(2¡ °)° ; ±¤B =
(2¡ °)2(°2 + ° ¡ 1)

(°2 + 2
p¡1 + 2° ¡ °3)2 : (14)

² Over the region ° 2
"
3
p
5¡ 5
2

; 1

#
, the solution to (11-12) is :

pP =
1

2
¡

p
2°2 + ° ¡ 1

2°
; ±¤B =

°2 + ° ¡ 1
2°2 + ° ¡ 1 : (15)
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Finally, in order to verify the statement about the security level, it su±ces to
calculate the value of discounted pro¯ts from the punishment period onwards, in
the three relevant ranges of ° as in (13) through (15). Namely,

¼B(p
P ) +

1X

¿=1

[±¤B(°)]
¿ ¼M > 0 8° 2 (¡1 ; 1) ; (16)

i.e., the discounted °ow of pro¯ts associated with the punishment is strictly
positive over the generic range ° 2 (¡1; 1) , so that the individual participation
constraint to the continuation of the supergame does not bind.
When ° = 1 , since ¯rms are providing homogeneous products, ¼DB = 2¼M ,

±¤B =
1

2
, and pP =

1¡
p
2

2
. Only in this situation, the punishment leads to

security level payo®s (see Abreu, 1986 ; Lambson, 1987), i.e.,

¼B

Ã
1¡

p
2

2

!
+

1X

¿=1

[±¤B(1)]
¿ ¼M = 0 : (17)

This concludes the proof.

An intuitive interpretation :

The left-hand sides of (16) and (17) are the discounted pro¯t streams starting
from the punishment period. Therefore, the security level can be viewed as a
dynamic participation constraint to the supergame.
This resembles what happens in a one-shot price game with homogeneous

products, i.e., that extreme strategic complementarity drives the equilibrium price
down to marginal cost and thereby the equilibrium pro¯ts to zero, which is indeed
the participation constraint to the one-shot game.

Note ¯nally that, when ° 2
µ
2

3
; 1

¸
, the optimal punishment price pP falls

strictly negative. This marks a key di®erence between Bertrand and Cournot
cases, as shall be discussed in the following two sections.

4 Di®erentiated Cournot Supergame

The Cournot supergame with optimal punishment leads to the following.

Proposition II : In sustaining collusion at qM , Abreu's optimal punish-

ment is operative when ° 2
·
¡2
3
; 1

¸
. Over this range,

² The deviation from the collusive path never drives the opponent's quantity
down to zero.

² The optimal punishment drives ¯rms' quantities and thus one-shot pro¯ts
down to zero when ° = ¡2

3
, but never drives their discounted streams of

pro¯ts down to the security level.
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² the deviation from the optimal punishment always produces a strictly pos-
itive one-shot pro¯t.

For any ° 2
µ
¡1 ;¡2

3

¶
; the system (4-5) has no solution and therefore

Abreu's rule is inoperative in sustaining collusion at qM .

Proof : Given that the stage game is Cournot, the relevant Abreu's rule is the
following system of simultaneous equations :

¼DC (q
M )¡ ¼M = ±¤C(°)(¼M ¡ ¼C(qP )) ; (18)

¼DC (q
P )¡ ¼C(qP )= ±¤C(°)(¼M ¡ ¼C(qP )) : (19)

The solutions to this system are similar to the Bertrand case, except that those
constraints concerning the positivity of output quantities bind over di®erent
ranges of ° . See Appendix A.2 for further details.

² When ° 2
·
¡2
3
; 1

¸
; equations (18) and (19) are solved by

qP =
2 + 3°

2(1 + °)(2 + °)
; ±¤C =

(2 + °)2

16(1 + °)
: (20)

² When ° 2
µ
¡1 ;¡2

3

¶
; the quantity qP in (20) becomes negative, therefore

the system of equations (18-19) has no positive-quantity solution. This
indicates that Abreu's rule is unimplementable over this range of ° .

In order to verify the statement about the security level, it su±ces to compute
the value of discounted pro¯ts from the punishment period onwards over the range

° 2
·
¡2
3
; 1

¸
; according to (20). Namely,

¼C(q
P ) +

1X

¿=1

[±¤C(°)]
¿ ¼M > 0 8° 2

·
¡2
3
; 1

¸
; (21)

i.e., the discounted °ow of pro¯ts associated with the punishment is strictly pos-
itive regardless of the value of ° , so that the individual participation constraint
to the continuation of the supergame never binds.

An intuitive interpretation :

In Cournot games, that range of ° where extreme strategic complementarity
would draw the optimal penal code near the security level punishment should be
in the neighbourhood of ° ¼ ¡1 . However, when ¯rms' products are mutually
strongly complementary, the positivity constraint of output quantities prohibits
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¯rms from exercising severe enough punishment. This not only bounds the pun-
ishment payo®s away from the security level, but also a®ects the sustainability
of collusion in the ¯rst place.
The intuition why collusive stability is unattainable by means of one-shot

punishment under extreme complementarity is as follows. When ° = ¡:999 , for
instance, the collusive quantity is qM = 500 and the collusive pro¯t is ¼M =
250. A one-shot deviation from this path can earn as much as 15718.890625,
by retracting the quantity to RC(q

M ) = 125:375 . On one hand, due to the
non-negativity of quantities, any punishment involving contraction in production
quantities cannot force the pro¯t below zero, and thereby violates inequality (6) as
well as equation (18) uniformly for any ± 2 [0; 1) . On the other hand, even though
it is not impossible to achieve negative prices and pro¯ts by overproduction,
due to extreme complementarity, such an overexpansionary penal path would
only serve to increase the pro¯tability of deviation from the penal path itself,
which would violate inequality (7) and equation (19) instead. Hence, neither
zero production nor overproduction can serve as a sustainable prescription for
punishment.

5 Discussion on Price-Quantity Duality

In this section, we investigate the technical reason why price competition and
quantity competition lead to sharply di®erent results concerning optimal punish-
ments, as has been shown in previous two sections. In general, the linear demand
functions

pi=1¡ qi ¡ °qj fi; jg = f1; 2g ; (22)

qi=
1

1 + °
¡ 1

1¡ °2 pi +
°

1¡ °2pj (23)

(see Singh and Vives, 1984) are convenient in maintaining the duality between
price-setting and quantity-setting games by means of reparametrisation in ° ,
essentially by °ipping its sign. This duality has been well known in the literature,
and therefore connoisseurs may have been puzzled why in our paper, on the
contrary, the two forms of competition entail substantially distinct game-theoretic
characteristics.
Essentially, the asymmetry between price competition and quantity compe-

tition stems not from Abreu's optimal punishment rule, but purely from non-
negativity constraints. For instance, Deneckere (1984) shows the similarity be-
tween Bertrand games with positive quantity constraints but without positive
price constraints, and Cournot games with positive price constraints but without
positive quantity constraints. He shows that the positivity of the cheated ¯rm's
quantity in the former game binds when ° ¸

p
3¡1 , whereas the positivity of the

cheated ¯rm's price in the latter game binds when ° · 1¡
p
3 . Note that, since

8



Deneckere's analogy between Cournot and Bertrand games is about the one-shot
deviation from the collusive path, all the results there must be independent of
what penal codes are employed in order to sustain the collusion. Instead, the
key is : when we interchange ¯rms' strategic variables between prices and quan-
tities, we also need to interchange likewise all the relevant constraints such as
non-negativity, in order to maintain the duality.
The interchangeability between positive quantity constraints and positive

price constraints is, however, not always realistic when economics is concerned.
Positivity constraints on prices can be loosened once we reconceptualise \prices"
as the actual prices in excess of the marginal production costs, precisely as we
have done in this paper. On the other hand, it is less straightforward how, if pos-
sible at all, to make similar reconceptualisation in quantities. This is the reason
why we have arrived in a substantial asymmetry between our Bertrand (section
3) and Cournot (section 4) supergames.
If we strictly followed Deneckere by imposing positivity constraints only on

prices but not on quantities in Cournot supergames, then unlike in section 3,
Abreu's rule would prevail over the entire parametric range ° 2 (¡1; 1] . Anal-
ogous to the Bertrand case, the Cournot system of equations (18-19) would be
solved by :

qP =
° +

p
2°2 ¡ ° ¡ 1

2(1 + °)°
; ±¤C =

°2 ¡ ° ¡ 1
2°2 ¡ ° ¡ 1 8° 2

Ã
¡1 ; 5¡ 3

p
5

2

#
; (24)

qP =
(1 + °)° ¡ p

°3 ¡ 2° ¡ 1
(1 + °)(2 + °)°

±¤C =
(° + 2)2(°2 ¡ ° ¡ 1)
(°2 + 2

p
°3 ¡ 2° ¡ 1)2

9
>>>>>=
>>>>>;

8° 2
Ã
5¡ 3

p
5

2
; 1¡

p
3

#

;

(25)

qP =
2 + 3°

2(1 + °)(2 + °)
; ±¤C =

(2 + °)2

16(1 + °)
8° 2

³
1¡

p
3 ; 1

i
(26)

As ° # ¡1 , both the collusive pro¯t ¼M and the one-shot deviation pro¯t ¼DC (qM)
diverge to in¯nity. In section 4, their rates of divergence were (1 + °)¡1 and
(1+ °)¡2 respectively, the latter being disproportionately faster than the former.
This was the intuition why one-shot punishment went out of operation. Now,
due to the alteration in positivity constraints, the collusive pro¯t ¼M and the
deviation pro¯t ¼DC (q

M ) diverge to +1 as well as the punishment pro¯t ¼C(q
P )

to ¡1 all at the same order of divergence (1 + °)¡1. Therefore, rescaling them
appropriately by

¦M = (1 + °)¼M ; ¦C = (1 + °)¼C(q
P ) ; (27)

9



we would retrieve Lambson's (1987) result asymptotically, i.e.,

lim
°#¡1

Ã
¦C +

1X

¿=1

[±¤C(°)]
¿¦M

!
= 0 : (28)

The security level would thereby be reached in Abreu's optimal punishment under
extreme strategic complementarity, whether in prices or in quantities.

6 Concluding remarks

We have derived optimal penal codes and the associated critical discount fac-
tors in a duopoly supergame with di®erentiated products, under both Cournot
and Bertrand behaviour. We have shown that the relationship between optimal
punishments and the security level hinges critically upon the degree of supermod-
ularity in the stage game which, in a duopoly supergame, is determined by the
degree of product di®erentiation. The security level in the punishment phase is
reached only under extreme supermodularity, i.e., when products are perfect sub-
stitutes and the basic stage game exhibits increasing best replies. Under extreme
complementarity in demand, collusion in quantities at the monopoly output be-
comes unsustainable due to the impossibility of preventing deviation from the
optimal symmetric penal code.
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Appendix

A.1 Optimal Punishments in Bertrand Supergames

De¯ne a ¯rm's best reply against any price p set by the rival as RB(p) . The
algebraic form of this reaction function shifts across the following three regimes
depending upon the positivity of ¯rms' output quantities : 1. both ¯rms sell
positive quantities, 2. only the cheated (opponent) ¯rm sells a positive quantity,
3. only the cheating ¯rm sells a positive quantity. Theoretically there can be one
more regime : 4. both ¯rms sell nil, but this one is obviously irrelevant to our
objective.

1. When quantities are positive, from the pro¯t function

¼i = piqi = pi

Ã
1

1 + °
¡ 1

1¡ °2 pi +
°

1¡ °2 pj
!

(29)

@¼i
@pi

=
1

1 + °
¡ 2

1¡ °2 pi +
°

1¡ °2 pj ; (30)

the best reply function and the resulting one-shot deviation pro¯t obtain :

RB(p) =
1¡ ° + °p

2
; ¼DB (p) =

(1¡ ° + °p)2
4(1¡ °2) : (31)

with the resulting sales quantity
1¡ ° + °p
2(1¡ °2) .

2. When this form of price RB(p) in (31) becomes negative, which happens
when and only when the resulting quantity would also become negative, the
positivity constraint on quantities becomes binding, so that the maximum
one-shot pro¯t is simply

¼DB (p) = 0 : (32)

3. On the other hand, when it is one-shot pro¯t maximal to drive the opponent
¯rm's output quantity down to nil, i.e.,

qj =
1

1 + °
¡ 1

1¡ °2 pj +
°

1¡ °2 pi = 0 () pi =
pj ¡ 1
°

¡ 1 ;
(33)

the required reaction against the opponent's price p and the resulting one-
shot pro¯t become

RB(p) = 1¡ 1¡ p
°

; ¼DB (p) =
(1¡ p)(° + p¡ 1)

°2
: (34)
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Clearly, the one-shot deviation from the initial collusive path cannot belong
to regime (32). The border between the other two regimes (31) and (34) is

° =
p
3 ¡ 1 , i.e., when p = pM =

1

2
, the prices and quantities (31) and (34)

mutually coincide.
As to the deviation from the punishment phase, regime (34) is clearly absent.

The border between the other two, (31) and (32), depends upon the punishment
price pP , thus we must exhaust both possibilities henceforth.
In all of the following cases, the one-shot pro¯t in the penal phase is

¼B(p
P ) =

(1¡ pP )pP
1 + °

: (35)

² When ° 2 (¡1 ;
p
3¡ 1) , assume ¯rst that the optimal deviation from the

punishment phase also falls in regime (31). Thus, using

¼DB (p
M ) =

(1¡ ° + °pM )2
4(1¡ °2) =

(2¡ °)2
16(1¡ °2) ; (31)jpM

¼DB (p
P ) =

(1¡ ° + °pP )2
4(1¡ °2) : (31)jpP

we solve the system of equations (11) and (12). This leads to

pP =
2¡ 3°
2(2¡ °) ; ±¤B =

(2¡ °)2
16(1¡ °) : (13)

Note that the one-shot best reaction against this penal code pP , in fact, has
the form (31) over the entire range ° 2 (¡1 ;

p
3¡ 1) .

² Now, proceed to the remainder of the substitutability range ° 2 [
p
3¡1 ; 1] .

Again, we assume ¯rst that the optimal one-shot reaction against pP falls
in regime (31) and solve simultaneous equations (11) and (12), based upon

¼DB (p
M ) =

(1¡ pM )(° + pM ¡ 1)
°2

=
2° ¡ 1
4°2

; (34)jpM

¼DB (p
P ) =

(1¡ ° + °pP )2
4(1¡ °2) : (31)jpP

This time, the solution

pP =
(1¡ °)° +p¡1 + 2° ¡ °3

(2¡ °)° ; ±¤B =
(2¡ °)2(°2 + ° ¡ 1)

(°2 ¡ 2p¡1 + 2° ¡ °3)2 (14)

indeed falls in regime (31)jpP if and only if ° < 3
p
5¡ 5
2

:

12



² Finally, when ° 2
"
3
p
5¡ 5
2

; 1

#
, the optimal punishment and the critical

value of the discount factor can be obtained by setting equal to zero the
quantity of the ¯rm being cheated, as well as the one-shot deviation pro¯t
from the punishment path. Namely,

¼DB (p
M ) =

(1¡ pM )(° + pM ¡ 1)
°2

=
2° ¡ 1
4°2

; (34)jpM

¼DB (p
P ) = 0 : (32)jpP

The system of equations (11) and (12) is solved by :

pP =
1

2
¡

p
2°2 + ° ¡ 1

2°
; ±¤B =

°2 + ° ¡ 1
2°2 + ° ¡ 1 : (15)

A.2 Optimal Punishments in Cournot Supergames

De¯ne a ¯rm's one-shot best reply against any quantity q set by the rival as
RC(q) . Directly from the pro¯t function

¼i= piqi = (1¡ qi ¡ °qj)qi (36)

@¼i
@qi

=1¡ °qj ¡ 2qi ; (37)

the best reply function and the resulting one-shot deviation pro¯t obtain :

RC(q) = max
½
1¡ °q
2

; 0
¾

;
¼DC (q) = (RC(q))

2
: (38)

Based upon (3), (36) and (38), deviation pro¯ts are calculated as

¼DC (q
M ) =

Ã
2 + °

4(1 + °)

!2
; ¼DC (q

P ) =

8
>>>><
>>>>:

Ã
1¡ °qP
2

!2
if
1¡ °qP
2

> 0 ;

0 if
1¡ °qP
2

· 0 :

(39)

On the other hand, the punishment pro¯t is

¼C(q
P ) =

³
1¡ (1 + °)qP

´
qP (40)

which is not subject to a positivity constraint.
Using (3), (39) and (40), the system of simultaneous equations (18) and (19)

is solved by :

qP =
2 + 3°

2(1 + °)(2 + °)
; ±¤C =

(2 + °)2

16(1 + °)
: (20)

13



This quantity, however, stays positive only over the range ° 2
·
¡2
3
; 1

¸
: There-

fore, over the range ° 2
µ
¡1 ;¡2

3

¶
; the optimal punishment rule proves itself

technologically infeasible in sustaining collusion at qM .
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