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Abstract

Consider a first-come first-served queue where agents arrive randomly but their partici-
pation in the queue is voluntary and strategic. This paper shows that the introduction
of priority-class discrimination (retaining first-come first-served within each class) unam-
biguously improves total welfare even if agents are a priori identical, i.e. agents have a
fixed outside reservation utility and their unit cost of waiting (per period) is also homo-
geneous across agents. Furthermore, when agents have heterogeneous outside reservation
utitlities, those who have low outside reservation utility should be given high priority in

the queue for total welfare improvement, not only for equity.
Keywords : first-come first-served, participation, balking.
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I. Introduction

LAST-COME FIRST-SERVED queueing discipline, as has been shown by Hassin (1985)
and Olson (1992), leads to a collectively efficient outcome when queueing agents have an
exogenous reservation utility so that their participation in the queue (either to join or
to leave) is voluntary and strategic. The intuition for this optimality result is essentially
that, when the oldest agent in the queue makes the decision whether to balk (i.e., leave
the queue), he or she creates no externality either to other agents in the queue or to
new agents who are possibly arriving in the future, thus his or her individual optimisation
coincides with social welfare optimisation. This intuition becomes clearer when contrasted
with an ordinary first-come first-served queue, in which a new agent’s decision to join or

not to join the queue does indeed have externality to future agents.

In spite of this well-known result, last-come first-served queueing discipline is rarely
practiced in reality. The reason seems twofold. An immediate skepticism to this inverse
seniority discipline is, as has always been pointed out ever since the optimality result was
published, the doubt cast against its implementability. Namely, whenever participation
(joining and balking) is voluntary, older agents in an inverse seniority queue can always
leave the queue temporarily and re-join the queue to restore the status of the newest agent.
A number of methods to prevent such “cheating” have been discussed in the literature.
Perhaps the most obvious among them is to directly prohibit such leaving and re-joining,
which requires either that the administrator (the organiser of the queue) monitor the queue
incessantly, or that the administrator be able to identify each individual agent. In fact,
both Hassin (1985) and Olson (1992) explicitly discuss this implementability problem,
mentioning those methods involving side payments. The idea of using side payments
(tolls) to make up for strategic externalities in order to attain allocative efficiency is as
old as Naor (1969), preceding the optimality result in favour of last-come first-served.
Aside from possible transaction costs associated with such transfer payments, a potential
complication stems from the fact that the calculation of optimal payments requires exact
knowledge of agents’ preferences (utility from the service, from the outside alternative, as
well as waiting costs) and their arrival process. Practically speaking, implementation of

a last-come first-served queue is far from a trivial task.

Apparently, the issue of implementability is not the only obstacle against last-come



first-served discipline. There seems a fairly strong moral objection to such an adverse
queueing rule. Indeed, it has been proven that inverse seniority leads to a less egalitarian
ex post utility distribution as opposed to the ordinary first-come first-served rule, even
though the former yields higher aggregate efficiency than the latter. Besides, first-come
first-served seems by far the most common queueing rule in every culture, which under-
scores our universal societal attitude that first-come first-served is somewhat “natural.”
Mathematical proof in support of last-come first-served queueing apparently does not by
itself suffice to convince our society and the general public to change their widely accepted

convention.

Instead of pursuing yet another advanced mechanism to implement the last-come first-
served rule, this paper seeks an alternative direction of discussion. In fact, a relatively
simple mechanism can attain an outcome which is unambiguously more efficient than the
outcome resulting from an ordinary first-come first-served mechanism. It shall be shown
in the next Section that two-class priority queueing (first-come first-served within each of
the two classes) attains higher efficiency compared with standard non-priority queueing
even if agents are a priori identical. This is a situation where class discrimination is
based upon an attribute of each agent which is in itself immaterial to his or her economic

characteristics such as waiting costs and reservation utility from outside alternatives.

Obviously, if the discriminant is an unchangeable attribute, such as colour, geographic
origin, or family names, which is independent of each agent’s tenure in the queue, then
there is no difficulty in implementing the priority queueing rule, unlike last-come first-
served where agents have an incentive to balk and re-join the queue. Another advantage
of this simple mechanism is the fact that its effectiveness does not rely upon the admin-
istrator’s knowledge about the parameters (agents’ preferences, arrival processes) of the
system. (Note: To model the situation game-theoretically, it needs to be assumed in the
paper that these parameters are commonly known, yet it is clear that the mechanism —
priority-class discrimination — will stay effective in real practice where information is less

than complete.)

The moral issue remains, however. For instance, priority-class discrimination may
indeed be considered as illegal unless such discrimination enhances not only total welfare
efficiency but also fairness. A commonly justified ground for discrimination is to argue

that a group of agents have inferior outside alternatives (i.e. reservation utility) compared



with the remainder of the agents, so that the group should receive favourable treatment
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to compensate for their exogenous “underrepresentation.” Once again, it suffices to know
only the fact that a group is exogenously underrepresented, not the exact level of their
reservation utility. Section IV of this paper shows that such “affirmative action” —
allocating high priority to that group of agents whose exogenous reservation utility is low

— does in fact improve total welfare, not only distributional fairness.

II. Arbitrary Priority Queue : the Basic Model

There is a queue, at the head of which a service arrives according to a Poisson process.
The arrival rate is one per period on average. At the moment when a service arrives, if
there is an agent waiting, then the agent consumes the service, receives the utility S and
leaves the queue immediately. Assume for simplicity that consumption of the service by
an agent is completed instantaneously. If there is no agent waiting when a service arrives,

then the service is wasted. Namely, the service is not storable.

To the tail of the queue, a priori identical agents arrive according to a Poisson process
independent of the arrival of the service. The average arrival rate is ¢ agents per period.
Upon arrival, each agent observes the number of other agents currently waiting in the
queue, depending upon which the newly arrived agent decides whether to join the queue
or not. If the agent decides to join, the cost of waiting in the queue is one per period.
Namely, the resulting payoff of an agent who has joined the queue will be the utility of
the service S minus the time spent in the queue. On the other hand, the payoff of an

agent who decides not to join the queue is a fixed number U, where S —U = A > 1.

The purpose of this simple model is to compare the equilibrium welfare levels resulting
from the following two alternative queueing rules. Welfare is defined as the average

expected payoff of a newly arrived agent.

1. The ordinary first-come first-served rule.

2. Two-class priority queueing. Agents are categorised into two externally distinguish-
able groups H and L. Their respective arrival rates are gy and q;, , where obviously

qu + 9, = q. Upon arrival, each agent observes the numbers of H- and L-agents



currently waiting in the queue and decides whether to join the queue. When both H-
and L-agents are waiting, priority is given to the former irrespective of their tenure
in the queue. Within each of the two classes, the ordinary first-come first-served
rule is in effect. Both H- and L-agents have identical preferences: unit waiting cost

one per period, utility from the service S, and outside reservation utility U.

Theorem : The welfare resulting from the two-class priority queue is

higher than that from the ordinary first-come first-served queue.

Proof : In the ordinary first-come first-served queue, the expected waiting time for a
newly arrived agent, if the agent joins the queue, is n + 1 when there are n other agents
already waiting in the queue. Thus, a new agent should join the queue if n < k — 1 and

not join if n > k, where k is the largest integer not exceeding A.

Similarly, in the two-class priority queue, a new H-agent should join the queue if
ny < k— 1 and not join if ny > k. This rule does not automatically apply to L-class

agents.

Consider a pure strategy profile which is “symmetric” in that every H-agent applies
the unique best strategy as aforementioned, and that every L-agent applies the strategy
which is to join and stay in the queue if and only if the number of other agents ahead,
i.e., the number of all other agents precedingly waiting in the queue plus the number of
H-agents who has joined later, is £ — 1 or less. Note first that { < k is necessary for
individual optimality. For, if an L-agent already has k agents ahead of him, then his
utility from joining/staying in the queue is at best S — k — 1 < U, thus he should leave

or not join the queue.

Also, when ¢ = k (whether this is an equilibrium or not), the stationary distribution
of the queue length becomes identical to that of the first-come, first-served queue (see VL.i
for exact distributions), and thus the resulting welfare efficiency also becomes identical

between the two queueing systems.

As long as ¢ < k, the expected payoff of an L-agent waiting in the queue with n other
agents ahead, denoted by V(n|f) where 7 = 0,---,¢ — 1, has the following transition



equation:

1 . qHg R 1
V(in—1/4) + V(n+1[¢) — .
g MO F g VOO =

V(nlt) =

In words, the number of other agents ahead of the L-agent is currently n , and will change

as soon as either

e a service arrives, in which case the number decreases from n to n — 1, or

e a new H-agent arrives, in which case the number increases from n to n + 1.

The expected waiting time until one of these two events occurs is , and the probabil-

1
ities that each of these two events precedes the other are and a

, respectively.
Ttgn 1 gy POV

The transition equation is solved as

1
V(nlt) =S (n +1+
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where V (¢|¢) = U and V(—1|¢) = S for notational consistency.

The next step of this proof is to look for an ¢ such that all L-agents’ applying the cut-
off rule 7 is indeed an equilibrium. To be an equilibrium, ¢ must satisfy the participation
condition

V(n|t) > U n=20,---,0—1
and the incentive compatibility condition

Vie—1l0) + -
1+qH ( ‘) 1+qH 1+qH

In words, the first condition assures that an L-agent has no incentive to balk when there
are only n < ( agents ahead, and all other L-agents are applying the same cut-off /.
The second condition is to assure that an L-agent has no incentive to join or stay in the
queue when there are already ¢ agents ahead, and all other L-agents are applying the

same cut-off ¢.

Whenever the participation condition is satisfied, the relation
U=V <VUl—-10) <--- < V() <V(=1[) =S

will hold. Conversely, the participation condition holds if V(¢ —1|¢) > U, which is further

equivalent to

(1—qu)’A> (1 —qu)l —qu(1—qu®).
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On the other hand, the incentive compatibility condition can be simplified as
(1—qu)?A< (1 —qu)(l+1)—qu(l —qu'').

Clearly, there is only one ¢ satisfying these two conditions simultaneously (the only ex-
ceptional case is when either one of these two can be met with an equality, in which case
there are two consecutive integer values of ¢ satisfying these two weak inequalities). Let

/* denote such an ¢ .

If /* = k, then the welfare resulting from the two-class priority queue is the same as
the welfare in the ordinary first-come first-served queue (as explained before). Otherwise,
if /* < k, then

V(n|€*) > V(n|k) n=0---,k—1,

so that the expected payoff for an L-agent is higher if the cut-off is ¢* than if it is k.
Clearly, L-agents’ actions have no externality to H-agents. Hence, the two-class priority

queue welfare-dominates the first-come first-served queue in equilibrium. B Q.E.D. R

Numerical Intuition : It is intuitively clear that:

e if the outside alternative U is extremely attractive, i.e. A =~ 1, then / =k =1 and
thus the welfare W7 in the first-come first-served queue and the welfare W5 in the

two-class priority queue become identical.

e if, on the other hand, the outside alternative is effectively non-existent, i.e. A = oo,

then ¢ = k = oo, which again implies W; = W, as long as ¢ < 1.

It is when the outside alternative is moderate, i.e. A takes an intermediate value, that
agent’s participation (either to join or to balk) becomes truly strategic. The following

tables illustrate the performance of the two different queueing mechanisms.



Table1: ¢=0.5,qy =q;,=0.25
A 2 3 6 10 20 > 50
S — W 1.428571 | 1.666667 | 1.937008 | 1.994138 | 1.999990
S — W, 1.365079 | 1.588235 | 1.873283 | 1.976540 | 1.999817 | 2
S — Wy 1.238095 | 1.305882 | 1.332723 | 1.333330 | 1.333333 | 1.3
S — W 1.492063 | 2.870588 | 2.413844 | 2.619749 | 2.666300 | 2.6
Wy — W 0.063492 | 0.078431 | 0.063725 | 0.017598 | 0.000173 | 0
Table 2: ¢=09, quy =qr =0.45
A 2 10 20 50 200 > 500
S — W, 1.630996 | 4.918627 | 7.406237 | 9.761822 | 10.00000 | 10
S — W, 1.538180 | 3.900542 | 5.627203 | 8.588696 | 9.999157 | 10
S — Wy 1.394856 | 1.816309 | 1.818181 | 1.818182 | 1.818182 | 1.81
S — Wy 1.681503 | 5.984776 | 9.436225 | 15.35921 | 18.18013 | 18.18
Wy — Wi 0.092816 | 1.018085 | 1.779034 | 1.173126 | 0.000843 0
Table 3 : ¢=0.99, gy = qr. = 0.495
A 10 100 260 500 2000 > 5000
S — W, 5.813107 | 42.59649 | 79.57490 | 96.71970 | 100.0000 100
S — W, 4.398337 | 24.95273 | 53.06612 | 78.61563 | 99.96131 100
S — Wy 1.974941 | 1.980198 | 1.980198 | 1.980198 | 1.980198 | 1.9801
S — Wy 6.821733 | 47.92527 | 104.1520 | 155.2511 | 197.9424 | 198.0198
Wy — Wi 1.414771 | 17.64195 | 26.50878 | 18.10407 | 0.038690 0

As A grows, i.e. as the outside option becomes less attractive, the total welfare ul-

7

boldface indicate the maximum welfare gain for each given (¢, qx) -

When ¢ is small and therefore the queue is expectedly short (Table 1), it is natural that the
relevance of queueing rules is relatively low. As g becomes larger and thus the expected
queue length grows longer (Tables 2 and 3), the welfare improvement made possible

by two-class discrimination also becomes increasingly significant. In tables, numbers in

timately converges to a limit (A T oo) where both queueing rules (in fact any rule)




yield the same efficiency. However, in the two-class priority queue, expected utilities
of H- and L-class agents show drastically different rates of convergence. W; converges
disproportionately slowly in contrast with Wy and W;. In real-life queueing situations
where A < oo, this difference in convergence rates can make the two-class priority rule

significantly welfare-dominant over the ordinary first-come first-served rule.

When the queue is expectedly long and thus the two-class discrimination is particularly
effective for welfare improvement, a natural question to investigate is how the two classes
should be split. The split between gy and ¢;, becomes particularly relevant when ¢ > 1.
As A — oo, the welfare gain from two-class discrimination grows to infinity when gz < 1
(Table 4), whereas the limit welfare gain is finite when g > 1 (Table 5). Note in particular
that choice of gy < 1 can enhance Pareto improvement as well as total welfare increase.
Slanted numbers in Table 4 indicate those cases where W, > W , i.e. even L-class agents
benefit from being discriminated against. This seemingly counterintuitive phenomenon

reflects the fact that, when g > 1, the total welfare diverges to —oo as A tends to infinity.

Table4: ¢=2,9q5=09,q,=1.1
A 2 8 9 100 1000 | oo | Order
S — W 1.857143 | 7.516634 | 8.509286 | 99.50000 | 999.5000 | co | ~
S — W, 1.766298 | 6.055775 | 6.718763 | 58.82461 | 553.5001 | co | ~ 0.55A
S — Wy 1.630996 | 4.237758 | 4.587118 | 9.997583 | 10.00000 | 10
S — W, 1.876999 | 7.543243 | 8.462836 | 98.77399 | 998.1819 | co | =~
Wy — W, 0.090845 | 1.460859 | 1.790523 | 40.67539 | 445.9999 | oo | ~ 0.45A
Table 5: ¢=2,q5=1.1,q9,=0.9
A 1 2 10 100 > 200
S—Wy | 1]1.857143 | 9.505129 | 99.50000 | A —0.5
S — W, | 1]1.788520 | 8.132577 | 95.00357 | A —5
S— Wy | 1] 1.697885 | 6.795979 | 90.91575 | A — 9.09
S—W, || 1]1.899295 | 9.766196 | 99.99980 A
Wy — Wy || 0] 0.068623 | 1.372553 | 4.496427 4.5




To be complete, explicit algebraic calculation of equilibrium expected welfare resulting

from the two alternative queueing rules is listed in VL.ii.

III. Tenure Independent Rationing : a Limit Result

It has been proven in Section II that, even when agents are a priori homogeneous, arbi-
trarily imposed two-class discrimination will yield an unambiguous welfare improvement.
It is straightforward to prove that a similar result can be extended to more general multi-
class priority queueing. In particular, the limit case is where there are infinitely many
priority classes, so that the priority ranking among waiting agents is solely defined by

their classes regardless of how long each agent has been waiting.

More concretely, compare the equilibrium welfare levels between the following two

alternative queueing rules.

1. The ordinary first-come first-served rule.

2. Multi-class priority queueing. Each agent is assigned with a predetermined “class”
indexed by a real number, which is externally observable. Whenever a service ar-
rives, priority is given to the agent whose class is the highest. If there is more than
one agent with an identical class, then the ordinary first-come first-served rule is

effective among them.

In either case, all agents have identical preferences: unit waiting cost one per period,
utility from the service S, and outside reservation utility U when not joining the queue.
Note that these two rules become identical when the class distribution in the latter is
degenerate. The multi-class rule is reduced into a two-class rule if the class distribution
is binary. It is when the class distribution is atomless that the multi-class priority rule

becomes purely tenure independent.

The following can be viewed as a generalisation of the previous Theorem.

Corollary : The welfare in the multi-class priority queue is higher than

that in the ordinary first-come first-served queue.



Supplementary Proof : Compare between the two-class queue as in Section II, and
a three-class queue where agents of the top, middle and bottom classes arrive at rates qr,
qun and qp, , respectively, where gr+qar = qm . In other words, the H-class in the two-class

queue is subdivided into T- and M-classes in the three-class queue.

In either queueing rule, the presence of the bottom class (population ¢z,) has no exter-
nality toward higher-class agents. Therefore, by directly applying the Theorem, the equi-
librium welfare of higher-class agents is higher in the three-class queue (the population-
weighted sum of T- and M-class agents’ utility) than in the two-class queue (the utility

of H-class agents).

Note also that, in Section II, the queue length distribution in the two-class queue
was shorter than in the single-class first-come first-served queue in first-order stochastic
dominance (see VIL.i). Thus, the combined queue length of top two classes in the three-
class queue is shorter than the queue length of H-class in the two-class queue. This directly
implies that the equilibrium welfare of the bottom class is also higher in the three-class

queue than in the two-class queue.

The same logic can be recursively applied to any arbitrary multi-class priority queue.

EQED. N

IV. Aflirmative Priority Queue : an Extension

Despite its superior welfare performance, it is highly presumable that imposition of
priority-class discrimination would encounter many objections, especially those concern-
ing fairness and equity. For a large part, these objections stem from the arbitrarity of

discrimination.

Fortunately, there is an additional aspect of reality that has not yet been exploited
in the simple analysis presented in the previous two sections. Namely, agents may have
heterogeneous outside alternatives. If agents can be categorised into two (or more) ex-
ternally recognisable groups, and if there is any reason to believe that different groups
of agents have different reservation utilities, then it is arguable that the queueing rule

should favour those whose outside alternatives are less attractive, in order for fairness.
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The purpose of this section is to examine the welfare performance of such “affirmative”

discrimination.

Revisit the basic model presented in Section II except that now H- and L-class agents
are assumed to have different exogenous reservation utilities Uy and Uj, , respectively,
where S — Uy = Ay > 1and S — Uy, = A > 1. Theorem in Section 2 implies the

following.

Corollary : When Uy < Uy, the welfare resulting from the two-class
priority queue is strictly higher than that from the ordinary first-come

first-served queue.

Supplementary Proof :  When the queueing rule does not discriminate between H
and L types, an H-agent joins the queue if and only if n < ky — 1 and an L-agent joins if
and only if n < k;, — 1, where n is the number of other agents already in the queue, and

kH = 1nt(AH), kL = mt(AL) .

When the queueing rule favours H-agents, an H-agent joins the queue if and only if
ng < ky — 1, where ny is the number of other H-agents already in the queue. Now,
suppose that the decision rule for an L-agent is to join and to stay in the queue if and

only if / — 1 agents are ahead in the queue.

If £ = k;,, the stationary distribution of the total number of agents in the queue
is identical between the two queueing rules. However, in the two-class priority queue,
if an H-agent arrives when there are already k; agents in the queue, and if these kj,
agents include at least one L-agent, then the newest L-agent has to leave the queue and
is replaced by the new H-agent. When Ay > 1, this event takes place with a strictly
positive probability.

Namely, in the priority queue, more L-agents and less H-agents end up taking out-
side alternatives compared with the ordinary first-come first-served queue. This clearly

improves the total welfare when Uy < Uy, .

Analogously to the Theorem, L-class agents can only be better off than this if their

optimal decision rule is ¢ # kj, instead of £ = k;. Hence both when ¢ = k; and when

11



{ # ky,, the two-class priority rule strictly welfare-dominates the first-come first-served

rule. HQED 1

Economic Implication :  Once again, the result can directly be extended to more
general multi-class priority rules. In the limit, the welfare implication offered by the two
Corollaries is such that the priority relation among waiting agents should be determined
entirely by their exogenous reservation utilities (the lower the reservation is, the higher

the priority should be) irrespective of their tenure in the system.

V. Concluding Remark

In a queueing situation where participation is voluntary, priority-class discrimination can
increase total (sometimes even Pareto) welfare as opposed to an ordinary first-come first-
served queue. Moreover, this priority-class rule is easy to implement in the following ways.
First, unlike the famous last-come first-served rule, agents have no incentive to balk and
rejoin the queue to gain extra priority. Second, the rule is simple and easy to understand

even for those agents who are not theoretical experts.

Finally, when agents have heterogeneous reservation utility, the “affirmative” priority-
class discrimination which favours those “disadvantaged” agents whose outside alterna-
tives are relatively less attractive will improve total welfare, not only redistribution of
utility across different types of agents. Conveniently, installation of such a discriminatory
queueing rule is not ethically objectionable, since it enhances both efficiency and equity

at the same time.

VI. Mathematical Notes

VI.i. Queue Length Distributions

The stationary distribution of the first-come first-served queue length is illustrated in

Figure 1.

12



Figure 1 : Transition of queue length.

In the diagram, black squares indicate feasible states and arrows indicate conditional

transition frequencies. The condition for stationarity can be summarised as
Prob(n) = ¢ - Prob(n — 1) n=1,---,k

where Prob(n) is the stationary probability of n agents waiting in the queue. The sta-

tionary distribution of the queue length is therefore

1-q

Prob(n) = 1—7qk+1 q

n=0,--k.

Without further notice, this Section presents explicit computation for ¢ # 1 only. The
analysis in the case of ¢ = 1 involves no theoretical or qualitative departure from the

generic case q # 1.

Likewise, the stationary distribution of the two-class priority queue length is illustrated

in Figure 2.
ny A Figure 2 : Transition of queue lengths.
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From conditional transition frequencies, the transition of the total queue length n =

ny + ny can be identified as

q-Pr(n—1) n=1---,0,

Pr(n) =
qy - Pr(n —1) n=~0+1,--- k.

At the same time, the number of H-agents ny follows the transition equation
Pry(ng) =q-Pru(ng — 1) ng =1,k

and thus is distributed according to

1 —quy n .
PI"H(”H):WQHH ng =0,---,k.
Note also that
Pr(n) = Pry(n) n=~0+1,--- k.

The stationary distribution of the queue length is therefore

1_QH£+1 1—gq

. . n=0,--.0,
— k+1 _ A+1
Pr(n) = 11_(112}] 1—=q
WQH 77/:€+1,"',k.

Obviously, when ¢ = k, this distribution coincides with the distribution of the first-come
first-served queue length. Since both H- and L-agents have homogeneous reservation util-
ity and waiting costs, identical queue length distributions automatically lead to identical

total welfare between the two queueing rules.

Otherwise, if ¢ < k, this two-class priority queue is shorter than the first-come first-

served queue in first-order stochastic dominance.

VI1.ii. Equilibrium Welfare

The equilibrium welfare under the first-come, first-served rule is

W, = kz_:l Prob(n) - (S — (n+ 1)) + Prob(k) - U

_ 1 1—¢* k
= 8 1_qk+1<1_q +¢'(1-gA k’))

)

where k = int(A).
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Analogously, the equilibrium welfare for the H class in the two-class priority queue is

computed as

k—1
nH:O
- 9_ 1—qgg)A—k
S l_qu+1(1_qH +qu (1 —qu) )
On the other hand, the equilibrium expected payoff of a newly arriving L-agent is calcu-
lated as
1 k
W, = > Pr(n)-V(n) + > Pr(n)-U
n=0 n=g£*
- 9_ — g TIA 4 (Ut = gyt .
=gy ((1—q><1—qH> " ) T )

(for the definition of ¢*, see Section II). Hence, the equilibrium welfare under the two-
class priority queueing rule (that is, the population-weighted average between an H-agent’s

expected payoff and that of an L-agent) becomes
aWu + Wi
q

1 1 . 1 1
= S— + 1— (1—qg" ™! ( — )
(1—-qu)g (1 —qua™1)q l =gz ™) l—q 1—gqg

. . 1—g)A—(F+1
_ qu+1((1 —q)A—k)—(qé +1 _qHé +1) ( 1)_(]4*&1 )]

Note that W5 = W, when ¢* = k.

Wy =
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