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ABSTRACT

We consider the transitions among intragenerational and alternative intergenerational

financing and liquidity risk-sharing mechanisms, in an Overlapping Generations

model with endogenous levels of long-lived investments. The existence and

characterization of a Self-Sustaining Mechanism, stable across generations, are

established.  The long-run equilibrium outcome, in a Proposal Game across

generations, is shown to depend on the risk-aversion and propensity for early

liquidity needs of the agents.

JEL classification: D23, G10, G20.
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I. INTRODUCTION AND SUMMARY

Models of intertemporal liquidity risks, or "preference shocks" - developed in Bryant [1980]

and further examined in the works of Diamond and Dybvig [1983], Bhattacharya and Gale [1987],

and Jacklin [1987] among others - have recently been extended to the realm of ongoing dynamic

overlapping generations (OLG) economies; see Bencivenga and Smith [1991], Qi [1994], Fulghieri

and Rovelli [1993] and Dutta and Kapur [1994]. These models may be used to evaluate the

essential tradeoffs which arise in two distinct areas of current debate. The first is on the evaluation

of alternative (or possibly complementary) arrangements for the monetary system, for example the

relative merits of a market-value-based vs. an intermediated banking system. The second

interpretation, clearly requiring a considerably longer definition of the time unit, pertains to the

debate on the viability and desirability of differing social security (pension) systems,  and in

particular the choice between Pay-As-You-Go (PAYG) versus Funded or Capital-reserve  systems

(e.g. Boldrin and Rustichini, 1995). Our paper considers the latter set of tradeoffs in an OLG model

outside of long-run steady states.

In our paper, agents choose among intertemporal liquidity-sharing or insurance

mechanisms, in an OLG economy in which the capital stock is possibly longer-lived than agents’

lives.  We focus on the comparisons between “Banking” or PAYG systems, of both an intra- and

inter-generational nature, versus Stock Market based inter-generational financial systems. The

essential tradeoffs across these institutional mechanisms arise from the need for financial contracting

to provide agents with liquidity insurance, related to the uncertainty regarding their preferences for

their intertemporal allocation of consumption1. Such preference shocks, coupled with real

investment opportunities that are long-lived and technologically illiquid, create a demand for interim

stock markets, or financial intermediaries and contracts such as deposits withdrawable (fully or

partially) on demand.

In dynamic OLG economies, there is in addition the possibility of designing contracts (or

mechanisms) for sharing such liquidity risk across generations, taking advantage of the "life cycle"

structure to the demand for savings of each generation. With the long horizons envisioned, one may

think of events such as uncertain workers’ disability as a source of early withdrawal demand. In

recent papers, by Qi [1994], Fulghieri and Rovelli [1993], and Dutta and Kapur [1994], alternative

institutional arrangements for such intertemporal consumption-smoothing and liquidity risk-sharing

mechanisms, within and across generations, have been examined and compared.
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Under some assumptions, in particular the restriction of the analysis to steady states only,

both Qi [1994] and Fulghieri and Rovelli [1993] show that there exist intergenerational financial

intermediation contracts that can attain the Golden Rule (Phelps, 1961) levels of investment and

consumption-smoothing. The paper of Fulghieri and Rovelli, and the later work of Bhattacharya

and Padilla [1996], also focus on the comparison of intergenerational Banks versus Stock Markets

for investments that are long-lived in nature. In contrast to the earlier models, which focus either on

a static economy (Bhattacharya and Gale, 1987) or on intra-generational mechanisms only

(Bencivenga and Smith, 1991), Fulghieri and Rovelli find that stock markets result (in steady state)

in underinvestment in the long-lived technology, relative to the Golden Rule optimum, without any

investment in short-term liquid technologies or early liquidation2. This occurs essentially owing to

the incompleteness of contracts for resource transfers across generations, which in a stock market

economy can take place only through real investments in long-lived technologies and bilateral

trading at their interim market valuations.

In all of the above mentioned papers, the analysis of the functioning of intermediaries and

stock markets is confined to steady states, in which the inheritance of a stationary level of

investment by prior generations is taken as given. However, given the endowment structure in these

models, this is a restrictive assumption, especially vis à vis the first generation which only has its

initial endowment to start a resource-transfer cum liquidity-insurance scheme. While Qi [1994]

briefly examines this issue (see his Propositions 5 and 6), his analysis is focused on PAYG systems

only, rather than on the choices among alternative risk sharing mechanisms.

More specifically, the following questions remain unanswered: given initial conditions, is it

possible to predict which allocational mechanisms would be chosen by the generations present, and

would the same choice be repeated by the subsequent generations, i.e., be intergenerationally stable

or Self-Sustaining? For example, consider the three institutional mechanisms which we shall analyze

below: (i) Intragenerational Bank (B), (ii) Intergenerational Banking (IB) and (iii) Intergenerational

Stock Market (SM). Suppose these may be ranked in a particular way by the steady state welfare

criterion. Then, is it necessarily true that, when the issues related to (a) transition to the steady state,

and (b) non-cooperative intergenerational choices are taken into account, the most efficient steady

state allocational mechanism would indeed be chosen and be intergenerationally self-sustaining?  We

seek to address these questions in this paper.

In defining our notions of inter-generational choices over mechanisms for financing of

investment and consumption smoothing, we shall not be employing notions such as the Core, whose
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applicability to the OLG setting is dubious at best. As Esteban [1986] and Esteban and Millan

[1990] have shown, even when the Golden Rule allocation does improve the welfare of the first

generation (the Samuelson, 1958, case of Gale, 1973), it is not in the intergenerational Core (never

for a single commodity setting)3. Fortunately, as Esteban and Sakovics [1993] have emphasized,

negative results like those mentioned above do not imply that intergenerational transfer mechanisms

become infeasible. Society may cope with such a conundrum, created by the "not in the Core"

result, by restricting the language or strategy space of intergenerational proposals for choosing its

Institutional Mechanisms for intergenerational reallocations. In the context of the Esteban and

Sakovics model, of a pure-exchange OLG environment with agents' endowments tilted to the early

period(s) of life, they argue that in a time-stationary model the appropriate notion of an Institutional

proposal is that of a time-stationary transfer scheme, from each current and future generation when

young to its preceding generation when old. Institutions survive if and only if they constitute

Subgame Perfect Equilibria (SPE) (Selten, 1975) in such an intergenerational proposal game. A

similar restriction is employed by Boldrin and Rustichini [1995], in their modelling of inter-

generational social security schemes versus intra-generational accumulation of short-lived

investments.

In our model below, we define the concept of a Self-Sustaining investment and consumption

allocation Mechanism, using restrictions motivated by analogous considerations. The spirit of these

is that proposals that make later generations strictly worse off than the proposing one are not

allowed. Such a restriction may arise spontaneously for market-based mechanisms, or be a result of

societal Norms embodied in a legislated Pay As You Go (PAYG) mechanism such as IB. In

particular, we restrict the set of proposals by each generation to be one of the three Institutions that

were indicated above: Transition to Steady-State of Intergenerational Banking (TIB),

Intergenerational Stock Market (SM), and Intragenerational Banking (B) (The first of these takes

into account the lack of inherited prior capital investments for the first generation). Some  of these

proposals may require that an older and a younger generation agree on the "sharing" of the inherited

capital stock plus the endowment of the young. Hence, each stage game in our model is one of

Proposals and Counter-Proposals by  the two overlapping generations, unlike in Esteban and

Sakovics [1993] where only young propose transfers to the currently old.

Our paper is organized as follows. In Section II, we set out the basic model and delineate

the Golden Rule and other steady state allocations under the three alternative institutional

arrangements of B, IB, and SM. The dynamics of transition to these steady states, and the ranking
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of welfare levels attainable under each alternative institutional mechanism ( TIB, SM, B), taking

transition into account, are the foci of Section III. Intergenerational Proposal Games over these

(transition) Institutions and their subgame perfect equilibria, which we term intergenerationally Self-

Sustaining Mechanisms, are described and characterized in Section IV. In Section V we conclude

with a discussion of our results in the context of recent literature and with suggestions for further

research.

The major results that emerge from the analysis in the paper are the following. First, we

point out that there exists a feasible stationary consumption path (TIB) such that capital

accumulation along that path will lead, within a finite horizon, to the Golden Rule steady state

optimal allocation. Furthermore the consumption levels attained along this path ensure that the

welfare of each generation involved in the transition strictly exceeds that attainable from any

intragenerational mechanism4. Second, we show that there exists a faster one-shot transition to the

steady  state intergenerational stock market (SM) allocation (Fulghieri and Rovelli, 1993)5 . Third,

we prove that a transition to SM that benefits the proposing current young, which exists unless they

are extremely risk averse, must involve strictly rationing the participation of the concurrent

preceding generation in the initial market (only). Fourth,  we prove that under reasonable parameter

values, there exists an intergenerational conflict in any stage game. Specifically, at any time, the

currently young may stand to gain by proposing a (rationed and immediate) transition to the

stationary intergenerational stock market allocation (SM), whereas the currently  middle-aged are

made strictly worse off, relative to the "slowest turnpike" allocation (TIB), from accepting such a

proposal. Finally, in the last step we delineate how this conflict may be resolved, in the sequence of

equilibria of the intergenerational proposal games across overlapping generations.

The equilibrium outcome of the intergenerational proposal games depends crucially on the

relative expected utility  payoff(s) of the middle-aged generation(s) from their rationed transition to

the stock market (SM), versus their fallback option of doing intragenerational liquidity risk-sharing

(B), based on their inherited endowment net of prior payout obligations. It turns out that the

currently middle-aged generation(s) are better off from their fallback option (B), relative to the

constrained (for them only) transition to SM proposed by their “children”, if and only if (i) the

proportion of the generation requiring early liquidity (withdrawal) is small, and (ii) agents in the

generation are ex ante highly risk-averse (or averse to unsmoothed consumption profiles). If either

of these conditions on agents’ ex ante characteristics is not satisfied then, and only then, the stock

market (SM) institutional arrangement (which is always suboptimal relative to IB in the steady
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state) becomes the unique subgame - and “trembling-hand” perfect (Selten, 1975) equilibrium of the

intergenerational proposal games6.

II. THE MODEL AND STATIONARY ALLOCATIONS

II.A Optimal Allocations and Intermediated Outcomes

We consider an extended version of the overlapping generation (OLG) model of

Samuelson [1958], that was first advanced by Bryant [1980].  Time is indexed by t = 0, 1, 2,

..., ∞.  Each generation consists of a continuum of agents of unit measure. An agent born at

time point t ≥ 0 is alive at time point (t+1), and possibly also at time point (t+2). Each

generation is endowed with one unit of the single commodity, spread equally across its

members, at birth; this may be thought of as labor income or prior savings. To simplify matters,

we assume that an agent born at t only wishes to consume from his savings at time-point (t+1)

if he is an early dier, or at time-point (t+2) if she is a late dier. Such simple ex post corner

preferences, introduced by Diamond and Dybvig [1983], imply that the allocations produced

by intragenerational stock markets and banking systems coincide, provided market

participation is suitably restricted; see Jacklin [1987], and Bhattacharya and Gale [1987].

Agents become early or late diers with probabilities ε and (1-ε) respectively. These

events are independent across the continuum of agents in each generation, so that a proportion

(1-ε) of agents born at time  t  is alive at time  (t+2), when they die. Thus, the ex ante

expected utility of a representative agent of generation t is given by:

t , ,V  =  U( )  +  (1- ) U( )ε εC Ct t1 2 (1)

where { }C Ct t, ,,1 2 are the (certain) allocations of consumption to early and late diers of

generation t, respectively. The utility function  U(.)  is assumed to be strictly increasing and

concave, with U’(0) = ∞.

There are two investment technologies in the model. The first is long-lived with constant

returns to scale: investment of I t  at time t returns RI t ,  R > 1 , at time (t+2). The second

technology is that of storage, without any loss or depreciation, between time points t to (t+1).

The long-lived investment  I t  can also be liquidated at time (t+1) to yield Q L t +1 , where 0 ≤ Q

≤ 1,  and 0 ≤ L t + 1  ≤ I t  ;  we assume Q = 1 , so that early liquidation and storage technologies

are  equivalent7.
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The Golden Rule (Phelps, 1961) stationary optimal intergenerational investment and

consumption plan thus solves the problem:

{ } [ ]*

, , ,
, ,V  ( ) ( ) ( )

, ,

≡ + −Max C C
I L C C

t t
t t t t1 2

1 21ε ε U  U (2)

s.t.: ε ε C  Ct t t t t tR I L L I t− − − −+ − ≤ + − + − ∀1 1 2 2 2 11 1, ,( ) ( ) , , (2.a)

0   L   It t≤ ≤ ≤+1 1 (2.b)

As shown, for example, in Fulghieri and Rovelli (1993, Proposition 1), the solution to this

problem is characterised by full investment of the initial endowment of each new generation, no

liquidation of invested capital, and a level of consumption for early and late diers which is

constant and equal to R. Furthermore, Qi [1994], Fulghieri and Rovelli [1993], and Dutta and

Kapur [1994] give the conditions under which the Golden Rule allocation may be implemented

by an intergenerational banking system. These results are summarised in the following

proposition.

Proposition 1. (a) (Fulghieri and Rovelli 1993).The Golden Rule (Stationary) Optimal

Intergenerational Allocation Rule, which maximizes (2) subject to (2.a) and (2.b), is given by:

t
*

t
*

,1
*

,
*I  =  1 , L  =  0 , C = C = R , t .t t 2 ∀

(b) (Qi 1994, Fulghieri and Rovelli 1993, and Dutta and Kapoor 1994). If agents/depositors

can be subject to a No Redepositing Condition within (and across) banks, then a single

welfare-maximizing bank (or equivalently, many representative competing banks) would, in

equilibrium, offer each generation the deposit contract: It   in deposits leads to withdrawal

rights RIt  at time (t+1) or time (t+2), at the choice of the depositor. Furthermore, all agents

born at t would deposit all their initial endowment in banks, which would invest it (It =1) in

long-lived investments only, without early liquidation. Thus intergenerational banking (IB)

would implement the Golden Rule optimum. Hence in particular:

C C Rt i
IB

t i, ,
*= =  ,     { }i ∈ ∀    t1 2, ,

(c) If redepositing after early withdrawal by agents is not monitorable (indistinguishable from

an initial deposit), especially if done across banks, but depositing at one bank by another can

be prohibited, then ex ante Bertrand competition among banks would lead to the outcome:
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depositing I t=1 by each depositor of each generation t confers her with withdrawal rights

CU
1 at time (t+1) or CU

2  at time (t+2), where these satisfy (suppressing the t-subscript):

C CU U
1 2 <  R <  , (4.a)

( )2
  C CU U

1 2≤ (4.b)

ε ε C  C1 2
U U+   (1- ) = R (4.c)

Proof. See either Qi, Fulghieri and Rovelli, or Dutta and Kapur.

Remark. The Golden Rule optimum  is,  of course,  strictly  valid  as a solution concept only

when t ∈{-∞, ...,-1 , 0 , 1, ..., ∞} since, for example, if  t ∈ { 0, 1, ..., ∞},  and  I1 = 1 and L1 =

0, then the early diers of generation 0 will obtain consumption C0 1 0, = . These issues raise

questions about the transition to these stationary optimal allocations, which we discuss in the

next section. The notion of a competitive banking system is also not unambiguous in an OLG

setting, and one may think instead of the resulting allocations as arising from a legislated

allocation mechanism.

In contrast,  the constrained optimal intragenerational allocation, solves the problem:

[ ]V    U(C )  +  (1- ) U(C )
, , ,

1 2≡








Max
I L C C1 2

ε ε (3)

s.t.: 0   C   L,1≤ ≤ε (3.a)

0   (1 - ) C   R(I- L),2≤ ≤ε (3.b)

0   I  1.≤ ≤ (3.c)

The solution to this problem is characterized by Diamond and Dybvig [1993], who also show

that this allocation may be implemented with a single welfare-maximizing bank or several

(representative) competing banks who are Bertrand Competitors and obtain clienteles of

strictly positive measure. The latter result assumes no interim trading of assets across

competing banks at the interim period; see Bhattacharya and Gale [1987].

Proposition 2. (Diamond and Dybvig 1993). The Optimal Intragenerational Allocation Rule,

which maximizes in (3) subject to (3.a) to (3.c), is given by:

I  =  1,   ′ ′U (C )  =  RU (C ),1 2   C L C R L
_

/ ;  
_

 (
_

) / ( )1 2 1 1= = − −ε ε
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Furthermore, in a competitive intragenerational banking system equilibrium, deposit

contracts of the form { deposit I at time t implies withdrawal rights C C IB
1 1=  or C C IB

2 2= ,

at times (t + 1) or (t + 2) respectively} would prevail, leading to expected utility V VB = ,

and each depositor would deposit I = 1 at one (or many) bank(s), and each bank would invest

its deposits in short-term (early liquidation) and long-term investments in the proportions L

and 1 - L  , respectively.

Proof. See Diamond and Dybvig [1983]8.

The following implications of Proposition 2 are straightforward.

Corollary 1. For all ε > 0 , the expected utility VB  of an agent in the optimal

intragenerational allocation is strictly less than its level V*  at the Golden Rule

intergenerational optimum.

Proof. Since  C C
_

,
_

1 2 0








>   and hence L  ∈ (0,1), given U'(0) = ∞, we have

( )1 <  =  L + R(1- L)  <  R,ε ε C C1 21+ −

whereas C C R1 2
* *= = , from which the conclusion follows using Jensen's inequality.     QED.

Corollary 2. (Diamond and Dybvig, 1983)  If  U(C i ), i ∈ {1,2}, has its Relative Risk Aversion

Coefficient uniformly strictly greater than unity (that for logarithmic utility), then

1 <   R,   C C1 2< <

implying: ε  <  L  <  1.

We should briefly mention the alternatives to the existence of bank-type intermediaries

(and "unconditional" withdrawal rights) in this setting. The extreme one is that of intra- and

inter-generational Autarky, under which each agent would invest I=1 when young, and

consume  CA
1 1=  if she is an early dier, and C RA

2 =  if she is a late dier, with expected utility:

A
1
A

2
AV   U(C )  +  (1- ) U(C )≡ ε ε  , (5)

 where it is obvious that:  A *V   V  <  V ,≤  with the first inequality also strict unless U(C) =

log(C),  since { L = ε, C1 = 1, C2 = R} is always feasible under intragenerational banking.



xi

A less extreme comparison is  with an institution often analyzed in "standard" financial

modelling: the Intragenerational Stock Market. If individuals still invest on their own, but can

sell their long-term investments I t  at a linear price  p It t+1  at time (t+1), then it turns out that

the interim value-maximizing consumption-investment outcome will be the same under

intragenerational stock markets as under Autarky; see Bhattacharya and Gale [1987]. The

reason is that, under the interim value/wealth maximization criterion used to choose liquidation

L t + 1   from  I t  , subject to  0 ≤ L t + 1  ≤ I t  ,  L t + 1  ∈ (0 , I t)  will be chosen by individuals if and

only if  p t+ =1 1 . With the ex post corner preferences assumed, this will be the case if and only

if { }C C Rt t, ,;1 21= = ,  as shown by Bhattacharya and Gale [1987].

Bencivenga and Smith [1991] and others have emphasized this difference between

Banking and Stock Market allocations, suggesting that it should apply even when the setting is

intergenerational in nature. However, as argued in Bhattacharya and Gale [1987] and

Bhattacharya and Padilla [1996], with intragenerational stock markets investment decisions

would be made by firms, or mutual funds, which consist of coalitions of agents of strictly

positive measure (to pool their liquidity risks). Such a coalition, if it plans to invest I and

liquidate L ≤ I next period, will issue a dividend stream {L ; R(I-L)} at the two consecutive

points, and early diers would sell their ex-first-dividend shares to late diers of the same fund.

However, the appropriate choice criterion for such mutual funds, if interim trading of ex-

dividend shares is restricted to the members of a fund, would be to maximize the ex ante

expected utility V of their members, and not the interim market value of the {I,L} tuple. Hence

L = L  would be chosen, leading to C C C C1 1 2 2= =, , and expected utility V VB = . As this

is the same allocation which occurs under intragenerational (Diamond-Dybvig) banking, we

will disregard Intragenerational Stock Markets in the analysis to follow.

We now proceed to consider alternative institutions in an intergenerational setting.

II.B Intergenerational Stock Markets (SM)

We consider a situation in which the generation born at time t invests 0 ≤ I t  ≤ 1 in new

real investments, creating I t  new firms, and (1 - I t) is invested by the new born in the shares of

existing firms. The price of ongoing (one period old) firms per unit of real investment at any

point of time t is given by p t   , with the price of completed technologies being R. These prices
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must satisfy the perfect foresight No Arbitrage Conditions, where q t  is the unit price of new

investments at time t:

p

q p
t

t t

+1  =  
R

, (6.a)

p

q

p

q q
t

t

t

t t

+ +

+

1 2

1

 =  
R

. (6.b)

The right-hand-side of equations (6.b) represents the gross rate of returns from the two-period

invest and hold strategy, while the left-hand-side of (6.b) represents the rate of return from

holding a share of a new firm for one period, selling it, and then reinvesting in a share of a new

firm at (t+1). In contrast, the criterion in equation (6.a) results from equating the

contemporaneous rates of return on holding the shares of new firms, with that on holding (one-

period) old firms.

If agents can short-sell existing firms' shares to obtain additional resources (beyond their

endowments) for new real investment, or they can sequentially create, sell, and then create new

investments, value-maximizing investment equilibrium requires that for I t  ∈(0,1] to be optimal:

q t   = 1 ,    ∀ t (6.c)

Also, substituting back from (6.c) into (6.b), we see that both (6.a) and (6.b) imply that, if the

chosen investment levels are interior and finite, then for all t �  1 the following intertemporal

equilibrium condition must hold:

p pt t+1 =  R , ∀ t �  1 (6.d)

Let  {I t  }∈ (0,1] ,  t  =  0, 1 ,2, ...,∞ ,   with  {L t}  =  0 ,  be the levels of new real investments

in the economy above, in an intergenerational stock market equilibrium (so that  q t  = 1, ∀ t).

Denote   θ θt t t tand, ,−1 ,  for t ≥ 1 ,  as the per capita proportions of one period old capital

stock,  I t - 1    , held at time t  by a representative agent of generation t and a late dier of

generation (t-1), respectively. Then, agents' budget constraints at different points of their lives,

and stock market clearing, together imply that:

t , -1I + I  =  1 ,  t  ,θ t t t tp ∀ ≥ 1 (7.a)

θ εt t t t t tp p, -1 -1I  = I ,  t ,= 1 (7.b)

θ ε θ εt t t t t t t t tp R p, -1 , - -1I ( ) I = I ,  t ,+ − ∀ ≥− −1 21 1 2  (7.c)
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θ ε θt t t t, ,( )+ − = ∀ ≥−1 1 11   ,    t    , (7.d)

with : I0 1= and      θ0 0 0, =  . (7.e)

Equation (7.a) results from the fact that the newborn will invest all their endowment in either

new real investments, or in buying the shares of one-period old firms, from “early dier” agents

of the previous generation. Equation (7.b) states that the t=1 sales of early diers of the 0-th

generation must be wholly absorbed by purchases by the members from the 1-st generation.

Equation (7.c) states that at all time points t ≥ 2, the dividends which survivors (late diers)

from generation t-1 obtain from maturing technologies are used to purchase the difference

between sales by early diers of the same generation minus purchases of one period old

technologies by the new born. Finally, equation (7.d) represents the fact that total

shareholdings of one-period-old investments must add up to unity.

These stock market equilibrium conditions also have implications for the consumption

allocations of early and late diers. For early diers, it is straightforward to see, by updating (7.a),

that:

C t t t, t , t t-1  p I + R I1 1= + θ   ,  ∀ t �  0.  (7.f)

For late diers, multiply (7.d) by  p It t−1   and substitute in (7.c) to obtain, after dividing by (1-

ε):

θ θt-1, t t t 1 t t 1p I p I− − − − −= + t t tR I1 1 2, (7.g)

In other words, their per capita portfolio value, after rebalancing at time  t  (L.H.S.), equals the

value of their old real investment made at (t-1), plus the dividends currently received on

maturing financial investments (in ongoing technology), which they had made at time (t-1).

Updating the R.H.S. of  (7.g)  we obtain:

C t t t, , t=  R I2 1θ +   ,   ∀ t �  0 (7.h)

In an Intergenerational Stock Market Equilibrium (SM), with perfect foresight, agents

of generation  t  therefore maximize to solve:

{ } [ ]V Max U C U CSM

I
t t

t t t t t

≡ + −
−, ,

, ,
, ,

( ) ( ) ( )
θ θ

ε ε
1

1 21 (8)
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subject to the constraints embodied in equations (7.a, f, g, h).  Furthermore, prices and

quantities satisfy the no-arbitrage (with perfect foresight) and market-clearing conditions of

equations (6.d), (7.b, c, d, e). We show the existence of such equilibria constructively below.

Lemma 1. The characteristic dynamic equilibrium equation of SM, relating interim-age

(secondary market) real investment prices and levels over time, can be written as:

( ) [ ( )]1 1− = − −+I p It 1 t+1 tε   ,  ∀ ≥t τ (9)

where (τ + 1)  is the time of the first unconstrained transaction on the intergenerational

stock-market (SM).

Proof.

To characterize the set of intergenerational stock market equilibria, it is useful to first simplify

equation (7.g), by dividing both sides by pt+1 . Then using (6.d) and (7.a) successively, obtain:

θ θt, t+1 t t, tI = + = + − =−I p I I It t t t t1 1 1( )   ,  ∀  t �  1 (9.a)

Next, letting  τ ≡ −(t 1)  in equation (7.d) only, we obtain on multiplying by I t  that:

[ ]θ ε θτ τ τ τ τ τ τ+1, +1 , +1I = − =( )1 I I   ,  ∀ ≥τ 1

which, on using (9.a) implies:

1 1 1− = − + +I Iτ τ τ τε θ ,   ,  ∀ ≥ τ 1 (9.b)

Finally, using (7.a) again in (9.b)  to substitute for  θτ τ+ +1 1,  ,  we get our desired result that:

p τ τ τ τ τ τ τε θ+ + + + +− = −1 1 1 1 11( ) ,I p p I  = − −+ +ε τ τp I1 11( )

from (7.a), or:

( ) [ ( )]1 11− = − −+I p I+1τ τ τε   ,  ∀τ ≥ 1 (9.c)

which is equivalent to (9).  Notice though that since I0  = 1 and (from 7.a  and 7.b)

I1 01= − ε p I1 , if the early diers of generation 0 can sell all their shares to the next young, then in

that eventuality, equation (9.c) is also satisfied for  τ = 0. QED.

As we show in Proposition 3 below,  the characteristic equation (9), reflecting perfect

foresight, absence of intemporal arbitrage, and market clearing, has only two consistent
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solutions.  The first, due to Fulghieri and  Rovelli [1993], and Dutta and Kapur [1994],

satisfies: p Rτ κ κ+ = ∀ ≥, 0 . But, as we shall see in the next section, it also requires

rationing of the very first generation to sell in such a market at τ. The second solution is a two-

periodic one, with  p forτ κ κ+ = ≥1 1,  and  odd,  and  p Rτ κ κ+ = ∀ ≥, 2  and

even,   where  τ  is the first generation to trade in such a market. To simplify notation (only) in

the following ‘steady-state’ result, we assume τ = 0, although that is inconsistent with the 0-th

generation having no prior investments to buy in the secondary market.

Proposition 3. The set of stationary or periodic intergenerational steady state stock market

equilibria, satisfying equations (7a,b,c,d,e,f,g,h) and (8), are isolated, being one of the two

following, assuming the anticipation of stock market trading commencing at some t=0:

(a) { }  =  R ,  t = 1 , 2 , ... , ,p t ∀ ∞  (6.e)

implying: {I }  =  I ,  t = , 2 , ... , ,t
SM ∀ ∞1

which,  from equation (9) satisfies:  1- I  =  R [ - (1 - I )],SM SMε  

that is: SMI  =  1-
1+ R

,
ε R

(10)

or:

(b) { }  =  1  p t  for  t = 1, 3, 5, ..., odd  ;   and       (6.f)

{ }  =  R p t   for  t =  2, 4, 6, ..., even       (6.g)

with: It  = 1  for  t ≥ 0  even,  and (11.a)

It  = 1 - ε for  t  1≥    odd, (11.b)

which clearly satisfies equation (9).

The consumption allocations at the two alternative stock market allocations are given, using

equations (8.a,b), by:

(a) C R C R tt t, ,; ,1 2 0= = ∀ ≥ , (12)

and:

(b) C C R tt t, ,; ,1 21 0= = ∀ ≥   and  even ;
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C R C R tt t, ,; ,1 2 0= = ∀ ≥  and  odd. (13)

Proof. For Part (a), see Fulghieri and Rovelli [1993] or Dutta and Kapur [1994].

For Part (b), it suffices to note that eqs. (6.f, g) ,  (11.a, b) and  (13)  satisfy (9).

Remarks.   (i) If stock market equilibrium commences at time t = 0, with I t - 1 = 0,

then given (7.a) the only intergenerational stock market equilibrium consistent with the initial

condition is the periodic stock market equilibrium (b).

(ii) Also note that, since iterating equation (6.d) implies that p p tt t= ∀ ≥+2 1, , no

other periodic stock market equilibrium with periodicity k > 2 exists.

We now move on to consider the dynamics of transition to the steady-state

intergenerational allocation and risk-sharing mechanisms described above.

I. INTRODUCTION AND SUMMARY

Models of intertemporal liquidity risks, or "preference shocks" - developed in Bryant [1980]

and further examined in the works of Diamond and Dybvig [1983], Bhattacharya and Gale [1987],

and Jacklin [1987] among others - have recently been extended to the realm of ongoing dynamic

overlapping generations (OLG) economies; see Bencivenga and Smith [1991], Qi [1994], Fulghieri

and Rovelli [1993] and Dutta and Kapur [1994]. These models may be used to evaluate the

essential tradeoffs which arise in two distinct areas of current debate. The first is on the evaluation

of alternative (or possibly complementary) arrangements for the monetary system, for example the

relative merits of a market-value-based vs. an intermediated banking system. The second

interpretation, clearly requiring a considerably longer definition of the time unit, pertains to the

debate on the viability and desirability of differing social security (pension) systems,  and in

particular the choice between Pay-As-You-Go (PAYG) versus Funded or Capital-reserve  systems
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(e.g. Boldrin and Rustichini, 1995). Our paper considers the latter set of tradeoffs in an OLG model

outside of long-run steady states.

In our paper, agents choose among intertemporal liquidity-sharing or insurance

mechanisms, in an OLG economy in which the capital stock is possibly longer-lived than agents’

lives.  We focus on the comparisons between “Banking” or PAYG systems, of both an intra- and

inter-generational nature, versus Stock Market based inter-generational financial systems. The

essential tradeoffs across these institutional mechanisms arise from the need for financial contracting

to provide agents with liquidity insurance, related to the uncertainty regarding their preferences for

their intertemporal allocation of consumption1. Such preference shocks, coupled with real

investment opportunities that are long-lived and technologically illiquid, create a demand for interim

stock markets, or financial intermediaries and contracts such as deposits withdrawable (fully or

partially) on demand.

In dynamic OLG economies, there is in addition the possibility of designing contracts (or

mechanisms) for sharing such liquidity risk across generations, taking advantage of the "life cycle"

structure to the demand for savings of each generation. With the long horizons envisioned, one may

think of events such as uncertain workers’ disability as a source of early withdrawal demand. In

recent papers, by Qi [1994], Fulghieri and Rovelli [1993], and Dutta and Kapur [1994], alternative

institutional arrangements for such intertemporal consumption-smoothing and liquidity risk-sharing

mechanisms, within and across generations, have been examined and compared.

Under some assumptions, in particular the restriction of the analysis to steady states only,

both Qi [1994] and Fulghieri and Rovelli [1993] show that there exist intergenerational financial

intermediation contracts that can attain the Golden Rule (Phelps, 1961) levels of investment and

consumption-smoothing. The paper of Fulghieri and Rovelli, and the later work of Bhattacharya

and Padilla [1996], also focus on the comparison of intergenerational Banks versus Stock Markets

for investments that are long-lived in nature. In contrast to the earlier models, which focus either on

a static economy (Bhattacharya and Gale, 1987) or on intra-generational mechanisms only

(Bencivenga and Smith, 1991), Fulghieri and Rovelli find that stock markets result (in steady state)

in underinvestment in the long-lived technology, relative to the Golden Rule optimum, without any

investment in short-term liquid technologies or early liquidation2. This occurs essentially owing to

the incompleteness of contracts for resource transfers across generations, which in a stock market

economy can take place only through real investments in long-lived technologies and bilateral

trading at their interim market valuations.



xviii

In all of the above mentioned papers, the analysis of the functioning of intermediaries and

stock markets is confined to steady states, in which the inheritance of a stationary level of

investment by prior generations is taken as given. However, given the endowment structure in these

models, this is a restrictive assumption, especially vis à vis the first generation which only has its

initial endowment to start a resource-transfer cum liquidity-insurance scheme. While Qi [1994]

briefly examines this issue (see his Propositions 5 and 6), his analysis is focused on PAYG systems

only, rather than on the choices among alternative risk sharing mechanisms.

More specifically, the following questions remain unanswered: given initial conditions, is it

possible to predict which allocational mechanisms would be chosen by the generations present, and

would the same choice be repeated by the subsequent generations, i.e., be intergenerationally stable

or Self-Sustaining? For example, consider the three institutional mechanisms which we shall analyze

below: (i) Intragenerational Bank (B), (ii) Intergenerational Banking (IB) and (iii) Intergenerational

Stock Market (SM). Suppose these may be ranked in a particular way by the steady state welfare

criterion. Then, is it necessarily true that, when the issues related to (a) transition to the steady state,

and (b) non-cooperative intergenerational choices are taken into account, the most efficient steady

state allocational mechanism would indeed be chosen and be intergenerationally self-sustaining?  We

seek to address these questions in this paper.

In defining our notions of inter-generational choices over mechanisms for financing of

investment and consumption smoothing, we shall not be employing notions such as the Core, whose

applicability to the OLG setting is dubious at best. As Esteban [1986] and Esteban and Millan

[1990] have shown, even when the Golden Rule allocation does improve the welfare of the first

generation (the Samuelson, 1958, case of Gale, 1973), it is not in the intergenerational Core (never

for a single commodity setting)3. Fortunately, as Esteban and Sakovics [1993] have emphasized,

negative results like those mentioned above do not imply that intergenerational transfer mechanisms

become infeasible. Society may cope with such a conundrum, created by the "not in the Core"

result, by restricting the language or strategy space of intergenerational proposals for choosing its

Institutional Mechanisms for intergenerational reallocations. In the context of the Esteban and

Sakovics model, of a pure-exchange OLG environment with agents' endowments tilted to the early

period(s) of life, they argue that in a time-stationary model the appropriate notion of an Institutional

proposal is that of a time-stationary transfer scheme, from each current and future generation when

young to its preceding generation when old. Institutions survive if and only if they constitute

Subgame Perfect Equilibria (SPE) (Selten, 1975) in such an intergenerational proposal game. A
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similar restriction is employed by Boldrin and Rustichini [1995], in their modelling of inter-

generational social security schemes versus intra-generational accumulation of short-lived

investments.

In our model below, we define the concept of a Self-Sustaining investment and consumption

allocation Mechanism, using restrictions motivated by analogous considerations. The spirit of these

is that proposals that make later generations strictly worse off than the proposing one are not

allowed. Such a restriction may arise spontaneously for market-based mechanisms, or be a result of

societal Norms embodied in a legislated Pay As You Go (PAYG) mechanism such as IB. In

particular, we restrict the set of proposals by each generation to be one of the three Institutions that

were indicated above: Transition to Steady-State of Intergenerational Banking (TIB),

Intergenerational Stock Market (SM), and Intragenerational Banking (B) (The first of these takes

into account the lack of inherited prior capital investments for the first generation). Some  of these

proposals may require that an older and a younger generation agree on the "sharing" of the inherited

capital stock plus the endowment of the young. Hence, each stage game in our model is one of

Proposals and Counter-Proposals by  the two overlapping generations, unlike in Esteban and

Sakovics [1993] where only young propose transfers to the currently old.

Our paper is organized as follows. In Section II, we set out the basic model and delineate

the Golden Rule and other steady state allocations under the three alternative institutional

arrangements of B, IB, and SM. The dynamics of transition to these steady states, and the ranking

of welfare levels attainable under each alternative institutional mechanism ( TIB, SM, B), taking

transition into account, are the foci of Section III. Intergenerational Proposal Games over these

(transition) Institutions and their subgame perfect equilibria, which we term intergenerationally Self-

Sustaining Mechanisms, are described and characterized in Section IV. In Section V we conclude

with a discussion of our results in the context of recent literature and with suggestions for further

research.

The major results that emerge from the analysis in the paper are the following. First, we

point out that there exists a feasible stationary consumption path (TIB) such that capital

accumulation along that path will lead, within a finite horizon, to the Golden Rule steady state

optimal allocation. Furthermore the consumption levels attained along this path ensure that the

welfare of each generation involved in the transition strictly exceeds that attainable from any

intragenerational mechanism4. Second, we show that there exists a faster one-shot transition to the

steady  state intergenerational stock market (SM) allocation (Fulghieri and Rovelli, 1993)5 . Third,
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we prove that a transition to SM that benefits the proposing current young, which exists unless they

are extremely risk averse, must involve strictly rationing the participation of the concurrent

preceding generation in the initial market (only). Fourth,  we prove that under reasonable parameter

values, there exists an intergenerational conflict in any stage game. Specifically, at any time, the

currently young may stand to gain by proposing a (rationed and immediate) transition to the

stationary intergenerational stock market allocation (SM), whereas the currently  middle-aged are

made strictly worse off, relative to the "slowest turnpike" allocation (TIB), from accepting such a

proposal. Finally, in the last step we delineate how this conflict may be resolved, in the sequence of

equilibria of the intergenerational proposal games across overlapping generations.

The equilibrium outcome of the intergenerational proposal games depends crucially on the

relative expected utility  payoff(s) of the middle-aged generation(s) from their rationed transition to

the stock market (SM), versus their fallback option of doing intragenerational liquidity risk-sharing

(B), based on their inherited endowment net of prior payout obligations. It turns out that the

currently middle-aged generation(s) are better off from their fallback option (B), relative to the

constrained (for them only) transition to SM proposed by their “children”, if and only if (i) the

proportion of the generation requiring early liquidity (withdrawal) is small, and (ii) agents in the

generation are ex ante highly risk-averse (or averse to unsmoothed consumption profiles). If either

of these conditions on agents’ ex ante characteristics is not satisfied then, and only then, the stock

market (SM) institutional arrangement (which is always suboptimal relative to IB in the steady

state) becomes the unique subgame - and “trembling-hand” perfect (Selten, 1975) equilibrium of the

intergenerational proposal games6.

II. THE MODEL AND STATIONARY ALLOCATIONS

II.A Optimal Allocations and Intermediated Outcomes

We consider an extended version of the overlapping generation (OLG) model of

Samuelson [1958], that was first advanced by Bryant [1980].  Time is indexed by t = 0, 1, 2,

..., ∞.  Each generation consists of a continuum of agents of unit measure. An agent born at

time point t ≥ 0 is alive at time point (t+1), and possibly also at time point (t+2). Each

generation is endowed with one unit of the single commodity, spread equally across its

members, at birth; this may be thought of as labor income or prior savings. To simplify matters,

we assume that an agent born at t only wishes to consume from his savings at time-point (t+1)

if he is an early dier, or at time-point (t+2) if she is a late dier. Such simple ex post corner
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preferences, introduced by Diamond and Dybvig [1983], imply that the allocations produced

by intragenerational stock markets and banking systems coincide, provided market

participation is suitably restricted; see Jacklin [1987], and Bhattacharya and Gale [1987].

Agents become early or late diers with probabilities ε and (1-ε) respectively. These

events are independent across the continuum of agents in each generation, so that a proportion

(1-ε) of agents born at time  t  is alive at time  (t+2), when they die. Thus, the ex ante

expected utility of a representative agent of generation t is given by:

t , ,V  =  U( )  +  (1- ) U( )ε εC Ct t1 2 (1)

where { }C Ct t, ,,1 2 are the (certain) allocations of consumption to early and late diers of

generation t, respectively. The utility function  U(.)  is assumed to be strictly increasing and

concave, with U’(0) = ∞.

There are two investment technologies in the model. The first is long-lived with constant

returns to scale: investment of I t  at time t returns RI t ,  R > 1 , at time (t+2). The second

technology is that of storage, without any loss or depreciation, between time points t to (t+1).

The long-lived investment  I t  can also be liquidated at time (t+1) to yield Q L t +1 , where 0 ≤ Q

≤ 1,  and 0 ≤ L t + 1  ≤ I t  ;  we assume Q = 1 , so that early liquidation and storage technologies

are  equivalent7.

The Golden Rule (Phelps, 1961) stationary optimal intergenerational investment and

consumption plan thus solves the problem:

{ } [ ]*

, , ,
, ,V  ( ) ( ) ( )

, ,

≡ + −Max C C
I L C C

t t
t t t t1 2

1 21ε ε U  U (2)

s.t.: ε ε C  Ct t t t t tR I L L I t− − − −+ − ≤ + − + − ∀1 1 2 2 2 11 1, ,( ) ( ) , , (2.a)

0   L   It t≤ ≤ ≤+1 1 (2.b)

As shown, for example, in Fulghieri and Rovelli (1993, Proposition 1), the solution to this

problem is characterised by full investment of the initial endowment of each new generation, no

liquidation of invested capital, and a level of consumption for early and late diers which is

constant and equal to R. Furthermore, Qi [1994], Fulghieri and Rovelli [1993], and Dutta and

Kapur [1994] give the conditions under which the Golden Rule allocation may be implemented
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by an intergenerational banking system. These results are summarised in the following

proposition.

Proposition 1. (a) (Fulghieri and Rovelli 1993).The Golden Rule (Stationary) Optimal

Intergenerational Allocation Rule, which maximizes (2) subject to (2.a) and (2.b), is given by:

t
*

t
*

,1
*

,
*I  =  1 , L  =  0 , C = C = R , t .t t 2 ∀

(b) (Qi 1994, Fulghieri and Rovelli 1993, and Dutta and Kapoor 1994). If agents/depositors

can be subject to a No Redepositing Condition within (and across) banks, then a single

welfare-maximizing bank (or equivalently, many representative competing banks) would, in

equilibrium, offer each generation the deposit contract: It   in deposits leads to withdrawal

rights RIt  at time (t+1) or time (t+2), at the choice of the depositor. Furthermore, all agents

born at t would deposit all their initial endowment in banks, which would invest it (It =1) in

long-lived investments only, without early liquidation. Thus intergenerational banking (IB)

would implement the Golden Rule optimum. Hence in particular:

C C Rt i
IB

t i, ,
*= =  ,     { }i ∈ ∀    t1 2, ,

(c) If redepositing after early withdrawal by agents is not monitorable (indistinguishable from

an initial deposit), especially if done across banks, but depositing at one bank by another can

be prohibited, then ex ante Bertrand competition among banks would lead to the outcome:

depositing I t=1 by each depositor of each generation t confers her with withdrawal rights

CU
1 at time (t+1) or CU

2  at time (t+2), where these satisfy (suppressing the t-subscript):

C CU U
1 2 <  R <  , (4.a)

( )2
  C CU U

1 2≤ (4.b)

ε ε C  C1 2
U U+   (1- ) = R (4.c)

Proof. See either Qi, Fulghieri and Rovelli, or Dutta and Kapur.

Remark. The Golden Rule optimum  is,  of course,  strictly  valid  as a solution concept only

when t ∈{-∞, ...,-1 , 0 , 1, ..., ∞} since, for example, if  t ∈ { 0, 1, ..., ∞},  and  I1 = 1 and L1 =

0, then the early diers of generation 0 will obtain consumption C0 1 0, = . These issues raise

questions about the transition to these stationary optimal allocations, which we discuss in the

next section. The notion of a competitive banking system is also not unambiguous in an OLG
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setting, and one may think instead of the resulting allocations as arising from a legislated

allocation mechanism.

In contrast,  the constrained optimal intragenerational allocation, solves the problem:

[ ]V    U(C )  +  (1- ) U(C )
, , ,

1 2≡








Max
I L C C1 2

ε ε (3)

s.t.: 0   C   L,1≤ ≤ε (3.a)

0   (1 - ) C   R(I- L),2≤ ≤ε (3.b)

0   I  1.≤ ≤ (3.c)

The solution to this problem is characterized by Diamond and Dybvig [1993], who also show

that this allocation may be implemented with a single welfare-maximizing bank or several

(representative) competing banks who are Bertrand Competitors and obtain clienteles of

strictly positive measure. The latter result assumes no interim trading of assets across

competing banks at the interim period; see Bhattacharya and Gale [1987].

Proposition 2. (Diamond and Dybvig 1993). The Optimal Intragenerational Allocation Rule,

which maximizes in (3) subject to (3.a) to (3.c), is given by:

I  =  1,   ′ ′U (C )  =  RU (C ),1 2   C L C R L
_

/ ;  
_

 (
_

) / ( )1 2 1 1= = − −ε ε

Furthermore, in a competitive intragenerational banking system equilibrium, deposit

contracts of the form { deposit I at time t implies withdrawal rights C C IB
1 1=  or C C IB

2 2= ,

at times (t + 1) or (t + 2) respectively} would prevail, leading to expected utility V VB = ,

and each depositor would deposit I = 1 at one (or many) bank(s), and each bank would invest

its deposits in short-term (early liquidation) and long-term investments in the proportions L

and 1 - L  , respectively.

Proof. See Diamond and Dybvig [1983]8.

The following implications of Proposition 2 are straightforward.

Corollary 1. For all ε > 0 , the expected utility VB  of an agent in the optimal

intragenerational allocation is strictly less than its level V*  at the Golden Rule

intergenerational optimum.
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Proof. Since  C C
_

,
_

1 2 0








>   and hence L  ∈ (0,1), given U'(0) = ∞, we have

( )1 <  =  L + R(1- L)  <  R,ε ε C C1 21+ −

whereas C C R1 2
* *= = , from which the conclusion follows using Jensen's inequality.     QED.

Corollary 2. (Diamond and Dybvig, 1983)  If  U(C i ), i ∈ {1,2}, has its Relative Risk Aversion

Coefficient uniformly strictly greater than unity (that for logarithmic utility), then

1 <   R,   C C1 2< <

implying: ε  <  L  <  1.

We should briefly mention the alternatives to the existence of bank-type intermediaries

(and "unconditional" withdrawal rights) in this setting. The extreme one is that of intra- and

inter-generational Autarky, under which each agent would invest I=1 when young, and

consume  CA
1 1=  if she is an early dier, and C RA

2 =  if she is a late dier, with expected utility:

A
1
A

2
AV   U(C )  +  (1- ) U(C )≡ ε ε  , (5)

 where it is obvious that:  A *V   V  <  V ,≤  with the first inequality also strict unless U(C) =

log(C),  since { L = ε, C1 = 1, C2 = R} is always feasible under intragenerational banking.

A less extreme comparison is  with an institution often analyzed in "standard" financial

modelling: the Intragenerational Stock Market. If individuals still invest on their own, but can

sell their long-term investments I t  at a linear price  p It t+1  at time (t+1), then it turns out that

the interim value-maximizing consumption-investment outcome will be the same under

intragenerational stock markets as under Autarky; see Bhattacharya and Gale [1987]. The

reason is that, under the interim value/wealth maximization criterion used to choose liquidation

L t + 1   from  I t  , subject to  0 ≤ L t + 1  ≤ I t  ,  L t + 1  ∈ (0 , I t)  will be chosen by individuals if and

only if  p t+ =1 1 . With the ex post corner preferences assumed, this will be the case if and only

if { }C C Rt t, ,;1 21= = ,  as shown by Bhattacharya and Gale [1987].

Bencivenga and Smith [1991] and others have emphasized this difference between

Banking and Stock Market allocations, suggesting that it should apply even when the setting is

intergenerational in nature. However, as argued in Bhattacharya and Gale [1987] and

Bhattacharya and Padilla [1996], with intragenerational stock markets investment decisions
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would be made by firms, or mutual funds, which consist of coalitions of agents of strictly

positive measure (to pool their liquidity risks). Such a coalition, if it plans to invest I and

liquidate L ≤ I next period, will issue a dividend stream {L ; R(I-L)} at the two consecutive

points, and early diers would sell their ex-first-dividend shares to late diers of the same fund.

However, the appropriate choice criterion for such mutual funds, if interim trading of ex-

dividend shares is restricted to the members of a fund, would be to maximize the ex ante

expected utility V of their members, and not the interim market value of the {I,L} tuple. Hence

L = L  would be chosen, leading to C C C C1 1 2 2= =, , and expected utility V VB = . As this

is the same allocation which occurs under intragenerational (Diamond-Dybvig) banking, we

will disregard Intragenerational Stock Markets in the analysis to follow.

We now proceed to consider alternative institutions in an intergenerational setting.

II.B Intergenerational Stock Markets (SM)

We consider a situation in which the generation born at time t invests 0 ≤ I t  ≤ 1 in new

real investments, creating I t  new firms, and (1 - I t) is invested by the new born in the shares of

existing firms. The price of ongoing (one period old) firms per unit of real investment at any

point of time t is given by p t   , with the price of completed technologies being R. These prices

must satisfy the perfect foresight No Arbitrage Conditions, where q t  is the unit price of new

investments at time t:

p

q p
t

t t

+1  =  
R

, (6.a)

p

q

p

q q
t

t

t

t t

+ +

+

1 2

1

 =  
R

. (6.b)

The right-hand-side of equations (6.b) represents the gross rate of returns from the two-period

invest and hold strategy, while the left-hand-side of (6.b) represents the rate of return from

holding a share of a new firm for one period, selling it, and then reinvesting in a share of a new

firm at (t+1). In contrast, the criterion in equation (6.a) results from equating the

contemporaneous rates of return on holding the shares of new firms, with that on holding (one-

period) old firms.
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If agents can short-sell existing firms' shares to obtain additional resources (beyond their

endowments) for new real investment, or they can sequentially create, sell, and then create new

investments, value-maximizing investment equilibrium requires that for I t  ∈(0,1] to be optimal:

q t   = 1 ,    ∀ t (6.c)

Also, substituting back from (6.c) into (6.b), we see that both (6.a) and (6.b) imply that, if the

chosen investment levels are interior and finite, then for all t �  1 the following intertemporal

equilibrium condition must hold:

p pt t+1 =  R , ∀ t �  1 (6.d)

Let  {I t  }∈ (0,1] ,  t  =  0, 1 ,2, ...,∞ ,   with  {L t}  =  0 ,  be the levels of new real investments

in the economy above, in an intergenerational stock market equilibrium (so that  q t  = 1, ∀ t).

Denote   θ θt t t tand, ,−1 ,  for t ≥ 1 ,  as the per capita proportions of one period old capital

stock,  I t - 1    , held at time t  by a representative agent of generation t and a late dier of

generation (t-1), respectively. Then, agents' budget constraints at different points of their lives,

and stock market clearing, together imply that:

t , -1I + I  =  1 ,  t  ,θ t t t tp ∀ ≥ 1 (7.a)

θ εt t t t t tp p, -1 -1I  = I ,  t ,= 1 (7.b)

θ ε θ εt t t t t t t t tp R p, -1 , - -1I ( ) I = I ,  t ,+ − ∀ ≥− −1 21 1 2  (7.c)

θ ε θt t t t, ,( )+ − = ∀ ≥−1 1 11   ,    t    , (7.d)

with : I0 1= and      θ0 0 0, =  . (7.e)

Equation (7.a) results from the fact that the newborn will invest all their endowment in either

new real investments, or in buying the shares of one-period old firms, from “early dier” agents

of the previous generation. Equation (7.b) states that the t=1 sales of early diers of the 0-th

generation must be wholly absorbed by purchases by the members from the 1-st generation.

Equation (7.c) states that at all time points t ≥ 2, the dividends which survivors (late diers)

from generation t-1 obtain from maturing technologies are used to purchase the difference

between sales by early diers of the same generation minus purchases of one period old

technologies by the new born. Finally, equation (7.d) represents the fact that total

shareholdings of one-period-old investments must add up to unity.
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These stock market equilibrium conditions also have implications for the consumption

allocations of early and late diers. For early diers, it is straightforward to see, by updating (7.a),

that:

C t t t, t , t t-1  p I + R I1 1= + θ   ,  ∀ t �  0.  (7.f)

For late diers, multiply (7.d) by  p It t−1   and substitute in (7.c) to obtain, after dividing by (1-

ε):

θ θt-1, t t t 1 t t 1p I p I− − − − −= + t t tR I1 1 2, (7.g)

In other words, their per capita portfolio value, after rebalancing at time  t  (L.H.S.), equals the

value of their old real investment made at (t-1), plus the dividends currently received on

maturing financial investments (in ongoing technology), which they had made at time (t-1).

Updating the R.H.S. of  (7.g)  we obtain:

C t t t, , t=  R I2 1θ +   ,   ∀ t �  0 (7.h)

In an Intergenerational Stock Market Equilibrium (SM), with perfect foresight, agents

of generation  t  therefore maximize to solve:

{ } [ ]V Max U C U CSM

I
t t

t t t t t

≡ + −
−, ,

, ,
, ,

( ) ( ) ( )
θ θ

ε ε
1

1 21 (8)

subject to the constraints embodied in equations (7.a, f, g, h).  Furthermore, prices and

quantities satisfy the no-arbitrage (with perfect foresight) and market-clearing conditions of

equations (6.d), (7.b, c, d, e). We show the existence of such equilibria constructively below.

Lemma 1. The characteristic dynamic equilibrium equation of SM, relating interim-age

(secondary market) real investment prices and levels over time, can be written as:

( ) [ ( )]1 1− = − −+I p It 1 t+1 tε   ,  ∀ ≥t τ (9)

where (τ + 1)  is the time of the first unconstrained transaction on the intergenerational

stock-market (SM).

Proof.

To characterize the set of intergenerational stock market equilibria, it is useful to first simplify

equation (7.g), by dividing both sides by pt+1 . Then using (6.d) and (7.a) successively, obtain:
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θ θt, t+1 t t, tI = + = + − =−I p I I It t t t t1 1 1( )   ,  ∀  t �  1 (9.a)

Next, letting  τ ≡ −(t 1)  in equation (7.d) only, we obtain on multiplying by I t  that:

[ ]θ ε θτ τ τ τ τ τ τ+1, +1 , +1I = − =( )1 I I   ,  ∀ ≥τ 1

which, on using (9.a) implies:

1 1 1− = − + +I Iτ τ τ τε θ ,   ,  ∀ ≥ τ 1 (9.b)

Finally, using (7.a) again in (9.b)  to substitute for  θτ τ+ +1 1,  ,  we get our desired result that:

p τ τ τ τ τ τ τε θ+ + + + +− = −1 1 1 1 11( ) ,I p p I  = − −+ +ε τ τp I1 11( )

from (7.a), or:

( ) [ ( )]1 11− = − −+I p I+1τ τ τε   ,  ∀τ ≥ 1 (9.c)

which is equivalent to (9).  Notice though that since I0  = 1 and (from 7.a  and 7.b)

I1 01= − ε p I1 , if the early diers of generation 0 can sell all their shares to the next young, then in

that eventuality, equation (9.c) is also satisfied for  τ = 0. QED.

As we show in Proposition 3 below,  the characteristic equation (9), reflecting perfect

foresight, absence of intemporal arbitrage, and market clearing, has only two consistent

solutions.  The first, due to Fulghieri and  Rovelli [1993], and Dutta and Kapur [1994],

satisfies: p Rτ κ κ+ = ∀ ≥, 0 . But, as we shall see in the next section, it also requires

rationing of the very first generation to sell in such a market at τ. The second solution is a two-

periodic one, with  p forτ κ κ+ = ≥1 1,  and  odd,  and  p Rτ κ κ+ = ∀ ≥, 2  and

even,   where  τ  is the first generation to trade in such a market. To simplify notation (only) in

the following ‘steady-state’ result, we assume τ = 0, although that is inconsistent with the 0-th

generation having no prior investments to buy in the secondary market.

Proposition 3. The set of stationary or periodic intergenerational steady state stock market

equilibria, satisfying equations (7a,b,c,d,e,f,g,h) and (8), are isolated, being one of the two

following, assuming the anticipation of stock market trading commencing at some t=0:

(a) { }  =  R ,  t = 1 , 2 , ... , ,p t ∀ ∞  (6.e)
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implying: {I }  =  I ,  t = , 2 , ... , ,t
SM ∀ ∞1

which,  from equation (9) satisfies:  1- I  =  R [ - (1 - I )],SM SMε  

that is: SMI  =  1-
1+ R

,
ε R

(10)

or:

(b) { }  =  1  p t  for  t = 1, 3, 5, ..., odd  ;   and       (6.f)

{ }  =  R p t   for  t =  2, 4, 6, ..., even       (6.g)

with: It  = 1  for  t ≥ 0  even,  and (11.a)

It  = 1 - ε for  t  1≥    odd, (11.b)

which clearly satisfies equation (9).

The consumption allocations at the two alternative stock market allocations are given, using

equations (8.a,b), by:

(a) C R C R tt t, ,; ,1 2 0= = ∀ ≥ , (12)

and:

(b) C C R tt t, ,; ,1 21 0= = ∀ ≥   and  even ;

C R C R tt t, ,; ,1 2 0= = ∀ ≥  and  odd. (13)

Proof. For Part (a), see Fulghieri and Rovelli [1993] or Dutta and Kapur [1994].

For Part (b), it suffices to note that eqs. (6.f, g) ,  (11.a, b) and  (13)  satisfy (9).

Remarks.   (i) If stock market equilibrium commences at time t = 0, with I t - 1 = 0,

then given (7.a) the only intergenerational stock market equilibrium consistent with the initial

condition is the periodic stock market equilibrium (b).

(ii) Also note that, since iterating equation (6.d) implies that p p tt t= ∀ ≥+2 1, , no

other periodic stock market equilibrium with periodicity k > 2 exists.

We now move on to consider the dynamics of transition to the steady-state

intergenerational allocation and risk-sharing mechanisms described above.
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IV. INTERGENERATIONAL PROPOSAL GAMES AND EQUILIBRIA

IV.A Self-Sustaining Mechanisms

We now move on to define and analyze a class of non cooperative intergenerational

proposal games, across the sequence of overlapping generations in our model. Each  stage

game of the proposal game, at times t = 1, 2, ..., ∞ , is modeled as a proposal cum counter-

proposal game between the two generations, born at (t-1), the middle-aged, and at  t,  the new

born,  which at time  t  are in a position to make (real or financial) investment decisions. This

represents an extension of the “transfer game” across generations analyzed by Esteban and

Sakovics (1993), in which the authors allow only the young at any time  t  to make proposals

for  changing the previously agreed upon transfers to the old of the immediately prior

generation. Our two-sided proposal / counter-proposal game is necessary, because two of the

allowed proposals involve either the access to the initial endowment of the new born by the

currently middle aged (TIB), or the utilization (acquisition at some price) of the inherited

intermediate-maturity capital stock of the middle-aged by the young (the non-periodic, quantity

constrained SM transition of part (b) of Proposition 5). Hence, because of this change relative

to Esteban and Sakovics, we must specify not only the payoffs to agents taking into account

subsequent stage games at times  t+1, t+2, ..., but also their payoffs in the events of both

agreement (regarding the allocational mechanism to be continued or switched to) as well as

disagreement among the overlapping generations at any time t. We do so below assuming

that:

(i) in the event of an agreement at time t, this is binding until time (t+1) at least, and

(ii) in the event of disagreement on proposals at time  t:

• the currently middle-aged obtain their autarkic payoff given their endowment, and
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• the new born at time t can always revise both their proposal/program at time t and their

proposal (planned) at time  (t+1).

We restrict the pure strategy set of each overlapping generation in the stage games at

times t= 1, 2, ..., ∞ , to be the 3-tuple of allocation mechanisms (or Institutions, in the

terminology of Esteban and Sakovics) {B, TIB, SM }, that were characterized in Sections II

and III above. We do so for the following reasons. First, as we have suggested earlier, the  TIB

and SM  intergenerational allocation mechanisms have the feature that, if at time  t  a current

(agreed upon) mechanism is started and is continued through times  t ,  t+1 , t+2 , ..., etc., then

generations subsequent to the new born at time t are never worse off than the t-th generation.

We postulate that reasonable proposal processes (e.g., in a legislature) satisfy this “minimal

degree of fairness” property, even though the resulting mechanism need not guarantee, say,

ultimate attainment of the Golden Rule optimum in the long run. The spirit of this restriction is

identical to that underlying the transfer institutions or proposals described in Esteban and

Sakovics [1993] or Boldrin and Rustichini [1995]. Second, while we have not proved that the

three institutions / mechanisms which each generation is allowed  to propose are the only ones

that are (i) intergenerationally stationary for future generations on their continuation paths,

and (ii) viable, they do represent the set of major significant alternatives in many aggregate

(macroeconomic) settings, such as: generationally autarkic, pay as you go, and market-based

pension plan systems. Once we step outside the class of these three mechanisms, we essentially

open a Pandora’s Box of proposals that satisfy the second criterion (ii)  but not the first (i),

that we deem desirable to impose12.

The stage games, at each time-point of the infinite horizon intergenerational proposal

game, could themselves involve (at least) three alternative extensive forms:

A) The middle-aged moving first and proposing, and the young counter-proposing;  or

B) The new born moving first and proposing, and the middle-aged counter-proposing; or

C) Simultaneous proposals by the two generations overlapping at any point in time.

Of these alternatives, cases (B) and (C) are relatively more in accordance with the spirit of the

transfer-proposal game of Esteban and Sakovics (1993). Furthermore, the equilibrium outcome

in case (A) is also somewhat obvious, given that  VTIB > VB  (Proposition 4) and VTIB >

VS M(MA) (Proposition 6) always. It turns out, on the other hand, that (i) the equilibrium

outcomes in cases (B) and (C), suitably defined, generically coincide with each other, and (ii)
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they depend on the relative magnitude of VTIB versus VSM(NB), as well as on VSM(MA) versus

VB .  We now proceed to describe the agents’ strategies and payoffs more precisely, and also

to define the notion of Self-Sustaining Mechanisms arising from these proposal games across

current and future generations.

TABLE 2.

Payoffs  in  (First Stage) Proposal Game

MIDDLE-AGED

NEW BORN

B TIB SM

  B { VB , V B } {V(c), V B } {V(c), V B }

  TIB {V(c), V B } {V( ′c ), VTIB } {V(c), V B }

  SM {V(c), V B } {V(c) , V B  } { VSM (NB), VSM (MA)}

In Table 2, we describe the pure strategy payoffs in the simultaneous moves case (C) of

the proposal stage scheme, across generations 0 and 1, postponing the discussion of

subsequent stage games until the subsequent result (Proposition 8). Notice that the

continuation payoff, V(c) or V( ′c ), of the new born in the event of disagreement takes into

account the optimal reswitching strategy of these agents. It is easy, using Table 2, to write the

payoffs in the extensive form game trees of the stage games in cases (A) and (B) above.

Mixtures of stage game pure strategies (uncorrelated) by players are allowed  in all the cases.

We define the continuation payoff for the new born, at any stage game at time t, as:

V(c) = [VTIB]  ,   if  {TIB, TIB} is in  [ SSM (t +1) H t + 1  = (1, 0) ] (22.a)

and : V(c) = [ VS M  (MA) H t + 1  = (1, 0) ],   otherwise, (22.b)

where H t + 1  is the vector of real capital stock (one-period old and maturing) which the current

(as of time t) new born generation will be holding at time (t+1), and  SSM (.) represents the

notion  of Self-Sustaining Mechanisms, to be defined below.   The payoff   V( ′c )  is
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analogously defined, with  H t + 1   now equaling the inherited capital stock vector along the TIB

path, starting at  t = 0.

We conclude this subsection with the following definition of equilibrium outcomes in the

proposal game:

Definition.  A Self-Sustaining Mechanism (SSM) is a sequence of outcomes of the

intergenerational stage games at times t = 1, 2, ..., ∞ , such that the outcomes and

equilibrium strategies  (given Ht ) at each time t,  {SSM (t)}, satisfy the criteria that, ∀  t ≥ 1:

(1)  SSM(t)  ∈ NE(t), Nash Equilibrium in stage  t ;

(2) { }SSM
t

( )τ τ=

∞
∈ NE(τ),  Subgame Perfect Equilibrium across stages (Selten, 1975);

(3) { }SSM t( )  ∈ SPE(t) in the stage game at time t ,in cases (A) and (B), or:

{ }SSM t( )  ∈ TPE(t), the Trembling Hand Perfect Equilibrium (Selten, 1975) set

at t , in case (C) (simultaneous-move) of the stage game.

IV.B Equilibrium outcomes: Only the meek shall inherit the earth

We can now state and prove the result suggested in the previous section (Propositions 6

and 7). We do so assuming that V(c) = V( ′c ). While this assumption on V(c) is critical for an

unique outcome in a subset of case (C), and it may appear to be unduly restrictive, in

Proposition 8 below we shall prove that, under reasonable conditions,  it is naturally satisfied13.

Theorem. Self-Sustaining Mechanisms in the first stage Intergenerational Proposal Games

are characterized as follows:

a. In case (A), middle-aged move first,    SSM(t) = { }TIB TIB, .

b. In case (B), new born move first, then either of the following equilibria may result:

b.1.  SSM(t) = { }TIB TIB,

if either: (b.1.1) V SM (NB) < V TIB  ;

or: (b.1.2) V SM (NB)  ≥ V TIB and V SM (MA) < V B ;

b.2. SSM(t) = { }SM SM,

if: V SM (NB) > V TIB  and   V SM (MA) ≥ V B ;
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b.3. Both { }SM SM, and { }TIB TIB, ( )∈  SSM t

if: V SM (NB) = V TIB  and  V SM (MA) ≥ V B .

c. In case (C),  the following equilibria may result:

c.1.  SSM(t) = { }TIB TIB,

if either: (c.1.1)  V SM (NB) < V TIB ;

or: (c.1.2) V SM (MA) < V B  .

c.  2 SSM(t) = { }SM SM,

if:    V SM (NB) > V TIB   and    V SM (MA) ≥ V B .

c.3 Both  { }SM SM,  and  { }TIB TIB, ∈ SSM (t)

if: V SM (NB) =  V TIB   and   V SM (MA) ≥ V B .

Proof.    Part (a) follows from Propositions (4) and (6).

In part (c.2), the fact that { }SM SM,  is uniquely in SSM(t) follows from using the Trembling

Hand Perfect equilibrium concept and from the maintained hypothesis that V(c) = V( ′c ); see

below the discussion of Proposition 8.

The remainder of parts (b) and (c) are obvious, on examination of Table 2 and equations (22).

Remarks. In economic terms, the above Theorem, together with Propositions 4 , 5 and 6

above, implies the following:

• The very first generation will never start a stock market in long lived capital (SM), nor an

intragenerationally autarkic bank (B).

• The slowest turnpike transition path (TIB) to steady state (Golden Rule) intergenerational

banking would survive (continue) at time  t  if either it is a dominant strategy  for both new

born and middle aged at time  t or, at least, the middle aged at time  t  can credibly resist a

switch to the (steady state, non-periodic) stock market (SM) at time t, by threatening to

revert to their intragenerationally autarkic banking allocation (B).

• In particular, the most desirable steady state outcome (the Golden Rule supported by

intergenerational banking, IB) will be reached when people are sufficiently risk averse and
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are not too likely to require early utilization of their savings (or liquidity), so that Only the

Meek Shall Inherit the Golden Rule steady state!

For the TIB path to be maintained, we must have that it is also an equilibrium outcome

of the intergenerational proposal games at all dates along the accumulation path, until the

switch to the  Golden Rule steady state can actually take place. We conclude this section by

showing  that if { }SM SM, is not a Nash equilibrium outcome in the initial stage game, it will

continue not to be so for all intergenerational stage games along the accumulation path in a

wide class of cases. We do this in the following Proposition 8, which serves to justify the

assumption that V(c) = V( ′c ), which was used in the proof of the Theorem above. Then,

given V(c) = V( ′c ), the proof of the Theorem also applies in all stage games). Furthermore,

the same equilibrium outcome would arise in all current and subsequent stages.

The thrust of our argument is the following. Assume TIB to be the unique Nash

equilibrium outcome in the first stage intergenerational proposal game. Then in cases (b.1.1)

and (c.1.1) of the preceding Theorem it will clearly continue to be the chosen equilibrium over

time, since the terms of choice between TIB and competing mechanisms will be invariant

across stage games, even as capital accumulation proceeds along the transition path. In the

other cases, where the new born might prefer a move to SM, but the middle-aged can credibly

resist such a proposal in the first stage of the game, by credibly threatening to revert to the

intragenerationally autarkic allocation B, then the terms of this choice will change as capital

accumulation proceeds along TIB. We can still prove, for the class of homothetic

(instantaneous) utility functions, that  this credible threat to revert to  B  will persist along the

accumulation path. We can thus state that:

Proposition 8.  If TIB is a (Nash, and SPE or TPE) equilibrium allocation in the first stage of

the intergenerational proposal game, it will continue to be an equilibrium allocation at all

subsequent stage games, for t ≥ 2, for all homothetic U C
C

( ) ,=
−

>
−1

1
0

ρ

ρ
ρ .

Proof. See Bhattacharya, Fulghieri and Rovelli [1997].

Remark. Given Proposition 8 and our main Theorem, and definitions (22.a, b),  V( ′c ) =

V(c) holds true for continuation payoffs  if:  [ ] [ ]V H V MA HB SM
1 11 0 1 0= > =( , ) ( ) ( , ) .

Alternatively, suppose [ ] [ ]V H V MA HB SM
1 11 0 1 0= < =( , ) ( ) ( , )  ,  but still  {SM, SM } is
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not the unique Trembling-Hand Perfect SSM  at time  t=1  in case C (simultaneous proposals)

because, by hypothesis, V( ′c ) > V(c). But  then {TIB, TIB} must also be in SSM (t+1)

because V( ′c ) > V(c) will continue to hold also at time t = 2, in light of the proof of

Proposition 8. But then it contradicts the definition of V(c) in  (22.a, b) to assume that V( ′c )

≠ V(c)  at  t=1.

V. CONCLUDING REMARKS

In this paper we have attempted to extend and synthesize the extant and emerging

theoretical frameworks pertaining to (a) static liquidity sharing (consumption smoothing)

mechanisms, (b) intergenerational (OLG)  tradeoffs and modifications to these, in and out of

steady states, and  (c) non-cooperative intergenerational proposal games related to Sustainable

Mechanisms or Institutions in these settings. Our results show that, if currently young

generations are constrained to be “minimally altruistic” towards their descendants  (i.e., not to

do relative harm to them) in their “feasible” (allowed) proposals, then transition to the long-run

optimal Golden Rule of Phelps [1961] outcome may be obtained as the unique non-cooperative

equilibrium outcome among generations, but only if the agents involved have preferences

embodying a significant degree of relative risk aversion, or  curvature in the (additive) utility

functions for consumption at different points of their stochastic lifespans, and also relatively

low likelihood of liquidity or early withdrawal needs. By embodying  such a reasonably

restricted notion of intergenerational “autonomy”, we have improved on the essentially

planning-theoretic modeling of, for example, Allen and Gale [1995], and also enriched (in

context) the methodology of Esteban and Sakovics [1993], obtaining quite different results vis-

à-vis the universality of long-run efficiency attainment.

Our model may also be usefully compared to that of Boldrin and Rustichini [1995]: with

no long-lived capital and, hence, no transfer of property rights to capital across generations

taking place, they find that whether or not PAYG Social Security (intergenerational transfer)

systems are voted into existence (and maintained) depends on the return to capital and the

dynamics of stochastic population growth (a high rate of growth will favor the adoption of a

PAYG system)14. Keeping in mind that both our transition path to intergenerational banking

(TIB) and also the intergenerational banking steady state (IB) share an essential similarity with
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PAYG systems, our results point to the fact that whether or not a PAYG outcome will be

chosen, in an environment with long lived capital stock and stochastic lifetimes, may also

depend on the extent of agents’ aversion to risk and random needs for early withdrawal or

liquidity. A synthesis of these two types of modeling, with roles for both endogenous trade or

exchange of property rights to capital and for aggregate shocks to state variables pertaining to

(i) agents’ (preference) characteristics, (ii) demographic changes, and (iii) return to capital,

should help provide important and policy-relevant answers to intriguing economic questions

regarding the nature and efficiency of equilibrium financial intermediation and social security

systems.
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ENDNOTES

Section I

1 The background assumption is that there are many small uninsurable risks, to
endowments (such as accidents), health, or family size, for which it is extremely costly to
develop separate insurance markets, in part due to private observability of outcomes, which
could be monitored by insurers only at a prohibitive cost. The lack of such markets gives rise
to uncertain indirect utility functions for agents, over their intertemporal withdrawal patterns
from their invested savings.

2 In Bhattacharya and Gale [1987] it is shown that the opening of an interim stock market
in the Diamond - Dybvig [1983] model leads to over investment, relative to the ex ante optimal
level, in the long-term technology, when agents have relative risk aversion greater than unity
and they make investment choices individually. See Bhattacharya and Padilla [1996] for further
discussion of these contrasting results, which arise from the dominance of different incomplete
markets effects, within and across generations.

3 The obvious reason is that each subcoalition of current and future generations has an
incentive to deviate from the Golden Rule allocation, by denying the anticipated positive old-
age transfer to the immediately prior generation, when each generation's endowment pattern is
tilted towards its youth.

4 Hence, the reliance on intra-generational mechanisms in an OLG context, as in
Bencivenga and Smith [1991] and others, appears to be not very well justified.

5 In addition, we also show the existence of a steady-state periodic stock market
equilibrium.

6 Hence, our results differ from those of Esteban and Sakovics [1993] in their simpler
“transfer games” context (with no endogenous real investments), in which - as the cost of
making new proposals goes to zero - they obtain nearly efficient steady-state outcomes as
unique equilibria.

Section II

7 The assumption that  Q = 1 is used by Diamond and Dybvig [1983] to prove the
existence of Panic Bank Runs, of early withdrawals for storage at (t+1) by agents who do not
wish to consume from savings until time (t+2). However, simple measures, such as suspension
of convertibility, can eliminate such Runs, so we ignore this problem. This assumption
considerably simplifies the analysis of transitions to optimal Steady-State allocations.

8 This intragenerational optimal allocation  (B) is the unique equilibrium outcome of such a
contract if banks can suspend early withdrawal rights once a proportion ε of their depositors

has been withdrawn (that is, a fraction L  of their investments has been liquidated). All agents
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would then deposit all their initial endowments in such banks, and not invest in real investments
on their own. They would also withdraw early if and only if they are early diers.

Section III

9 One may think of a 40 year period as made up of ages 40 to 80, so that a (disabled)
individual may take early retirement at the age of 60, or continue working until 80 and then
enjoy an increased level of consumption, with both dying soon after retirement.

10 In thinking of VB  as the outside option of the currently middle-aged, when the next
generation proposes a transition to SM, we are implicitly assuming that intragenerational
solidarity among the middle-aged is present (or, more plausibly, that times of death are
unresolved for them) when the next generation proposes.

11 In contemplating these transitions, we are not allowing the middle-aged generation to do
both the constrained trading with the young, and also further within-generation risk-sharing as
in (B); otherwise, VS M(MA) would always exceed VB . Our rationale is that we think of the
SM-mechanism as being more individually decentralised than either B or TIB, which require
intragenerational coordination at least. If, on the other hand, the middle-aged could renegotiate
(B) among themselves, the economy would shift to SM (following a proposal from the new

born) whenever ( )V NB VSM TIB> .

Section IV.

12 For example, generation 1 could offer to buy ε units of real, one-period old investments
from generation 0 at time t = 1, at unit price, and invest the remainder of its endowment (1-ε)
in real investments, thus guaranteeing its early and late diers consumption levels of {C1 , 1  = R ,
C1 , 2  = R }. Generation 0 would not have a better outside option (as this would involve
physical liquidation) and generation 2 would be strictly  worse off than generation 1.

13 In other words, we are analyzing cases in which the new born  at  t  do not “go along
with” the middle aged, on {TIB, TIB}, just to acquire H t + 1  > 1  to do better in a move to SM,
i.e. for [VS M(MA)  H t + 1   ] , at the next stage (t+1) game.

Section V

14 In common with our model and Esteban and Sacovics [1993], Boldrin and Rustichini
[1995] also assume that a proposed social security transfer to the old embodies in it the same
proportional transfers to the current young when they would be old (unless this is then
modified by a new proposal by the then young agents).
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