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Abstract

The endogenous choice of timing is discussed in a vertically di®erenti-

ated duopoly where quality improvement requires a ¯xed convex cost. The

timing decision concerns the quality stage. Using an extended game with

observable delay, it is shown that only simultaneous equilibria can arise.

This puts into question the ability of Stackelberg games to describe the

entry process.

J.E.L. classi¯cation: D21, D43, L13

Keywords: product quality, R&D investment, timing, extended game

1. Introduction

An established result in the theory of oligopoly under vertical di®erentiation states

that the high-quality earns higher pro¯ts than low-quality rivals (see, inter alia,

Gabszewicz and Thisse, 1979, 1980; Shaked and Sutton, 1982, 1983; Donnenfeld

and Weber, 1995). A general proof of this result for every convex ¯xed-cost

function of quality improvement is provided by Lehmann-Grube (1997). Aoki

and Prusa (1997) adopt a speci¯c case of the cost function analysed by Lehmann-

Grube, to investigate the consequences on pro¯ts, consumer surplus and social

University of Copenhagen. I thank an associate editor, an anonymous referee and Dan Sasaki
for helpful comments. The usual disclaimer applies.
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welfare of the timing of investment in product quality in a vertically di®erentiated

duopoly where the market stage is played in the price space. They show that (a)

sequential play induces both ¯rms to invest less in product quality, as compared

to what they would if they were to play simultaneously; (b) under sequential play,

the leader prefers to supply the high-quality good; and (c) industry pro¯ts are

higher under sequential play than under simultaneous play, while the opposite

obviously holds for social welfare. Hence, the authors suggest that ¯rms may

enjoy coordination bene¯ts under sequential quality choice. Though, since the

¯rm supplying the high-quality good prefers sequential play to simultaneous play,

while the opposite applies to the ¯rm producing the low-quality good, ¯rms can

coordinate over sequential play if either (i) a side payment is possible; or (ii) ¯rms

discover and introduce new varieties at random. In the latter perspective, the

authors identify a probability interval in which both ¯rms prefer the sequential

move game.

Although suggestive and indeed acceptable, neither of the two routes appear

fully satisfactory, for di®erent reasons. The possibility of a side payment raises the

issue of opportunistic behaviour on the part of both ¯rms. As to the probabilistic

approach, one would like to exploit it fully from the outset, and analyse the

game as a stochastic R&D race. In the original paper, qualities are produced
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in a deterministic environment. Moreover, random success in R&D activity puts

strongly into question point (b). If innovation is stochastic, there is no reason to

believe a priori that the leader will supply the high-quality good. As an example,

consider the car industry. An innovation in the form of a new family car in the

range of station wagons may be easier to accomplish than a new °agship sportcar,

so that the leader may well end up with the low-quality good. This points to

a possible tradeo® between early innovation and the attainment of a dominant

position in the market (see Dutta, Lach and Rustichini, 1995).1

My purpose is to proceed to a selection between simultaneous and sequential

quality choice by embedding quality competition into an extended game with

observable delay (Hamilton and Slutsky, 1990; HS henceforth), where players (say,

¯rms) are required to set both the actual moves or actions in the quality space,

and the time at which such actions are to be implemented. When ¯rms choose to

act at di®erent times, sequential equilibria obtain, while if they decide to move

at the same time, simultaneous Nash equilibria are observed. For sequential play

to emerge at the subgame perfect equilibrium of the extended game, its outcome

must at least weakly Pareto-dominate the outcome associated with simultaneous

1For the analysis of the incentive for the low-quality ¯rm towards leapfrogging, see
Rosenkranz (1997).

4



moves. The choice of timing occurs in a preplay stage which does not take place

in real time, so that there is no discounting associated with waiting and payo®s

are the same whether ¯rms choose to move as soon as possible or they delay as

long as they can. The decision to play early or at a later time is not su±cient per

se to yield sequential play, since an analogous decision taken by the rival leads

to simultaneous play. In the present setting, another extension can be envisaged,

namely, the one concerning the choice between high and low quality, i.e., the

relative positions of ¯rms in the product space. Therefore, I shall describe two

alternative symmetric extended games, resulting from the permutation of the

stages describing the timing choice and the location of ¯rms along the quality

spectrum, respectively. It turns out that the subgame perfect equilibrium of both

games entails simultaneous play at the quality stage, so that Stackelberg outcomes

are ruled out. This result, which appears to be in contrast with ¯rms' behaviour in

the real world, may cast a shadow on the reliability of this approach as a stylised

description of the process of innovation and entry.

The remainder of the paper is structured as follows. The basic model of vertical

di®erentiation is summarized in section 2. Section 3 describes the extended games.

Finally, section 4 provides concluding remarks.
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2. The vertical di®erentiation model

Here I shall brie°y resume the basic setting. Two single-product ¯rms, labelled as

1 and 2, produce goods of di®erent qualities, q1 and q2 2 [0;1), through the same

technology, C(qi) = kq2i ; with k > 0: This can be interpreted as ¯xed cost due

to the R&D e®ort needed to produce a certain quality, while variable production

costs are assumed away. Products are o®ered on a market where consumers have

unit demands, and buy if and only if the net surplus from consumption vµ(qi; pi) =

µqi ¡ pi ¸ 0; where pi is the unit price of the good of quality qi, purchased by a

generic consumer whose marginal willingness to pay is µ 2 [0; µ]:2 I assume that µ is

uniformly distributed with density one over such interval, so that the total mass of

consumer is µ. Firms compete in two stages, the ¯rst being played in the quality

space, the second in the price space. I maintain Aoki and Prusa's assumption

that downstream Bertrand competition is simultaneous. Hence, proceeding by

backward induction, the pro¯t function of ¯rm1 at the ¯rst stage looks as follows

(cf. Aoki and Prusa, 1997: Lemma 1, p. 106):

¼1(q1; q2) =
4µ
2
q21(q1 ¡ q2)
(4q1 ¡ q2)2

¡ kq21 if q1 ¸ q2; (2.1)

2Aoki and Prusa (1997: p. 106) normalise the support to [0,1].
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¼1(q1; q2) =
µ
2
q1q2(q2 ¡ q1)
(4q2 ¡ q1)2

¡ kq21 if q1 < q2: (2.2)

A slight generalization of Aoki and Prusa's results in terms of equilibrium quali-

ties, pro¯t and social welfare can be given on the basis of (1) and (2). Depending

on the entry sequence, ¯rms will alternatively take the high-quality (H) or the

low-quality (L) position. Table 1 summarises the outcomes associated with si-

multaneous play (n), sequential play with the high-quality ¯rm leading (Hl), and

sequential play with the low-quality ¯rm leading (Ll), respectively.3

INSERT TABLE 1 HERE

Observe that

¼HlH > ¼nH > ¼
Ll
H ; ¼

n
L > ¼

Ll
L > ¼

Hl
L 8 µ; k: (2.3)

The above inequalities imply that ¯rms' choice of the respective roles is indepen-

dent of the ratio between the size of the market and the amount of ¯xed costs.

Moreover, on the basis of social welfare levels in the three cases, it is worth em-

3A proof for the case where k = 1=2 is given by Motta (1993: pp. 116-117). Its generalisation
is a matter of straightforward calculations. Moreover, the absolute level of k is unimportant, in
that the main results hold independently of the relative size of k and µ:
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phasizing that a public agency taking care of social surplus without distributive

concerns should favour the leadership by the low-quality ¯rm, while the leader

always prefer to enter with a superior quality. This di®erence in the structure

of preferences can be traced back to the fact that, when leading, the low-quality

¯rm provides a higher quality than in any other situation.

3. The extended game with observable delay

Consider the following generalization of the extended game proposed by HS (1990:

p. 32), where ¯rms can set a single strategic variable in the basic game and must

choose between moving ¯rst or second.4 Here, given simultaneous play in the price

stage, the basic stage game is played in the quality space, and two extensions are

accounted for. De¯ne as ¡ = (I;;§; T;Q;¦) the extended game with observable

delay, where all decisions are taken non-cooperatively. The set of players (or ¯rms)

is I = f1; 2g, and q1 and q2 2 Q = [0;1) are the intervals of R representing the

actions available to players 1 and 2 in the basic game. Payo®s (pro¯t levels) ¼1

and ¼2 2 ¦ depend on the actions undertaken in the quality stage, so that ¼1 and

4HS (1990) also propose an extended game with action commitment, where each player must
commit to a speci¯c action irrespectively of the rival trying to lead or follow. The equilibrium
of such a game is never unique; in particular, it always allows for sequential moves (see their
Theorem VII, p. 42).
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¼2 : q1 £ q2 ! R . Accordingly, ¦ = f¼ji ;¡k(qji )2g; where j = fn; lf; flg denotes

the outcome according to the timing combination. The set of times at which ¯rms

can choose to move is T = fF; Sg, i.e., ¯rst or second. The set of strategies for

player i 2 I is §i = fF; Sg £ ©i, where ©i is the function that maps fT £ q2(or

q1)g into q1(or q2). If both ¯rms choose to move at the same time, they obtain the

payo®s associated with the simultaneous Nash equilibrium, otherwise they get the

payo®s associated with the Stackelberg equilibrium, e.g., if 1 moves ¯rst and 2

moves second, or vice versa. Finally, the presence of ¡k(qji )2 remains to explain.

This leads us to the choice between o®ering a low or a high-quality good. The set

from which ¯rms can choose is  = fH;Lg; where H and L stand for high and

low quality, respectively. The set of strategies for player i is ªi = fH;Lg £ ¤i,

where ¤i is the function that maps f £ q2(or q1)g into q1(or q2). When both

choose H (or L) they incur a loss corresponding to the R&D e®ort independently

of timing, otherwise they obtain the pro¯t determined by their quality levels as

well as timing.

I am now in a position to describe the two alternative extended games with

observable delay that can be conceived through a permutation of the choice of

timing and the choice of location along the quality spectrum. The ¯rst extended

game arises if ¯rms set the sequence of moves before choosing between high and
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low quality. The second obtains when the order of such choices is reversed. The

results of both games are summarized by the following5

Proposition 1. The subgame perfect equilibrium of an extended game with ob-

servable delay, where ¯rms have to determine the timing of moves in the quality

stage as well as their distribution along the quality range, involves simultaneous

play regardless of the sequence in which such decisions are taken.

Proof. The ¯rst extended game, where ¯rms set the timing before proceeding to

choose which quality to produce, is described by matrix 1. In each cell, the ¯rst

payo® refers to ¯rm 1, the second to ¯rm 2. The cells where payo®s are (¡;¡)

represent all cases where ¯rms enter with identical quality, so that revenues are

nil by virtue of the Bertrand paradox and each ¯rm looses R&D costs.

INSERT MATRIX 1 HERE

On the basis of the inequalities in (3), matrix 1 can be easily reduced to a 2 £

2 form, as follows. Consider the north-west quadrant, describing the subgame

5It can be shown that the same result holds if ¯rm i's total cost were C(qi; xi) = kxiq
2
i ; xi

being the output level (see Lambertini, 1996).
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where both ¯rms move as early as possible, and then choose which quality to

supply. Both (L;H) and (H;L) are Nash equilibria of the subgame, therefore in

the remainder I shall use the pro¯ts resulting from the correlated equilibrium,

i.e., (¼nH + ¼
n
L)=2 = 0:064915µ

4
=k:6 The remaining quadrants of matrix 1 can be

treated likewise, obtaining (¼LlH + ¼
Hl
L )=2 = 0:064819µ

4
=k; and (¼HlH + ¼LlL )=2 =

0:064993µ
4
=k: The reduced form is represented by matrix 1b.

INSERT MATRIX 1b HERE

It immediately appears that F is a strictly dominant strategy for both ¯rms, so

that the subgame perfect equilibrium of this extended game is identi¯ed by the

strategy pair (F; F ), entailing that both ¯rms introduce their respective goods

as early as possible, i.e., they play simultaneously in the quality stage. The

equilibrium pro¯ts are those yielded by the correlated equilibrium of the fully

simultaneous subgame, (0:064915µ
4
=k; 0:064915µ

4
=k).

Turn now to the extended game where ¯rms ¯rst decide over their location in

6The existence of multiple equilibria yielded by the simple permutation of ¯rms reveals that
there also exist mixed-strategy equilibria where ¯rms have a strictly positive probability to enter
the market with the same quality level. Using the payo®s associated with correlated instead of
mixed-strategy equilibria does not a®ect the conclusions.
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the quality range, and then proceed to set the timing. This game is depicted in

matrix 2.

INSERT MATRIX 2 HERE

Matrix 2 can be reduced by the same method applied in the previous case, by

analysing each quadrant in isolation. This yields matrix 2b. Even without any

inference concerning ¯rms' choices in the north-west and south-east quadrants of

matrix 2, it is worth observing that matrix 2b looks as if ¯rms were always moving

at the earliest occasion.

INSERT MATRIX 2b HERE

Matrix 2b exhibits two Nash equilibria, namely (H;L) and (L;H), where, again,

¯rms move simultaneously. This obviously entails that as the representative payo®

one may consider that associated with the correlated equilibrium identi¯ed above,

while discussing matrix 1, i.e., (0:064915µ
4
=k; 0:064915µ

4
=k).

The result stated in Proposition 1 is clearly at odd with reality, where we

12



usually observe ¯rms entering sequentially. This leads to reassess the reliability

of a one-shot model as a tool to describe real world events. On the one hand, the

approach adopted by Aoki and Prusa (1997) lacks a solid game-theoretical basis;

on the other, the extended game approach adopted here excludes a result which

we are well accustomed with in everyday's life. In either case, it appears that the

essence of Stackelberg equilibria is their ability to capture the strategic use on the

part of a ¯rm of the information contained in the rival's reaction function in the

relevant space, while a more °edged formalisation of both the innovation and the

entry processes must take into account the role of real time and uncertainty in

the R&D activity, as in Dutta, Lach and Rustichini (1995).

From a social standpoint, the above analysis entails a clearcut conclusion,

namely, that strategic interaction drives ¯rms towards an equilibrium which is

collectively more desirable than the Stackelberg one where the high-quality ¯rm

takes the lead. Finally, the highest level of social welfare, which would be gener-

ated by appointing the low-quality ¯rm as the leader, remains out of reach unless

an intervention is designed to induce it.7

7Or at least to mimic such a result through the introduction of a minimum quality standard
(see Ronnen, 1991; Boom, 1995; Crampes and Hollander, 1995; Ecchia and Lambertini, 1997,
inter alia).
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4. Concluding remarks

In this note, I have re-examined an issue tackled by Aoki and Prusa (1997), under

a new perspective, namely, embedding quality competition into an extended game

with observable delay in the spirit of Hamilton and Slutsky (1990). When ¯rms

are given the possibility of non-cooperatively setting the timing of moves as well

as their location along the quality spectrum, and such choices can be taken in

this or the opposite sequence, then sequential play is ruled out and ¯rms are

driven by individual rationality to set qualities simultaneously.8 This leads to a

drastic reconsideration of the descriptive power of the widely adopted one-shot

two-stage model of vertical di®erentiation, in that an approach to the description

of the entry process based on either (i) a comparative evaluation of Stackelberg vs

Nash equilibria on industry basis (as in Aoki and Prusa, 1997), or (ii) a selection

mechanism between them (as here), appears unable to describe in realistic terms

the observed behaviour of ¯rms.

8It remains true, however, that an extended game with action commitment would allow
for sequential moves to characterize one or more equilibria of the game, alongside with the
simultaneous equilibria derived here.
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n Hl Ll

qnH = 0:126655µ
4
=k qHlH = 0:122232µ

2
=k qLlH = 0:12667µ

2
=k

qnL = 0:024119µ
2
=k qHlL = 0:023894µ

2
=k qLlL = 0:024197µ

2
=k

¼nH = 0:012219µ
4
=k ¼HlH = 0:012235µ

4
=k ¼LlH = 0:0122069µ

4
=k

¼nL = 0:000764µ
4
=k ¼HlL = 0:000757µ

4
=k ¼LlL = 0:0007637µ

4
=k

SW n = 0:034592µ
4
=k SWHl = 0:034008µ

4
=k SWLl = 0:034602µ

4
=k

Table 1
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2

F S

H L H L

F H ¡;¡ ¼nH ; ¼
n
L ¡;¡ ¼HlH ; ¼

Hl
L

1 L ¼nL;¼
n
H ¡;¡ ¼LlL ; ¼

Ll
H ¡;¡

S H ¡;¡ ¼LlH ; ¼
Ll
L ¡;¡ ¼nH ; ¼

n
L

L ¼HlL ; ¼
Hl
H ¡;¡ ¼nL; ¼

n
H ¡;¡

Matrix 1
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2

F S

1 F 0:064915µ
4
=k; 0:064915µ

4
=k 0:064993µ

4
=k; 0:064819µ

4
=k

S 0:064819µ
4
=k; 0:064993µ

4
=k 0:064915µ

4
=k; 0:064915µ

4
=k

Matrix 1b
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2

H L

F S F S

H F ¡;¡ ¡;¡ ¼nH ; ¼
n
L ¼HlH ; ¼

Hl
L

1 S ¡;¡ ¡;¡ ¼LlH ; ¼
Ll
L ¼nH ; ¼

n
L

L F ¼nL;¼
n
H ¼LlL ; ¼

Ll
H ¡;¡ ¡;¡

S ¼HlL ; ¼
Hl
H ¼nL; ¼

n
H ¡;¡ ¡;¡

Matrix 2
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2

H L

1 H ¡;¡ ¼nH ; ¼
n
L

L ¼nL;¼
n
H ¡;¡

Matrix 2b
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